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Abstract—Change detection plays a fundamental role in Earth
observation for analyzing temporal iterations over time. However,
recent studies have largely neglected the utilization of multimodal
data that presents significant practical and technical advantages
compared to single-modal approaches. This research focuses
on leveraging pre-event digital surface model (DSM) data and
post-event digital aerial images captured at different times for
detecting change beyond 2D. We observe that the current change
detection methods struggle with the multitask conflicts between
semantic and height change detection tasks. To address this chal-
lenge, we propose an efficient Transformer-based network that
learns shared representation between cross-dimensional inputs
through cross-attention. It adopts a consistency constraint to es-
tablish the multimodal relationship. Initially, pseudo-changes are
derived by employing height change thresholding. Subsequently,
the L2 distance between semantic and pseudo-changes within
their overlapping regions is minimized. This explicitly endows the
height change detection (regression task) and semantic change
detection (classification task) with representation consistency.
A DSM-to-image multimodal dataset encompassing three cities
in the Netherlands was constructed. It lays a new foundation
for beyond-2D change detection from cross-dimensional inputs.
Compared to five state-of-the-art change detection methods, our
model demonstrates consistent multitask superiority in terms
of semantic and height change detection. Furthermore, the
consistency strategy can be seamlessly adapted to the other
methods, yielding promising improvements.

Index Terms—change detection, multimodal, height change,
multitask consistency, Transformer-based.

I. INTRODUCTION

The field of change detection is undergoing a significant
evolution characterized by higher temporal frequencies [1],
finer-grained analyses [2], and increased dimensionality [3],
[4]. Recent advancements in Earth observation techniques have
enabled daily change detection [1] and fine-grained analysis
spanning up to nine distinct change categories [2]. Moreover,
there have been exciting breakthroughs beyond traditional 2D
change detection [3], [4]. However, a predominant number of
prevailing developments still center around single-modal and
2D change detection, such as introducing contrastive metrics
for learning class-distinct features [5], [6], leveraging multitask
consistency for semi-supervised training [7], [8], and adopting
attention mechanisms to model long-range context [9], [10].

Some noteworthy examples demonstrate the incorporation
of multimodal data into change detection task offers both
practical flexibility and technical advantages. Combining op-
tical images with synthetic aperture radar (SAR) [11], [12]

alleviates weather-related and atmospheric restrictions. Using
point cloud data from Lidar and photogrammetry [13] for
detecting 3D changes is obviously less constrained in input
pairs formation, resulting in enhanced flexible application.
Furthermore, the different imaging modalities may be comple-
mentary for enhancing the change detection in some extreme
conditions (e.g. flooding [14] and burned areas [15]). In our
particular context, merging Digital Surface Models (DSM)
with aerial imagery incorporates vital vertical data, enhancing
the granularity of change detection. Our approach surpasses
the conventional 2D semantic change detection methods by
providing a more nuanced understanding of spatial changes
(see Figure 8).

Due to the scarcity of bi-temporal 3D data, existing methods
for high dimensional change detection often rely on multi-
source 3D data, requiring manual modality alignment before
change detection, such as dense image matching [16] and ar-
tificial feature selection [13], [17], which are time-consuming
processes that risk information loss. In MTBIT [18], the
use of bi-temporal 2D images to infer changes in building
height overlooks the benefits of multimodal data integration,
as exhaustively discussed in section 2. Consequently, there is
an ongoing gap in research on change detection beyond 2D
that fully leverages the potential of multimodal data.

To address these gaps and tackle the inherent challenges,
we have developed a multi-temporal dataset named Hi-BCD.
This dataset comprises pairs of pre-event Digital Surface
Models (DSM) representing height data and post-event aerial
images. It is designed for detecting multi-category semantic
and height changes in buildings across three cities in the
Netherlands. Through extensive benchmarking of the state-
of-the-art change detection methods, including convolutional
neural network (CNN) based and Transformer-based [19]
methods, we discover the potential multitask conflicts between
semantic change detection (classification task) and height
change detection (regression task). In Figure 2, the multitask
branches have brought great impact on each other. The perfor-
mance of semantic change detection branch declined due to
the height branch, while the height change detection branch
conversely gained some improvements due to semantic hints.
Therefore, we propose a novel Transformer-based pipeline that
learns shared representation from images and DSM data via
cross-attention (see Figure 1). It is equipped with an explicit
multitask consistency strategy, which involves the mapping
from continuous height change to discrete pseudo change with
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Fig. 1. The conceptual pipeline showing how multimodal image and DSM data are utilized for detecting height and semantic changes simultaneously.

Fig. 2. The performance change of semantic (left) and height (right) change
detection in a single-task and multitask manner, which implies the multitask
conflicts between 2D semantic and height change detection.

a soft-thresholding module. Then the pixel-wise similarity is
maximized between pseudo change and real semantic change,
enabling the information interaction of multimodal change
maps. The contributions of this paper are summarized as
follows:

• We propose an efficient and light Transformer-based net-
work that fuses feature of cross-dimensional modalities
via parallelly arranged cross-attention modules.

• We reveal the potential multitask conflicts in state-of-the-
art methods while simultaneously handling semantic and
height change detection. We propose a multitask con-
sistency constraint that quantifies the similarity between
semantic and pseudo change obtained through height
change thresholding for alleviating multitask interference.

• We build a multimodal DSM-to-image buiding change
detection dataset called Hi-BCD, with generously sized
high-resolution tiles. It enables the detection of 2D se-
mantic and 3D height changes simultaneously from cross-
dimensional modalities.

• The experiment in Hi-BCD demonstrates that our method
outperforms existing methods with consistent semantic
and height change detection results. Additionally, the

proposed consistency strategy can be easily employed to
enhance the other methods.

The rest of this paper is organized as follows: Section 2
provides a brief overview of single-modal and multimodal
change detection methods. Section 3 introduces the proposed
multimodal change detection network and multitask consis-
tency. Section 4 describes our dataset. In Section 5, we perform
a comparison with some current state-of-the-art convolutional
neural network (CNN) based and Transformer-based change
detection models, which reveals the multitask conflicts and
demonstrates the superiority of our method. We conduct
ablation studies about the influence of multitask consistency
in semantic and height change detection, providing a better
understanding of our model. Section 6 draws conclusions.

