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In this paper we investigate, both analytically and numerically, the emergence of a kinetic glass transition
in two different model systems: a uniformly heated granular gas and a molecular fluid with nonlinear drag.
Despite the profound differences between these two physical systems, their behavior in thermal cycles share
strong similarities, which stem from the relaxation time diverging algebraically at low temperatures for both
systems. When the driving intensity—-for the granular gas—or the bath temperature—for the molecular fluid—
is decreased to sufficiently low values, the kinetic temperature of both systems becomes “frozen" at a value that
depends on the cooling rate through a power law with the same exponent. Interestingly, this frozen glassy state
is universal in the following sense: for a suitable rescaling of the relevant variables, its velocity distribution
function becomes independent of the cooling rate. Upon reheating, i.e., when either the driving intensity or
the bath temperature is increased from this frozen state, hysteresis cycles arise and the apparent heat capacity
displays a maximum. The numerical results obtained from the simulations are well described by a perturbative
approach.

I. INTRODUCTION

As is well known, crystallization of most liquids can be pre-
vented by cooling them sufficiently fast. In that case, the liq-
uid enters into a metastable supercooled regime in which a
dramatic slowing down of the dynamics takes place. On the
one hand, above the melting point Tm, density fluctuations of
the liquid relax on a time scale of the order of picoseconds.
On the other hand, in the supercooled regime, the relaxation
times increase so fast that they become 14 orders of magni-
tude larger when the temperature is around 2

3 Tm [1]. At this
point, the liquid does not flow anymore and the glass tran-
sition occurs: configurational rearrangements cease, the liq-
uid structure becomes “frozen" and the system gets trapped in
a nonequilibrium disordered yet solid state, called the glassy
state [2–15].

In spite of the great effort devoted to the investigation of
glassy systems in the last decades, the glass transition con-
tinues to be an open problem. There is not yet a conclusive
answer to the fundamental question of whether the glass tran-
sition is a purely dynamical, kinetic, phenomenon or is the
consequence of an underlying ideal phase transition—as pre-
dicted in certain theoretical frameworks [4, 5, 8, 10, 12, 13].
Numerous studies have addressed the rich phenomenology
that accompanies the glass transition from different and com-
plementary viewpoints. For instance, spin models put the ac-
cent on the characterization of potential energy landscapes
with a large number of energy minima connected by complex
dynamics pathways [16–18], kinetically constrained models
emphasize the fact that relaxation events are cooperative be-
cause of the presence of geometric frustration [19, 20], and so
on. But the development of a successful theory to explain all
the phenomenological observations in a unified and satisfac-
tory manner is still a challenge.
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There are some key behaviors that are displayed by glass
formers when submitted to cooling protocols followed by re-
heating. In the following, we exemplify the observed behavior
with the average energy ⟨E⟩, but other physical quantity might
be the relevant one—depending on the context, for example
the average volume for polymeric glasses [21, 22]. When the
system is cooled down to a low temperature, e.g., by lower-
ing the bath temperature T at a constant rate rc, the average
energy ⟨E⟩ departs from equilibrium and gets frozen when
the system relaxation time τ exceeds the characteristic cool-
ing time r−1

c . This purely kinetic phenomenon is termed the
kinetic glass transition [23]. The temperature of the kinetic
glass transition—actually a range of temperatures—at which
the system departs from equilibrium and gets frozen decreases
with the cooling rate and, consequently, the properties of a
glass depend on the process by which it is formed. When the
system is reheated from the frozen state at a rate rh, in general
different from rc, ⟨E⟩ overshoots the equilibrium curve before
returning thereto. This entails that the apparent [24] heat ca-
pacity d ⟨E⟩/dT displays a nontrivial behavior with a marked
peak at a certain temperature Tg, which can be employed to
characterize the kinetic glass transition [2, 3, 25–27].

This work aims at analyzing how the kinetic glass tran-
sition emerges in two specific model systems: a uniformly
heated granular gas [28–33] and a molecular fluid with non-
linear drag [34–40]. This analysis is carried out by a com-
bination of numerical simulations and singular perturbation
theory tools. Granular gases and nonlinear molecular fluids
are largely different from a fundamental point of view. In the
molecular fluid with nonlinear drag, collisions between parti-
cles are elastic and energy is thus conserved. Therefore, the
nonlinear molecular fluid tends in the long-time limit to an
equilibrium state, with a Gaussian—or Maxwellian—velocity
distribution function (VDF). In the granular gas, collisions be-
tween particles are inelastic and thus energy is continuously
lost. Therefore, an energy injection mechanism is necessary to
drive the system to a steady state. The simplest one is the so-
called stochastic thermostat, in which a stochastic forcing ho-
mogeneously acts on all the particles. In this uniformly heated
granular gas, the system remains spatially homogeneous and
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tends in the long-time limit to a nonequilibrium steady state
(NESS), in which the kinetic temperature is a certain function
of the driving intensity. Moreover, the stationary VDF has a
non-Gaussian shape, which is well described by the so-called
first Sonine approximation. Therein, the non-Gaussianities
are accounted for by the excess kurtosis, which is a smooth
function of the inelasticity but independent of the driving in-
tensity [28, 30].

Despite their apparent dissimilarities, uniformly heated
granular systems and nonlinear molecular fluids share some
features and characteristic behaviors. In both systems, the
system’s Hamiltonian has only the kinetic contribution, since
interactions proceed via hard-core collisions. Therefore,
the so-called kinetic temperature T (t) univocally determines
the average energy ⟨E⟩(t), T (t) ∝ ⟨E⟩(t). Notwithstand-
ing, the two systems display aging and associated mem-
ory effects [41], both the Kovacs [33, 39, 41, 42] and the
Mpemba [39, 41, 43] memory effects. The Kovacs memory
effect is especially characteristic of the complex response of
glassy systems [21, 22, 44–51]. It is interesting to note that
the Mpemba effect has also been observed in spin glasses, but
only in the spin glass phase—where it arises due to the aging
dynamics of the internal energy [52].

In addition, when quenched to a very low temperature, both
granular gases and nonlinear molecular fluids tend to a time-
dependent, nonequilibrium state, in which the kinetic temper-
ature presents a very slowly nonexponential, algebraic, decay
over a wide intermediate time window. These nonequilib-
rium attractors, the homogeneous cooling state (HCS) for the
granular gas [53–55] and the long-lived nonequilibrium state
(LLNES) for the molecular fluid [39, 56], are characterized
by non-Gaussian VDFs. Afterwards, for very long times, both
systems approach their respective stationary states, NESS and
equilibrium state, for the granular and molecular cases, re-
spectively.

Since nonexponential relaxation and memory effects are
hallmarks of glassy behavior [21, 22, 41, 44–52, 57–60], it
is natural to pose the question as whether granular gases and
nonlinear molecular fluids undergo a kinetic glass transition
when being subjected to a continuous cooling program. Of
course, these systems are not realistic models of glass-forming
liquids but one of the most interesting features of glassy be-
havior is its ubiquity and universality: the glass transition
is found in systems with typical length and time scales very
different from molecular ones—such as colloidal suspensions
and granular materials [12]. More specifically, we would also
like to elucidate the possible role played by the HCS—for the
granular gas—and the LLNES—for the nonlinear molecular
fluid—in the kinetic glass transition.

The organization of the paper is as follows. In Sec. II we
introduce the uniformly heated granular gas model and write
the evolution equations for the kinetic temperature and the ex-
cess kurtosis—in the first Sonine approximation that we em-
ploy throughout our work. Section III analyses the physi-
cal reasons behind the emergence of a kinetic glass transition
in the uniformly heated granular gas when the driving inten-
sity is continuously decreased to zero. For the sake of con-
creteness, we consider a linear cooling program, in which the

bath temperature changes linearly in time. The divergence
of the characteristic relaxation time as the bath temperature
is lowered gives rise to a slowing down of the dynamics that
makes the granular temperature become frozen at a certain
value θ Frz ̸= 0, and physical arguments for the dependence
of θ Frz on rc are provided. In Sec. IV, we analytically in-
vestigate the kinetic glass transition in the granular gas. Not
only do we perform numerical simulations of the system under
this cooling program but also develop a singular perturbation
theory approach—specifically, of boundary layer type, which
accurately accounts for the system evolution and even charac-
terizes the final glassy state. The hysteresis cycle that emerges
when the system is reheated from the final glassy, frozen, state
is the subject of Sec. V. The molecular fluid with nonlinear
drag model is introduced in Sec. VI, where—similarly to the
framework developed in Sec. II for the granular gas—the evo-
lution equations of the model in the first Sonine approxima-
tion are put forward. In Sec. VII, we address the glass transi-
tion and hysteresis cycles in the molecular fluid, by combining
again numerical simulations and a boundary layer approach—
this analysis is presented in a simplified way, because of its
formal similarity with the granular gas. Finally, we present
in Sec. VIII the main conclusions and a brief discussion of
our results. The appendices present the study of more general
cooling programs and give additional details on the boundary
layer perturbation theory employed at different points of our
work.

II. MODEL: UNIFORMLY DRIVEN GRANULAR GAS

First, we consider a granular gas of d-dimensional hard
spheres of mass m and diameter σ . These hard spheres un-
dergo binary inelastic collisions, in which the tangential com-
ponent of the relative velocity between two particles remains
unaltered, while the normal component is reversed and shrunk
by a factor α . This parameter α is called the restitution
coefficient, 0 ≤ α ≤ 1; elastic collisions—in which the ki-
netic energy is conserved—are recovered for α = 1 [54, 55].
In the uniformly heated granular gas, the system reaches a
steady state in the long term because the kinetic energy lost
in collisions is balanced on average by energy inputs, mod-
eled through independent white noise forces acting over each
particle [28].

