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Abstract

The primary objective of this paper is to conceive and develop a new methodology to
detect notable changes in liquidity within an order-driven market. We study a market
liquidity model which allows us to dynamically quantify the level of liquidity of a traded
asset using its limit order book data. The proposed metric holds potential for enhancing
the aggressiveness of optimal execution algorithms, minimizing market impact and trans-
action costs, and serving as a reliable indicator of market liquidity for market makers. As
part of our approach, we employ Marked Hawkes processes to model trades-through which
constitute our liquidity proxy. Subsequently, our focus lies in accurately identifying the
moment when a significant increase or decrease in its intensity takes place. We consider
the minimax quickest detection problem of unobservable changes in the intensity of a
doubly-stochastic Poisson process. The goal is to develop a stopping rule that minimizes
the robust Lorden criterion, measured in terms of the number of events until detection,
for both worst-case delay and false alarm constraint. We prove our procedure’s optimality
in the case of a Cox process with simultaneous jumps, while considering a finite time hori-
zon. Finally, this novel approach is empirically validated by means of real market data
analyses.

Keywords: Liquidity Risk, Quickest Detection, Change-point Detection, Minimax Optimality,
Marked Hawkes Processes, Limit Order Book.

1 Introduction

Assets liquidity is an important factor in ensuring the efficient functioning of a market. Glosten and
Harris [1] define liquidity as the ability of an asset to be traded rapidly, in significant volumes and with
minimal price impact. Measuring liquidity, therefore, involves three aspects of the trading process:
time, volume and price. This is reflected in Kyle’s description of liquidity as a measure of the tightness
of the bid-ask spread, the depth of the limit order book and its resilience [2]. Hence, as highlighted
in Lybek and Sarr [3] and in Binkowski and Lehalle [4], it is essential for liquidity-driven variables to
not only capture the transaction cost associated with a relatively small quantity of shares but also to
assess the depth accessible to large market participants. Additionally, measures related to the pace or
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speed of the market are considered since trading slowly can help mitigate implicit transaction costs.
Typical indicators in this category include value traded and volatility over a reference time interval.

Several studies have been devoted to identifying different market regimes rapidly and in an auto-
mated fashion. Hamilton [5] proposes the initial notion of regime switches, wherein he establishes a
relationship between cycles of economic activity and business cycle regimes. The idea remains rele-
vant, with ongoing exploration of novel approaches. Hovath et al. [6] suggest an unsupervised learning
algorithm for partitioning financial time series into different market regimes based on the Wassertein
k-means algorithm for example. Bucci et al. [7] employ covariance matrices to identify market regimes
and identify shifts in volatile states.

This paper introduces a novel liquidity regime change detection methodology aimed at assessing
the resilience of an order book using tick-by-tick market data. More precisely, our objective is to
study methods derived from the theory of disorder detection and to develop a liquidity proxy that
effectively captures its inherent characteristics. This will enable us to thoroughly examine how the
distribution of the liquidity proxy evolves over time. By employing these methods, we seek to gain
a detailed understanding of the dynamics involved in liquidity changes and their impact within the
distribution patterns of our chosen proxy. To accomplish this, our methodology centers around the
introduction of a liquidity proxy known as ”trades-through” (see Definition 2.1). Trades-through
possess a high informational content, which is of interest in this study. Specifically, trades-through
serve as an indicator of the order book’s resilience, allowing the examination of activity at various levels
of depth. They can also provide insightful information on the volatility of the financial instrument under
examination. Additionally, trades-through can indicate whether an order book has been depleted or not
in comparison to its previous states and to which extent. Pomponio and Abergel [8] investigate several
stylized facts related to trades-through, which are similar to other microstructural features observed in
the literature. Their research highlights the statistical robustness of trades-through concerning the size
of orders placed. This implies that trades-though are not solely a result of low quantities available on
the best limits and that the information they provide is of significant importance. Another noteworthy
result they observe is the presence of self-excitement and clustering patterns in trades-through. In
other words, a trade-through is more likely to occur soon after another trade-through than after any
other trade. This result supports the idea of modelling trades-through using Hawkes processes as
in Ioane Muni Toke and Fabrizio Pomponio [9]. This approach is particularly interesting given that
Hawkes processes fall into the class of branched processes. Their dynamics can therefore be illustrated
by a representation of immigration and birth that allows interpretation. Indeed, the intensity, at which
events take place, is formed by an exogenous term representing the arrival of ”immigrants” and a self-
reflexive endogenous term representing the fertility of ”immigrants” and their ”descendants”. We may
refer to Brémaud et al. [10] for more comprehensive details.

Our focus here will be to use the Marked-Hawkes process to model trades-through rather than
standard Hawkes processes in order to capture the impact of the orders’ volumes on the intensity of
the counting processes. Our research centers on employing the Marked-Hawkes process as a modelling
technique for trades-through, as opposed to conventional Hawkes processes. The rationale behind this
choice lies in our intention to account for the influence of order volumes on the intensity of the counting
processes.

Upon the conclusion of the modelling phase, we will utilize this proxy to identify intraday liquidity
regimes1. In order to achieve this, our model involves detecting the times at which the distribution of
liquidity (represented by a counting process) undergoes changes as fast as possible. This entails com-
paring the intensities of two doubly stochastic Poisson processes. This type of problem is commonly
known in literature as ”Quickest change-point detection” or ”Disorder detection”. Disorder detection
has been studied through two research paths, namely the Bayesian approach and the minimax ap-
proach. The Bayesian perspective, originally proposed by Girschick and Rubin [11], typically assumes
that the change point is a random variable and provides prior knowledge about its distribution. As
an example, Dayanik et al. [12] conduct their study on compound Poisson processes assuming an
exponential prior distribution for the disorder time. In their work, Bayraktar et al. [13] address a
Poisson disorder problem with an exponential penalty for delays, assuming an exponential distribution
for the delay. However, the minimax approach does not include any prior on the distribution of the

1Moments of transition between liquidity regimes will be defined as instances where the distribution of
trade-throughs experiences a change.
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disorder times, see for instance, Page [14] and Lorden [15]. Due to the scarcity of relevant literature
and data pertaining to disorder detection problems, accurately estimating the prior distribution in the
context of market microstructure poses a challenging task. Hence, our preference lies in adopting a
non-Bayesian min-max approach. El Karoui et al. [16] prove the optimality of the CUSUM2 procedure
3.1 for ρ < 1 and ρ > 1 for doubly stochastic poisson processes which extends the proof proposed by
Moustakides [17] and Poor and Hadjiliadis [18] for ρ < 1. However, the proposed solution is limited
to cases where point processes do not exhibit simultaneous jumps. This presents a problem in our
case since definition 2.1 suggests that each time a n-limit trade-through event is observed, n− 1 other
trade-through events occur simultaneously. Hence, we need to demonstrate the optimality of these
results by considering scenarios in which point processes exhibit a finite number of simultaneous ar-
rival times which is precisely what we obtained. We are also able to produce a tractable formula of
the average run delay. More importantly, our findings encompass the intricacies inherent to modelling
limit order books and investigating market microstructure. We use our results to identify changes in
liquidity regimes within an order book. To do this, we apply our detection procedure to real market
data, enabling us to achieve convincing detection performance. To the best of our knowledge, we
believe that this is the first attempt to quantify market liquidity using a methodology combining the
notion of trades-through, disorder detection theory, and marked-hawkes processes.

The article is structured in the following manner. In Section 2, the primary aim is to establish
a model for trades-through using Marked Hawkes Processes (MHP) and subsequently provide the
relevant mathematical framework. In Section 3, various results related to the optimality of the CUSUM
procedure within the framework of sequential test analysis for a simultaneous jump Cox process will
be presented. Finally, in Section 4, we provide an overview of the goodness-of-fit results obtained from
applying a Marked Hawkes Process to analyze trades-through data in the Limit Order Book of BNP
Paribas stock. Additionally, we present the outcomes of utilizing our disorder detection methodology
to identify various liquidity regimes.

2 Trades-Through modelling and Hawkes Processes

The aim of this section is to build a model for trades-through by means of Marked Hawkes Processes
(MHP) and to present the corresponding mathematical framework. We begin by defining the concept
of trades-through.

Definition 2.1 (Trade-through). Formally, a trade-through can be defined by the vector (type, depth,
volume) ∈ {−1, 1}×N×R+ where type equals 1 if the trade-through occurs on the bid side of the book
and −1 otherwise, depth represents the number of limits consumed by the market event relative to the
trade-through, and volume represents the corresponding traded volume.

In brief, an n-limit trade-through is defined as an event that exhausts the available n-th limit in the
order book. It is considered that a trade-through at limit m is also a trade-through of limit n if m
is greater than n [8]. In this context, the term ’limit n’ refers to any order that is positioned n ticks
away from either the best bid price or the best ask price. This definition is broad as it encompasses
different types of orders, including market orders, cancellations, and hidden orders which underlines
its significant information content.

Quantity

Price

Quantity

Price

Quantity

Price

Figure 1: Illustration of a trade-through event of limit 2 on the bid side.

2The abbreviation CUSUM stands for CUmulative SUM.
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Let (Ω,F,F = {Ft}t≥0,P) be a complete filtered probability space endowed with right continuous
filtration {Ft}t≥0. Going forward, whenever we mention equalities between random variables, we mean
that they hold true almost surely under the probability measure P. We may not explicitly indicate this
notion (P-a.s) in most cases. Let 0 < τA,i

0 < τA,i
1 < τA,i

2 < . . . (resp. 0 < τB,i
0 < τB,i

1 < τB,i
2 < . . . )

form a sequence of increasing F-measurable stopping times and (vA,i
k )k≥0 (resp. (vB,i

k )k≥0) be a

sequence of i.i.d R+-valued random variables for each i ∈ {1, . . . ,M}. Here, (τA,i
k )k≥0 (resp. (τB,i

k )k≥0)
represent the arrival times of trade-throughs at limit i on the ask (resp. bid) side of the limit order

book while (vA,i
k )k≥0 (resp. (vB,i

k )k≥0) represent the sizes of volume jumps of trades-though for these
arrival times.

Remark 2.1. The (τA,i
k )k≥0 (resp. (τB,i

k )k≥0) values are arranged in a specific order for a given i,
but it is essential to note that this order may not be consistently maintained when comparing them to
the (τA,j

k )k≥0 (resp. (τB,j
k )k≥0) values for a different j. We proceed by gathering the arrival times of

trade-through orders for all the limits on the bid (resp. ask) side. Subsequently, these arrival times are
organized into sequences (τAk )k≥0 and (τBk )k≥0 respectively that are sorted in ascending order.

Our goal is to design a model that takes into account the volumes of the trades-through for all
pertinent limits and that replicates the clustering phenomenon observed in the corresponding stylized
facts (See [8]). To achieve this, we suggest using a modified version of Cox processes3, specifically
Marked Hawkes Processes. We define a 2-dimensional marked point process NA×B =

(
NA, NB

)
where NA (resp. NB) is the counting measure on the measurable space (R+ × R+,B ⊗ L) associated
to the set of points

{
(τAk , vAk ); k ≥ 0

}
(resp.

{
(τBk , vBk ); k ≥ 0

}
), B being the Borel σ-field on R+ while

L is the Borel σ-field on R+. This means that ∀C ∈ B ⊗ L :

NA(C) =
∑
k≥0

1C(τAk , vAk ) , NB(C) =
∑
k≥0

1C(τBk , vBk )

=
∑

1≤i≤M

∑
k≥0

1C(τA,i
k , vA,i

k ) =
∑

1≤i≤M

∑
k≥0

1C(τB,i
k , vB,i

k )

Let FA×B =
(
FA×B

t

)
t≥0

be a sub-σ-field of the complete σ-field F where

FA×B
t = σ

(
NA×B(s, v); s ∈ [0, t], v ∈ R+

)
. Simply put, FA×B

t contains all the information about the

process NA×B up to time t. The collection of all such sub-σ-fields, denoted by
(
FA×B

t , t ≥ 0
)
, is

called the internal history of the process NA×B . One of the core concepts underlying the dynamics of
NA×B is the notion of conditional intensity. Specifically, the dynamics of NA×B are characterized by
the non-negative, FA×B-progressively measurable processes λA and λB , which model the conditional
intensities. These processes satisfy the following conditions:

E
[∫

K

NA(t, v) −NA(s, v)dv
∣∣FA×B

s

]
= E

[∫
[s,t[×K

λA(u, v)dudv
∣∣FA×B

s

]
, 0 ≤ s ≤ t

E
[∫

K

NB(t, v) −NB(s, v)dv
∣∣FA×B

s

]
= E

[∫
[s,t[×K

λB(u, v)dudv
∣∣FA×B

s

]
, 0 ≤ s ≤ t

(1)

Moving forward, the point process NA×B will be represented as a bivariate Hawkes process, with its
intensity wherein its intensity is dependent on the marks (vAk )k≥0 and (vBk )k≥0. By viewing the marked
point processes NA and NB as a processes on the product space R+×R+, we can derive the marginal
processes NA

g (.) = NA(.,R+) and NB
g (.) = NB(.,R+), which refer to as ground process. In other

worlds, for t ∈ R+,

NA
g (t) =

∫
[0,t[×R+

NA( du× dvA), NB
g (t) =

∫
[0,t[×R+

NB( du× dvB) (2)

These ground processes therefore describe solely the arrival times of the trades-through and can be
understood as being Hawkes processes as well. In instances where NA×B exhibit sufficient regularity

3Also referred to as doubly stochastic Poisson process.
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(See The definition 6.4.III and section 7.3 in Daley and Vere-Jones [19]), it is possible to factorize its
conditional intensities λA and λB without presupposing stationarity and under the assumption that the
mark’s conditional distributions at time t given FA×B

t− have densities of R+ → R+ : v 7→ fA(v
∣∣FA×B

t− )

and R+ → R+ : v 7→ fB(v
∣∣FA×B

t− ). The conditional intensity factors out as :

λA(t, v) = λA
g (t)fA(v

∣∣FA×B
t− ), λB(t, v) = λB

g (t)fB(v
∣∣FA×B

t− ), (t, v) ∈ R+ × R+ (3)

where λg(t) is referred to as the FA×B
t− -intensity of the ground intensity.