II. RELATED WORK

Single-modal change detection. The most remarkable
achievements occur in the field of single-modal 2D image
change detection, where large-scale data are available for
utilization. These studies have improved the accuracy and
efficiency with superior training metrics [5], [6], densely-
connected structure [20], [21], enhanced local and global
context aggregation [9], [22], [27], light-weight components
[23], and decoupled change modeling [24]. Some latest studies
also focus on detecting multi-class changes for in-depth scene
understanding [2], [25]. In [26], Qi et al. introduced a grid-
based method that categorizes grids into one of three change
patterns: significant increase, significant decrease, or roughly
unchanged, marking a substantial advancement beyond tradi-
tional binary outcome approaches (changed or unchanged).

It is a significant trend that also challenges to detect the
volumetric or vertical information in real applications such
as quantitative estimation of changes in urban areas, forest
biomasses, and land morphology [18], [28]. As multi-view
imaging and aerial laser scanning (ALS) technologies continue
to advance, an increasing amount of DSM-to-DSM [3] and
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cloud-to-cloud differencing methods [28], [29] have emerged.
However, it is a strong hypothesis that multi-temporal data are
available, especially for 3D data, leaving a barrier to the wide
applicability of these methods.

Multimodal change detection. A large number of multi-
modal change detection studies focus on detecting changes
between optical and SAR images to alleviate the restriction
of weather and atmosphere. Due to the scarcity of multimodal
data, the recent studies tend to build the pixel-wise or graph
correlation in an unsupervised manner without considering the
deep features, such as the energy-based model [11], coupled
dictionary learning [30], Markov random field model [14],
change vector analysis [31], and graph representation learning
[12], [32], [33]. Sun et al. [33] presents an iterative robust
graph combined with Markovian co-segmentation, focusing
on structure consistency for enhanced detection accuracy. The
[34], [35] further this by employing structure cycle consistency
and an improved nonlocal patch-based graph to address noise
and sensor differences, showing superior performance across
multiple datasets and scenarios. These methods signify ad-
vancements in unsupervised change detection without the need
for labeled data. Regarding these deep learning approaches, the
majority employ an explicit image translation process [36]–
[38]. Conversely, some methods prefer a single-modal change
detection framework that projects two heterogeneous images
into a common latent space [39], [40].

Some recent efforts are delving into change detection be-
yond 2D with multimodal data. In [41], the Siamese CNN was
employed to detect changes between point clouds obtained
from ALS and dense image matching. In [17], the features
including color, shape, and elevation maps are manually
extracted for change detection between the point cloud and
image. In [16], a multi-source point cloud processing network
was devised to detect genuine 3D changes. Yet, most of these
methods require a time-consuming pre-processing step for
modality alignment, which potentially results in information
loss. Conversely, we directly handle multimodal data across
different dimensions inspired by cross-attention mechanisms
[42]. In MTBIT [18], it attempted to infer a change map repre-
sented by DSM from bi-temporal 2D images. Unlike MTBIT,
we propose to directly deal with DSM-to-image multimodal
inputs for various reasons: 1) Estimating height from single
view image remains an ill-posed problem. The introduced
pre-temporal DSM provides abundant context priors about
vertical information near the change areas. 2) The ground
truth elevation change is essentially generated with bi-temporal
DSMs, either in MTBIT or our method. Therefore, it is under-
utilization of a considerable amount of 3D information in
MTBIT. 3) For change detection that spans over a long time,
there may exist a significant resolution gap in multi-temporal
images (e.g., 2.0m vs. 0.25m as shown in Figure 8(a)(c)). On
the contrary, the DSM data derived from point cloud in our
dataset allows for at least 4 point records at a 0.25×0.25m2

grid.
Multitask learning. In multi-task learning (MTL), a single

model is trained to simultaneously predict outcomes for mul-
tiple tasks, leveraging data across these tasks to achieve better
performance than if each task were learned independently

[44], [47], [48]. Unfortunately, MTL often causes performance
degradation compared to single-task models [49]. A main
reason for such degradation is gradients conflict [43], [44].
The model-level multitask optimization involves addressing
multitask conflicts through gradient manipulation. These per-
task gradients may have conflicting directions or a large
difference in magnitudes, with the largest gradient dominating
the update direction. Various heuristics have been introduced
for manipulating the task-specific gradient, such as the un-
certainty of the tasks [50], the norm of the gradients [45],
equal cosine similarities [51], and Pareto optimal [46]. The
Task-level multitask learning typically establishes correlations
among multiple tasks using specific transformations [50],
[52], [53] or by integrating multiple tasks that are inherently
consistent [54]–[56]. For instance, [53] learns a transformation
between semantic segmentation and depth feature spaces. Zhu
et al. [52] explicitly measure the border consistency between
segmentation and depth and minimize it in a greedy manner by
iteratively supervising the network towards a locally optimal
solution. Kendall et al. [50] models the uncertainty of segmen-
tation and depth to re-weight themselves in the loss function.
In the context of change detection, the auxilary task to predict
the segmentation boundaries of bi-temporal inputs is widely
adopted [54]–[56], where the learned boundary representation
can be shared with the change detection branch. The auxiliary
constraint is usually beneficial, as it introduces inductive
bias through the inclusion of related additional information.
Nonetheless, as reported in [57], it can sometimes hamper the
performance of each task. Certain studies have delved into the
multitask relationship by considering multitask consistency. In
[2], three consistency metrics including binary, change area,
and no-change area consistency are used for evaluation. In
[58], the consistency between bi-temporal semantic labels and
the change labels is exploited to enhance semi-supervised
generalization.

Zhu et al. [52] underscore the unique challenge of corre-
lating semantic maps with depth maps due to their significant
but complex relationship. We explore a straightforward yet
potent task-level transformation to navigate the intricacies
of multitask conflicts. We highlight the connection between
negatively changed height, often associated with demolished
buildings, and positively changed height, as observed in newly
constructed areas.