For the sake of clarity, and also to keep our work as self-
contained as possible, we briefly present the general mathe-
matical framework and the basic equations for the uniformly
heated granular gas below. This framework is given for (i)
sufficiently dilute gases and (ii) spatially homogeneous and
isotropic situations. On the one hand, (i) implies that the
state of the system is completely characterized at the one-
particle level, such that its dynamical evolution is accounted
by a Boltzmann-like kinetic equation for the one-particle dis-
tribution function f (r,v, t), and, on the other hand, (ii) allows
to further simplify the description, as the distribution func-
tion becomes independent of r. In the following, we refer to
f (v, t) as the one-particle VDF. A more detailed account of
the mathematical framework described below can be found in
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the literature—e.g., see Refs. 28–30, 32, 33, and 42.
In kinetic theory [61, 62], the one-particle VDF is usually

normalized as

n =
∫

dv f (v, t), (1)

with n being the number density, i.e., the number of particles
per unit volume. The average of any function of the velocity
h(v) is

⟨h(v)⟩=
∫

dv h(v) f (v, t)∫
dv f (v, t)

=
1
n

∫
dv h(v) f (v, t). (2)

The time evolution of the VDF is governed by the Boltzmann
equation with an additional Fokker-Planck term, known as the
Boltzmann-Fokker-Planck equation:

∂t f (v, t)− ξ 2

2
∂ 2

∂v2 f (v, t) = Jα [v| f , f ]. (3)

On the one hand, the Boltzmann collision operator Jα [v| f , f ]
accounts for the inelastic collisions between the particles. We
do not provide its full expression, since our approach starts
from the evolution equations for the cumulants, written be-
low [63]. On the other hand, the Fokker-Planck term accounts
for the effect of the stochastic thermostat, with the parameter
ξ measuring the intensity of the “heating”.

The kinetic (or granular) temperature T (t) is defined as
usual in kinetic theory, proportional to the average kinetic en-
ergy:

T (t) =
m

dkB

〈
v2〉 , (4)

where kB is the Boltzmann constant. In order to gain analyti-
cal insights on the evolution of the granular temperature, it is
useful to introduce the scaled VDF φ(c, t)

f (v, t) =
n

vd
T (t)

φ(c, t), c≡ v

vT (t)
, (5)

with vT (t) ≡
√

2kBT (t)/m being the thermal velocity. For
isotropic states, such scaled VDF may be expanded in a com-
plete set of orthogonal polynomials:

φ(c, t) =
e−c2

πd/2

[
1+

∞

∑
l=2

al(t)L
d−2

2
l (c2)

]
. (6)

Herein, L(k)
l are the Sonine polynomials [54, 55, 64, 65], and

the al(t) coefficients are known as the Sonine cumulants. The
latter account for the deviations from the Maxwellian equilib-
rium distribution φeq(c) = π−d/2e−c2

.
Throughout this work, here for the granular gas—and later

for the molecular fluid, we work under the first Sonine ap-
proximation. Therein, we only need to monitor the kinetic
temperature T and the first Sonine cumulant a2, given by

a2 =
d

d +2

〈
v4
〉

⟨v2⟩2 −1, (7)

which is also known as the excess kurtosis. For our analysis
below, it is useful to introduce a characteristic length λ and a
characteristic rate ν as

λ
−1 =

2nσd−1π
d−1

2

d Γ(d/2)
, (8a)

ν(T ) =
(
1−α

2)
λ
−1
(

kBT
m

)1/2

. (8b)

On the one hand, λ gives the mean free path, i.e. the average
distance travelled by one particle between collisions. On the
other hand, ν(T ) gives the cooling rate of the granular gas,
i.e. the rate at which kinetic energy is dissipated in collisions.

In the absence of stochastic thermostat, the granular gas
reaches the spatially-uniform nonsteady state known as the
HCS, for which the scaled VDF φ becomes stationary and the
granular temperature decays algebraically in time, T (t) ∝ t−2,
following Haff’s law [53–55, 66]. Under the first Sonine ap-
proximation, the stationary value of the excess kurtosis at the
HCS is given by

aHCS
2 =

16(1−α)(1−2α2)

25+2α2(α −1)+24d +α(8d −57)
. (9)

When the stochastic thermostat is present, the granular gas
reaches a NESS in the long time limit. The kinetic tempera-
ture Ts at the NESS is given in terms of the stochastic strength
ξ via the relation [28]

kBTs

m
=

[
λ ξ 2

(1−α2)
(
1+ 3

16 as
2

)]2/3

, (10)

where as
2 is the NESS value of the excess kurtosis,

as
2 =

16(1−α)(1−2α2)

73+56d −24dα −105α +30(1−α)α2 . (11)

Such value has the same sign as aHCS
2 , thus attaining a null

value at α = 1/
√

2.
From the Boltzmann-Fokker-Planck equation, the evolution

equations for the temperature and the excess kurtosis are de-
rived [28, 30, 33, 42],

dθ

dt∗
= θ

3/2
s

(
1+

3
16

as
2

)
−θ

3/2
(

1+
3
16

a2

)
, (12a)

da2

dt∗
= 2θ

1/2

[(
1−
(

θs

θ

)3/2
)

a2 +B(as
2 −a2)

]
, (12b)

where we have introduced dimensionless variables,

θ ≡ T
Ti
, θs ≡

Ts

Ti
, t∗ ≡ ν(Ti)t, (13)

being Ti ≡ T (t = 0) the initial temperature, and the parameter

B ≡ 73+8d(7−3α)+15α[2α(1−α)−7]
16(1−α)(3+2d +2α2)

. (14)
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With our choice of units, the initial value of the dimensionless
temperature is always θi = 1. Also, note that B may be written
in terms of aHCS

2 and as
2, specifically B = aHCS

2 /(aHCS
2 −as

2) as
predicted by Eq. (12b) for θs = 0 [33, 42].

In order to simplify our notation, we drop the asterisk in
the dimensionless time in the remainder of the paper. Our
definition of the dimensionless time is equivalent to taking the
time unit roughly equal to the characteristic relaxation time of
the granular gas at the initial temperature.

III. WHY A KINETIC GLASS TRANSITION IN THE
GRANULAR GAS?

The possible emergence of a glass transition in a given sys-
tem is deeply connected with a slowing down of its dynamics,
typically as the bath temperature is lowered. In the granu-
lar gas, the role of the heat bath is played by the intensity
of the stochastic thermostat ξ , which controls the stationary
value of the energy of the gas—or, equivalently, the station-
ary value of the kinetic temperature θs, as given by Eq. (10).
A time-dependent driving intensity ξ (t), which continuously
decreases from its initial value ξi to zero, is thus considered.

The system is initially prepared in the NESS corresponding
to ξi, thus the initial value of the dimensionless temperature is
θi = θ(t = 0) = θs(t = 0) = 1. Therefrom, we apply a linear
cooling program with rate rc,

dθs

dt
=−rc, θs(t) = 1− rc t. (15)

The choice of a linear cooling program is done for the sake of
concreteness, but a more general family of protocols is con-
sidered in Appendix A. The characteristic timescale for the
cooling process t0 corresponds to the time at which θs van-
ishes, θs(t = t0) = 0—for the linear cooling program above,
t0 = r−1

c . The cooling process is assumed to be slow, i.e. the
characteristic cooling time t0 is much longer than the charac-
teristic relaxation time of the system at the initial state. Since
the latter is of the order of unity in our dimensionless vari-
ables, slow cooling entails that t0 ≫ 1 or rc ≪ 1.

Now we put forward a physical argument that supports the
emergence of a kinetic glass transition in the granular gas. For
time-independent strength of the stochastic thermostat ξ , the
granular gas relaxes to the steady state characterized by the
“bath" temperature θs and the stationary excess kurtosis as

2.
The characteristic timescale for this relaxation is is propor-
tional to ν−1(Ts) from Eq. (8b). Specifically, it is given by

τ(θs) =
1
c

θ
−1/2
s , (16)

where c is a constant of the order of unity [67]—see Ap-
pendix B—which is approximately equal to 3/2. In the low
bath temperature limit, τ algebraically diverges as θ

−1/2
s and,

despite our slow cooling, the characteristic timescale for re-
laxation eventually becomes much longer than the cooling
time. Therefore, we expect the system to depart from the sta-
tionary curve and get frozen—i.e. a kinetic glass transition
shows up.

In order to approximately quantify the above qualitative ar-
gument, we may introduce the effective timescale

s =
∫ t0

t
dt ′τ−1(θs(t ′)) =

1
rc

∫
θs

0
dθ

′
s τ

−1(θ ′
s), (17)

which measures the number of effective relaxation times re-
maining from the current time t to the final time of the cool-
ing process t0. As long as s ≫ 1, we expect the system to
be able to follow the instantaneous NESS curve θ = θs [68].
When s becomes of the order of unity, the system does not
have enough time to relax towards the instantaneous NESS
curve and thus it freezes. Following the usual terminology of
glassy systems, see e.g. [69], we may introduce a fictive ki-
netic temperature, as the bath temperature at which the NESS
kinetic temperature equals the frozen value.

The above physical picture implies that we can estimate the
fictive temperature θ f by imposing

s(θs = θ f ) = 1, (18)

i.e.

θ
Frz ≡ lim

θs→0
θ ≃ θ f . (19)

Bringing to bear Eqs. (15) and (16),

s =
c
rc

∫
θs

0
dθ

′
s

√
θ ′

s =
2c
3

θ
3/2
s

rc
. (20)

Then, the fictive temperature and the kinetic temperature at
the frozen state are estimated as

θ f =

(
3rc

2c

)2/3

, θFrz ∝ r2/3
c . (21)

Wrapping things up, the slowing down of the dynamics of
the granular gas, due to the algebraic divergence of the relax-
ation time in Eq. (16) entails that the granular gas is expected
to depart from the instantaneous NESS curve θ = θs as the
the intensity of the stochastic thermostat is continuously de-
creased to zero. In other words, a kinetic glass transition is ex-
pected to appear in this system when cooled down to low bath
temperatures, and our timescale argument suggests that the
system would get frozen for bath temperatures θs ≲ θ f , where
θ f follows the power law (21) with the cooling rate. More-
over, the kinetic temperature at the frozen state is expected to
be approximately equal to θ f , thus following the same power
law with the cooling rate. The correctness of this physical im-
age is supported by the detailed mathematical theory that is
developed in the next sections.

IV. DETAILED ANALYSIS OF THE GLASS TRANSITION

The physical discussion in the previous section suggests
that tools from singular perturbation theory are useful to tackle
the problem analytically. Our analysis below shows that in-
deed different regions emerge, which we will label with the
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terminology of Ref. 70 for boundary layer problems. First,
one has the outer layer, inside which the kinetic temperature
θ does not deviate much from the bath temperature θs, and a
regular perturbation expansion is adequate. Second, one has
the inner layer, for which the regular perturbation expansion
breaks down and it is necessary to rescale the variables to ob-
tain an approximate solution. It is in the inner layer that the ki-
netic temperature θ rapidly separates from θs and gets frozen
at θ Frz. Finally, one has the matching region, over which the
solution continuously changes from the inner to the outer so-
lution.