In a heuristic manner, one can summarize equation 3 for (t, v) ∈ R+ × R+ as being in the form of :

λA(t, v)dtdv ≈ E
[
NA(dt× dv)

∣∣FA×B
t−

]
≈ λA

g (t)fA(v
∣∣FA×B

t− )dtdv

λB(t, v)dtdv ≈ E
[
NB(dt× dv)

∣∣FA×B
t−

]
≈ λB

g (t)fB(v
∣∣FA×B

t− )dtdv

Remark 2.2. It is noteworthy that the conditional intensity of the ground processes considered in this

context is evaluated with respect to the filtration FA×B = (FA×B
t )t≥0 rather than FNg = (FNg

t )t>≥0

with FNg

t = σ (Ng(s), s ∈ [0, t]). This is attributed to the fact that unlike FNg , the filtration FA×B

accounts for the information pertaining to the marks associated with the process NA×B.

We assume that the conditional intensities λA
g and λB

g have the following form :

λi
g(t) = µi(t) +

∑
j=A,B

∑
k≥0

γij(t− τ jk , v
j
k)

= µi(t) +
∑

j=A,B

∫
[0,t[×R+

γij(t− s, v)N j( ds× dv), i = A,B
(4)

where µi : R+ → R+ and γij : R+ × R+ → R+ are non-negative measurable functions.
We choose a standard factorized form for the ground intensity kernel γij(t−u, v) = αije

βij(t−u)×gj(v)
to describe the weights of the marks, gj being a measurable function defined on R+ that characterizes
the mark’s impact on the intensity. The exponential shape of the kernel is derived from the findings
of Toke et al. [9]. The properties of functions gA and gB will be examined in Section 4.

Remark 2.3. As we progress to proposition 4.2, it will become apparent that the factorization of the
latter kernel presents a way to represent the conditional intensities of these processes in a Markovian
manner.

Thus, the conditional ground intensities of this model have the following integral representation :

λA
g (t) = µA(t)+

∫
[0,t[×R+

αAAe
−βAA(t−u)gA (v)NA(du× dv)

+

∫
[0,t[×R+

αABe
−βAB(t−u)gB (v)NB(du× dv), t ≥ 0

(5)

λB
g (t) = µB(t)+

∫
[0,t[×R+

αBAe
−βBA(t−u)gA (v)NA(du× dv)

+

∫
[0,t[×R+

αBBe
−βBB(t−u)gB (v)NB(du× dv), t ≥ 0

(6)

where (αij , βij)(i,j)∈{A,B}2 are non-negative reals.

Conventionally, the impact functions gi have to satisfy the following normalizing condition which
enhances the overall stability of the numerical results (see section 1.3 of [20] for further details) :∫ +∞

0

gi(v)fi(v)dv = 1, i = A,B. (7)

This means that the impact functions of the Marked-Hawkes based model would be equal to gi(v) =
vηi

E(vηi ) . The following stability conditions of our model are based on Theroem 8 of Brémaud et al. [21].
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Proposition 2.1 (Existence and uniqueness). Suppose that the following conditions hold :

1. The spectral radius of the branching matrix (also referred to as branching ratio) satisfies :

sup
λ∈ρ(∥Γ∥)

|λ| < 1

2. The decay functions satisfy ∫ +∞

0

tγij(t)dt < +∞, ∀i, j ∈ {A,B}

where ∥Γ∥ =
{∥∥γij

∥∥}
(i,j)∈{A,B}2 , γij(t) = αije

−βijtgj (v(t)) and ρ (∥Γ∥) represents the set of all

eigenvalues of ∥Γ(t)∥, then there exists a unique point process NA×B with associated intensity process
λA×B.

Remark 2.4. Existence in proposition 2.1 means that we can find a probability space (Ω,F,P) which
is rich enough to support such the process NA×B. Uniqueness means that any two processes complying
with the above conditions have the same distribution. In our case, the conditions mentioned above are
described as follows :

1. 1
2

(
αAA

βAA + αBB

βBB +

√(
αAA

βAA − αBB

βBB

)2
+ 4αAB

βAB
αBA

βBA

)
< 1

2. αij

βij2 < +∞, ∀i, j ∈ {A,B}

3 Sequential Change-Point Detection: CUSUM-based opti-
mal stopping scheme

We now shift our focus towards developing a methodology that can distinguish between distinct liq-
uidity regimes. This can be done by detecting changes or disruptions in the distribution of a given
liquidity proxy, which, in our case, is represented by the number of trades-through. Here, we will
focus on identifying disruptions that affect the intensity of the marked multivariate Hawkes process
discussed in the previous section. This will enable us to compare the resilience of our order book to
that of previous days over a finite horizon T . The sequential detection methodology involves compar-
ing the distribution of the observations to a predefined target distribution. The objective is to detect
changes in the state of the observations as rapidly as possible while minimizing the number of false
alarms which correspond to sudden changes in the arrival rate in the case of Poisson processes with
stochastic intensity. To be specific, let us consider a general point process N with a known rate λ,
where the arrivals of certain events are associated to this process. At a certain point in time θ, the
rate of occurrence of events of the process N undergoes an abrupt shift from λ to ρλ. However, the
value of the disorder time θ is unobservable. The goal is to identify a stopping time τ that relies
exclusively on past and current observations of the point process N and can detect the occurrence of
the disorder time θ swiftly. Thus, we will focus in the following on solving the sequential hypothesis
testing problems in the aforementioned general form :

H0 : λ(t),

H1 : λ̌θ1(t) = λ(t)1{t<θ1} + ρ1λ(t)1{t≥θ1}, ρ1 > 1
(8)

and,
H0 : λ(t),

H2 : λ̌θ2(t) = λ(t)1{t<θ2} + ρ2λ(t)1{t≥θ2}, ρ2 < 1
(9)

We propose the introduce a change-point detection procedure that is applicable to our model.
The goal is to study the distribution of the process NA×B process. The problem at hand can be
tackled through various approaches. Here, we opt for a non-Bayesian approach, specifically the min-
max approach introduced by Page [14], which assumes that the timing of the change is unknown and
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non-random. Previous research has shown the optimality of the CUSUM procedure in solving this
problem (see [22][23][16]). However, these demonstrations are confined to scenarios where the process
involves Cox jumps of size 1. This constraint poses significant limitations in our case, as the definition
2.1 of trade-throughs implies for of simultaneous jumps. Therefore, the objective of this chapter is
to demonstrate the optimality of the CUSUM procedure in a broader context that considers multiple
jumps and to formulate the relevant detection delay.

The identification of different liquidity regimes in an order book can be done in various ways. One
can apply our disorder detection methodology separately on processes NA and NB to study liquidity
either on the bid or on the ask, or consider process NA +NB and take both into account at the same
time. To enhance the clarity and maintain the general applicability of our results, we consider the point
process N as a general Cox process that decomposes into the form

∑D
i=1 N

i where 0 < D < +∞ and
N i is a finite point process defined on the same probability space introduced in the previous section and
whose arrivals are non-overlapping. We denote λi the F-intensity of N i and by t 7→ Λi(t) =

∫ t

0
λi(s)ds

it’s compensator for i = 1, . . . , D.
We denote the probability measure for the case with no disorder by P∞, where θ = +∞. The

probability measure for the case with a disorder that starts from the beginning, where θ = 0, is
denoted by P0. If there is a disorder at the instant θ, represented by the value of the intensity of
the counting process equal to λ̌θ(t), then the probability measure is denoted by Pθ. The constructed
measure satisfies the following conditions :

Pθ =

{
P0, if θ = 0

P∞, if θ = +∞

Remark 3.1. In what follows, we use the notation E to refer to the expectations that are evaluated
under the probability measure P∞, while Eθ represents the expectations evaluated under the probability
measure Pθ.

We initiate the discourse by introducing a few notations that will be instrumental in presenting
our results. Let U i = N i − β(ρ)Λi and i ∈ {1, . . . , D}. The process

∑D
i=1 U

i is referred to as the
Log Sequential Probability Ratio (LSPR) between the two probability measure P∞ and P0 where

β(ρ) = (ρ − 1)/ log ρ and Λi(t) =
∫ t

0
λi(s)ds for all 0 ≤ t ≤ T . The probability measure P0 is defined

as the measure equivalent to P∞ with density :

dP0

dP∞

∣∣
Ft

= ρ
∑D

i=1 Ui(t), 0 ≤ t ≤ T (10)

Or, more generally :

dPθ

dP∞

∣∣
Ft

=

D∏
i=1

ρU
i(t)

ρUi(θ)
, 0 ≤ θ ≤ t

= ρ
∑D

i=1 Ui(t)−Ui(θ)

(11)

According to Girsanov’s theorem, these densities are defined if E
(
ρ
∑D

i=1 Ui(t)−Ui(θ)
)

= 1 which is the

case since ρ
∑D

i=1 Ui(t) = elog(ρ)
∑D

i=1 Ni(t)−(ρ−1)
∑D

i=1 Λi(t) is a local martingale if
∑D

i=1 Λi(t) is càdlàg

(see Øksendal et al. [24]). Hence,
∑D

i=1 N
i(t) − ρΛi(t) is a Pθ-martingale iff ρ

∑D
i=1 Ui(t)−Ui(θ) is an

P∞-martingale. We can therefore now define the log-likelihood ratio :

ℓt,θ : =

D∑
i=1

∫ t

θ

log

(
λ̌i
θ(s)

λi(s)

)
dN i(s) −

D∑
i=1

∫ t

θ

(
λ̌i
θ(s) − λi(s)

)
ds

= log (ρ)

(
D∑
i=1

(
N i(t) −N i(θ)

)
− ρ− 1

log (ρ)

(
Λi(t) − Λi(θ)

))

= log (ρ)

(
D∑
i=1

U i(t) − U i(θ)

) (12)

7



with

λ̌i
θ(t) =

{
λi(t), 0 ≤ t ≤ θ

ρλi(t), t > θ

which is the intensity of the node i if the disorder takes place at the time θ.
In statistical problems, it is common to observe two distinct components of loss. The first com-

ponent is typically associated with the costs of conducting the experiment, or any delay in reaching
a final decision that may incur additional losses. The second component is related to the accuracy
of the analysis. The min-max problem (see [14]) can be formulated as finding a stopping rule that
minimizes the worst-case expected cost under the Lorden criterion. The objective is therefore to find
the stopping time that minimizes the following cost :

inf
τ∈Tπ

C(τ) (13)

Where C(τ) = supθ∈[0,+∞] ess sup Eθ
[
(τ − θ)+

∣∣Fθ

]
, Tπ is the class of F-stopping times that statisfies

E(τ) ≥ π and π > 0 a constant.
As explained by Lorden [15], the formulation of the problem under criterion C(τ) is robust in the sense
that it seeks to estimate the worst possible delay before the disorder time. The false alarm rate can
be controlled by controlling E(τ) through π. It has been observed that Lorden’s optimality criterion
is characterized by a high level of stringency as it necessitates the optimization of the maximum
average detection delay over all feasible observation paths leading up to and following the changepoint.
This rigorous approach often produces conservative outcomes. However, it is worth noting that the
motivation behind the use of min-max optimization can be linked to the Kullback-Leibler divergence.
This has notably been the case in the works of Moustakides [23] for detecting disorder occurring in
the drift of Ito processes. In our case, for τ ∈ Tπ and 0 ≤ θ ≤ τ , equation 12 yields :

Eθ

[
log

(
dPθ

dP∞

) ∣∣Fθ

]
= log (ρ)Eθ

[
D∑
i=1

(
N i(τ) −N i(θ)

)
− ρ− 1

log (ρ)

(
Λi(τ) − Λi(θ)

) ∣∣Fθ

]

= (log (ρ) − ρ + 1)

D∑
i=1

Eθ
[(
N i(τ) −N i(θ)

)+ ∣∣Fθ

] (14)

Hence, the following minimax formulation of the detection problem is proposed :

inf
τ
C̃(τ) = inf

τ
sup

θ∈[0,+∞]

ess sup

D∑
i=1

Eθ
[(
N i(τ) −N i(θ)

)+ ∣∣Fθ

]
with the constraint

D∑
i=1

E
(
N i(τ)

)
≥ π

(15)

El Karoui et al. [16] suggests another justification of this relaxation based on the Time-rescaling
theorem (see Daley and Vere-Jones [19]) which allows us to transform a Cox process into a Poisson
process verifying :

Eθ

[
D∑
i=1

(
N i(τ) −N i(θ)

)+ ∣∣Fθ

]
= ρ

D∑
i=1

Eθ

[∫ τ

τ∧θ

λi(s)ds
∣∣Fθ

]
(16)

Heuristically, this is equivalent to the formulation referenced in 15. Indeed,
∑D

i=1 Eθ
[∫ τ

τ∧θ
λi(s)ds

∣∣Fθ

]
=(∑D

i=1 λ
i,cst

)
Eθ
[
(τ − θ)

+ ∣∣Fθ

]
in the case of a Poisson process with constant intensity.