III. METHOD

A. Problem definition and data preprocessing

1) Multimodal change detection problem: Figure 1 and 3
depict the pipeline of multimodal change detection problem.
We aim to detect both height change and semantic change
with pre-event DSM and post-event image. In training phase,
the ground truth of height change is obtained by subtracting
the multi-temporal DSMs and performing truncated normal-
ization as section III-A2. The floating ranged DSM pixels
are normalized to grayscale before inputting them to the
embedding model. The Transformer-based embedding model
T , which is detailed in section III-B, learns the DSM and
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Fig. 3. Our Transformer-based multimodal change detection pipeline is named MMCD. It consists of the pyramid backbone with four Transformer layers,
the cross-modal fusion module (CFM), and the multi-layer perception (MLP) decoder. The multitask consistency acts as an explicit constraint for enhancing
multimodal correlation.

image embedding with shared parameters. It can formulated
as

XH = T (DSMpre), XI = T (imagepost). (1)

Following the backbone, the cross-model fusion process aims
to augment the representation of a specific modality by inte-
grating cues from other modalities, as elaborated in Section
III-B. Building on the representation consistency between
height change and semantic change, we introduce an explicit
consistency constraint. This constraint is designed to ensure
that both tasks mutually enhance each other’s performance, as
detailed in Section III-C.

2) Data preprocessing: Truncated normalization for
height changes: Height change detection leverages the L2
regression loss, with practical implementations [18], [59]
incorporating a Tanh activation layer. This layer normalizes
the final decoded layer’s output to a range of -1 to 1 for
enhanced training stability. Therefore, the ground truth height
should be rescaled to [−1, 1] during training. The normaliza-
tion parameters are obtained by truncating the distribution to
include 99.5% of the height change values from the training
set, optimizing the model’s focus on dominant height changes.
Specifically, the truncated rescaling range is [−27.29, 87.26]
(meters) in our training set.

Gray-scale Normalization for input DSMs: In practical
implementation [60], [61], a normalization process is neces-
sary during training image data. For gray-scale RGB images,
the integer pixel value ranges from 0 to 255, while the digital
surface model could be negative or positive floating values.
This causes gradient fluctuation during training and makes it
hard to converge [62]. To this end, we first rescale the height
values in DSM into gray-scale as follows:

Heightrescaled =
(Height−min)

max−min
× 255 (2)

where min = −10 and max = 40. These two hyperparame-
ters are also determined by truncating nearly 99% of the height

value ranges. Then the standard normalization is applied for
height values and gray-scale image values. It modifies the data
of each channel so that the mean is zero and the standard
deviation is one.

B. MMCD: Transformer-based multimodal change detection
network

Efficient Pyramid backbone. The Transformer network
[19], increasingly dominant in recent multimodal data pro-
cessing, encounters significant challenges when managing bi-
temporal inputs that are both high resolution. The architecture,
while revolutionary for its attention mechanisms and scalabil-
ity, struggles with the computational and memory demands
posed by large-scale inputs. We aim to develop an efficient and
lightweight backbone architecture, considering the typically
large data volumes in remote sensing. Therefore, we employ
an efficient Transformer block with sequence reduction as our
backbone, which is detailed in [63], [64]. Furthermore, we
minimize the embedding dimensions to achieve a more com-
pact model size, effectively halving the complexity compared
to ChangeFormer [64] (see Table III). The pyramid features
output from height and image branches are denoted as Xn

H and
Xn

I , where n ∈ {1, 2, 3, 4}.
Cross-modal fusion. As mentioned in [52], despite the

high relevance between depth (or height) data and gray-scale
images, establishing the definitive relationship between them is
challenging. Inspired by the widely used cross-attention mech-
anism [42], which considers all the multimodal features (such
as text, images, audio, or video) as sequences, we compute
attention scores by calculating the dot product between the
query from one modality and the keys from another modality,
followed by a softmax function to normalize the scores. It
allows the model to dynamically focus on specific parts of an
image based on the context provided by the other modality,
and vice versa. The designed cross-modal fusion module is
shown in Figure 4(a). It parallelly takes the feature embedding
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Fig. 4. The structure of feature fusion module and decoder in our method.

from one modality as query, and the embedding from the
other modality as key and value. The standard self-attention
component is

Attention(X)=softmax(QK)V = softmax
(
(WqX)(WkX)T

)
WvX,

(3)
where Wq,Wk and Wv ∈ RC×d are learnable matrices, X ∈
Rd×C is input sequence, and the softmax is exi/

∑N
j=1 e

xj .
The C is sequence length and d is embedding dimension. The
left cross-attention block in Figure 4(a) can be formulated as

Cross-attention(Xn
H,Xn

I ) = softmax
(
(WqX

n
H)(WkX

n
I )

T
)
WvX

n
I .

(4)
This layer allows each modality to query (seek informa-
tion from) the other modality’s representations. The attention
scores

(
(WqX

n
H)(WkX

n
I )

T
)

are used to create a weighted
sum of the value vectors from the attended modality, allowing
the model to focus more on the relevant features. This results
in a richer, contextually informed representation that combines
information from both modalities. The multimodal feature
spaces before and after the cross-attention is depicted in Figure
14. The CFM uses two symmetrically arranged cross-attention
operators for capturing mutual relationships between features
derived from the DSM and image branches. Next, they are
merged through MLP and the convolutional unit, which is then
pixel-wise added to the previous feature layer fn−1 to obtain
fn.

MLP decoder. Figure 4(b) depicts the streamlined structure
of our MLP decoder. We use non-parameterized up-sampling,
while ChangeFormer [64] utilizes learnable transposed-
convolution that incurs higher computation cost. Furthermore,
the residual convolutional blocks [65] are utilized to enhance
the local relations during the up-sampling process. The final
semantic and height change maps are generated through 3×3
convolution block following the approach outlined in MTBIT
[18].

Model variations. Figure 3 depicts the final model archi-
tecture, while the variations of it, such as ”only semantic cd
branch”, ”only height cd branch”, and ”semantic + height cd
branch” in Table V, are briefly depicted Figure 5.