The generic framework described above is applied to the
evolution equations for the granular gas in the following
sections IV A and IV B. In order to improve their readability,
some of the details of the perturbative approach are omitted
or relegated to the appendices.

A. Regular perturbative expansion

We are interested in studying the behavior of the kinetic
temperature θ in terms of the bath temperature θs. Therefore,
we rewrite Eqs. (12) in terms of derivatives with respect to θs

−rc
dθ

dθs
= θ

3/2
s

(
1+

3
16

as
2

)
−θ

3/2
(

1+
3

16
a2

)
, (22a)

−rc
da2

dθs
= 2θ

1/2

[(
1−
(

θs

θ

)3/2
)

a2 +B(as
2 −a2)

]
.

(22b)

which must be solved with the conditions

θ(θs = 1) = 1, a2(θs = 1) = as
2. (23)

In the slow cooling limit rc ≪ 1, a standard, regular,
perturbative approach in powers of rc—for details, see Ap-
pendix C—gives the “outer" solution

θ = θs + rc
2

3θ
1/2
s

[
1+

3
16

as
2

(
1+

1
B

)]−1

+O(r2
c), (24a)

a2 = as
2 − rc

as
2

Bθ
3/2
s

[
1+

3
16

as
2

(
1+

1
B

)]−1

+O(r2
c).

(24b)

This expansion breaks down for low bath temperatures θs ≪
1, for which the terms proportional to rc (i) first become of the
order of the leading, independent of rc, contributions and (ii)
later diverge in the limit as θs → 0. In particular, (i) implies
that Eq. (24) ceases to be valid when θs = O(r2/3

c ). In other
words, Eq. (24) is thus limited to high enough bath tempera-
tures, θs ≫ r2/3

c .
Note that r2/3

c is precisely the dependence on rc of the fic-
tive temperature θ f derived in Sec. III by qualitative argu-
ments. From a physical standpoint, this marks the onset of
the kinetic glass transition: we expect the system to become
“frozen” as soon as θs = O(r2/3

c ). In this region of tempera-
tures, the terms in Eq. (24) for (i) θ are proportional to r2/3

c

and (ii) a2 are independent of rc. Therefore, we expect that

θ
Frz ≡ lim

θs→0
θ ∝ r2/3

c ; (25a)

aFrz
2 ≡ lim

θs→0
a2 = O(1), (25b)

The latter suggests that all the cumulants of the Sonine expan-
sion become independent of the cooling rate, i.e., the frozen
state of the system is unique [71].

Let us now compare our analytical predictions with simu-
lation results obtained from Direct Simulation Monte Carlo
(DSMC) integration [72] of the Boltzmann equation (3) that
governs the dynamics of the granular gas. Unless otherwise
specified, for all of the simulations of the granular gas per-
formed, we have employed the system parameters d = 3, a
number of particles of N = 105, and two different values of
the restitution coefficient: α = 0.9 and α = 0.3, in order to
test the robustness of our theoretical approach.

Figure 1 presents numerical results for the linear cooling
program (15). On the left panel, we plot the behavior of the
kinetic temperature θ as a function of the bath temperature θs,
for different cooling rates. The emergence of a kinetic glass
transition is clearly observed. On the right panel, the final
granular temperatures θ Frz at the frozen state are plotted as a
function of the cooling rate rc. They are very well fitted by
the power law θ Frz = arb

c with b = 0.666, thus numerically
confirming the scaling predicted by Eq. (25a).

In Fig. 2, we numerically prove that the frozen state is in-
deed unique. On the left panel, the dimensionless VDFs at
the frozen state corresponding to different cooling rates over-
lap on a universal curve. Note that, although our theoretical
argument for the universality of the frozen state above has
been carried out within the first Sonine approximation, the
numerical results show that this remarkable property holds
for the exact (numerical) VDF. To neatly visualize the non-
Gaussian character of the frozen state, we present (i) the ra-
tio of the VDFs over the equilibrium Maxwellian in the in-
set of the left panel and (ii) the excess kurtosis at the frozen
state aFrz

2 as a function of the restitution coefficient α on the
right panel [73]. Point (i) allows us to illustrate in a neater
way the differences between the frozen states corresponding
to α = 0.9 and α = 0.3, since their respective excess kurto-
sis have opposite signs—Eq. (6) tells us that the plotted ratio
is basically 1+ a2L1/2

2 (c2). Point (ii) allows us to check that
aFrz

2 —and thus the VDF—is indeed independent of rc for all
inelasticities. In addition, this graph shows that aFrz

2 is really
far from the steady-state kurtosis as

2 but very close to the HCS
values aHCS

2 , which suggests that the HCS has a key role in the
frozen state—as further discussed in Appendix A.

B. Boundary layer approach. Universality

We are now concerned with the behavior of the system for
very low bath temperatures, when the system is close to its
frozen state. To start with our boundary layer approach, we
define the scaled variables

Y ≡ r−2/3
c θ , X ≡ r−2/3

c θs, (26)
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FIG. 1. (Left) Dynamical evolution of the granular temperature θ as a function of the bath temperature θs. Symbols correspond to DSMC data
for the linear cooling protocol (15) with different cooling rates rc, namely: rc= 0.05 (red squares), 0.025 (green up triangles), 0.01 (orange
circles), 0.005 (blue down triangles), 0.0025 (black rectangles), and 0.001 (purple diamonds) for two values of the restitution coefficient:
α = 0.9 (empty symbols) and α = 0.3 (filled symbols). The dashed line corresponds to the instantaneous NESS curve θ = θs. (Right) Limit
values of the kinetic temperature at the frozen state θ Frz as a function of rc. The plotted points have been extracted from the DSMC data on
the left panel. The red, dashed and blue, dotted lines correspond to the best fits to the function θ Frz =arb

c , with a = 0.741 and b = 0.666 for
α = 0.9, and a = 0.781 and b = 0.666 for α = 0.3, both in excellent agreement with the theoretical prediction (25a). We have considered a
granular gas in the three-dimensional case d = 3. The same parameter values are employed in the remainder of the numerical simulations for
the granular gas.
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FIG. 2. Universality of the frozen state. (Left) VDF at the frozen state for different values of the cooling rate rc. The color code and symbols
are the same as in Fig. 1. For each value of α , its corresponding VDFs are superimposed over a unique, universal, curve independent of rc, in
agreement with our theoretical prediction. In the inset, we show the VDF at the frozen state divided by the equilibrium Maxwellian, with the
solid lines corresponding to the polynomials in Eq. (6) within the first Sonine approximation for α = 0.9 (blue) and α = 0.3 (red), respectively.
(Right) Excess kurtosis at the frozen state aFrz

2 as a function of the restitution coefficient α . Here, for the sake of clarity, we show DSMC data
corresponding to only two values of the cooling rate, rc = 0.01 (squares) and rc = 0.001 (circles). The numerical values of aFrz

2 are compared
with both the NESS value as

2 (blue dashed line) and the HCS value aHCS
2 (red solid line), being very close to the latter.

as suggested by Eqs. (25a) and (25b). Interestingly, the evo-
lution equations (12) become independent of the cooling rate
when written in terms of X and Y :

− dY
dX

= X3/2
(

1+
3
16

as
2

)
−Y 3/2

(
1+

3
16

a2

)
, (27a)

−da2

dX
= 2Y 1/2

[(
1− X3/2

Y 3/2

)
a2 +B(as

2 −a2)

]
. (27b)

These equations provide us with the inner solution, which is
expected to be valid for (X ,Y,a2) of the order of unity, i.e.,

close to the frozen state as discussed above. Equations (27)
are complemented with the boundary conditions (23), which
now read

Y (r−2/3
c ) = r−2/3

c , a2(r
−2/3
c ) = as

2. (28)

Note that all the dependence of the inner solution on the cool-
ing rate rc takes place through the boundary conditions.

Figure 3 illustrates the glass transition on the left panel of
Fig. 1, but in terms of the scaled variables X and Y . For each
value of the restitution coefficient α , all the curves for differ-
ent values of the cooling rate rc collapse onto a unique master
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FIG. 3. Scaled granular temperature Y as a function of the scaled
bath temperature X . We have employed the linear cooling protocol
(15) with different cooling rates and two values of the restitution co-
efficient α . The color codes and symbols for the DSMC data are the
same as those employed in the left panel of Fig.2. The dashed, pur-
ple vertical line marks the fictive temperature X f = θ f /r2/3

c = 1 from
Eq. (21). for c = 3/2.

curve, independent of rc. The only difference appears for large
values of X , for which the different curves start from different
initial points, consistently with the boundary conditions (28).
Our theoretical prediction for the scaled fictive temperature X f
is also plotted: it is independent of rc as well, since θ f is pro-
portional to r2/3

c , as given by Eq. (21), and X f = r−2/3
c θ f . Our

theory thus gives an excellent estimate for the actual fictive
temperature of the system. Since the plotted numerical data
corresponds to the DSMC integration of the kinetic equation
(3), not to our perturbation approach, this suggests that the
exact solution to the problem presents a universal behavior in
scaled variables.

The universal behavior illustrated in Fig. 3 depends mildly
on α; the differences between the α = 0.9 (open symbols)
and α = 0.3 (filled symbols) datasets are very small. This is
due to the smallness of the values of the excess kurtosis in the
granular gas, where typically |a2| ≲ 0.15. Besides, note that
the terms containing the excess kurtosis in the evolution equa-
tion for the temperature (12a) are of the form (1+ 3a2/16),
and thus 3a2/16 ≲ 0.03, so the differences between different
values of α are expected to be of a few per cents.

In order to understand such universal behavior in scaled
variables, it is useful to build approximate, to the lowest or-
der, expressions over the whole bath temperature range, not
only in the boundary layer. For the sake of having a clear,
distinct notation, we denote such approximate expressions by
(Y (0),a(0)

2 ). In Appendix D, we show that these lowest or-
der expressions are given by the solution of Eq. (27) with the
boundary conditions

lim
X→∞

Y (0)(X) = ∞, lim
X→∞

a(0)
2 (X) = as

2, (29)

which are the limit as rc → 0 of Eq. (28). Although it is not
possible to write (Y (0)(X),a(0)

2 (X)) in a simple closed form,

it is clear that (Y (0)(X),a(0)
2 (X)) does not depend on rc, since

neither the evolution equations (27) nor the boundary condi-
tions (29) depend on rc.