Remark 3.2. The formulation 15 is particularly useful in finance trading applications, where it is
more advantageous to focus solely on transactions/events that occurred, rather than the state of the
market at every moment.

Remark 3.3. Another alternative is to consider the criterion Eθ
[
sup1≤i≤D

(
N i(τ) −N i(θ)

)+ ∣∣Fθ

]
,

which would be to minimize the worst possible detection delay among all processes (N i(t))1≤i≤D. Since
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the Lorden criterion is already a conservative measure, adding another criteria function could result
in excessive restrictions that may cause significant delays in the detection process. Therefore, it is
preferable to refrain from using additional criteria functions. Notably, the Lorden criterion produces
larger values compared to the criteria proposed by Pollak [25] or Shiryaev [26], which further supports
its sufficiency in detecting changes (see [27] p. 9-15).

Given that the likelihood ratio test is considered the most powerful test for comparing simple

hypotheses according to the Neyman-Pearson lemma, we will utilize ρ
∑D

i=1 Ui(t)−Ui(θ) to assess the
shift in this distribution. The log-likelihood ratio

∑D
i=1 U

i(t)−U i(θ) usually exhibits a negative trend
before a change and a positive trend after a change (see section 8.2.1 of Tartakovski et al. [28] for
more details). Consequently, the key factor in detecting a change is the difference between the current

value of
∑D

i=1 U
i(t) − U i(θ) and its minimum value. As a result, we are prompted to introduce the

CUSUM process.

Definition 3.1. Let ρ ̸= 1, m > 0, 0 ≤ t ≤ T and U =
∑D

i=1 N
i − βΛi =

∑D
i=1 U

i. The CUSUM
processes are defined as the reflected processes of U :

Û(t) = U(t) − inf
0≤s≤t

U(s), if ρ > 1

Ũ(t) = sup
0≤s≤t

U(s) − U(t), if ρ < 1
(17)

The stopping times for the CUSUM procedures are given by :

T̂C = inf
{
t : Û(t) > m

}
, T̃C = inf

{
t : Ũ(t) > m

}
where the infimum of the empty set is +∞.

Remark 3.4. We note that ρβ(1/ρ) = β(ρ). Therefore, for t > 0,

sup
θ<t

ℓt,θ ≤ ℓCt,θ :=

log (ρ)
(∑D

i=1 U
i(t) − infθ<t U

i(θ)
)

if ρ > 1

log
(

1
ρ

)(∑D
i=1 supθ<t U

i(θ) − U i(t)
)

if ρ < 1

and {
t : sup

θ<t
ℓt,θ > m

}
⊆
{
t : ℓCt,θ > m

}
Consequently, initial lower bounds can be derived for the stopping times T̂C and T̃C based on the
reflected CUSUM processes associated with each component N i.

Remark 3.5. Considering the increasing event times {τi, i = 1, 2, . . .} of the process
∑D

i=1 N
i, and

for any fixed t ≥ 0 and k ≥ 1 where t > tk, the following relationships hold (see Lemma 4.1 in Wang
et al. [29]) : supτk<s≤min{τk+1,t} ℓt,s = lims→τ+

k
ℓt,s = ℓt,τ+

k
, and sup0≤s≤τ1 ℓt,s = ℓt,0 . This implies

for k > 0 and t > τk that :

sup
θ<t

ℓt,θ = max{ sup
0<s≤τ1

ℓt,s, sup
τ1<s≤τ2

ℓt,s, . . . , sup
τk<s≤min{τk+1,t}

ℓt,s}

= max{ℓt,0, ℓt,τ+
1
, . . . , ℓt,τ+

k
}

This allows us to extract a more time-efficient method for calculating the optimal stopping times T̃C

9



and T̂C. To do this, we formulate the log-likelihood ratio recursively :

ℓt,τ+
n+1

=

D∑
i=1

U i(t) − U i(τ+n+1)

=

D∑
i=1

U i(t) − U i(τ+n+1) + U i(τ+n ) − U i(τ+n )

= ℓt,τ+
n
−

D∑
i=1

(
N i(τ+n+1) −N i(τ+n )

)
+ β (ρ)

D∑
i=1

∫ τ+
n+1

τ+
n

λi(s)ds

= ℓt,τ+
n
−

D∑
i=1

(
N i(τ+n+1) −N i(τ+n )

)
+ β (ρ)

D∑
i=1

(
Λi(τ+n+1) − Λi(τ+n )

)
One noteworthy characteristic of

∑D
i=1 N

i(T̃C) and
∑D

i=1 N
i(T̂C) is that their conditional expec-

tations can be explicitly calculated based on their initial values and the parameter m. As a result, the
theorems 3.1 and 3.2 offer a valuable tool for controlling the ARL constraint through the parameter

m, i.e, expressing
∑D

i=1 E
(
N i(T̃C)

)
and

∑D
i=1 E

(
N i(T̂C)

)
as tractable formulas for ρ > 1 and ρ < 1.

Theorem 3.1. Let T̃C the CUSUM stopping time defined by T̃C = inf
{
t ≤ T : Ũ(t) > m

}
for ρ < 1.

Assume that the intensities λi of the processes N i are càdlàg, ∀i ∈ {1, . . . , D}. The constraint on the

Average Run Length (ARL) in T̃C is equal to :

Ey

(
D∑
i=1

N i(T̃C)

)
=

∫ m

y

1

β(ρ)

⌊x⌋∑
k=0

(−1)k

k!
((x− k)/β(ρ))k exp((x− k)/β(ρ))dx (18)

with Py = P(.
∣∣Ũ(0) = y).

Proof. Proof postponed to appendix.

Theorem 3.2. Let T̂C the CUSUM stopping time defined by T̂C = inf
{
t ≤ T : Û(t) > m

}
for ρ > 1.

Assume that the intensities λi of the processes N i are càdlàg, ∀i ∈ {1, . . . , D}. The constraint on the
Average Run Length (ARL) in T̂C is equal to :

Ev

(
D∑
i=1

N i(T̂C)

)
= W (m− v)

W (m)

W ′(m)
−
∫ m−v

0

W (y)dy,

Em−

(
D∑
i=1

N i(T̂C)

)
=

W (m)

βW ′(m)

(19)

with Pv = P(.
∣∣Û(0) = v), W (x) = 1

β(ρ)

∑⌊x⌋
k=0

(−1)k

k! ((x−k)/β(ρ))k exp((x−k)/β(ρ)) and
∫ x

0
W (y)dy =∑⌊x⌋

k=0

(
e(x−k)/β(ρ)

(∑k
i=0

(−1)j

j! ((x− k)/β(ρ))j
)
− 1
)
.

Proof. Proof postponed to appendix.

Figures 2a and 2b give a visual image of the values taken by Average Run Length (ARL) when
varying the ratio ρ and the parameter m.

10



m

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0

0.60

0.65

0.70

0.75
0.80

0.85
0.90

0.95
1.00

g m
(0

)

50000

100000

150000

200000

250000

(a) Average Run Length for ρ ∈ [0.6, 1[
and m ∈ [1, 15]

m

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0 1.00

1.05

1.10

1.15

1.20
1.25

1.30
1.35

1.40

h m
(0

)

0

2000

4000

6000

8000

10000

12000

14000

(b) Average Run Length for ρ ∈ ]1, 1.4]
and m ∈ [1, 15]

Two subsequent theorems 3.3 and 3.4 substantiate the optimality of the CUSUM procedure by sep-
arately considering the cases where ρ < 1 and ρ > 1. These theorems establish that the CUSUM stop-
ping time attains the lower bound of the Lorden criterion C̃(τ) = supθ∈[0,+∞[ ess sup Eθ

[
(τ − θ)+

∣∣Fθ

]
in each case, thereby demonstrating its optimality in detecting changes or shifts in sequential obser-
vations for both scenarios.

Theorem 3.3. Let T̃C = inf
{
t ≤ T : Ũ(t) > m

}
denote the CUSUM stopping time. Then, T̃C is

proven to be the optimal solution for 15 for ρ < 1 where
∑D

i=1 E
(
N i(T )

)
=
∑D

i=1 E
(
N i(T̃C)

)
.

Proof. Proof postponed to appendix.

Theorem 3.4. Let T̂C = inf
{
t ≤ T : Û(t) > m

}
denote the CUSUM stopping time. Then, T̂C is

proven to be the optimal solution for 15 for ρ > 1 where
∑D

i=1 E
(
N i(T )

)
=
∑D

i=1 E
(
N i(T̂C)

)
.

Proof. Proof postponed to appendix.

4 Experimental Results

We proceed to presenting the experimental findings related to our methodology. To begin with,
we provide a comprehensive outline of the final form of the kernel in the Marked Hawkes Process.
Subsequently, we conduct an assessment of its goodness of fit to the BNP Paribas data. Following
that, we perform a thorough analysis to evaluate the methodology’s effectiveness in detecting changes
in liquidity regimes.

4.1 Data Description

We use Refinitiv limit order book tick-by-tick data (timestamp to the nanosecond) for BNP-Paribas
(BNP.PA) stock from 01/01/2022 to 31/12/2022 to fit our Marked Hawkes models and carry out our
research on disorder detection. This data give us access to the full depth of the order book and include
prices and volumes on the bid and ask. Throughout the study, we only consider trades flagged as
’normal’ trades. In particular, we did not consider any block-trade or off-book trade in the following.
We restrict our data time-frame to the period of the day not impacted by auction phases (from 9:30 PM
to 17 PM, Paris time). Only trades ranging from limit one to four are considered here. The selection is
motivated by the relatively rare instances of trade-through events when the limit exceeds four. Indeed,
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the comprehensive analysis of transactions involving the BNP stock reveals that approximately 4.89%
of the overall transaction count led to at least one trade-through event. While these trade-through
events bear significance, it is pertinent to note that trades-through with limit surpassing four constitute
a low percentage of merely 0.0126% within the total transaction count during that specific timeframe.
These findings align with the research conducted by Pomponio et al [8].
The VSTOXX® Volatility Index serves as a tool for assessing the price dynamics and liquidity of
stocks comprising the EURO STOXX 50® Index throughout the year 2022. This index will facilitate
the identification of appropriate days for conducting our comparative analysis. Figure 3 shows that
day 05/01/2022 corresponds to the day with the lowest volatility, while 04/03/2022 is the day with the
highest volatility. We will consider 31/08/2022 as the reference day where the volatility index is set
equal to the average of the VSTOXX® (indexvol ≈ 27) over the entire year and where the volatility
index on the previous and following days does not deviate greatly from the latter.
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Low volatility 
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High volatility 
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EURO STOXX 50® Volatility

Figure 3: EURO STOXX 50® Volatility index (VSTOXX®) from 01/01/2022 to
31/12/2022.

Remark 4.1. It is worth noting that obtaining data on trade-throughs, as defined in this study, does
not require the reconstruction of the order flow of the order book, as previously reported by Toke [30].

4.2 Estimation

The current state of the art regarding the estimation of Multivariate Hawkes processes revolves around
methods : Method of moments, Maximum likelihood estimation (MLE) and Least squares estimation.
A number of papers have reviewed each method. For exemple, Cartea et Al. [31] construct an adaptive
stratified sampling parametric estimator of the gradient of the least squares estimator. Hawkes [32]
used the techniques developed by Bartlett to analyze the spectra of point processes that where which
were later retrieved by Bacry et Al. [33] to propose a non-parametric estimation method for stationary
Multivariate Hawkes processes with symmetric kernels. Bacry et Al. [34] relaxed these assumptions,
except for stationarity, and showed that the Multivariate Hawkes process parameters solve a system
of Wiener-Hopf equations. In their work, Daley and Vere-Jones [19] put forth the idea of maximizing
the log-likelihood of the sample path. We adopt this approach due to the efficient computation of the
likelihood function in our case, which consequently eases the estimation of the model’s parameters.

The subsequent analysis involves parameter estimation within our model, utilizing the maximum
likelihood method. We define an observation period denoted as [0, T ], which corresponds to the
time span during which empirical data was collected. To construct the likelihood function 20, we
initiate by defining the probability densities fA and fB of the marks. Figure 4 provides an illustrative
representation of the distribution of volume of trades-through on the bid and ask sides of the order
book for BNP Paribas stock during May 2022.
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Figure 4: Log-log scale Complementary Cumulative Density Function (CCDF) of the volume
of trades-through on the bid (left figure) and ask (right figure) sides from May 2nd, 2022,
09:30:00, to May 31, 2022, 17:00:00. The dashed red lines correspond to the CCDF of a Pareto
distribution with parameter η = 0.45, the dashed black line corresponds to the CCDF of a
Gaussian distribution, and the dashed green line corresponds to the CCDF of an Exponential
distribution with a coefficient equal to 0.01.

The observations exhibit a good fit with an exponential distribution. We will characterize the
impact of volume on trades-through using a normalized power decay function4. This means that
gi(v) = ci × vηi with ηi as a non-negative real and ci as a normalizing constant, i = A,B. By
normalizing the impact function using its first moment (as specified in 7), we derive the expression:

gi(v) =
vηi

E (vηi)
=

βηi

i

Γ(1 + ηi)
vηi

In this equation, βi > 0 denotes the parameter of the exponential distribution of volumes, defined on
the half-line ]0,+∞[, with i = A,B.