C. Multitask consistency by predicting the pseudo semantic
change

We bridge the gap between height change detection and
semantic change detection tasks by imposing an explicit
consistency constraint, facilitated through the prediction of an
auxiliary pseudo-change map. Our approach addresses the in-
herent discrepancy between semantic and height changes—the
former being categorical with discrete values, and the latter
represented by continuous floating-point values. As shown in
Figure 6(a)(b), by adopting zero as a threshold for height
change, we obtain a classification map termed pseudo change
that includes three classes: 0 (the background), 1 (positive
height change) and the -1 (negative height change), which
differs from the semantic change (Figure 6(c)). The hard
thresholding can be formulated as

Th(x) =

{
1, x > 0
0, x = 0

−1, x < 0.
(5)

Since it is not differential, we adopt a soft thresholding
function as follow

Ts(x) = 2× sigmoid(
x

t
)− 1, (6)

where sigmoid = 1/(1+e−x), and t is a positive temperature
parameter for controlling the sharpness of the transition around
zero. In our experiment, we set t = 0.5. Smaller t leads
to a more accurate approximation to Th(x). This can be
implemented with a sigmoid and an MLP layer for introducing
strong prior to the pseudo-change branch. The pseudo change
highly overlaps with semantic change but is not totally the
same as shown in Figure 6(d). Therefore, only overlapped
areas are considered when measuring the consistency between
them. The objective is to minimize the following objective
function

Lconsistency = min
Predsc,Predpsc

(GTpsc ∩GTsc) ∗ |Predpsc − Predsc|,

(7)
where | · | is kind of distance. GTsc and GTpsc are ground
truth of semantic and pseudo change. Predsc and Predpsc
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Fig. 5. The network variations of our method, arranged from left to right, include: the only semantic change detection branch, only height change detection
branch, the multitask branch, and the multitask branch with consistency constraint.
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Fig. 6. The inconsistency of multimodal change labels. (a) height change; (b) pseudo change by classifying the zero height as unchanged, positive height
as newly-built and negative height as demolished regions; (c) semantic change; (d) intersection mask between height change and pseudo change, where the
intersection rate of training, validation, and testing set are 79.71%, 89.23% and 90.03% respectively.

are corresponding model prediction. In practical implementa-
tion, the semantic and pseudo change branches are separately
supervised with GTsc and GTpsc respectively, which leads to
consistency in their overlapping regions.

D. Loss function

We employ the weighted cross-entropy loss for both the
semantic and pseudo change detection branches and utilize
mean-square error (L2 loss) for the height change detection
branch as [18], which are denoted as Lheight, Lpseudo, and
Lsemantic respectively. The final training loss is

Ltotal = λ1 · Lpseudo + λ2 · Lheight + λ3 · Lsemantic (8)

where λ1, λ2, and λ3 are fixed loss weights, which are 0.2,
0.2, and 0.6 in our experiment setting.

IV. HI-BCD: A MULTIMODAL DATASET FOR BUILDING
CHANGE DETECTION BETWEEN HEIGHT MAP AND OPTICAL

IMAGE

Existing datasets and limitations. Table I presents a
concise comparison of existing change detection datasets,
encompassing both single-modal and multimodal datasets. A
substantial volume of bi-temporal 2D image datasets avail-
able, supporting high-resolution, high-frequency, and multi-
class change analysis. Despite the abundance of single-modal
datasets, limited research has ventured beyond 2D change

TABLE I
THE MAIN DETAILS OF TYPICAL EXISTING CHANGE DETECTION

DATASETS. FIRST THREE ROWS: SINGLE-MODAL DATASETS. LAST FOUR
ROWS: MULTIMODAL DATASETS. NOTE THAT THE 3DCD [18] EMPLOYS

BI-TEMPORAL IMAGES TO INFER CHANGES ACROSS MULTIPLE
MODALITIES.

Name N. images Tile size Resolution CD map Classes

LEVIR-CD [66] 637 1024× 1024 0.5 m 2D 2
Hi-UCD [2] 40800 512× 512 0.1 m 2D 9

DynamicEarthNet [1] 54750 1024× 1024 3 m 2D 7
Shuguang [12] 1 921× 593 - 2D 1

multimodalCD [13] 3615 100× 100 0.1 m 2D 2
3DCD [18] 472 400× 400 0.5 / 1m 2D / 3D 1

Hi-BCD (ours) 1500 1000× 1000 0.25 m 2D / 3D 2

detection using multimodal data. The Shuguang dataset used
in [12] contains a pair of SAR and optical images for detecting
2D construction change. The constraint of a small sample
size dictates that most earlier methods can only be developed
from an unsupervised standpoint. The multimodalCD [13]
dataset incorporates multi-view image-based and ALS-based
point clouds, which are transformed into DSMs to detect
binary 2D changes exclusively. However, it confines its focus
to 2D changes within small tile sizes, even though it contains
beyond-2D information. The 3DCD [18] dataset employs bi-
temporal images to identify not only binary building changes
but also variations in height. However, the resolution of height
change is merely half that of 2D changes, and it exclusively
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(2011/2020)
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Fig. 7. Hi-BCD dataset. It encompasses three cities in the Netherlands and provides two types of building changes. The dates of early and late periods are
denoted under each city. For each city, 68%, 24%, and 8% of the tile are used for training, testing, and validation, respectively.

classifies binary changes. To establish a new foundation for
change detection, we introduce the Hi-BCD dataset. It lever-
ages multimodal inputs to simultaneously output semantic and
height changes, providing generously sized tiles and high-
resolution 2D and 3D semantic change maps.

Dataset overview. As depicted in Figure 7, our study area
involves three cities in the Netherlands, including Amsterdam,
Rotterdam, and Utrecht. The dates of the pre-temporal and
post-temporal periods are indicated beneath each city in Figure
7. We can observe significant variation in the capture dates of
the pre-temporal DSM, which reflects the extensive updating
period of high-dimensional data. This hinders the application
of high-dimensional change detection with dual-temporal 3D
data. The DSM data is generated from point clouds using
grid sampling and strictly orthogonal projections, whereas the
aerial images are ortho-photographs. The data volume for each
city comprises five hundred of 1000 × 1000 DSM-to-image
pairs with a ground sampling distance of 0.25 meter (Figure
8(b)(c)). The corresponding multi-class 3D and 2D changes
are shown in Figure 8(e)(f). The vertical accuracy is about
0.15 meters [3]. For each city tile, 68%, 24%, and 8% are
allocated for training, testing, and validation respectively. Two
types of change including ’newly-built’ and ’demolished’ are
defined in the dataset. More details about change objects,
pixels, and samples are provided in Table II. Figure 9 portrays
the cumulative frequency of height for the two types of change.

TABLE II
THE MAIN DETAILS OF THE HI-BCD DATASET, INCLUDING CHANGED

OBJECTS, PIXELS, AND SAMPLE AMOUNT OF THREE CITIES IN THE
NETHERLANDS.