From the lowest order solution, the frozen values of the
scaled variables are readily obtained,

Y Frz ≡ lim
X→0

Y (0)(X), (30a)

aFrz
2 ≡ lim

X→0
a(0)

2 (X). (30b)

Our above argument about the independence of Y (0)(X) on
the cooling rate is immediately translated to θFrz = r2/3

c Y Frz,
which means that θFrz follows the power law behavior θFrz ∝

r2/3
c that we have already checked on the right panel of Fig. 1.

Also, the independence of aFrz
2 on rc has already been checked

on the right panel of Fig. 2. Moreover, the independence on
rc of the curves (Y (0),a(0)

2 ) as a function of X gives rise to the
universal cooling curve in Fig. 3. Therefore, our theory ex-
plains the observed universal behavior of the simulation data
in scaled variables.

V. HYSTERESIS CYCLES

Now we turn our attention to a reheating protocol from the
frozen state with rate rh, dθs/dt =+rh. First, we consider the
paradigmatic case rh = rc = r. Second, we consider the more
general case rh ̸= rc. In both cases, we show that the system
does not follow backwards the cooling curve, but crosses the
NESS line θ = θs and afterwards tends thereto from below.
This is similar to the hysteresis cycle displayed by glassy sys-
tems in temperature cycles (cooling followed by reheating).

A. Universal hysteresis cycle with rc = rh

First, we consider the case rc = rh = r. In complete analogy
with the cooling program, we define scaled variables as

Y ≡ r−2/3
θ , X ≡ r−2/3

θs. (31)

In terms thereof, the evolution equations in the reheating pro-
tocol become independent of r,

dY
dX

= X3/2
(

1+
3

16
as

2

)
−Y 3/2

(
1+

3
16

a2

)
, (32a)

da2

dX
= 2Y 1/2

[(
1− X3/2

Y 3/2

)
a2 +B(as

2 −a2)

]
. (32b)

The above system must be complemented with the new
boundary conditions

Y (0) = Y Frz, a2(0) = aFrz
2 , (33)

which correspond to that of the frozen state from the previ-
ously applied cooling program, given by Eq.(30) to the lowest
order—recall that rc = rh = r.
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A completely similar analysis to that carried out for the
cooling program shows that the solution to Eq. (32), i.e., the
inner solution for the heating program, gives the uniform so-
lution to the lowest order again. The hysteresis cycle is
unique in the rescaled axes Y vs. X , since the rate is nowhere
in Eqs. (32) and (33).

In Fig. 4, we numerically check our prediction on the hys-
teresis cycle being independent of r. On the left panel, the
hysteresis cycle of the kinetic temperature is shown. DSMC
simulation data (symbols) are compared with the boundary
layer solution (blue lines) of Eq. (32), for different values of
the cooling/heating rate r = rc = rh, and again for two val-
ues of the restitution coefficient α: 0.3 and 0.9. It is neatly
observed that the boundary layer solution captures very well
the numerical results throughout the whole cycle. Remark-
ably, the heating curve crosses the NESS line θ = θs (dashed
line) and tends thereto from below—this is further analyzed in
Sec. V B. On the right panel, we display the apparent “heat ca-
pacity" dθ/dθs = dY/dX over the thermal cycle. In general,
the apparent heat capacity

C ≡ dθ

dθs
=

dY
dX

(34)

is nonmonotonic in the heating process, with a marked max-
imum at a certain value of θs (or X) that can be employed to
define the glass transition temperature θg (or Xg) [2, 3, 26, 27,
74]. In this simple system, the value of the apparent heat ca-
pacity has opposite signs in the limit of very low bath temper-
atures. This is readily understood from Eqs. (27a) and (32a),
since

C ∼±Y 3/2
(

1+
3

16
a2

)
, X ≪ 1, (35)

with the plus and minus signs corresponding to cooling and
reheating, respectively.

The behavior of the apparent heat capacity C in Eq. (35)
has a neat physical meaning. For very low bath temperatures,
the term coming from the stochastic driving in the evolution
equation for the temperature (12a) becomes negligible and

dθ

dt
∼−θ

3/2
(

1+
3
16

a2

)
. (36)

That is, the granular gas “freely cools”, since θ mononotically
decreases with time. Note that, in fact, Eq. (36) is nothing but
Haff’s law, θ̇ ∝ −θ 3/2, and it is equivalent to Eq. (35) for the
apparent heat capacity.

B. Normal heating curve

In order to deepen our understanding of the hysteretic be-
havior in reheating, a regular perturbation expansion can be
carried out—analogous to the one for the cooling process. By

simply substituting rc with −rh in Eq. (24), we obtain

θ = θs −
2rh

3θ
1/2
s

[
1+

3
16

as
2

(
1+

1
B

)]−1

+O(r2
h), (37a)

a2 = as
2 +

rh as
2

Bθ
3/2
s

[
1+

3
16

as
2

(
1+

1
B

)]−1

+O(r2
h). (37b)

These perturbative expressions are expected to be valid for not
too low temperatures θs ≫ r2/3

h , i.e., over the outer layer—
using once more the terminology of boundary layer theory.

Equations (37) depend on the heating program rh, but not
on the previously applied cooling program with cooling rate
rc. In other words, if we start the heating process from differ-
ent initial frozen temperatures θ Frz = Y Frzr2/3

c corresponding
to different values of rc but reheat with a common rate rh, we
expect to approach the behavior in Eq. (37) once the system
reaches the outer layer.

The behavior just described above is illustrated in Fig. 5:
despite having different cooling programs, all the reheating
curves tend towards a universal curve, independent of rc, for
high enough values of the bath temperature. Equation (37a)
explains why the kinetic temperature overshoots the NESS
curve θ = θs in reheating. The universal curve for the tem-
perature, as given by Eq. (37a) in the outer layer, is always
below the NESS curve—whereas the cooling curves always
lie above the NESS curve, as expressed by Eq. (24a) and il-
lustrated by Fig. 1.

From a physical standpoint, the overshoot of the instanta-
neous NESS curve may be understood by taking into account
that the kinetic temperature θ always lags behind the bath
temperature θs during the entire time evolution of the hystere-
sis cycle. In the cooling protocol, this implies that the devia-
tion θ −θs increases as θs decreases, i.e. as the characteristic
relaxation time of θ increases. In the reheating protocol, θ

initially decreases, specifically as long as θs ≪ θ . It is not
until θs ≃ θ that θ starts to increase but, at the time it does,
as its characteristic relaxation time is still large compared to
the reheating time, we will have θs > θ until it reaches the
instantaneous NESS. The latter argument also explains why
the crossing points between the NESS curve and the simula-
tion data from Fig. 5 are very close to the minimum —i.e. the
point at which dθ/dθs = 0— of each dataset.

Let us have a more detailed look at the dependence of the
reheating curves on the rate rc of the previous cooling pro-
gram. In Fig. 5, it is observed that the reheating curves de-
velop a neat dimple as the cooling rate rc is increased. This
can be understood by going back to the evolution equations for
the inner region (32), which continue to be valid for rc ̸= rh,
but with the new boundary conditions

Y (0) = (rc/rh)
2/3Y Frz, a2(0) = aFrz

2 . (38)

The boundary conditions in Eq. (33) can be thus considered
as the particularization of Eq. (38) to the case rh = rc. As
rc/rh increases, we have that Y (0) = (rc/rh)

2/3Y Frz also in-
creases and then the initial decrease predicted by Eq. (35) for
the heating curve becomes more noticeable, giving rise to the
neat minimum (the dimple) shown by the uppermost curve in
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FIG. 4. Hysteresis cycles in the granular gas. The system is first cooled down with rate rc and later reheated from the frozen state with rate
rh = rc = r. Blue (red) symbols and lines correspond to the cooling (heating) protocol. (Left) Scaled kinetic temperature Y = r−2/3θ as a
function of the scaled bath temperature X = r−2/3θs. Specifically, we present results for r = 0.01 (squares) and r = 0.001 (diamonds), and
for two values of α: 0.9 (open symbols) and 0.3 (filled symbols). Symbols are simulation results of the Boltzmann equation (3), while
the solid curves correspond to the numerical integration of Eqs. (27) and (32) for cooling and heating, respectively. The dashed straight line
corresponds to the instantaneous NESS curve Y = X . The purple vertical line marks the bath temperature Xg at which the heat capacity reaches
its maximum in the reheating program—see right panel. Both the solid curves and the purple vertical line were obtained for α = 0.9, as they
superimpose with the ones corresponding to the α = 0.3 case. (Right) Associated apparent heat capacity C = dθ/dθs = dY/dX . Again, the
symbols have been obtained from the simulation data, and the lines correspond to the numerical integration of Eqs. (27) and (32). Note the
logarithmic scale used for the horizontal axis on both panels.
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FIG. 5. Hysteresis cycles for reheating with rate rh from the frozen
states corresponding to different cooling rates rc. All reheating
curves correspond to rh = 0.01, and the different cooling rates em-
ployed are: (color, rc) = (red, 0.05), (orange, 0.01), (blue, 0.005)
and (purple, 0.001). Symbols correspond to DSMC simulation data,
whereas the solid line corresponds to the perturbative expression for
the normal curve in Eq. (37).

Fig. 5. For small values of rc/rh, this initial decrease is barely
noticeable, and the tendency towards the normal curve is al-
most horizontal, as shown by the lowermost curve in Fig. 5.
Still, it must be noted that θ always presents a minimum as a
function of θs, because dθ/dθs is negative for very low tem-
peratures, as predicted by Eq. (35) for heating, whereas it is
positive, since dθ/dθs → 1, for high temperatures.

The approach to a unique curve, independent of the pre-

vious cooling program, of the granular gas upon reheating is
similar to the behavior found in models described by master
equations. Therein, it has been analytically proved that there
exists a universal normal curve that is the global attractor of
the dynamics for heating processes [74–78]. The expressions
in Eq. (37) may be thus regarded as the regular perturbation
expansions of a similar normal curve in the granular gas.