Furthermore, the baselines µA and µB are defined as a non-homogeneous piecewise linear continu-
ous functions t 7→

∑14
i=1 µ

A
i 1 i−1

14 T<t≤ i
14T

and t 7→
∑14

i=1 µ
B
i 1 i−1

14 T<t≤ i
14T

over a subdivision of the time

interval [0, T ] into half-hour intervals with µA
i > 0 and µB

i > 0 for all i ∈ {1, . . . , 14}. This adaptive
approach allows the model to effectively accommodate fluctuations in intraday market activity.

Remark 4.2. The model under consideration aligns with the one proposed by Toke et al. [9], specifi-
cally when gi ≡ 1 where i = A,B.

We proceed by computing the likelihood function L ({N(t)}t≤T ), which represents the joint prob-
ability of the observed data as a function of the underlying parameters.

Proposition 4.1 (Likelihood). Consider a marked Hawkes process NA×B =
(
NA, NB

)
with intensity

λA×B =
(
λA, λB

)
and compensator ΛA×B =

(
ΛA,ΛB

)
. We denote the probability densities of the

marks by (fA, fB). The log-likelihood of {NA×B(t)}t≤T relative to the unit rate Poisson process ℓ is
equal to :

ℓ = T −
∑

i∈{A,B}

∫ T

0

µi (u) du +
∑

j∈{A,B}

∑
τj

k′<T

αij

βij

β
ηj

j

Γ(1 + ηj)
v
ηj

k′

(
1 − e−βij(T−τj

k′)
)

+
∑

i∈{A,B}

∑
τ i
k≤T

ln

µi
(
τ ik
)

+
∑

j∈{A,B}

∑
τj

k′<τ i
k

αij

β
ηj

j

Γ(1 + ηj)
v
ηj

k′ e
−βij(τ i

k−τj

k′)

+
∑

i∈{A,B}

∑
τ i
k≤T

ln
(
fi
(
vik
))

(20)

4Also referred to as Omori’s Law in the context of earthquake modelling.
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where fi (v) = βie
−βiv, i = A,B.

Proof. The computation of the log-likelihood of a multidimensional Hawkes process involves summing
up the likelihood of each coordinate i ∈ {A,B} :

ℓ := ln

(
L ({N(t)}t≤T )

L0

)
= T +

∑
i∈{A,B}

lnL
({

N i(t)
}
t≤T

) (21)

According to Theorem 7.3.III of [19], one can express the likelihood of a realization
(
τ i1, v

i
1

)
,. . . ,

(τ iNi
g(T ), v

i
Ni

g(T )) of N i(t) in the following form :

L
(
{N i(t)}t≤T

)
=

Ni
g(T )∏
k=1

λi
g

(
τ ik
)Ni

g(T )∏
k=1

fi
(
vik
) exp

(
−
∫ T

0

λi
g(u)du

)
(22)

The likelihood of the process NA×B relative to the unit rate Poisson process is thus expressed as
follows :

ℓ := ln

(
L
(
{NA×B(t)}t≤T

)
L0

)
= T +

∑
i∈{A,B}

lnL
({

N i(t)
}
t≤T

)
= T −

∫ T

0

λA
g (u) du +

∫ T

0

lnλA
g (u)NA(du× dv) +

∫ T

0

ln fA (v)NA(du× dv)

−
∫ T

0

λB
g (u)du +

∫ T

0

lnλB
g (u)NB(du× dv) +

∫ T

0

ln fB (v)NB(du× dv)

= T −
∑

i∈{A,B}

∫ T

0

µi (u) du +
∑

j∈{A,B}

∑
τj

k′<T

αij

βij

β
ηj

j

Γ(1 + ηj)
v
ηj

k′

(
1 − e−βij(T−τj

k′)
)

+
∑

i∈{A,B}

∑
τ i
k≤T

ln

µi
(
τ ik
)

+
∑

j∈{A,B}

∑
τj

k′<τ i
k

αij

β
ηj

j

Γ(1 + ηj)
v
ηj

k′ e
−βij(τ i

k−τj

k′)

+
∑

i∈{A,B}

∑
τ i
k≤T

ln
(
fi
(
vik
))

= T + ℓλg
+ ℓv,

where fA (resp. fB) is the density function relative to the distribution of the volumes and the pre-factor
cj is the normalizing constant.

Remark 4.3. Equation 2 allows us to decompose the log-likelihood into the sum of two terms. The first
term being generated by the ground intensity and the second by the conditional distribution of marks.
Note that the absence of any shared parameter between ℓλg

and ℓv, i.e, between fi and λi
g allows for

the independent maximization of each term.

4.3 Goodness-of-fit analysis

We now intend to analyze the quality of fit of our model. We begin by examining the stability of
the obtained parameters. Figure 5 displays the boxplots related to the baseline intensity parameters
(µA

i )1≤i≤14 and (µB
i )1≤i≤14.
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Figure 5: Tukey Boxplot of the values of the baseline intensity parameters for bid side (left
figure) and ask side (right figure).

The exogenous part of the intensity function effectively captures the market activity profile with a
noticeable U-shaped curve. To gain deeper insights, we further explore the remainder of the kernel. In
Figure 6, we present boxplots for the values of the parameters (αij)i,j∈{A,B}, (βij)i,j∈{A,B}, (ηi)i∈{A,B},
and (βi)i∈{A,B} related to the endogenous aspect of the kernel, providing valuable information about
its self-excitation and mutual-excitation properties.
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Figure 6: Tukey Boxplot of the values of the parameters (αij)i,j∈{A,B}, (βij)i,j∈{A,B},
(ηi)i∈{A,B} and (βi)i∈{A,B}.

We can observe that the values of βA and βB range between 0.009 and 0.013, which confirms
our initial guess shown in Figure 4. Additionally, we notice that mutual excitation effects are weak
compared to self-excitation effects, consistent with the findings reported by Toke et al [9]. Furthermore,
we observe that the parameters have low variance, and the conditions specified in 2.4 are consistently
met with an average branching ratio of 0.83. This indicates the stability of our model and suggests
that we are operating in a sub-critical regime.

To assess the validity of our fit, we perform a residual analysis of our counting processes using
the Time-Rescaling theorem (see Daley and Vere-Jones [19]). Proposition 4.2 enables us to recursively
compute the distances Λi

(
τ ik
)
− Λi

(
τ ik−1

)
, reducing the complexity of the goodness-of-fit algorithm

from O(N2) to O(N), as outlined in Ozaki [35].

Proposition 4.2. Consider a marked D-dimensional Hawkes process with exponential decays and an
impact function of power law type, denoted as (N i)1≤i≤D. Let

{
τ ik
}
k≥0

represent the event times of
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the process N i, and N i
g denote its related ground process for all i ∈ 1, . . . , D. Then,

V i
k := Λi

g

(
τ ik
)
− Λi

g

(
τ ik−1

)
=

∫ τ i
k

τ i
k−1

µi(s)ds +

D∑
j=1

αij

βij

[
Aij(k − 1) ×

(
1 − e−βij(τ i

k−τ i
k−1)

)
+

∑
τ i
k−1≤τj

k′<τ i
k

gj(v
j
k′)
(

1 − e−βij(τ i
k−τj

k′)
)] (23)

where Aij(k) is defined recursively as

Aij(k) = e−βij(τ i
k−τ i

k−1)Aij(k − 1) +
∑

τ i
k−1≤τj

k′<τ i
k

gj

(
vjk′

)
e−βij(τ i

k−τj

k′)

with initial condition:
Aij(0) = 0

and
{
V 1
k

}
k≥0

,
{
V 2
k

}
k≥0

, . . . ,
{
V D
k

}
k≥0

are D independent sequences of independent identically dis-

tributed exponential random variables with unit rate.

We compare the deviation between the distribution of the transformed process and that of a
stationary Poisson process of intensity equal to 1 through the Kolmogorov-Smirnov test and verify
the independence of its observations through the Ljung–Box test. The Q-Q plot in Figure 7 shows a
typical visual example of the fit of our model on the 01/02/2022 trades-through data.

Figure 7: A depiction of a Q-Q plot showcasing the relationship between the theoretical
quantiles, derived from an exponential distribution with a parameter of 1, and the sample
quantiles generated through a Marked Hawkes model applied to Bid (or Ask) trades-through
data for the BNP Paribas stock on 01/02/2022.

The outcomes of our calibration for the month of May 2022 indicate that our model successfully
passes the Kolmogorov-Smirnov test 50.2% of the time at a significance level of 5%, 60.8% of the time
at a significance level of 2.5%, and 82.5% at a significance level of 1%. Moreover, our model consistently
passes the Ljung-Box test up to the twentieth term at a significance level of 5%. Taking these factors
into account, along with the notably convincing Q-Q plots and the presence of low-variance model
parameters that meet stability criteria, we can assert that our model fits the market data effectively.

4.4 Detection of shifts in liquidity regimes

In this section, the results of the CUSUM procedure studied in section 3 will be used to make a day-
to-day comparative analysis of the liquidity state. Our approach involves selecting a specific day and
treating the intensity of the Hawkes processes that model the associated trades-through as the baseline
intensity of the financial instrument being analyzed. Sequential hypothesis testing is then performed
based on this established intensity. In other words, this amounts to comparing the intensities of the
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trades-through processes related to two distinct days and thus to comparing the state of liquidity
between two given days.

We will use the VSTOXX index and bid-ask spread as a marker/proxy of liquidity to assess the
quality of our detection. The primary challenge of implementing our sequential hypothesis testing
procedure through backtesting is the unavailability of data on disorder periods. Nonetheless, it is
noticeable that the commencement of CME’s open-outcry trading phase for major equity index futures
at 2:30 PM Paris time, along with significant US macroeconomic news releases such as the ISM
Manufacturing Index at 4 PM Paris time, leads to amplified market volatility in Europe. The impact
of these events on BNP Paribas’ stock prices will be utilized as an indicator to evaluate the detection’s
delay.
We start by fixing the parameters m and ρ as defined in section 3 in order to define the hypotheses

to be tested and to determine the average detection delays
∑D

i=1 E
(
N i(T̃C)

)
and

∑D
i=1 E

(
N i(T̂C)

)
which is relative to them. As the Average Run Length is an increasing function of m for all ρ > 0
and as Lorden’s criterion is pessimistic (in the sense that it seeks to minimise the worst detection
delay), it is preferable to choose m small enough not to have a very large detection delay (i.e., second
type error). This said, a too small m will result in an increase of false alarms (i.e. first type error).
A compromise must therefore be found between the two. We therefore propose to carry out our
hypothesis tests for ρdown = 0.5 and ρup = 1.5 and m = 5. Figures 2a and 2b show that these

parameters yield
∑D

i=1 E
(
N i(T̃C)

)
= 75.97 and

∑D
i=1 E

(
N i(T̂C)

)
= 60.4. We initially compare the

intensities of the trades through between the reference day 31/08/2022 and the day with the highest
volatility 04/03/2022.
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Figure 8: Performing hypothesis testing on the trade-through intensities between 31/08/2022
and 04/03/2022, with parameters ρup = 1.5, ρdown = 0.5, and m = 5. The first figure (upside)

presents the reflected processes Ũ and Û . The second figure (downside) provides a comparison
of the detection results against the spread.

The same comparison is undertaken only this time between the reference day 31/08/2022 and the
day with the lowest volatility index 05/01/2022.
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Figure 9: Performing hypothesis testing on the trade-through intensities between 31/08/2022
and 05/01/2022, with parameters ρup = 1.5, ρdown = 0.5 and m = 5. The first figure (upside)

presents the reflected processes Ũ and Û . The second figure (downside) provides a comparison
of the detection results against the spread.

It can be seen that comparing two days where the difference in volatility is quite large implies that
the difference in liquidity between two days is detected quite quickly. However, this does not allow
us to assess these variations from a more immediate point of view. Another approach would be to
compare two relatively close days in order to monitor the evolution of the state of liquidity. This would
allow us to better assess the variations in intra-day liquidity. A comparison between 10/05/2022 and
11/05/2022 is therefore suggested.
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Figure 10: Performing hypothesis testing of the trade-through intensities between 10/05/2022
and 11/05/2022, with parameters ρup = 1.5, ρdown = 0.5 and m = 5. The first figure (upside)

presents the reflected processes Ũ and Û . The second figure (downside) provides a comparison
of the detection results against the spread.

It can be seen visually that there is a fairly consistent correlation between a low spread and a state
where we are under the ρ <1 assumption and vice versa (i.e., a high intra-day liquidity). The quality
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of the detection can also be checked by directly inspecting the number of trades-through that have
taken place during the day as shown in figure 11.
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Figure 11: Number of cumulative trades-through on the first 4 limits during 11/05/2022.

We can clearly observe the fluctuations in the cumulative number of trades throughout 11:20 AM
and 2:30 PM. The findings presented in Figure 11 thus validate the effectiveness of our detection
method.

Remark 4.4. It is worth emphasizing that our methodology involves comparing intensities among
counting processes. Consequently, selecting the appropriate reference day becomes imperative when
conducting such comparisons.

5 Conclusion and discussions

In conclusion, this paper introduces a novel methodology to systematically quantify liquidity within
a limit order book and detecting significant changes in its distribution. The use of Marked Hawkes
Processes and a CUSUM-based optimal stopping scheme has led to the development of a reliable
liquidity proxy with promising applications in financial markets.