Attribute Category Amsterdam Rotterdam Utrecht

changed
objects

newly-built 389 510 458
demolished 251 229 187

changed
pixels

amount 6.625M 5.139M 7.73M
prop/total 1.3% 1.0% 1.5%

samples
(size: 1k × 1k )

total 500 500 500
with change 40.8% 34.2% 43%

Annatation procedure. We build the dataset based on
AHN1 (Actueel Hoogtebestand Nederland), the nationwide
elevation data project in the Netherlands. Specifically, the
early-period elevation data is obtained by rasterizing point
clouds from AHN3 (2011-2019), while the aerial images2 with
the close date to AHN4 (2020-2022) are used as late period.
The annotation procedure is as follows:

1) Change definition. The construction and demolition of
buildings are annotated based on the difference map between
AHN3 and AHN4. Since the capture date of aerial images
does not precisely align with that of the point cloud, we have
focused our annotations on multi-class building changes that

1http://www.ahn.nl/
2https://www.beeldmateriaal.nl/over-beeldmateriaal
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(b) (c) (d) (e) (f)(a)
Newly-built

Demolished

Output

Input

Fig. 8. Examples of Hi-BCD dataset, where the DSMs are displayed in hillshade manner (A widely used visual technique to give a three-dimensional
appearance from DSM data). The (a) and (b) are pre-temporal images (2.0m resolution) and DSMs (0.25m resolution). The (c) and (d) are post-temporal
images and DSMs (all 0.25m resolution). The (e) and (f) are height and semantic changes between the multimodal temporal inputs.

remain relatively stable within a one-year time frame, while
excluding highly dynamic changes such as trees and vehicles.
Note that the demolished and newly-built buildings do not
highly correspond to the negative and positive height change
values respectively, due to tree occlusions and the penetration
of low-reflectivity surfaces such as glass roofs, as depicted
in Figure 6. We define a mask that indicates whether the
building changes are highly relevant to their height change
values, which is

M(i, j) =

{
1, highly relevant

−1, otherwise (9)

2) Edge situation. The second row in column (f) of Figure 8
illustrates a complex scenario where various building changes
intersect. This suggests a sequence of events where a building
is first demolished and subsequently replaced by a new one.
For such a situation, the change type is determined based on

the elevation difference, where pixels with a positive change in
height are categorized as newly built, while pixels with a neg-
ative change in height are associated with demolished building
changes. While we have provided a simplified representation
by aggregating these overlapping changes into single-type
changes, there remains an opportunity for future research to
delve into finer sub-situations, describing the entire evolution
process.

3) Change label generation. Based on the above-mentioned
change definition and edge situation, the change map (CM) is
formulated as

CM(i, j) =

demolished,∆H ·M(i, j) < 0 and building in early period
newly-built,∆H ·M(i, j) > 0 and building in late period
background, otherwise.

(10)
where ∆H is the elevation difference between the bi-temporal
DSM data, i.e., ∆H = DSMAHN4 − DSMAHN3. The def-
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Fig. 9. The cumulative frequency of height values for two types of change pixels.
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inition of the first two cases implies a sub-situation of bi-
temporal buildings. It may be a little misaligned with the
building in image data due to viewpoint distortion. The labels
for 3D height changes correspond to the masked regions in
the AHN4-to-AHN3 difference map.

4) Tile splitting. The original tile size of each city is
25000×20000 with a pixel granularity of 0.25 meter, which is
subsequently split into 500 pairs of 1000×1000 sized samples.
Note that we retained samples that do not include changes to
better reflect the data distribution of the real-world scenario.

Challenges of Hi-BCD dataset. The fundamental challenge
of our dataset is to learn the representation of multi-class
elevation changes from multimodal and cross-dimensional
inputs. There are some inherent misalignments between the
multimodal inputs. 1) The pixels hold diverse implications as
the DSMs rasterize the height dimension from Lidar point
clouds and represent the absolute land elevation, while the
images reflect the intensity of visible light. They exhibit
vastly different numerical ranges, where the height range is
[−8.24, 183.64] for the original DSM and [−99.55, 134.21]
for the changes in the training set, while the image values
are in grayscale [0, 255]. 2) Their distribution differs a lot as
the DSMs exhibit similar height in the ground regions, while
the images portray different colors and textures for various
land covers. 3) There exists geometry misalignment due to
viewpoint distortion of aerial images although they utilize
the same coordinate system. Furthermore, severe change-
unchange imbalance can be observed in Table II. Additionally,
there is inconsistency between the semantic change labels and
the height change labels as shown in Figure 6.

V. EXPERIMENTS AND RESULTS

A. Experiment setting

Implementation details. The Tanh function normalizes
height outputs to [−1, 1]. The elevation scale of training set
[−27.29, 87.26] covering 99.5% of pixels is used for denor-
malization. We set class weights of 0.05, 0.95, and 0.95 to the
background, demolished, and newly-built areas for weighted
cross-entropy loss. All the models are pre-trained in LEVIR-
CD [66] and then trained for 300 epochs with equivalent batch
size of 8. At ease of multi-scale downsampling, the original tile
size of 1000×1000 is adjusted to 1024×1024 during training.
More details can be found here3.

Metrics. For semantic change detection evaluation, we used
the mean intersection over union (mIoU) and F1-score as
denoted in [18]. For the height change detection, we keep
consistent with relevant research [18], [59], [67], including
the following metrics:

• Root Mean Square Error (RMSE):
√

1
n

∑
(Hr −He)

2

• Mean Average Error (MAE): 1
n

∑
|Hr −He|

• Root Mean Square Error (cRMSE):
√

1
n

∑
(Hr −He)

2

• Average relative error (cRel): 1
n

∑ |Hr−He|
Hr

• Mean normalized cross correlation (ZNCC):
1
N

∑N
i

(Hri−µHr )(Hei−µHe )
σHrσHe

3https://github.com/qaz670756/MMCD

where Hr denotes the reference height, He denotes the
estimated height, and N denotes the estimated pixel count.
µ and σ are the mean values and standard deviations of Hr

and He, respectively. The cRMSE and cRel indicate that only
changed areas are considered. The ZNCC quantifies the spatial
correlation between output and ground truth, while the other
metrics measure the degree of absolute errors at each pixel
in meters. Moreover, we include the million parameter count
(MParams) and Giga Floating-Point Operations (GFLOPs) as
metrics to compare the model complexity [9], [68].