The tendency towards the normal curve is further illustrated
in Fig. 6, in which we consider reheating with different val-
ues of rh from a common frozen state, corresponding to one
value of rc. For all the values of rh, the hysteresis cycles cross
the instantaneous NESS curve θ = θs, since the correspond-
ing normal curves always lie below it. Moreover, the hystere-
sis cycle is larger as rh increases, because the normal curve
is more distant from the NESS curve. Note that the heating
curve develops a neat dimple as rh decreases—consistently
with our discussion above, which told us that the minimum
gets more marked as rc/rh increases.

The crossing of the instantaneous stationary curve θ = θs
stemming from the tendency towards the normal curve entails
that the apparent heat capacity C upon reheating always dis-
plays a maximum at a certain bath temperature. The position
of this maximum can be employed to define a glass transition
temperature θg—or a scaled one Xg = r−2/3

h θg. Our theory
predicts that Xg only depends on the ratio rc/rh, since the evo-
lution in scaled variables in reheating is governed by Eqs. (32)
with the boundary conditions in Eq. (38). Only the latter in-
troduce dependence on the rates; namely on their ratio rc/rh.
In Fig. 7, we plot this theoretical prediction for Xg as a func-
tion of the ratio rc/rh. Note that Xg = O(1) regardless of the
value of the ratio rc/rh, which entails that the glass transition
temperature θg = r2/3

h Xg is basically proportional to r2/3
h in the
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FIG. 6. Hysteresis cycles for reheating with different rates rh from
the common frozen state corresponding to a given value of rc. Specif-
ically, the plotted data correspond to rc = 0.01 and the reheating
rates: (color, rh) = (red, 0.05), (orange, 0.1), (blue, 0.005) and (pur-
ple, 0.001). As in Fig. 5, symbols correspond to DSMC simulation
data, whereas the solid curves correspond to Eq. (37).

FIG. 7. Scaled glass transition temperature Xg = r−2/3
h θg for the

granular gas as a function of the ratio rc/rh. Only plotted is the
theoretical prediction for Xg, obtained via the numerical integration
of the evolution equations for the scaled variables, in a hysteresis
cycle characterized by a cooling with rate rc followed by reheating
with rate rh. The dashed horizontal line marks the value for rc = rh—
which corresponds to the vertical line on both panels of Fig. 4.

granular gas. We also highlight that Xg is of the same order as
the fictive temperature X f from Eq. (21), which is consistent,
as both temperatures give a qualitative account of the glass
transition.

VI. MOLECULAR FLUID WITH NONLINEAR DRAG

We now focus our attention on a second relevant physical
system: a molecular fluid with nonlinear drag [38, 39, 79–81].
The considered model arises when analyzing an ensemble of

Brownian particles of mass m immersed in an isotropic and
uniform background fluid [35, 36], the particles of which have
mass mbf. In the mbf/m → 0 limit—the so-called Rayleigh
limit, the drag coefficient ζ becomes velocity independent
and thus the drag force is linear. However, in real physical
scenarios we have that mbf/m ̸= 0, and it is thus relevant to
consider the corrections to the Rayleigh limit. Specifically, by
introducing the first order corrections thereto, i.e., by retain-
ing only linear terms in mbf/m, the drag coefficient is found
to be quadratic on the velocities [35–37]. Interestingly, it has
recently been shown that this model accurately describes a
mixture of ultracold Cs and Rb atoms [37].

Let us consider a system of d-dimensional hard spheres of
mass m, diameter σ , and density n immersed in a background
fluid at temperature Ts. In the regime just explained above, the
Brownian particles are subjected to a nonlinear drag force of
the form [35–37]

F =−mζ (v)v, (39)

where v is the particle velocity, and

ζ (v) = ζ0

(
1+ γ

mv2

kBTs

)
(40)

is a nonlinear drag coefficient. Therein, ζ0 is its zero-velocity
limit and the dimensionless parameter γ measures the degree
of nonlinearity. For hard spheres, it is found that ζ0 ∝ T 1/2

s —
see e.g., Refs. 37 and 38 for the complete expression. The
dependence of ζ0 on Ts is relevant here because the bath tem-
perature depends on time in cooling/heating processes.

Similarly to the granular gas, the system may be accurately
described by the one-particle VDF f (v, t) if sufficiently di-
lute. In this case, the dynamical evolution of the VDF is gov-
erned by the Fokker-Planck equation (FPE)

∂t f (v, t)− ∂

∂v
·
[

ζ (v)v+
ξ 2(v)

2
∂

∂v

]
f (v, t) = 0, (41)

where m2ξ 2(v) is the variance of a stochastic white noise
force. The coefficients ξ 2(v) and ζ (v) are related by means
of the fluctuation-dissipation relation

ξ
2(v) =

2kBTs

m
ζ (v), (42)

which ensures that the equilibrium Maxwellian VDF

fs(v) = n
(

m
2πkBTs

) d
2

e−
mv2

2kBTs , (43)

constitutes the unique stationary solution of the FPE (41).
The velocity dependence of the drag coefficient implies that

we have multiplicative noise in this problem [82, 83]. By em-
ploying the Ito interpretation of stochastic integration [84, 85],
which is the most convenient one for numerical simulations,
the FPE is equivalent to the following Langevin equation:

v̇(t) =−ζeff(v)v(t)+ξ (v)η(t), (44)
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where

ζeff(v) = ζ0

(
1−2γ + γ

mv2

kBTs

)
(45)

constitutes an effective drag coefficient, while η(t) is a Gaus-
sian white noise of zero average ⟨η(t)⟩ = 0 and correlations
⟨ηi(t)η j(t ′)⟩= δi, j δ (t − t ′).

The kinetic temperature is again defined as in Eq. (4) for the
granular gas, but understanding f (v, t) as the solution of the
FPE. Inserting (4) into (41) leads to the following evolution
equation for the temperature,

Ṫ = ζ0

{
2(Ts −T )

[
1+ γ(d +2)

T
Ts

]
−2γ(d +2)

T 2

Ts
a2

}
,

(46)

where a2 corresponds to the excess kurtosis, previously intro-
duced in Eq. (7) when studying the granular gas.

For nonlinear drag, γ ̸= 0, the evolution of the temperature
is coupled to that of the excess kurtosis and, thus, we need
to consider the evolution equation for the latter too. In turn,
the evolution equation for the excess kurtosis involves sixth-
degree moments, and in general there emerge an infinite hi-
erarchy of equations for the moments. Under the first Sonine
approximation, we have the evolution equations [38, 39]

θ̇ = θ
1/2
s

[
2(θs −θ)+2γ(d +2)θ −2γ (d +2)(1+a2)

θ 2

θs

]
,

(47a)

ȧ2 = θ
1/2
s

{
8γ

(
1− θ

θs

)
−
[

4θs

θ
−8γ +4γ(d +8)

θ

θs

]
a2

}
,

(47b)

where we have introduced the dimensionless variables

θ ≡ T
Ti
, θs ≡

Ts

Ti
, t∗ ≡ ζ0(Ti) t, (48)

with Ti ≡ T (t = 0) being the initial temperature. We have also
taken into account that ζ0(Ts) = ζ0(Ti)θ

1/2
s .

In previous work [39, 41], we have shown that the nonlin-
ear fluid approaches a nonequilibrium state, termed LLNES
(long-lived nonequilibrium state), over a wide intermediate
timescale, when instantaneously quenched to low enough val-
ues of the bath temperature, i.e., Ti/Ts ≫ 1. The VDF at the
LLNES is given by a delta peak; in terms of the scaled vari-
ables in Eq. (5), it reads

φL(c) = Ω
−1
d

(
2
d

) d−1
2

δ

(
c−
√

d
2

)
, (49)

with Ωd being the d-dimensional solid angle [41]. The ex-
act value of the excess kurtosis at the LLNES will be useful,
which is

aL
2 =− 2

d +2
. (50)

It is worth remarking that the VDF for the LLNES, and thus
aL

2 , does not depend on the nonlinearity parameter γ [41].

The LLNES state corresponds to the extreme scenario that
comes about when the system is instantaneously quenched to
a very low temperature. In this case, for a system relaxing
from equilibrium at Ti to equilibrium at Ts ≪ Ti, the system
first reaches the LLNES and afterwards tends to equilibrium
from it. Note the strong similarity with the HCS for granular
gases, which also appears when the intensity of the stochastic
thermostat is instantaneously quenched to a very low value.
In such a protocol, the granular gas first approaches the HCS
and afterwards tends to the stationary state imposed by the
stochastic thermostat. Thus, it is worth investigating the role
played by the LLNES in the possible emergence of a kinetic
glass transition in fluids with nonlinear drag.

VII. GLASSY BEHAVIOR OF THE NONLINEAR
MOLECULAR FLUID

Now, in order to investigate a possible glass transition in
the molecular fluid, we decrease the bath temperature follow-
ing the same cooling program as in Eq. (15) for the granular
gas. The physical reason for the emergence of a kinetic glass
transition is completely similar to that for the granular gas: in
the nonlinear molecular fluid, the characteristic timescale for
relaxation is determined by ζ

−1
0 , which also diverges as T−1/2

s
for low bath temperatures. Therefore, we expect the same
scalings with the cooling rate as in the granular gas—derived
by physical arguments from this divergence in Sec. III.

In fact, as we follow the same perturbative approach in the
cooling rate, we leave the mathematical details for Appendix
E. Up to order O(rc), the regular perturbation solution reads

θ = θs +
rc

2θ
1/2
s

1+ γ(d +6)

[1+ γ(d +4)]2 −2γ2(d +4)
, (51a)

a2 =− rc

θ
3/2
s

γ

[1+ γ(d +4)]2 −2γ2(d +4)
. (51b)

Thus, we have θ −θs ∝ rc/θ
1/2
s and a2 ∝ rc/θ

3/2
s . Our reg-

ular perturbative approach fails when the O(r0
c) and the O(r1

c)

terms become comparable, i.e., again when θs = O(r2/3
c ),

which implies that θ = O(r2/3
c ) and a2 = O(1). Let us remark

that, regardless of the intrinsic differences between the molec-
ular fluid and granular gas systems, they lead to the same scal-
ing for both the kinetic temperature and the excess kurtosis.