The proposed metric holds great potential in enhancing optimal execution algorithms, reducing
market impact, and serving as a reliable market liquidity indicator for market makers. The optimality
results of the procedure, particularly in the case of a Cox process with simultaneous jumps and a
finite time horizon, highlight the robustness of our approach. The tractable formulation of the average
detection delay allows for convenient manipulation of the trade-off between the occurrence of false
detections and the speed of identifying moments of liquidity disorder.

Moreover, the empirical validation using real market data further reinforces the effectiveness of our
methodology, affirming its practicality and relevance in real-world trading scenarios. Future research
can build upon these findings to explore its applications.
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WITHOUT ANCESTORS”. In: J. Appl. Prob 38 (2001), pp. 122–135.

[11] M. A. Girshick and Herman Rubin. “A Bayes Approach to a Quality Control Model”. In:
The Annals of Mathematical Statistics 23.1 (1952), pp. 114–125. issn: 00034851. url:
http://www.jstor.org/stable/2236405 (visited on 06/20/2023).

[12] Savas Dayanik and Semih Onur Sezer. “Compound Poisson Disorder Problem”. In:
Math. Oper. Res. 31 (2006), pp. 649–672.

[13] Erhan Bayraktar and Savas Dayanik. “Poisson Disorder Problem with Exponential
Penalty for Delay”. In: Mathematics of Operations Research 31 (May 2006), pp. 217–
233. doi: 10.1287/moor.1060.0190.

[14] E. S. PAGE. “Continuous inspection schemes”. In: Biometrika 41.1-2 (June 1954),
pp. 100–115. issn: 0006-3444. doi: 10.1093/biomet/41.1- 2.100. eprint: https:

//academic.oup.com/biomet/article-pdf/41/1-2/100/1243987/41-1-2-100.pdf.
url: https://doi.org/10.1093/biomet/41.1-2.100.

[15] Gary Lorden. “Procedures for Reacting to a Change in Distribution
”. In: The Annals of Mathematical Statistics 42 (Dec. 1971). doi: 10 . 1214 / aoms /

1177693055.
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[31] Álvaro Cartea, Samuel N. Cohen, and Saad Labyad. “Gradient-based estimation of
linear Hawkes processes with general kernels”. In: (Nov. 2021). url: http://arxiv.
org/abs/2111.10637.

[32] Alan G. Hawkes. “Spectra of some self-exciting and mutually exciting point processes”.
In: Biometrika 58 (1 1971), pp. 83–90. issn: 00063444. doi: 10.1093/biomet/58.1.83.

[33] Emmanuel Bacry, Khalil Dayri, and J.F. Muzy. “Non-parametric kernel estimation
for symmetric Hawkes processes. Application to high frequency financial data”. In:
The European Physical Journal B 85 (Dec. 2011). doi: 10.1140/epjb/e2012-21005-8.

[34] Emmanuel Bacry and Jean-François Muzy. “First and Second Order Statistics Charac-
terization of Hawkes Processes and Non-Parametric Estimation
”. In: IEEE Transactions on Information Theory 62.4 (2016), pp. 2184–2202. doi: 10.
1109/TIT.2016.2533397.

[35] T. Ozaki. “Maximum likelihood estimation of Hawkes self-exciting point processes”. In:
Annals of the Institute of Statistical Mathematics (1979), pp. 145–155.

21

https://books.google.fr/books?id=nPENXKw5kwcC
https://doi.org/10.1214/aop/1065725193
https://doi.org/10.1214/aop/1065725193
https://doi.org/10.1214/aos/1176344264
https://doi.org/10.1214/aos/1176344264
https://doi.org/10.1007/978-3-030-01526-8
https://doi.org/10.1201/b17279
http://arxiv.org/abs/2102.05724
https://doi.org/10.1142/s2382626616500076
https://doi.org/10.1142/s2382626616500076
https://doi.org/10.1142%2Fs2382626616500076
http://arxiv.org/abs/2111.10637
http://arxiv.org/abs/2111.10637
https://doi.org/10.1093/biomet/58.1.83
https://doi.org/10.1140/epjb/e2012-21005-8
https://doi.org/10.1109/TIT.2016.2533397
https://doi.org/10.1109/TIT.2016.2533397


[36] Donald L. Snyder and Michael I. Miller. “Doubly Stochastic Poisson-Processes”. In:
Random Point Processes in Time and Space. New York, NY: Springer New York, 1991,
pp. 341–465. isbn: 978-1-4612-3166-0. doi: 10.1007/978-1-4612-3166-0_7. url:
https://doi.org/10.1007/978-1-4612-3166-0_7.

A Appendix

A.1 Proof of Section 3 results

In what follows, we will extend the results/proofs obtained in Moustakides [17] and El Karoui et al.

[16] to the case of simultaneous arrival times. The idea is to approximate
∑D

i=1 N
i with a process

(see definition A.1 for ρ < 1 and definition A.2 for ρ < 1) with jumps of size 1, in order to extend
these results to cases where there are simultaneous jumps. This will allow us to compute the Average
Run Length (ARL) and explicit the lower bounds of the Expected Detection Delay (EDD) of the
CUSUM procedure. Subsequently, we provide proof that the CUSUM procedure attains this lower
bound, establishing its optimality.

Definition A.1. Let
(
τ i,ϵk

)
k≥1

=

(
τ ik + i

D ϵ inf
1≤l,l′≤D

inf
0≤τ l

j<τ l′
j′≤τ i

k

| τ lj − τ l
′

j′ |

)
k≥1

=
(
τ ik + ϵik

)
k≥1

where

τ i0 = 0 and
(
τ ik
)
k≥1

are the event times of the process N i for all i ranging from 1 to D. In this context,

we define N i,ϵ as the counting process whose arrival times are
(
τ i,ϵk

)
k≥1

, i.e, N i,ϵ(t) =
∑

k≥1 1{τ i,ϵ
k ≤t},

∀0 ≤ t ≤ T . We also define Fϵ = (Fϵ
t )t≥0 as the natural filtration associated to the process

∑D
i=1 N

i,ϵ.

Remark A.1. Definition A.1 implies that each element N i,ϵ is F-adapted and that, ∀0 ≤ t ≤ T ,

N i,ϵ(t) =
∑
k≥1

1{τ i,ϵ
k ≤t}

≤ N i

(
t− 1

D
ϵ inf
1≤l,l′≤D

inf
0≤τ l

j<τ l′
j′≤T

| τ lj − τ l
′

j′ |

)
≤ N i(t), a.s

One can clearly observe that N i −N i,ϵ is an F-sub-martingale. According to the Doob-Meyer decom-
position, it can be inferred that Λi−Λi,ϵ is a predictable process that is non-decreasing and starts from
zero. Consequently, ∀0 ≤ t ≤ T ,

Λi,ϵ(t) ≤ Λi(t), a.s

Notation A.1. In the subsequent discussion, we will refer to the process t 7→ sup0≤s≤t U(s) (resp.

t 7→ sup0≤s≤t U
ϵ(s)) as U (resp. U

ϵ
) where U ϵ(t) :=

∑D
i=1 N

i,ϵ(t) − β(ρ)Λi,ϵ(t), ∀0 ≤ t ≤ T . We will

also use the notation Ũ ϵ to represent t 7→ Ũ ϵ(t) := sup0≤s≤t U
ϵ(s) − U ϵ(t).

Figures 12a and 12b showcase a comparative simulation of the processes
∑D

i=1 N
i,ϵ and Ũ ϵ with

respect to
∑D

i=1 N
i and Ũ .
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Remark A.2. The limitations of definition A.1 in completely eliminating the simultaneous jumps

found in
∑D

i=1 N
i are noteworthy. Indeed, the set Ai,ϵ :=

{
ω ∈ Ω : ∃k ∈ N/τ ik+1(ω) ≤ τ i,ϵk (ω)

}
may

not be empty. This can be problematic as it can influence the order of arrival times in
(
τ i,ϵk

)
k≥1

.

However, it can be established through analysis that as ϵ tends to 0+, the limit of Ai,ϵ has a measure
of zero. In fact,

ω ∈ Ai,ϵ ⇒ ∃k ∈ N : τ ik+1(ω) ≤ τ i,ϵk (ω)

⇒ ∃k ∈ N : τ ik+1(ω) ≤ τ ik(ω) + ϵT

Consequently,
Ai,ϵ ⊂ {ω ∈ Ω : 0 ≤ k ≤ N i(ω, T ) − 1/τ ik+1(ω) − τ ik(ω) ≤ ϵT}

This entails that,

P
(
Ai,ϵ

)
≤ E

 ∑
k≤Ni(T )

P
(
τ ik+1 − τ ik ≤ ϵT | N i(T )

)
≤ E

 ∑
k≤Ni(T )

(∫ τ i
k+ϵT

τ i
k

λi(s)ds

)
e
−

∫ τi
k+ϵT

τi
k

λi(s)ds


Once more, utilizing the theorem of dominated convergence yields the following conclusion and the fact
that N i is almost surely finite, we can conclude that :

lim
ϵ→0+

E

 ∑
k≤Ni(T )

(∫ τ i
k+ϵT

τ i
k

λi(s)ds

)
e
−

∫ τi
k+ϵT

τi
k

λi(s)ds

 = E

 ∑
k≤Ni(T )

lim
ϵ→0+

(∫ τ i
k+ϵT

τ i
k

λi(s)ds

)
e
−

∫ τi
k+ϵT

τi
k

λi(s)ds


= 0

Hence,
lim

ϵ→0+
P
(
Ai,ϵ

)
= 0 (24)

We now introduce an intermediate result that will be useful later in the proof of Theorem 3.1.

Lemma 1. For all t ≥ 0 and i ∈ {1, . . . , D},

lim
ϵ→0+

E
(
| N i(t) −N i,ϵ(t) |

)
= lim

ϵ→0+
E
(
| Λi(t) − Λi,ϵ(t) |

)
= 0

Proof. Let 0 ≤ t ≤ T , i ∈ {1, . . . , D} and τ ikt
define the maximum arrival time of N i occurring before

t. From Definition A.1, it follows that, if τ i,ϵkt
< τ ikt+1,

N i(t) −N i,ϵ(t) =

{
0 if τ i,ϵkt

≤ t < τ ikt+1

1 if τ ikt
≤ t < τ i,ϵkt

Hence, we get that

E
(
(N i(t) −N i,ϵ(t))1Aϵ,c

)
≤ E

(
1{τ i

kt
≤t<τ i,ϵ

kt
}

)
≤ P

(
0 ≤ t− τ ikt

≤ ϵikt

)
≤ P

(
0 ≤ t− τ ikt

≤ i

D
ϵT

)
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Based on the definition of a doubly stochastic Poisson process (see chapter 7 of [36]), we have :

P
(

0 ≤ t− τ ikt
≤ i

D
ϵT

)
= E

(
P
(
t− i

D
ϵT ≤ τ ikt

≤ t | λi(s) : t− i

D
ϵT ≤ s ≤ t

))

= E

 1

kt!

(∫ t

t− i
D ϵT

λi(s)ds

)kt

e
−

∫ t

t− i
D

ϵT
λi(s)ds


Consequently, by employing the theorem of dominated convergence, it follows that :

lim
ϵ→0+

P
(

0 ≤ t− τ ikt
≤ i

D
ϵT

)
= 0

and that :
lim

ϵ→0+
E
(
(N i(t) −N i,ϵ(t))1Aϵ,c

)
= 0 (25)

Since N i,ϵ ≤ N i (see Remark A.1) and using the fact that limϵ→0+ P
(
Ai,ϵ

)
= 0 (see Remark A.2), we

get that E
(
| N i(t) −N i,ϵ(t) |

)
= E

(
N i(t) −N i,ϵ(t)

)
and that :

lim
ϵ→0+

E
(
| N i(t) −N i,ϵ(t) |

)
= lim

ϵ→0+
E
(
(N i(t) −N i,ϵ(t))1Aϵ

)
+ E

(
(N i(t) −N i,ϵ(t))1Aϵ,c

)
= 0

Hence,

lim
ϵ→0+

E
(
| N i(t) −N i,ϵ(t) |

)
= lim

ϵ→0+
E
(
| Λi(t) − Λi,ϵ(t) |

)
= 0

Lemma 2. Let t ∈ [0, T ] and Ũ (resp. Ũ ϵ) the CUSUM process of
∑D

i=1 N
i (resp.

∑D
i=1 N

i,ϵ) for
ρ < 1. Then,

lim
ϵ→0+

Ey

(
| Ũ ϵ(t) − Ũ(t) |

)
= 0

with Ey = E(. | Ũ0 = y).

Proof. Let (τk)k≥1 denote the distinct and ordered jump times of
∑D

i=1 N
i and τ ϵk define the maximum

arrival time of
∑D

i=1 N
i,ϵ occurring before τk+1 for all k ∈ N∗. The goal here is to demonstrate the

convergence L1 by bounding | Ũ ϵ − Ũ | by a process that converges to 0 under the L1 norm. One
approach is to evaluate the difference between the processes U and U

ϵ
at the arrival times of τk and

τ ϵk, as Ũ and Ũ ϵ are continuous on the intervals ]τk, τ
ϵ
k[ and ]τ ϵk, τk+1[ and only exhibit jumps at those

times. To initiate the proof, we start by employing an inductive argument to establish boundedness.
As discussed in Remark A.2, the Definition A.1 is not completely satisfactory. In order to address
the raised concerns, the inequalities established in the subsequent induction hold for events within the
set Aϵ,c := Ω\

⋃D
i=1 A

i,ϵ. Subsequently, we will utilize the aforementioned result in Remark A.2 to
facilitate the passage to the limit.
For k = 1, since

∑D
i=1 N

i (resp.
∑D

i=1 N
i,ϵ) jumps at the moment τ1 (resp. τ ϵ1), two cases can

arise :
Case 1. sup0≤u≤τ1

∑D
i=1 N

i(u) − β(ρ)Λi(u) >
∑D

i=1 N
i(τ1) − β(ρ)Λi(τ1).