Compared methods. Limited research, such as [18], has
concurrently detected semantic and height changes. To provide
a benchmarking, we follow the structure of MTBIT [18] that
maintains the original change detection network while slightly
modifying the decoder with an additional height change de-
tection branch. Among the selected methods, the FC-Siamese
[22] is the first fully convolution-based change detection
architecture widely used for comparison. The SNUNet [20] is
a state-of-the-art CNN-based method featuring a densely con-
nected backbone. The ChangeFormer [64] is a Transformer-
based method that yields promising results in most change
detection benchmarks. The P2VNet [24] models the change
process in a novel multi-frame transition perspective. The MT-
BIT extends the Transformer-based BIT [9] for simultaneously
detecting semantic and height changes.

B. Comparison with state-of-the-arts

In this section, we evaluate semantic and height change
detection to explore how these two tasks influence each other.
Note that semantic change detection refers to multi-class 2D
change detection in our context. The model operates in a
multitask situation when performing joint semantic and height
change detection. Otherwise, it is in a single-task setting when
addressing only one of these tasks.

Semantic change detection. In Table III, our method
achieves competitive semantic results across both single-task
and multitask settings. Specifically, by employing a single
semantic change detection branch, we achieve close results
to ChangeFormer with only half the model complexity. Be-
sides that, the model with the largest number of parameters
(ChangeFormer) and highest computational cost (P2VNet)
achieved the second and third best results, respectively. When
augmented with our consistency-enhanced height prediction
branch, the metric numbers exhibit continued improvement.
On the contrary, the other methods that attached to the
height change detection branch without consistency constraint,
show a notable degradation. This suggests that the added
height change detection branch hinders the learning of the
semantic branch, where a similar phenomenon is also observed
in prior works [44], [52]. Different optimization objectives
among multiple tasks can lead to potential mutual interference
during feature optimization. With the help of the consistency
constraint, our method prevents performance degradation due
to interference from the height change detection branch.

Height change detection. Table IV reveals an intriguing
pattern: Among the 30 metric results obtained with a height
change detection branch, 23 of them gain improvements when



10

TABLE III
THE SEMANTIC CHANGE DETECTION PERFORMANCE BEFORE AND AFTER ATTACHING THE HEIGHT PREDICTING BRANCH. THE METHODS WITH ∗ ARE

ORIGINALLY DESIGNED WITH A HEIGHT BRANCH. THE COLORS RED, GREEN, AND BLUE INDICATE THE TOP THREE RESULTS.

Method Year only semantic cd branch semantic + height cd branch Complexity (two branches)
IoUD ↑ IoUN↑ mIoU↑ F1-score↑ IoUD ↑ IoUN↑ mIoU↑ F1-score↑ MParams↓ GFLOPs↓

FC-Siamese [22] 2018 27.77 29.18 28.48 44.33 27.60 28.34 27.97 43.72 1.552 92.908
SNUNet [20] 2021 25.47 26.07 25.77 40.98 20.77 22.97 21.87 35.87 3.012 220.696

ChangeFormer [64] 2022 47.17 36.67 41.92 58.88 38.89 41.45 40.17 57.31 29.75 340.165
P2VNet [24] 2022 37.41 30.61 34.00 50.65 35.63 30.46 33.04 49.62 5.425 527.442
*MTBIT [18] 2023 37.44 29.97 33.71 50.31 34.40 27.04 30.72 46.88 15.2 154.72

*Ours 2023 43.76 39.10 41.43 58.55 44.29 40.90 42.59 59.72 11.659 168.893

TABLE IV
THE HEIGHT CHANGE DETECTION PERFORMANCE WITHOUT AND WITH SEMANTIC BRANCH. THE UNDERLINED NUMBERS INDICATE A DECREASE WITH
THE ATTACHED SEMANTIC CHANGE DETECTION BRANCH COMPARED TO ITS SINGLE-BRANCH COUNTERPART. THE METHODS WITH ∗ ARE ORIGINALLY

DESIGNED WITH A HEIGHT BRANCH. THE COLORS RED, GREEN AND BLUE INDICATE THE TOP THREE.

Method only height cd branch semantic + height cd branch
RMSE↓ MAE↓ cRMSE↓ cRel↓ cZNCC↑ RMSE↓ MAE↓ cRMSE↓ cRel↓ cZNCC↑

FC-Siamese 1.505 0.446 8.622 1.838 0.274 1.461 0.309 8.995 1.506 0.373
SNUNet 1.574 0.498 9.397 2.988 0.186 1.671 0.779 9.216 2.704 0.265

ChangeFormer 1.658 0.313 8.404 2.110 0.308 1.343 0.402 8.204 2.485 0.394
P2V-CD 1.392 0.399 9.037 1.937 0.261 1.408 0.305 8.932 1.463 0.377
*MTBIT 1.530 0.475 9.441 1.780 0.179 1.457 0.400 8.563 1.987 0.345

*Ours 1.273 0.397 8.317 2.711 0.379 1.267 0.290 8.281 1.900 0.394

working with a semantic branch, while only 7 of them show a
decrease. This phenomenon underscores the positive impact
of learning the shared representation through the implicit
hints from semantic change. As also denoted in [52], the
object boundaries are easier to capture from the semantic map
compared to the depth map. Incorporating a dedicated branch
for predicting pseudo changes from the height map establishes
a clear correlation between semantic and height changes. This
enhancement is evident in the improved performance of height
change detection across five different metrics. With only half
the model complexity of ChangeFormer, our model reaches the
top in most metrics. Note that this enhancement, facilitated by
a consistency constraint, can be conveniently adapted to other
methods, yielding promising improvements as showcased in
Table VI.

Qualitative Results. Figure 10 depicts the visual compari-
son of semantic and height change detection for the top three
methods. The tendency could be observed in the first four
columns of Figure 10. In the last four columns, collapsed
results are evident for models lacking semantic hints in single-
task setting, with ours being the exception. Note that the
single-task visual results of our method are derived from
the height change detection branch that is augmented with
multitask consistency.

Figure 11 presents a comparative analysis of height pre-
diction, illustrating the distribution patterns across various
methods. In terms of the height change value range, other
change detection methods generally tend to underestimate,
whereas our method delivers a more accurate range. Regarding
the overall distribution, most methods exhibit a single peak
around zero, except for ChangeFormer, MTBIT, and our
approach, which align more closely with the actual distribution
that features at least two significant clusters. However, for

all methods, the dominant portion of height outputs clusters
near zero. This reflects the background to changed areas
imbalance. Addressing this problem remains a direction for
future research.