The above discussion entails the necessity of introducing
again a boundary layer approach. We define scaled variables,
analogous to those for the granular gas in Eq. (26), Y ≡ r−2/3

c θ

and X ≡ r−2/3
c θs. In term of the scaled variables, the evolution
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Y Frz aFrz
2

Boundary layer 0.397 -0.154

Sim. (rc = 0.05) 0.402 -0.146

Sim. (rc = 0.01) 0.403 -0.147

Sim. (rc = 0.005) 0.403 -0.144

Sim. (rc = 0.001) 0.404 -0.148

TABLE I. Comparison between the numerical (simulation) and theo-
retical (boundary layer) values of the scaled kinetic temperature and
the excess kurtosis at the frozen state. Specifically, we have con-
sidered a molecular fluid with nonlinearity parameter γ = 0.1 in the
three-dimensional case d = 3. The same values of the parameters
are employed in the remainder of the numerical simulations for the
nonlinear fluid presented in this work.

equations (47) become independent of rc,

− dY
dX

= X1/2
{

2(X −Y )
[

1+ γ(d +2)
Y
X

]
−2γ(d +2)

Y 2

X
a2

}
, (52a)

−da2

dX
= X1/2

{
8γ

(
1− Y

X

)
−
[

4X
Y

−8γ +4γ(d +8)
Y
X

]
a2

}
. (52b)

It is the boundary conditions that absorb all the dependence
on rc,

Y (r−2/3
c ) = r−2/3

c , a2(r
−2/3
c ) = 0. (53)

The resemblance between the above framework and that of
our previous study for the granular gas is neat. To avoid reiter-
ation, we thus focus on the main aspects of the glassy behavior
in the molecular fluid. As will be seen, the analogy with the
behavior found in the granular gas is almost complete.

The lowest order solution for the cooling protocol would be
again obtained by solving Eqs. (52) with the boundary condi-
tions limX→∞ Y (X) = ∞, limX→∞ a2(X) = 0, which is com-
pletely independent of rc. At the frozen state we thus have

Y Frz ≡ lim
X→0

Y (X), aFrz
2 ≡ lim

X→0
a2(X), (54)

which are independent of rc. We check this theoretical predic-
tion with numerical data in Table I, in which we compare the
value of Y Frz and aFrz

2 obtained from numerical simulation of
the Langevin equation (44) and our theoretical prediction [86]
for different values of rc. The agreement is excellent for the
kinetic temperature, and fair for the excess kurtosis. This was
to be expected within the first Sonine approximation, since
aFrz

2 is quite large for the nonlinear fluid. Moreover, aFrz
2 is not

as close to its value at the LLNES, aL
2 =−0.4 for d = 3 as pre-

dicted by Eq. (50), as it was aFrz
2 close to its HCS value in the

granular gas. See Appendix A for a more detailed discussion
on this point.

The independence of aFrz
2 on the cooling rate suggests that

this property should also hold for the complete VDF of the
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FIG. 8. Plot of the dimensionless VDF at the frozen state for the non-
linear fluid. Symbols correspond to the numerical integration of the
Langevin equation with N = 105 stochastic trajectories for different
cooling rates: rc = 0.005 (purple diamonds), 0.01 (blue triangles),
0.05 (orange circles) and 0.1 (red squares). The dashed curve corre-
sponds to the equilibrium Maxwellian, whereas the dotted line marks
the position of the LLNES Dirac-delta peak, as given by Eq. (49).

nonlinear fluid—as was the case for the granular gas. We
check this property in Fig. 8, by plotting the scaled VDF
for the nonlinear fluid in the frozen state, obtained from the
numerical integration of the Langevin equation (44). The
universality of the VDF at the frozen state is clearly ob-
served. The largeness of aFrz

2 entails that the deviation from
the Maxwellian equilibrium distribution is also large. For ref-
erence, the position of the delta peak corresponding to the
LLNES is also plotted.

From the frozen state, we may reheat the system with the
same rate rh = rc. Once more, scaled variables are introduced
as Y ≡ r−2/3

h θ , X ≡ r−2/3
h θs, and the evolution equations be-

come independent of the heating rate

dY
dX

= X1/2
{

2(X −Y )
[

1+ γ(d +2)
Y
X

]
−2γ(d +2)

Y 2

X
a2

}
,

(55a)

da2

dX
= X1/2

{
8γ

(
1− Y

X

)
−
[

4X
Y

−8γ +4γ(d +8)
Y
X

]
a2

}
.

(55b)

Note that the heating evolution equations differ from the cool-
ing evolution equations (52) only in the sign of the left hand
side (lhs). Again, this system has to be solved with the bound-
ary conditions Y (0) =Y Frz, a2(0) = aFrz

2 , which correspond to
the frozen state from the previously applied cooling program.

Figure 9 is the transposition of Fig. 4 to the case of the
nonlinear molecular fluid. Its left panel shows both the nu-
merical simulations of the Langevin equation and the bound-
ary layer solution for a full hysteresis cycle. Similarly to the
granular gas case, our boundary layer solution captures very
well the simulation data. On the right panel, the behavior of
the associated apparent heat capacity of the molecular fluid,
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C =dθ/dθs = dY/dX is displayed. In the reheating curve, the
typical maximum that may be used to define a glass transition
temperature is neatly observed. Interestingly, in the cooling
curve, an anomalous behavior emerges, the apparent heat ca-
pacity increases instead of going to a constant. This anoma-
lous behavior stems from the singular behavior for small X of
the dynamic equation (52a) for Y in the cooling protocol, and
it is better discerned in the inset—which shows a zoom of the
very low temperatures region. Specifically, one has that

C =
dY
dX

∼ 2γ(d +2)
(Y Frz)2

X1/2 (1+aFrz
2 ), X ≪ 1, (56)

which diverges as X−1/2. This has to be contrasted with the
behavior for the granular gas: Eq. (35) tells us that C goes to
a constant for the granular gas—consistently with the results
reported in Fig. 4.

Finally, our molecular fluid also presents an universal curve
when reheated from different frozen states. A regular pertur-
bation theory, once more analogous to that carried out before
for the granular gas, gives

θ = θs −
rh

2θ
1/2
s

1+ γ(d +6)

[1+ γ(d +4)]2 −2γ2(d +4)
, (57a)

a2 =+
rh

θ
3/2
s

γ

[1+ γ(d +4)]2 −2γ2(d +4)
, (57b)

neglecting O(r2
h) terms. These expressions are obtained from

Eqs. (51) by exchanging rc ↔ −rh. They are valid for θs ≳

r2/3
h , i.e., for high enough temperatures such that the system is

close to the instantaneous equilibrium curve.
When the system is reheated from different initial frozen

states with kinetic temperatures θ Frz = Y Frzr2/3
c , obtained

from previously applied cooling programs with different rates
rc, we expect the kinetic temperature to tend towards the nor-
mal curve (57a) as θs increases. This entails the behavior
shown in Figs. 10 and 11: all the heating curves, indepen-
dently of the previous cooling rate rc, overshoot the equilib-
rium curve to approach the universal normal curve (57a) when
being reheated with rate rh. The discussion on the magnitude
of the dimple shown by the reheating curves, which is more
marked for higher cooling rates, is completely analogous to
that for the granular gas—we thus do not repeat it here.

Figure 12 puts forward our theoretical prediction for Xg, the
scaled glass transition temperature for the molecular fluid, as
a function of the ratio of the cooling and heating rates rc/rh.
Again, the glass transition temperature is defined as that at
which the apparent heat capacity reaches its maximum. The
behavior is once more analogous to the one observed previ-
ously for the granular gas, Xg remains of the order of unity
over the whole range of rc/rh. Therefore, the glass transi-
tion temperature θg = r2/3

h Xg is also proportional to r2/3
h in the

molecular fluid.

VIII. CONCLUSIONS

We have investigated the emergence of a kinetic glass tran-
sition in two basic fluid models: a granular gas of smooth

hard spheres and a molecular fluid with nonlinear drag force.
The two systems are very different from a fundamental point
of view. One the one hand, collisions in the granular gas are
inelastic, and thus its VDF is always non-Gaussian and the
system is intrinsically out-of-equilibrium, tending eventually
to a NESS if an energy injection mechanism is introduced. On
the other hand, collisions are elastic in the molecular fluid and
the system approaches equilibrium, with a Maxwellian VDF,
in the long time limit.

In both cases, our analysis have been carried out within the
first Sonine approximation of the relevant evolution equation
for the VDF: the inelastic Boltzmann equation for the gran-
ular gas, the Fokker-Planck equation for the molecular fluid
with nonlinear drag. Therein, the evolution equation of the ki-
netic temperature—basically, the average kinetic energy—is
found to be coupled with that of the excess kurtosis. In turn,
the evolution equation of the excess kurtosis is coupled with
higher-order cumulants. Still, only the excess kurtosis is kept
within the first Sonine approximation, higher-order cumulants
are neglected because they are assumed to be small.

In this paper, we have focused on the time evolution of these
systems when the bath temperature is decreased to very low
values, and afterwards reheated. Despite the profound differ-
ences between granular gases and molecular fluids, both sys-
tems share some striking similarities in their dynamical be-
havior. These similarities stem from the algebraic divergence
of the characteristic relaxation time, specifically as T−1/2

s , for
low enough bath temperature.

The common divergent behavior of the relaxation time in
granular gases and nonlinear molecular fluids entails that the
frozen values of the kinetic temperature and the excess kurto-
sis share the same scalings with the cooling rate. Moreover,
these scalings can be intuitively understood with simple phys-
ical arguments. By defining an effective timescale, which ba-
sically measures the number of relaxation times up to the final
time of the cooling process, the bath temperature at which the
system departs from the instantaneous stationary curve and
gets frozen—the so-called fictive temperature—is accurately
predicted.

Our mathematical approach to the dynamical problem em-
ploys a perturbation theory that assumes that the cooling rate
is a small parameter. From a mathematical standpoint, the
breakdown of the resulting regular perturbative series for low
bath temperatures signals the necessity of introducing tools
from singular perturbation theory, such as boundary layer
techniques. From a physical standpoint, it is interesting to
remark that the temperature range at which the regular pertur-
bative approach breaks down coincides with the fictive tem-
perature predicted by intuitive arguments.