This means that
∑D

i=1 β(ρ)Λi(τ1) >
∑D

i=1 N
i(τ1). Since

∑D
i=1 N

i,ϵ(τ1) = 0 by definition, it follows

that U(τ1) = U
ϵ
(τ1) = 0 and that :

| U(τ1) − U
ϵ
(τ1) |= 0
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Moreover,

| U(τ ϵ1) − U
ϵ
(τ ϵ1) | =| sup

u≤τϵ
1

D∑
i=1

N i(u) − β(ρ)Λi(u) − sup
u≤τϵ

1

D∑
i=1

N i,ϵ(u) − β(ρ)Λi,ϵ(u) |

=

{∑D
i=1 N

i,ϵ(τ ϵ1) − β(ρ)Λi,ϵ(τ ϵ1) if Ũ ϵ(τ ϵ1) = 0

0 else

≤

{
β(ρ)

∑D
i=1 Λi(τ ϵ1) − Λi,ϵ(τ ϵ1) if Ũ ϵ(τ ϵ1) = 0

0 else

Case 2. sup0≤u≤τ1

∑D
i=1 N

i(u) − β(ρ)Λi(u) =
∑D

i=1 N
i(τ1) − β(ρ)Λi(τ1).

The evaluation of the difference in τ1 is straightforward :

| U(τ1) − U
ϵ
(τ1) | =

D∑
i=1

N i(τ1) − β(ρ)Λi(τ1)

≤
D∑
i=1

N i(τ1)

In addition, if Ũ ϵ(τ ϵ1) > 0, it follows that
∑D

i=1 β(ρ)Λi,ϵ(τ ϵ1) >
∑D

i=1 N
i,ϵ(τ ϵ1). Given that

∑D
i=1 N

i(τ1) =∑D
i=1 N

i,ϵ(τ ϵ1), we can deduce that
∑D

i=1 β(ρ)Λi,ϵ(τ ϵ1) >
∑D

i=1 N
i(τ1) in this case. Thus :

| U(τ ϵ1) − U
ϵ
(τ ϵ1) | =| sup

u≤τϵ
1

D∑
i=1

N i(u) − β(ρ)Λi(u) − sup
u≤τϵ

1

D∑
i=1

N i,ϵ(u) − β(ρ)Λi,ϵ(u) |

=

{
β(ρ)

∑D
i=1 | Λi(τ1) − Λi,ϵ(τ ϵ1) | if Ũ ϵ(τ ϵ1) = 0∑D

i=1 N
i(τ1) − β(ρ)Λi(τ1) else

≤

{
β(ρ)

∑D
i=1 | Λi(τ1) − Λi,ϵ(τ ϵ1) | if Ũ ϵ(τ ϵ1) = 0

β(ρ)
∑D

i=1 Λi,ϵ(τ ϵ1) − Λi(τ1) else

Consequently, we have the following bounds for k = 1 :

| U(τ ϵ1) − U
ϵ
(τ ϵ1) | ≤ β(ρ)

D∑
i=1

| Λi,ϵ(τ ϵ1) − Λi(τ1) | + | Λi,ϵ(τ ϵ1) − Λi(τ ϵ1) | (26)

| U(τ1) − U
ϵ
(τ1) | =

D∑
i=1

N i(τ1) −N i,ϵ(τ1) (27)

Let k ≥ 1, such that 0 ≤ τk ≤ T . Assume that:

| U(τ ϵk) − U
ϵ
(τ ϵk) | ≤ β(ρ)

∑
j≤k

D∑
i=1

| Λi,ϵ(τ ϵj ) − Λi(τj) | + | Λi,ϵ(τ ϵj ) − Λi(τ ϵj ) |

= Lϵ
k

(28)

| U(τk) − U
ϵ
(τk) | ≤

∑
j≤k

D∑
i=1

N i(τj) −N i,ϵ(τj) + Lϵ
k−1

= Mϵ
k

(29)

where Lϵ
0 = 0.

We will now demonstrate the validity of these bounds for k+1. The proof follows a similar approach to
what we have previously seen for the case of k = 1. We can categorize the analysis into two scenarios,
depending on whether U attains a supremum at τk+1 or not.
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Case 1. supu≤τk+1

∑D
i=1 N

i(u) − β(ρ)Λi(u) >
∑D

i=1 N
i(τk+1) − β(ρ)Λi(τk+1).

In this situation, the maximum value in U is attained prior to the (k + 1)-th jump. Therefore, there

exists k0 ≤ k such that U(τk+1) = U(τk0
). In case Ũ ϵ(τ ϵk+1) = 0, we have that :

U
ϵ
(τ ϵk+1) ≥

D∑
i=1

N i,ϵ(τ ϵk0
) − β(ρ)Λi,ϵ(τ ϵk0

)

= U(τ ϵk+1) + β(ρ)

D∑
i=1

Λi(τk0
) − Λi,ϵ(τ ϵk0

)

U
ϵ
(τ ϵk+1) − U(τ ϵk+1) ≥ β(ρ)

D∑
i=1

Λi,ϵ(τ ϵk0
) − Λi(τk0

) (30)

Moreover,

U
ϵ
(τ ϵk+1) =

D∑
i=1

N i,ϵ(τ ϵk+1) − β(ρ)Λi,ϵ(τ ϵk+1)

=

D∑
i=1

N i(τk+1) − β(ρ)Λi(τk+1) + β(ρ)Λi(τk+1) − β(ρ)Λi,ϵ(τ ϵk+1)

≤ U(τ ϵk+1) + β(ρ)

D∑
i=1

Λi(τk+1) − Λi,ϵ(τ ϵk+1)

i.e,

U
ϵ
(τ ϵk+1) − U(τ ϵk+1) ≤ β(ρ)

D∑
i=1

Λi(τk+1) − Λi,ϵ(τ ϵk+1) (31)

Therefore, according to equations 30 and 31,

| U(τ ϵk+1) − U
ϵ
(τ ϵk+1) | ≤

{
β(ρ)

∑D
i=1 | Λi,ϵ(τ ϵk0

) − Λi(τk0) | + | Λi(τk+1) − Λi,ϵ(τ ϵk+1) | if Ũ ϵ(τ ϵk+1) = 0

| U(τ ϵk) − U
ϵ
(τ ϵk) | else

≤

{
Lϵ
k+1 if Ũ ϵ(τ ϵk+1) = 0

Lϵ
k else

≤ Lϵ
k+1

Furthermore, by making use of assumption 28,

| U(τk+1) − U
ϵ
(τk+1) | =| U(τ ϵk) − U

ϵ
(τ ϵk) |

≤ Lϵ
k

≤ Mϵ
k+1

Thus, the induction has been established for the first case.
Case 2. sup0≤u≤τk+1

∑D
i=1 N

i(u) − β(ρ)Λi(u) =
∑D

i=1 N
i(τk+1) − β(ρ)Λi(τk+1).

Suppose that Ũ ϵ(τ ϵk+1) > 0, then there exists k0 ≤ k such that U
ϵ
(τ ϵk+1) = U ϵ(τ ϵk0

) and :

U(τ ϵk+1) ≥
D∑
i=1

N i(τk0) − β(ρ)Λi(τk0)

=

D∑
i=1

N i,ϵ(τ ϵk0
) − β(ρ)Λi,ϵ(τ ϵk0

) + β(ρ)Λi,ϵ(τ ϵk0
) − β(ρ)Λi(τk0)

= U
ϵ
(τ ϵk+1) + β(ρ)

D∑
i=1

Λi,ϵ(τ ϵk0
) − Λi(τk0

)
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i.e,

U(τ ϵk+1) − U
ϵ
(τ ϵk+1) ≥ β(ρ)

D∑
i=1

Λi(τk0
) − Λi,ϵ(τ ϵk0

) (32)

In addition,

U(τ ϵk+1) =

D∑
i=1

N i(τ ϵk+1) − β(ρ)Λi(τ ϵk+1)

=

D∑
i=1

N i,ϵ(τ ϵk+1) − β(ρ)Λi,ϵ(τ ϵk+1) + β(ρ)Λi,ϵ(τ ϵk+1) − β(ρ)Λi(τ ϵk+1)

≤ U
ϵ
(τ ϵk+1) + β(ρ)

D∑
i=1

Λi,ϵ(τ ϵk+1) − Λi(τ ϵk+1)

i.e,

U(τ ϵk+1) − U
ϵ
(τ ϵk+1) ≤ β(ρ)

D∑
i=1

Λi,ϵ(τ ϵk+1) − Λi(τ ϵk+1) (33)

Therefore, based on equations 32 and 33,

| U(τ ϵk+1) − U
ϵ
(τ ϵk+1) | =

{
|
∑D

i=1 N
i(τk+1) −N i,ϵ(τ ϵk+1) − β(ρ)Λi(τk+1) + β(ρ)Λi,ϵ(τ ϵk+1) | if Ũ ϵ(τ ϵk+1) = 0

β(ρ)
∑D

i=1 | Λi,ϵ(τ ϵk+1) − Λi(τ ϵk+1) | + | Λi(τk0
) − Λi,ϵ(τ ϵk0

) | else

≤

{
β(ρ)

∑D
i=1 | Λi,ϵ(τ ϵk+1) − Λi(τk+1) | if Ũ ϵ(τ ϵk+1) = 0

Lϵ
k+1 else

≤ Lϵ
k+1

Moreover,

U(τk+1) − U
ϵ
(τk+1) ≤

D∑
i=1

N i(τk+1) − β(ρ)Λi(τk+1) −N i,ϵ(τk+1) + β(ρ)Λi,ϵ(τk+1)

≤
D∑
i=1

N i(τk+1) −N i,ϵ(τk+1)

and

U
ϵ
(τk+1) − U(τk+1) ≤

D∑
i=1

N i,ϵ(τ ϵk0
) − β(ρ)Λi,ϵ(τ ϵk0

) −N i(τ ϵk0
) + β(ρ)Λi(τ ϵk0

)

≤ β(ρ)

D∑
i=1

Λi(τ ϵk0
) − Λi,ϵ(τ ϵk0

)

Thus,

| U(τk+1) − U
ϵ
(τk+1) | ≤

D∑
i=1

N i(τk+1) −N i,ϵ(τk+1) + β(ρ)

D∑
i=1

Λi(τ ϵk0
) − Λi,ϵ(τ ϵk0

)

≤ Mϵ
k+1

which completes the recurrence.
We proceed to complete the proof by employing a convergence argument. Let t ∈ [0, T ] and τkt

be

the largest arrival time of
∑D

i=1 N
i(t) + N i,ϵ(t) less than or equal to t. Therefore, we have,

| Ũ ϵ(t) − Ũ(t) | =| U(τkt) − U
ϵ
(τkt) +

D∑
i=1

N i,ϵ(τkt) −N i(τkt) − β(ρ)Λi,ϵ(t) + β(ρ)Λi(t) |

≤ Lϵ
kt

+ Mϵ
kt

+

D∑
i=1

N i,ϵ(τkt) −N i(τkt) − β(ρ)Λi,ϵ(t) + β(ρ)Λi(t)
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In addition, according to Lemma 1,

lim
ϵ→0+

Ey

(
|

D∑
i=1

N i(t) −N i,ϵ(t) | 1Aϵ,c

)
= lim

ϵ→0+
Ey

(
|

D∑
i=1

Λi(t) − Λi,ϵ(t) | 1Aϵ,c

)
= 0

Since
∑D

i=1 N
i(t) < +∞ (i.e, Ey (card ({k ∈ N; τk ≤ t})) < +∞), we conclude that

lim
ϵ→0+

Ey

((
Lϵ
kt

+ Mϵ
kt

+

D∑
i=1

N i,ϵ(τkt
) −N i(τkt

) − β(ρ)Λi,ϵ(t) + β(ρ)Λi(t)

)
1Aϵ,c

)
= 0

and that
lim

ϵ→0+
Ey

(
| Ũ ϵ(t) − Ũ(t) | 1Aϵ,c

)
= 0

As stated in Remark A.2, limϵ→0+ P
(⋃D

i=1 A
i,ϵ
)

= 0. By utilizing the Cauchy Schwartz inequality, we

get that limϵ→0+ Ey

(
| Ũ ϵ(t) − Ũ(t) | 1Aϵ

)
= 0. Hence,

lim
ϵ→0+

Ey

(
| Ũ ϵ(t) − Ũ(t) |

)
= lim

ϵ→0+
Ey

(
| Ũ ϵ(t) − Ũ(t) | 1Aϵ

)
+ Ey

(
| Ũ ϵ(t) − Ũ(t) | 1Aϵ,c

)
= 0

We now introduce the functions gm and hm (resp. g̃m and h̃m for ρ̃ = 1
ρ ) solutions of the delayed

differential equations define in 34 and 35. This will allow us to compute the average delay of the disorder

detection5 E
(∑D

i=1 N
i(T̃C)

)
as a function of the performance/threshold criterion m that defines the

CUSUM statistic and to determine the Expected Detection Delay Eθ

[(∑D
i=1 N

i(T ) −N i(θ)
)+

| Fθ

]
.