Figure 12 depicts the large-scale change detection results.
Figure 13 and 14 visualize the multimodal feature from the
encoder and decoder layers. The baseline of our model is the
one that does not have the multitask consistency constraint
(MC). Given that our Transformer backbone is a streamlined
variant of ChangeFormer, we include ChangeFormer’s results
for comparative analysis. Our baseline differs from Change-
Former in having fewer parameters and incorporating a cross-
modal fusion module. In Figure 13, the multimodal features
from DSM (blue points) and image (red points) are roughly
separated into two parts with some overlapping. From left to
right, the red cluster is more and more compact. In Figure
14, the three distinct classes are represented with specific
colors in the output: demolished buildings are marked in
red, newly-built buildings in blue, and the background in
green. Our method, when compared to both ChangeFormer
and our baseline model that did not incorporate consistency
constraints, demonstrates an improvement in the feature space
representation. Specifically, it shows better intra-class consis-
tency and inter-class separation.

C. Ablation study

This section explores the impact of the proposed multitask
consistency for semantic and height change detection. Initially,
we demonstrate that the implicit information, shared at the
backbone stage, yields benefits for height change detection
but introduces challenges for semantic change detection.

From the results of row 1 and row 3 in Table V, an evident
decline in semantic change detection can be observed. Con-
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Fig. 10. Visual comparison of semantic (first four columns) and height (last four columns) changes for the top-three methods in single-task (only semantic or
height branch) and multitask change detection settings. Note that height changes of our model are from the consistency augmented height branch corresponding
to row 3 of Table V.

versely, the height metric results from rows 2 and 3 demon-
strate the utility of semantic hints for estimating in enhancing
the height changes estimation, even with only implicit shared
information in the common backbone. Figure 15(b)(c)(e)(f)
illustrates some visual examples wherein the semantic branch
exhibits improved recovery of height changes. However, it
tends to introduce additional noise in the background regions.
From the odd-numbered rows of columns (c) and (f), we
can observe that the attention regions corresponding to the

semantic output closely resemble height changes. This sug-
gests a strong coupling between their learned representations,
which is the reason why the inclusion of the height branch
poses challenges for semantic change detection, resulting in
suboptimal performance in both tasks, as demonstrated in
Figure 16(b)(c)(e)(f). To alleviate the problem, we designed
the pseudo-change branch for two purposes:

1) In the absence of semantic change hints, it serves as
a sub-complete semantic map to assist in the height change

TABLE V
ABLATION STUDY ABOUT THE IMPACT OF MULTITASK CONSISTENCY (+MC) ON HEIGHT CHANGE PREDICTING BRANCH (+3D) AND SEMANTIC CHANGE

DETECTION (+2D) IN SINGLE-TASK OR MULTITASK SCENARIOS. THE ’-’ SYMBOL INDICATES THAT THE ABLATED MODEL DOES NOT CONTAIN THE
CORRESPONDING COMPONENT TO GET THE METRIC OUTPUTS.

Settings Semantic metrics Height metrics
+2d +3d +MC IoUD IoUN mIoU F1score RMSE MAE CRMSE cRel ZNCC
✓ 43.76 39.10 41.43 58.55 - - - - -

✓ - - - - 1.460 0.301 8.289 2.075 0.311
✓ ✓ 39.05 37.31 38.18 55.26 1.367 0.358 8.875 1.922 0.311

✓ ✓ - - - - 1.273 0.397 8.317 2.711 0.379
✓ ✓ ✓ 44.29 40.90 42.59 59.72 1.267 0.290 8.281 1.900 0.394



12

Ours

ChangeFormer

Prediction

Prediction

GroundTruth

GroundTruth

SNUNet
Prediction
GroundTruth

FC-Siamese
Prediction
GroundTruth

P2VNet
Prediction
GroundTruth

MTBIT
Prediction
GroundTruth

Fig. 11. The comparison of predicted height distribution, where blue denotes ground truth, yellow and red denote the other methods and ours.

Amsterdam Rotterdam Utrecht

Fig. 12. Large scale visualization of height change predictions in three cities (please enlarge for more details). First row: the scatter between ground truth
and predicted heights with density coloring map. Second row: ground truth of the whole test set. Third row: the predictions of our model.

detection, resulting in an augmented height detection branch.
Comparing row 2 to row 4 in Table V, we found that the
semantic hint from the pseudo change branch is even better
than the original semantic branch. We speculate that it was
attributed to the explicit soft thresholding process, which
brings stronger prior about multitask relationship than the
limited hints from shared backbone. The odd-numbered rows
of the final column in Figure 15 and 16 provide a visualization
of learned representation in the soft thresholding layer, which
accurately locates some edge cases that were missed by the

original multitask scenario.
2) With both semantic and height change branches in place,

the pseudo change branch fosters a consistent relationship
between the two tasks. Interestingly, the final row of Table
V demonstrates that our consistency strategy has not only
mitigated the multitask conflicts but also encouraged further
improvements via explicit multitask interaction, as shown in
Figure 15(d)(g) and 16(d)(g). Furthermore, our consistency
strategy can be seamlessly applied to the other change detec-
tion methods and yields promising improvements, as shown
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 (a) Ground Truth (b) ChangeFormer (c) Our baseline (d) Our baseline + MC (e) ChangeFormer (f) Our baseline (g) Our baseline + MC

Fig. 13. The feature space of the DSM and image branches visualized by t-SNE. The red indicates an image feature point and the blue indicates a DSM
feature point.

(a) Ground Truth (b) ChangeFormer (c) Our baseline (d) Our baseline + MC (e) ChangeFormer (f) Our baseline (g) Our baseline + MC

Fig. 14. The feature space of last decoder layer visualized by t-SNE. The red indicates a new-built building pixel, green indicates a demolished building
pixel, and blue indicates an unchanged pixel.

Fig. 15. Visual examples highlighting the improvement via multitask interaction. (a) semantic ground truth; (b)(e) single-task results and corresponding attention
maps; (c)(f) multitask results and corresponding attention maps; (d)(g) multitask results and corresponding attention maps with consistency constraint; (h)
attention maps for soft thresholding layer (odd-numbered rows) and ground truth height changes (even-numbered rows).
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Fig. 16. Visual examples highlighting the decline due to multitask branches. (a) semantic ground truth; (b)(e) single-task results and corresponding attention
maps; (c)(f) multitask results and corresponding attention maps; (d)(g) multitask results and corresponding attention maps with consistency constraint; (h)
attention maps for soft thresholding layer (odd-numbered rows) and ground truth height changes (even-numbered rows).

in Table VI.