Our intuitive physical arguments and our detailed mathe-
matical approach predict, for both granular gases and non-
linear molecular fluids, that the kinetic temperature and the
excess kurtosis deviate from their instantaneous stationary
curves at low bath temperatures, getting frozen in a value (i)
scaling as r2/3

c for the kinetic temperature and (ii) indepen-
dent of rc for the excess kurtosis. In addition, these theoreti-
cal predictions have been confirmed by our numerical results:
DSMC simulations of the inelastic Boltzmann equation for
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FIG. 9. Hysteresis cycle in the nonlinear molecular fluid. Both panels are the transposition to case of the nonlinear molecular fluid of those
in Fig. 4 for the granular gas, with the same values of the cooling and heating rate r in dimensionless variables. For the molecular fluid, the
numerical data (symbols) corresponds to the simulation of the Langevin equation (44), while the theoretical curves (solid lines) correspond to
the numerical integration of Eqs. (52) and (55). On the left panel, the vertical line marks the bath temperature Xg at which the heat capacity
reaches its maximum in the reheating program—see right panel. Therein, an additional inset shows the anomalous behavior of the apparent
heat capacity in the cooling process, which is discussed in the text.
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FIG. 10. Hysteresis cycles for the nonlinear fluid upon reheating with
rate rh from the frozen states corresponding to different cooling rates
rc. All curves correspond to rh = 0.01, whereas the cooling rates are:
(color, rc) = (red, 0.05), (orange, 0.01), (blue, 0.005), and (purple,
0.001). Symbols are simulation results, and the solid curve corre-
sponds to the perturbative expression (57a) for the normal curve.

the granular gas, and numerical integration of the nonlinear
Langevin equation for the molecular fluid.

A key point of our approach is the evolution equations be-
coming independent of the cooling rate when they are writ-
ten in terms of scaled variables, well-suited for our bound-
ary layer treatment of the problem. This is the mathematical
reason for the frozen value of the excess kurtosis being inde-
pendent of rc. This independence suggests that the complete
VDF, beyond the first Sonine approximation employed in the
paper, is universal—in the sense of being independent of the
cooling rate in scaled variables. We have numerically con-
firmed this expectation in the numerical simulations of both
the granular gas and the nonlinear molecular fluid.
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FIG. 11. Hysteresis cycles for the nonlinear molecular fluid upon
reheating with different rates rh after a common cooling protocol
with rate rc. Specifically, the plotted data correspond to rc = 0.01
and the reheating rates: (color, rh) = (red, 0.05), (orange, 0.1), (blue,
0.005) and (purple, 0.001). As in Fig. 10, symbols correspond to
simulation data, whereas the solid curves correspond to Eq. (57a).

Moreover, when the system is reheated from this frozen
state with the same rate, the independence on the rate, i.e., the
above universality, extends to the whole dynamical evolution.
This entails that the observed hysteresis when the systems
are submitted to a thermal cycle—first cooling, followed by
reheating—is also universal, independent of the rate of varia-
tion of the bath temperature. Once more, this theoretical pre-
diction has been confirmed by numerical simulations of both
systems, and an excellent agreement between the numerical
and the theoretical curves has been found.

Another interesting feature of both systems is their ten-
dency to a unique normal curve upon reheating, independent
of the previous cooling program. This behavior has been the-
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FIG. 12. Scaled glass transition temperature Xg = r−2/3
h θg for the

molecular fluid as a function of the ratio rc/rh. Similarly to Fig. 7
for the granular gas, we only plot our theoretical prediction for Xg,
stemming from the numerical integration of the evolution equations
in scaled variables, and the dashed horizontal line marks the value
for rc = rh.

oretically predicted for Markovian systems obeying master
equations [75], and observed in a variety of simple models
for glasses and dense granular systems [74, 76–78]. From
a mathematical point of view, it is this tendency to approach
the normal curve that explains the hysteresis cycles observed
upon reheating, including the overshoot of the instantaneous
stationary curve [87] θ = θs upon reheating: the normal curve
lies below θ = θs whereas the cooling curves lie above θ = θs.

Physically, the hysteresis cycles upon reheating are under-
stood by taking into account that the kinetic temperature in
both systems always lags behind the bath temperature—i.e.
the former is not able to keep up with the latter for low bath
temperatures, due to the divergence of the cooling rate. On
the one hand, for the cooling process, this picture leads to the
departure of the kinetic temperature from the instantaneous
NESS curve θ(t) = θs(t), with θ > θs. In terms of the ap-
parent heat capacity, this entails the “free cooling” behavior
of the kinetic temperature, which provides the nonexponen-
tial, algebraic, relaxation functions given by Haff’s law—for
the granular gas—and by the LLNES—for the nonlinear fluid.
On the other hand, for the reheating process, this lagging be-
hind the bath temperature also explains the overshooting of
the instantaneous NESS curve: for low bath temperatures, the
kinetic temperature continues to decrease. Therefore, the ki-
netic temperature touches the instantaneous NESS curve at a
bath temperature for which the relaxation time is still very
large, and the kinetic temperature is not able to keep up with
the rate of change of the bath temperature—which leads to the
overshoot.

In the granular gas, the values of the excess kurtosis at the
frozen state are very close to that of the HCS: this hints at
the frozen state being strongly related with the HCS. In the
nonlinear molecular fluid, the value of the excess kurtosis
are further from that at the LLNES, so the relation between
the frozen state and the LLNES is less clear. Still, it seems

that both the HCS for the granular gas and the LLNES for
the nonlinear fluid play the role of a reference state for the
cooling protocol—a first step in this direction is provided in
Appendix A, although this point certainly deserves further in-
vestigation.

The universality of the frozen state, in the sense of its in-
dependence of rc in scaled variables, is an appealing fea-
ture of the kinetic glass transition found in this work—both
for the smooth granular gas and the molecular fluid with
(quadratic) nonlinear drag. The possible extension of this
property to other systems, for example rough granular flu-
ids [88–90], molecular fluids with more complex nonlinear-
ities [34, 39, 80, 81, 91], or binary mixtures [92–95], is an
interesting prospect for future work.
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Appendix A: Glass transition for different cooling programs

Throughout this work, we have employed linear cooling
programs in order to study the emergence of glassy behav-
ior in both molecular fluids and granular gases. Let us now
consider the following general family of cooling protocols,

dθs

dt
=−rcθ

k
s , (A1)

with k being a real number. Notice that the k = 0 case reduces
to the already studied linear cooling protocol.

We still consider that the cooling is slow, in the sense that
rc ≪ 1. Following the same approach as in Sec. III for the
linear cooling program, we introduce the effective timescale

s =
∫ t0

t
dt ′τ−1(θs(t ′)) =

1
rc

∫
θs

0
dθs (θ

′
s)

−k
τ
−1(θ ′

s), (A2)

where we have inserted Eq. (A1) into the second integral. As-
suming again that s is of the order of unity when the system

https://github.com/fine-group-us/laboratory-glass-transition
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FIG. 13. Excess kurtosis a2 as a function of the scaled bath temperature X for the family of cooling programs (A1) with different values of
k. The solid lines correspond to the numerical integration of the evolution equations in the first Sonine approximation. (Left) behavior found
in a granular gas. (Right) Behavior found in a molecular fluid. In both cases, a dimensionless cooling rate rc = 0.1 has been employed. On
the left (right) panel, (i) the dotted line represents the value of the excess kurtosis at the NESS as

2 (equilibrium value of the excess kurtosis
aeq

2 = 0), from which all the curves depart for large X , and (ii) the dashed line accounts for the value at the HCS (LLNES) within the first
Sonine approximation.

freezes, we arrive at the following estimation of the fictive
temperature θ f ;

θ f =

[(
3
2
− k
)

rc

c

] 2
3−2k

, θFrz ∝ r
2

3−2k
c , (A3)

where we have taken into account that the characteristic re-
laxation timescale τ is still given by Eq. (16), regardless of
the cooling program employed. Thus, the above entails that
the system will present a kinetic glass transition as long as
k < kcrit = 3/2. Eq. (A3) generalizes the power law behavior
r2/3

c found in the main text for k = 0.
Now, in order to corroborate the scaling found in Eq. (A3),

we follow a regular perturbation approach similar to the ones
employed in the main text for both the granular gas and the
nonlinear fluid. The solution to the lowest order corresponds
again to the instantaneous stationary solutions θ (0) = θs,
a(0)2 = as

2. The first-order O(rc) corrections are provided by
the equations

−θ
k
s = θ

1/2
s

{
c1θ

(1)+ c2θsa
(1)
2

}
, (A4a)

0 = c3
θ (1)

θ
1/2
s

+ c4θ
1/2
s a(1)2 , (A4b)

with ci, i = 1, ..,4 being constants that depend on the parame-
ters of the specific system of concern. These equations entail
the scalings

θ
(1)

∝ θ
k− 1

2
s , a(1)2 ∝ θ

k− 3
2

s . (A5)

which imply that θ (1) ≪ θ (0) = θs, a(1)2 ≪ a(0)2 = as
2 when k >

kcrit = 3/2 . Therefore, for k > kcrit a kinetic glass transition
is presented neither by the granular gas nor by the nonlinear
fluid. The cooling is so slow for k > kcrit that both systems
remain basically over the instantaneous stationary curve {θ =
θs,a2 = as

2} for all bath temperatures [96]

Let us now consider the case k ≤ kcrit. In this case, the reg-
ular perturbation approach breaks down for low enough bath
temperatures, which marks the onset of the kinetic glass tran-
sition. Our regular perturbation approach ceases to be valid
when the O(1) terms become comparable with the O(rc) ones,
thus implying

θs = O
(

r
2

3−2k
c

)
, (A6)

which, consistently with our discussion above, only makes
sense for k < kcrit, it diverges for k > kcrit. Equation (A6) en-
tails that we expect that the kinetic temperature at the frozen

state scales as θ Frz ∝ r
2

3−2k
c , consistently with Eq. (A3). Inter-

estingly, regardless of the choice of k, the frozen state is still
universal, in the sense that it is independent of the cooling rate
rc, since

a2 −as
2 ∼ a(1)2 ∝ rc θ

k− 3
2

s = O(1). (A7)

As in the main text, the above scaling relations suggest the
introduction of scaled variables

Y ≡ r
− 2

3−2k
c θ , X ≡ r

− 2
3−2k

c θs. (A8)

In terms of them, the dynamic equations for the cooling proto-
col become rc-independent. The same applies for a reheating
program with rh = rc from the frozen state. We remark that
the evolution equations for the scaled variables (Y,a2) in both
systems are the same as the ones we have written in the main
text, with the only change d/dX ↔ Xkd/dX on their lhs.