Proposition A.1 (El Karoui et al. [16]). Let functions gm and hm the regular finite variations
solutions of delayed differential equations (DDE), denoted DDE(β), restricted to the interval [0,m] :

βg′m(x) = gm(x) − gm
(
(x− 1)+

)
− 1 (34)

with gm(0) = 0 (Cauchy problem),

βh′
m(x) = hm(x + 1) − hm(x) + 1 (35)

with hm(0) = 0 and h′
m(0) = 0 (Neumann problem).

The same properties hold true for the functions g̃m and h̃m, solutions of the same system where β is
replaced by β̃, with ρ̃ = 1/ρ, and β̃ = β(ρ̃) = β(1/ρ) = β(ρ)/ρ. Then,

gm(y) =

∫ m

y

W (z)dz, with gm(0) =

∫ m

0

W (z)dz (36)

hm(x) = W (m− x)
W (m)

W ′(m)
−
∫ m−x

0

W (y)dy, hm(m−) =
W (m)

βW ′(m)
(37)

g̃m(y) = ρ

∫ m

y

ρzW (z)dz, (38)

h̃m(x) = W̃ (m− x)
W̃ (m)

W̃ ′(m)
−
∫ m−x

0

W̃ (z)dz, h̃m(m−) =
W̃ (m)

β̃W̃ ′(m)
(39)

where

W (x) =
1

β

⌊x⌋∑
k=0

(−1)k

k!
((x− k)/β)k exp((x− k)/β)

5Often referred to as the Average Run Length (ARL).
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∫ x

0

W (y)dy =

⌊x⌋∑
k=0

(
e(x−k)/β

(
k∑

i=0

(−1)j

j!
((x− k)/β)j

)
− 1

)

if β > 1 and W (x) = ρ̃ρ̃xW̃ (x) if β < 1.

Proof. Refer to sections 4 and 6 in the work of El Karoui et al. [16].

Proof of Theorem 3.1. Let ρ < 1, m ≥ 0, 0 ≤ t ≤ T , U(t) =
∑D

i=1 N
i(t) − β(ρ)Λi(t), U(t) =

sup0≤s≤t U(s), Ũ(t) = sup0≤s≤t U(s) −U(t) and gm the continuous solution of the equation 34. Since

N i − β(ρ)Λi decreases between two event times of N i, the process U changes only when N i jumps at

time t such that Ũ(t) = 0. The jumps of Ũ are therefore negative with sizes less than or equal to D.
This means that, ∀0 ≤ t ≤ T ,

U(t) − U(t−) = 1{Ũ(t)=0}

(
D∑
i=1

N i(t) − β(ρ)Λi(t) − Ũ(t−) −
D∑
i=1

N i(t−) + β(ρ)Λi(t−)

)

Because (Λi)1≤i≤D are continuous, we have that
∑D

i=1 Λi(t) =
∑D

i=1 Λi(t−) and that U(t) − U(t−) =

1{Ũ(t)=0}

(∑D
i=1 N

i(t) −N i(t−) − Ũ(t−)
)

. Thus, U and Ũ are solutions of the following stochastic

differential equations :

dU(t) =

D∑
i=1

1{Ũ(t)=0}

(
1 − Ũ(t−)∑D

j=1 N
j(t) −N j(t−)

)
dN i(t) (40)

dŨ(t) = −
D∑
i=1

(
1 ∧ Ũ(t−)∑D

j=1 N
j(t) −N j(t−)

)
dN i(t) + β(ρ)

D∑
i=1

dΛi(t) (41)

The transformation described in A.1 is formulated in a manner that ensures the jumps of Ũ ϵ depend
on one direction only when considering events that are elements of set Aϵ,c, i.e,

dŨ ϵ(t) = −
D∑
i=1

(
1 ∧ Ũ ϵ(t−)

)
dN i,ϵ(t) + β(ρ)

D∑
i=1

dΛi,ϵ(t)

It should be noted that, for clarity in notation, we have omitted the fact that the expectations
evaluated before taking the limit should include 1Aϵ,c .

Let dN i,m,Ũϵ

(t) = 1[0,m]

(
Ũ ϵ(t−)

)
dN i,ϵ(t), ∀i ∈ {1, . . . , D}. Applying the itô formula to Gm,ϵ(t) :=

gm(Ũ ϵ(t)) − gm(Ũ(0)) +
∑D

i=1 N
i,m,Ũϵ

(t) yields the following decomposition :

dGm,ϵ(t) = dgm(Ũ ϵ(t)) +

D∑
i=1

dN i,m,Ũϵ

(t)

= β(ρ)g
′

m(Ũ ϵ(t−))

D∑
i=1

dΛi,ϵ(t) + gm(Ũ ϵ(t)) − gm(Ũ ϵ(t−)) +

D∑
i=1

dN i,m,Ũϵ

(t)

= β(ρ)g
′

m(Ũ ϵ(t−))

D∑
i=1

dΛi,ϵ(t)

−
D∑
i=1

(
gm(Ũ ϵ(t−)) − gm((Ũ ϵ(t−) − 1)+)

)
dN i,m,Ũϵ

(t) +

D∑
i=1

dN i,m,Ũϵ

(t)

Since βg′m(x) = gm(x) − gm ((x− 1)+) − 1 on [0,m] and gm(x) = g′m(x) = 0 if x > m or x < 0 :

dGm,ϵ(t) = β(ρ)g′m(Ũ ϵ(t−))

D∑
i=1

d
(
Λi,ϵ(t) −N i,ϵ(t)

)
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Thus, Gm,ϵ is a F-martingale. According to Doob’s stopping theorem :

Ey

(
gm(Ũ ϵ(T̃C)) − gm(Ũ(0)) +

D∑
i=1

N i,m,Ũϵ

(T̃ ϵ
C)

)
= Ey

(
gm(Ũ ϵ(0))

)
− Ey

(
gm(Ũ(0))

)
= 0

(42)

where T̃C is the following F-stopping time :

T̃C = inf
{
t ≤ T : Ũ(t) > m

}
The stopping time T̃C ensures that Ũ ϵ(T̃C) converges to Ũ(T̃C) such that 1[0,m]

(
Ũ ϵ(T̃−

C )
)

does not

nullify. Indeed, by employing a straightforward induction argument, we can demonstrate that Ũ ϵ ≤ Ũ

holds over the intervals [τ ϵk, τk+1[ for all k ∈
{

1, . . . ,
∑D

i=1 N
i(T )

}
. Leveraging the fact that there does

not exist any k ∈ N and ω ∈ Ω such that T̃C(ω) = τk(ω), as a jump in
∑D

i=1 N
i corresponds to a

decrease in Ũ , we get that limϵ→0+ P (Bϵ) = 0, where Bϵ :=
{
ω ∈ Ω : ∃k ∈ N/T̃C(ω) ∈]τk(ω), τ ϵk(ω)]

}
.

Hence, for sufficiently small ϵ, it follows that limϵ→0+ P
(
τ ϵk ≤ T̃C < τk+1

)
= 1. Drawing upon the

results established in Lemma 2, we have limϵ→0+ Ũ ϵ(T̃−
C ) = Ũ(T̃−

C ) = m, under L1. Consequently,

limϵ→0+ Ey

(∑D
i=1 N

i,m,Ũϵ

(T̃C)
)

= limϵ→0+ Ey

(
1Bϵ,c

∑D
i=1 N

i,m,Ũϵ

(T̃C)
)

= Ey

(∑D
i=1 N

i(T̃C)
)

.

Out of continuity of gm and using the theorem of dominated convergence, we have

lim
ϵ→0+

Ey

(
gm

(
Ũ ϵ(T̃C)

))
= Ey

(
gm( lim

ϵ→0+
Ũ ϵ(T̃C))

)
= gm(m) = 0

Taking ϵ to 0 in equation 42, yields the following result :

Ey

(
D∑
i=1

N i(T̃C)

)
= gm(y), ∀m ≥ 0

In the previous proof, we introduced the processes (N i,ϵ)1≤i≤D because we looked for a trans-

formation Ũ ϵ of the process Ũ with non-simultaneous jumps and that is inferior to the original re-
flected process Ũ(t) outside of the intervals [τk, τ

ϵ
k[ in order to converge leftwards to Ũ at T̃C with

k ∈
{

1, . . . ,
∑D

i=1 N
i(T )

}
. This allowed us to apply the results cited in El Karoui et al. [16] and Poor

and Hadjiliadis [18] to the
∑D

i=1 N
i,ϵ and Ũ ϵ processes and then go to the limit to obtain the desired

results on the original processes.
In what follows, we propose to introduce new processes Ñ i,ϵ and Û ϵ to adapt this line of reasoning to
the case where ρ > 1.

Definition A.2. Let (Ñ i,ϵ)1≤i≤D be the counting process whose arrival times are : (τ̃ i,ϵk )k≥1 =(
τ ik − i

D ϵ inf
1≤l,l′≤D

inf
0≤τ l

j<τ l′
j′≤τ i

k

| τ lj − τ l
′

j′ |

)
k≥1

=
(
τ ik − ϵik

)
k≥1

where τ i0 = 0, (τ ik)k≥1 are the event

times of the process N i, ∀i ∈ {1, . . . , D}. In this context, we define Ñ i,ϵ as the counting process whose

arrival times are
(
τ̃ i,ϵk

)
k≥1

, i.e, Ñ i,ϵ(t) =
∑

k≥1 1{τ̃ i,ϵ
k ≤t}, ∀0 ≤ t ≤ T . We also define F̃ϵ =

(
F̃ϵ

t

)
t≥0

as the natural filtration associated to
∑D

i=1 Ñ
i,ϵ with F̃ϵ

t = σ(Ñ i,ϵ(s), 1 ≤ i ≤ D; s ≤ t).

Remark A.3. It is worth noting that Fϵ
t ⊂ Ft−ϵT while F̃ϵ

t ⊂ Ft+ϵT , for all 0 ≤ t ≤ T . Since

∀1 ≤ i ≤ D, N i is cadlàg, we have limϵ→0+ Ñ i,ϵ(t) = limϵ→0+ N i(t + ϵi) = N i(t+) = N i(t), a.s.

Therefore, we find almost-sure convergence for the process Ñ i,ϵ and we limit ourselves to convergence
in L1 for the process N i,ϵ.
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Remark A.4. This means that Ñ i,ϵ is F̃ϵ-adapted and that, ∀0 ≤ t ≤ T ,

Ñ i,ϵ(t) =
∑
k≥1

1{τ̃ i,ϵ
k ≤t}

≥ N i(t +
1

D
ϵ inf
1≤l,l′≤D

inf
0≤τ l

j<τ l′
j′≤T

| τ lj − τ l
′

j′ |)

≥ N i(t), a.s

Note that unlike N i−N i,ϵ (see A.1), N i− Ñ i,ϵ is an Fϵ-sub-martingale. According to the Doob-Meyer

decomposition, it can be inferred that Λi − Λ̃i,ϵ is a predictable process that is decreasing and starts
from zero. Consequently, ∀0 ≤ t ≤ T ,

Λi(t) ≤ Λ̃i,ϵ(t), a.s

Notation A.2. In the subsequent discussion, we shall refer to the process inf0≤s≤t U(s) (resp. inf0≤s≤t U
ϵ(s))

as U(t) (resp. U ϵ(t)) where, in the case ρ > 1, U ϵ(t) :=
∑D

i=1 Ñ
i,ϵ(t)−β(ρ)Λ̃i,ϵ(t), ∀0 ≤ t ≤ T . We will

also use the notation Û ϵ to represent Û ϵ(t) :=
∑D

i=1 Ñ
i,ϵ(t)+β(ρ)Λ̃i,ϵ(t)−inf0≤s≤t

(∑D
i=1 Ñ

i,ϵ(s) − β(ρ)Λ̃i,ϵ(s)
)
.

Figures 13a and 13b showcase a comparative simulation of the processes
∑D

i=1 Ñ
i,ϵ and Û ϵ with

respect to
∑D

i=1 N
i and Û .
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(a) Illustration of Ñ i,ϵ(t)
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(b) Illustration of Û ϵ(t)

Lemma 3. Let t ∈ [0, T ] and Û(t) (resp. Û ϵ(t)) the CUSUM process of
∑D

i=1 N
i(t) (resp.

∑D
i=1 Ñ

i,ϵ(t))
for ρ > 1. Thus,

lim
ϵ→0+

| Û ϵ(t) − Û(t) |= 0, a.s.

Proof. The proof is similar to that of the Lemma 2. Indeed, (Ũ(t), Ũ ϵ(t)) and (Û ϵ(t),Û(t)) play
symmetric roles.