To further investigate the impact of our consistency con-
straint on height change detection, We adjusted the tempera-
ture parameter of equation 6. Figure 17 shows that a smaller
temperature value leads to a sharper transition near zero and
greater overlap between the ground truth and predicted height
change. This is because the sharp transition near zero sup-
presses background noise where height is unchanged, allowing
more attention to changed regions. However, this parameter
acts as a double-edged sword; a too-small value means that
background noise is more likely to be mistaken for a change
target. Therefore, in our experiments, we set t to 0.5 as the
final setting.

By setting the λ3 parameter of the semantic branch to 0.6,
we explore various parameter combinations within Table VII.
In the first row, equating the loss weights for the height and
semantic change branches results in a degradation of semantic
change detection performance, with minimal improvement
observed in the height change metrics. Conversely, increasing

λ1 for the pseudo change branch enhances the semantic change
detection metrics, underscoring the task’s emphasis, albeit at
the cost of diminished height change metrics. When λ1 to
λ3 are equalized, there’s a notable improvement in height
metrics compared to the configuration in row 2. Nonetheless,
this increased weight on the pseudo change branch continues
to adversely impact the height change detection performance
relative to the baseline established in row 1. For further details,
please consult Table 5 in our revised manuscript.

D. Discussion

The experiment results strongly emphasize the multitask
conflicts between 2D semantic change detection and 3D height
estimation. Specifically, the semantic change exhibits a dis-
tinct boundary that aids in pinpointing changes compared to
height change estimation. A similar phenomenon has been
documented in [52], which highlights that object boundaries
are more readily discerned from segmentation labels than from
depth maps. From Figure 15 and 16, we could observe the

t=0.5
Prediction
GroundTruth

t=1.0
Prediction
GroundTruth

t=2.0
Prediction
GroundTruth

Fig. 17. The impact of different t values on height change detection.
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TABLE VI
THE IMPACT OF OUR CONSISTENCY STRATEGY ON THE OTHER METHODS, INCLUDING ONE CNN-BASED AND TWO TRANSFORMER-BASED CHANGE

DETECTION MODELS. THE bold FONT INDICATES BETTER RESULTS.

Settings Height metrics Semantic metrics
RMSE MAE cRMSE cRel ZNCC mIoU↑ F1-score↑

FC-siamese 1.461 0.309 8.995 1.506 0.373 27.97 43.72
+multitask consistency 1.398 0.353 8.655 1.873 0.395 28.85 44.78

ChangeFormer 1.343 0.402 8.204 2.485 0.394 40.17 57.31
+multitask consistency 1.317 0.297 8.085 1.825 0.447 41.37 58.39

MTBIT 1.457 0.400 8.563 1.987 0.345 30.72 46.88
+multitask consistency 1.373 0.343 8.788 1.639 0.281 32.44 48.90

TABLE VII
THE INFLUENCE OF DIFFERENT COMBINATIONS OF HYPERPARAMETERS.

Hyperparameters semantic metrics height metrics
mIoU F1-score RMSE MAE

λ1 = 0.2, λ2 = 0.6, λ3 = 0.6 41.42 58.53 1.263 0.289
λ1 = 0.6, λ2 = 0.2, λ3 = 0.6 43.24 60.22 1.302 0.388
λ1 = 0.6, λ2 = 0.6, λ3 = 0.6 42.38 59.49 1.289 0.301
λ1 = 0.2, λ2 = 0.2, λ3 = 0.6 42.59 59.72 1.267 0.290

inherent consistency between height change and the activation
map of semantic change within a single testing example.
This suggests that the decreased performance of the multitask
setting is mainly caused by the height branch. As denoted
in [44], jointly addressing semantic segmentation and depth
estimation tasks tends to yield suboptimal results compared to
single-task settings.

Our proposed multitask consistency constraint links the
height change branch and pseudo-change branch via soft-
thresholding. By minimizing the disparity between pseudo-
change and semantic change, we enable gradient interaction
from the semantic change map to the height change map. This
establishes a coherent objective for the multitask branches
and ultimately enhances the performance of both tasks, as
evidenced in our experiments.

Our approach incorporates DSM data derived from point
cloud data. Looking ahead, we aim to enhance change detec-
tion between point cloud and image data. This will involve
refining representation learning methods that learn visual rep-
resentations from multimodal data (point clouds and images)
without extensive labeled datasets [69], [70]. Additionally, the
techniques of multi-scale feature fusion [71] between point
cloud and image data is pivotal for effective multimodal
change detection.

VI. CONCLUSION

The prevailing direction in change detection research is
toward achieving higher frequency, finer granularity, and in-
creased dimensionality. However, there exists a noticeable
gap in the literature about multimodal and cross-dimensional
change detection. In this paper, we presented a novel pipeline
for detecting height and semantic change simultaneously
from DSM-to-image multimodal data. We revealed that the
leading change detection methods, including CNN-based and
Transformer-based methods, struggled with the conflicts of
multitask change detection. We proposed a Transformer-based

network equipped with multitask consistency constraint, which
achieves the best semantic and height change detection per-
formance with limited model complexity. We found that the
consistency strategy with a small temperature parameter is
able to suppress the background noise and leads to sharper
results in change regions. It can be also seamlessly employed
to the other change detection methods and produce promising
improvements. Our dataset and model are poised to become
foundational benchmarks for future research within the remote
sensing change detection community. This work paves the
way for a range of intriguing research avenues, such as
the exploration of more fine-grained semantic categorizations
based on varying scales of height changes, and the integra-
tion of currently dominant large pre-trained models into our
framework.

However, several unresolved questions persist, including
both data and algorithmic aspects. Firstly, we have initiated
a dataset expansion plan, necessitating enhanced automation
in our annotation workflow to accommodate large-scale ap-
plications. Furthermore, as aforementioned in Section V-B,
we need to delve deeper into addressing the substantial class
imbalance issue with various strategies, including refining
training metrics, implementing data augmentation techniques,
and optimizing the architecture. Additionally, leveraging the
power of state-of-the-art large pre-trained models could lead to
a more efficient training process and improved generalization.
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