Figure 13 shows the evolution of the excess kurtosis a2 to-
wards its frozen state in a cooling program with rate rc for
different values of k in Eq. (A1), for both the granular gas and
the nonlinear molecular fluid. The excess kurtosis follows a
similar trend: on the one hand, for k →−∞, the time window
over which θs decays towards zero becomes infinitely small,
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and thus the excess kurtosis does not have time to deviate from
its stationary state value and is approximately constant for all
X . On the other hand, as the value of k is increased, the time
window to relax also increases. The limiting case k = kcrit
constitutes the ultimate balance between a sufficiently wide
time window to relax, and a fast enough relaxation protocol
such that θ deviates from the θ = θs behavior.

It is worth noting that, for 1/2 ≤ k < kcrit, the excess kur-
tosis tends to the value over the HCS—for the granular gas—
and the LLNES—for the nonlinear molecular fluid. The lower
bound k = 1/2 corresponds to the value above which the de-
viations from the θ = θs line become significantly small, but
still allowing for the kurtosis to evolve towards the frozen
state, as Eq. (A5) states. Since we are showing the numeri-
cal integration of the evolution equations in the first Sonine
approximation, these limit values of the excess kurtosis corre-
spond to their theoretical estimates in this framework. For the
granular gas, this is given by Eq. (9), which is quite accurate
due to its smallness. For the nonlinear fluid, the first Sonine
approximation gives aL

2
′
= −2/(d + 8) [39], which is quite

different from its exact value in Eq. (50)—this is reasonable,
since the deviations from the Gaussian are much larger in the
LLNES than in the HCS.

The above discussion hints at the frozen state correspond-
ing to the HCS and the LLNES for the granular gas and the
nonlinear molecular fluid, respectively, for 1/2 ≤ k < kcrit.
This means that the two model systems, either the granular
gas or the nonlinear molecular fluid, reach the corresponding
nonequilibrium state, either the HCS or the LLNES, over a
time window of the order of r−1

c when cooled down with a
program for which 1/2 ≤ k < kcrit. The latter suggests useful
applications in optimal control [97–100] and also within the
study of nonequilibrium effects, as previous work on both sys-
tems shows that both the HCS and the LLNES are responsible
for the emergence of a plethora of nonequilibrium phenom-
ena, such as the Mpemba and Kovacs effects [33, 39, 41–43].

Appendix B: Relaxation time of the granular gas

In Ref. [67], the linear relaxation to the NESS of the uni-
formly heated granular gas was investigated in detail. The
relaxation of the system from the NESS corresponding to a
value of the driving intensity ξ +δξ to the NESS correspond-
ing to a driving intensity ξ was considered.

Therefore, the granular (or kinetic) temperature evolves
from the initial value θs + δθs to the final value θs. The re-
laxation function for the granular temperature can be defined
as,

φθ (t)≡
θ(t)−θs

δθs
, (B1)

which is normalised in the usual way, φθ (t = 0) = 1. In partic-
ular, this relaxation function was shown to have the following
form:

φθ (t) = a+e−λ+t +a−e−λ−t , (B2)

where, due to the normalization, a− = 1− a+. Both λ+ and
λ+ are proportional to θ

1/2
s

λ± = c±θ
1/2
s , (B3)

with

c+ =
3
2
+

9
32

1+4B
4B−3

as
2 +O(as

2)
2, (B4a)

c− = 2B− 9
4(4B−3)

as
2 +O(as

2)
2, (B4b)

and

a+ = 1+
9

4(4B−3)
as

2 +O(as
2)

2. (B5)

The characteristic relaxation time of the relaxation is given
by

τ ≡
∫

∞

0
dt φθ (t) =

a+
λ+

+
a−
λ−

. (B6)

Since both λ+ and λ− are proportional to θ
1/2
s , and both a+

and a− are independent of the bath temperature, we have the
scaling in Eq. (16) of the main text,

τ =
1
c

θ
−1/2
s ,

1
c
=

a+
c+

+
a−
c−

. (B7)

In practice, it is straightforward to check numerically that
a+ ≈ 1 ≫ a− regardless of the value of α , such that c ≈ c+ ≈
3/2, which provides the value X f = 1 for the fictive temper-
ature that it is depicted Fig. 3. Thus, we may roughly state
that the fictive temperature is independent of the restitution
coefficient.

Appendix C: Regular perturbation theory for the granular gas

In order to find an approximate solution of the evolution
equations for cooling (22), we introduce the regular perturba-
tion series in powers of the cooling rate,

θ = θ
(0)+ rc θ

(1)+O(r2
c),

a2 = a(0)2 + rc a(1)2 +O(r2
c). (C1)

Eqs. (C1) are inserted into Eq. (22), in which we subsequently
equal the terms with the same power of rc and solve for
{θ (k),a(k)2 }, k = 0,1, . . .. At the lowest order, O(r0

c), i.e., for
terms independent of rc, we get

θ
(0) = θs, a(0)2 = as

2, (C2)

which corresponds to the instantaneous NESS curve. At the
first order, O(rc), i.e., for terms linear in rc, we get

θ
(1) =

2
3

θ
−1/2
s

[
1+

3
16

as
2

(
1+

1
B

)]−1

, (C3a)

a(1)2 =−
as

2
B

θ
−3/2
s

[
1+

3
16

as
2

(
1+

1
B

)]−1

. (C3b)

Putting together Eqs. (C2) and (C3), we obtain the regular
perturbative expression (24) in the main text.
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Appendix D: Uniform solution in the boundary layer approach

In this appendix, we aim to derive an approximate expres-
sion for the temperature and the excess kurtosis for the cool-
ing process, valid over the whole bath temperature range. For
high enough bath temperatures, θs ≫ r2/3

c , we have the “outer"
expansion in Eq. (24). For low enough bath temperatures,
θs = O(r2/3

c ), we have the boundary layer system (27) for the
scaled variables. In boundary layer perturbation theory, the
lowest-order perturbative solution—knowns as the “uniform"
solution—is constructed as the sum of the lowest-order outer
and inner solutions, minus the common behavior found in an
intermediate matching region [70]. Below we derive such a
uniform solution for the cooling protocol.

We denote the outer solution at the lowest order by
(θO,a2,O). Equation (24) tells us that

θO(θs) = θs, a2,O(θs) = as
2, (D1)

which is the instantaneous NESS curve. Now, let us seek the
solution of the inner problem at the lowest order, which we
denote by (YI(X),a2,I(X)). To obtain it, we solve Eq. (27)
with the boundary conditions

lim
X→∞

YI(X) = ∞, lim
X→∞

a2,I(X) = as
2, (D2)

which correspond to the limit as rc → 0 in Eq. (28). There-
fore, (YI(X),a2,I(X)) does not depend on rc, since neither the
evolution equations (27) nor the boundary conditions (D2) de-
pend on rc.

Although it is not possible to write (YI(X),a2,I(X)) in a
simple closed form, an asymptotic analysis for large values
of X gives

YI(X)∼ X , a2,I(X)∼ as
2, X ≫ 1, (D3)

which is consistent with the tendency of the DSMC data in
Fig. 3 to the instantaneous NESS curve for large X . By com-
paring Eqs. (D1) and (D3), we obtain the common behavior

θc(θs) = θs, a2,c(θs) = as
2, θs ≪ 1, X ≫ 1, (D4)

or, r2/3
c ≪ θs ≪ 1. This is the region at which the outer and

inner solution match, the uniform solution is built as [70]

θ
(0)(θs) = θO(θs)+ r2/3

c YI(X = r−2/3
c θs)−θc(θs), (D5)

a(0)
2 (θs) = a2,O(θs)+a2,I(X = r−2/3

c θs)−a2,c(θs), (D6)

Since the common behavior (D4) equals the outer solu-
tion (D1), the range of validity of the inner solution extends
to the whole temperature interval. In other words, the uniform

solution coincides with the inner solution:

θ
(0)(θs) = r2/3

c YI(X = r−2/3
c θs), (D7)

a(0)
2 (θs) = a2,I(X = r−2/3

c θs). (D8)

The first equation tells us that Y (0) ≡ r−2/3
c θ (0) = YI , i.e.,

we have the universal behavior in Fig. 3 over the uniform
solution—to the lowest order.

Appendix E: Regular perturbation theory for the molecular
fluid

Following an approach similar to that in Sec. IV A, let us
decrease the bath temperature by applying the linear cooling
program

dθs

dt
=−rc ⇒ dθ

dt
=−rc

dθ

dθs
,

da2

dt
=−rc

da2

dθs
, (E1)

where rc ≪ 1 is the cooling rate. We employ again the bound-
ary layer theory [70] to approach the problem. For the outer
layer, for which it is expected that θ does not deviate too much
from θs, we insert the regular perturbation series

θ = θ
(0)+ rcθ

(1)+O(r2
c), (E2a)

a2 = a(0)2 + rca(1)2 +O(r2
c), (E2b)

into the evolution equations (47) and equate terms with the
same power of rc. At the lowest order, O(1), one obtains

0 =2(θs −θ
(0))+2γ(d +2)θ

(0)−2γ (d +2)(1+a(0)2 )
[θ (0)]2

θs
,

(E3a)

0 =8γ

(
1− θ (0)

θs

)
−

[
4θs

θ (0) −8γ +4γ(d +8)
θ (0)

θs

]
a(0)2 ,

(E3b)

whose solution corresponds to equilibrium:

θ
(0) = θs, a(0)2 = 0. (E4)

The linear terms in rc obey

−1 = θ
1/2
s

{
−2 [1+ γ(d +2)]θ (1)−2γ(d +2)θsa

(1)
2

}
,

(E5a)

0 = 2γ
θ (1)

θ
1/2
s

+θ
1/2
s [1+ γ(d +6)]a(1)2 . (E5b)

The solution of this system is given by

θ
(1) =

1

2θ
1/2
s

1+ γ(d +6)

[1+ γ(d +4)]2 −2γ2(d +4)
, (E6)

a(1)2 =− 1

θ
3/2
s

γ

[1+ γ(d +4)]2 −2γ2(d +4)
. (E7)

The regular perturbation expansion (51) in the main text is
directly obtained by combining Eqs. (E2), (E4) and (E6).
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