Proof of Theorem 3.2. Let ρ > 1, 0 ≤ t ≤ T , U(t) =
∑D

i=1 N
i(t) − β(ρ)Λi(t) and hm a continuous

solution of the equation 35. We adopt the same notations as in the prior part and introduce the process
Û ϵ(t). Note that Û ϵ(t) only increases if a jump takes place and that U ϵ(t) = inf0≤s≤t

∑D
i=1 Ñ

i,ϵ(s) −

β(ρ)Λ̃i,ϵ(s) is continuous. Applying the Itô formula to
(
Û ϵ(t)

)µ+1

, we get :

d
(
Û ϵ(t)

)µ+1

=

D∑
i=1

((
Û ϵ(t−) + 1

)µ+1

−
(
Û ϵ(t−)

)µ+1
)

dÑ i,ϵ(t)

− (1 + µ)
(
Û ϵ(t−)

)µ(
β(ρ)d

D∑
i=1

Λ̃i,ϵ(t) − dU ϵ(t)

)
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Since U ϵ only decreases when Û ϵ(t) = Û ϵ(t−) = 0, then

(
Û ϵ(t−)

)µ(
β(ρ)

D∑
i=1

dΛ̃i,ϵ(t) − dU ϵ(t)

)
=
(
Û ϵ(t−)

)µ
β(ρ)d

D∑
i=1

Λ̃i,ϵ(t)

Going to the limit µ → 0, we get :

dÛ ϵ(t) =

D∑
i=1

dÑ i,ϵ(t) − 1{Ûϵ(t)>0}β(ρ)dΛ̃i,ϵ(t), a.s

Let Jm,Ûϵ

(t) := limµ7→0

∑
µ≤s≤t 1{Ûϵ(s−µ)>m>Ûϵ(s+µ),Ûϵ(s)=Ûϵ(s−)=m}

6, ∀0 ≤ t ≤ T . The Itô-Tanaka-

Meyer formula applied to Hm,ϵ(t) := hm

(
Û ϵ(t)

)
− hm(Û(0)) +

∑D
i=1 Ñ

i,m,Ûϵ

(t) + hm(m−)Jm,Ûϵ

(t)

results in the following decomposition :

dHm,ϵ(t) = dhm(Û ϵ(t)) +

D∑
i=1

dÑ i,m,Ûϵ

(t) + hm(m−)dJm,Ûϵ

(t)

= β(ρ)h
′

m(Û ϵ(t−))1{Ûϵ(t−)>0}
D∑
i=1

dΛ̃i,ϵ(t) + hm(Û ϵ(t)) − hm(Û ϵ(t−)) +

D∑
i=1

dÑ i,m,Ûϵ

(t)

= β(ρ)h
′

m(Û ϵ(t−))1{Ûϵ(t−)>0}
D∑
i=1

dΛ̃i,ϵ(t)

+

D∑
i=1

(
hm(Û ϵ(t−) + 1) − hm(Û ϵ(t−))

)
dÑ i,ϵ(t) +

D∑
i=1

dÑ i,m,Ûϵ

(t)

where dÑ i,m,Ûϵ(t)(t) = 1[0,m]

(
Û ϵ(t−)

)
dÑ i,ϵ(t) and m ≥ 0.

Since βh′
m(x) = hm(x + 1) − hm(x) + 1 if x ∈ [0,m], hm(0) = h′

m(0) = 0 and hm(x) = 0 if x ≥ m,
thus :

dHm,ϵ(t) = β(ρ)h′
m(Û ϵ(t−))1{Ûϵ(t)>0}

D∑
i=1

d
(

Λ̃i,ϵ(t) − Ñ i,ϵ(t)
)

(43)

Hence, Hm,ϵ is an F̃-martingale, with
(
F̃t

)
t≥0

= (Ft+ϵT )t≥0. Therefore, according to Doob’s stopping

theorem :

Ev

(
hm

(
Û ϵ(T̂ ϵ

C)
)
− hm(Û(0)) − hm(m−) +

D∑
i=1

Ñ i,m,Ûϵ
(
T̂ ϵ
C

))
= Ev

(
hm(Û ϵ(0))

)
− Ev

(
hm(Û(0))

)
where T̂C and T̂ ϵ

C are the following F̃-stopping times :

T̂C = inf
{
t ≤ T : Û(t) > m

}
and T̂ ϵ

C = T̂C + ϵT

Just as in the case where ρ < 1, the stopping time T̂ ϵ
C is introduced to ensure that Û ϵ(T̂ ϵ

C) converges to

Û(T̂C) (see Lemma 3) such that the process 1[0,m]

(
Û ϵ(T̂ ϵ−

C )
)

does not nullify since. This is achieved

by maintaining Û ϵ ≤ Û over the intervals [τ ϵk, τk+1[ for all k ∈
{

1, . . . ,
∑D

i=1 N
i(T )

}
. In order to

achieve this, it is sufficient to show that

lim
ϵ→0+

P (Cϵ) = 0

6Also referred to as discontinuous local time.
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where Cϵ :=
{
ω ∈ Ω : ∃k ∈ N/τk(ω) < T̃C(ω) ≤ τ ϵk+1(ω) ≤ T̃ ϵ

C(ω)
}

.

Given that the demonstration bears resemblance to that which was undertaken in Lemma 1, we will

not detail it here. Since limϵ→0+ Û ϵ(T̂ ϵ
C) = Û(T̂C)

−
= m−, under L1, by continuity of hm, we

have limϵ→0+ hm(Û ϵ(T̂ ϵ
C)) = hm(limϵ→0+ Û ϵ(T̂ ϵ

C)) = hm(m−). Moreover, since N i is càdlàg and finite

almost-surely, then limϵ→0+ Ñ i,ϵ(t) = N i(t) and

lim
ϵ→0+

Ev

(
D∑
i=1

Ñ i,m,Ûϵ(t)(T̂ ϵ
C)

)
= lim

ϵ→0+
Ev

(
D∑
i=1

1Cϵ,cÑ i,m,Ûϵ(t)(T̂ ϵ
C)

)
= Ev

(
D∑
i=1

N i(T̂C)

)

Taking ϵ to 0, yields the following result :

Ev

(
D∑
i=1

N i(T̂C)

)
= hm(v), ∀m ≥ 0

The remaining part of the proof is derived from the results established previously in this section on
the Average Run Length (ARL). The underlying approach involves initially establishing lower bounds
on the Lorden criterion for both ρ < 1 and ρ > 1. Subsequently, it is demonstrated that the CUSUM
stopping time attains these lower bounds, thereby establishing its optimality.

Proof of Theorem 3.3. Let Dθ,ϵ =
{
ω ∈ Ω : ∃k ∈ N/τ ik(ω) ≤ θ < τ ϵk(ω)

}
and Dθ,ϵ,c = Ω\Dθ,ϵ, for all

θ ∈ R+. We also define the modified criterion C̃ϵ, for all F-stopping times τ , as :

C̃ϵ(τ) := sup
θ∈[0,+∞]

ess sup

D∑
i=1

Eθ
[(
N i,ϵ(τ) −N i,ϵ(θ)

)+
1Dθ,ϵ,c

∣∣Fθ

]
(44)

We start with calculations under the probability P̃ and take the primitive of the conditional criterion

Γ̃τ
t = Eθ

(
1Dt,ϵ,c

∫ τ

t
d
∑D

i=1 N
i,ϵ(s)

∣∣Ft

)
with respect to the non-decreasing process ρ−Ūϵ

= ρ̃Ū
ϵ

. An

integration by parts yields :

Eθ

[∫ τ

t

Γ̃τ
sdρ−Ūϵ(s)

∣∣Ft

]
= Eθ

[∫ τ

t

1Ds,ϵ,c

(∫
]s,τ ]

d

(
D∑
i=1

N i,ϵ(u)

))
dρ−Ūϵ(s)

∣∣Ft

]

= Eθ

[∫ τ

t

d

(
D∑
i=1

N i,ϵ(u)

)(
ρ−Ūϵ(u−) − ρ−Ūϵ(t)

)
1Du,ϵ,c

∣∣Ft

]

Since Ĉϵ(τ) ≥ Γ̃τ
t , we have :

C̃ϵ(τ)Eθ
[
ρ−Ūϵ(τ)

∣∣Ft

]
≥ Eθ

[∫ τ

t

D∑
i=1

dN i,ϵ(u)ρ−Ūϵ(u−)
1Du,ϵ,c

∣∣Ft

]

+ Eθ

[
C̃ϵ(τ)ρ−Ūϵ(t) −

∫ τ

t

D∑
i=1

dN i,ϵ(u)ρ−Ūϵ(t)
1Du,ϵ,c

∣∣Ft

]

≥ Eθ

[∫ τ

t

D∑
i=1

dN i,ϵ(u)ρ−Ūϵ(u−)
1Du,ϵ,c

∣∣Ft

]

+ Eθ

[
ρ−Ūϵ(t)

(
C̃ϵ(τ) −

∫ τ

t

d

D∑
i=1

N i,ϵ(u)

)∣∣Ft

]

≥ Eθ

[∫ τ

t

D∑
i=1

dN i,ϵ(u)ρ−Ūϵ(u−)
1Du,ϵ,c

∣∣Ft

]
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This yields the following inequalities for all F-stopping times τ :

ρEθ

[∫ τ

t

D∑
i=1

dN i,ϵ(u)ρ−Ũϵ(u−)
1Du,ϵ,c

∣∣Ft

]
≤ C̃ϵ (τ)Eθ

[
ρ−Ũϵ(τ)

∣∣Ft

]
Taking the expectation on both sides and using the fact that ρU is the martingale density of P̃ with
respect to P, we establish the following lower bound :

ρE

[∫ τ

t

D∑
i=1

dN i,ϵ(u)ρ−Ũϵ(u−)ρU
ϵ(u−)−U(u−)

1Du−,ϵ,c

]
≤ C̃ϵ (τ)E

[
ρ−Ũϵ(τ)ρU

ϵ(τ)−U(τ)
]

(45)

Since, ∀τ, θ ≥ 0,

D∑
i=1

Eθ
[(
N i,ϵ(τ) −N i,ϵ(θ)

)+
1Dθ,ϵ,c

∣∣Fθ

]
=

D∑
i=1

Eθ
[(
N i,ϵ(τ) −N i(θ)

)+
1Dθ,ϵ,c

∣∣Fθ

]
≤

D∑
i=1

Eθ
[(
N i(τ) −N i(θ)

)+
1Dθ,ϵ,c

∣∣Fθ

]
≤

D∑
i=1

Eθ
[(
N i(τ) −N i(θ)

)+ ∣∣Fθ

]
Hence,

C̃ϵ(τ) ≤ C̃(τ)

Note that we can establish the proof for limϵ→0+ P
(
Dθ,ϵ

)
= 1 for all θ ≥ 0 using a similar approach

as shown in 1. Drawing upon the insights presented in equation 45 and leveraging the convergence
findings established in Lemma 2, we can derive the ensuing expression:

ρE

[∫ τ

t

D∑
i=1

dN i(u)ρ−Ũ(u−)

]
≤ C̃(τ)E

[
ρ−Ũ(τ)

]
(46)

Applying (i) of Theorem 7 in [16] to the process
∑D

i=1 N
i,ϵ, we get that :

g̃m(0)E
(
ρ−Ũϵ(τ)

)
≤ ρE

(∫ τ

0

D∑
i=1

dN i,ϵ(u)ρ−Ũϵ(u−)

)
(47)

By taking the limit and utilizing equation 46, we obtain :

g̃m(0) ≤ C̃(τ)

In accordance with Theorem 3.1, we can conclude that the CUSUM stopping time T̃C achieves the lower
bound of the Lorden criterion C̃. This establishes the optimality of the CUSUM stopping time.

Proof of Theorem 3.4. The proof of this theorem is very similar to proof 3.3.
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A.2 Proof of section 4

Proof of Proposition 4.2.

Λi
g

(
τ ik
)
− Λi

g

(
τ ik−1

)
=

∫ τ i
k

τ i
k−1

λi
g(s)ds

=

∫ τ i
k

τ i
k−1

µi(s)ds +

D∑
j=1

∑
τj

k′<τ i
k−1

αij

βij
gj

(
vjk′

) [
e−βij(τ i

k−1−τj

k′) − e−βij(τ i
k−τj

k′)
]

+

D∑
j=1

∑
τ i
k−1≤τj

k′<τ i
k

αij

βij
gj

(
vjk′

) [
1 − e−βij(τ i

k−τj

k′)
]

=

∫ τ i
k

τ i
k−1

µi(s)ds +

D∑
j=1

αij

βij

[
1 − e−βij(τ i

k−τ i
k−1)

] ∑
τj

k′<τ i
k−1

gj

(
vjk′

)
e−βij(τ i

k−1−τj

k′)

+

D∑
j=1

∑
τ i
k−1≤τj

k′<τ i
k

αij

βij
gj

(
vjk′

) [
1 − e−βij(τ i

k−τj

k′)
]

Following Ozaki [35], we have that:

Aij(k) =
∑

τj

k′<τ i
k

gj

(
vjk′

)
e−βij(τ i

k−τj

k′)

= e−βij(τ i
k−τ i

k−1)Aij(k − 1) +
∑

τ i
k−1≤τj

k′<τ i
k

gj

(
vjk′

)
e−βij(τ i

k−τj

k′)

Hence, ∀k ≥ 2 :

Λi
g

(
τ ik
)
− Λi

g

(
τ ik−1

)
=

∫ τ i
k

τ i
k−1

µi(s)ds +

D∑
j=1

αij

βij

[
Aij(k − 1) ×

(
1 − e−βij(τ i

k−τ i
k−1)

)
+

∑
τ i
k−1≤τj

k′<τ i
k

gj

(
vjk′

)(
1 − e−βij(τ i

k−τj

k′)
)]

where Aij(0) = 0, ∀i, j ∈ {1, . . . , D}.
By virtue of the Time-Rescaling theorem ([19]), we can draw the conclusion that the elements{

V 1
k

}
k≥0

,
{
V 2
k

}
k≥0

, . . . ,
{
V D
k

}
k≥0

are D sequences of independent identically distributed exponential

random variables with unit rate.
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