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Disordered solids, straddling the solid-fluid boundary, lack a comprehensive continuum mechan-
ical description. They exhibit a complex microstructure wherein multiple meta-stable states exist.
Deforming disordered solids induces particles rearrangements enabling the system to transition
between meta-stable states. A dramatic consequence of these transitions is that quasistatic defor-
mation cycles modify the reference state, facilitating the storage and release of mechanical energy.
Here we develop a continuum mechanical theory of disordered solids, which accounts for the ab-
sence of a reference state and the lack of conserved potential energy. Our theory, which introduces
a new modulus describing non-conservative mechanical screening, reduces to classical elasticity in
the absence of screening. We analytically derive predictions for the deformation field for various
perturbations and geometries. While our theory applies to general disordered solids, we focus on
a two-dimensional disordered granular system and predict accurately the non-affine displacement
fields observed in experiments for both small and large deformations, along with the observable
vanishing shear modulus. The new proposed moduli satisfy universal relations that are independent
of the specific experimental realization. Our work thus forms the basis of an entirely new family of
continuum descriptions of the mechanics of disordered solids.

I. INTRODUCTION

Solid materials are capable of supporting external
stresses, while liquids flow indefinitely in response to sim-
ilar external perturbations. This clear distinction be-
tween the mechanical behaviors of different phases of
matter is disrupted by disordered solids. Examples such
as granular and glassy materials exhibit a combination
of fluid-like and solid-like properties simultaneously, with
the onset of mechanical rigidity being protocol dependent
[1–4]. Shear perturbation uncovers the complex and dis-
tinctive mechanics of such disordered materials. This in-
cludes the phenomena of shear-jamming [5–8], material
failure via shear-banding [9–14], and non-affine anoma-
lous responses [15–18]. It is generally accepted that these
complex phenomena are governed by the interactions be-
tween localized plastic events, realized as local material
rearrangement [19–21]. In stress-supporting states, their
induced elastic-like fields are of quadrupolar nature and
are modeled as Eshelby inclusions [22], force dipoles [23]
and more [24].

Material rearrangements have two primary conse-
quences. First, they modify the reference state to re-
lieve strains [25, 26]. Second, they transition the system
from one stable state to another, suggesting the pres-
ence of multiple meta-stable states [27, 28]. Because dif-
ferent meta-stable states may possess distinct energies,
the inclusion of such effect in a continuum theory would
lead to a violation of energy conservation. More specif-
ically, in addition to dissipating mechanical energy as
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heat, material rearrangements introduce another mecha-
nism for releasing or storing mechanical energy, by plas-
tically modifying the reference state, a mechanism that
is at the heart of our work. While there has been a sub-
stantial body of work focused on plasticity in disordered
matter [24, 29, 30], and despite an ongoing effort to de-
velop a continuum theory of disordered materials [31],
current continuum theories of matter fall short in ac-
curately predicting the intricate anomalous deformation
fields observed in disordered solids.
Here we present a novel continuum theory that de-

scribes disordered matter via the introduction of a new
mechanical constant that captures the amount mechan-
ical work involved in a distribution of particles rear-
rangements. The theory generalizes classical elasticity
by incorporating the primary implications of particles
rearrangements by capturing both the alteration of the
rest state, and the violation of energy conservation due
to multi-stability. We test the predictions of our the-
ory against experiments and find excellent quantitative
agreement, both for the observed elastic moduli and the
detailed measure deformation fields.
We draw inspiration from non-hermitian physics,

where the introduction of anti-symmetric coupling con-
stants may violate the conservation of energy via break-
down of time-reversal symmetry. Examples for such the-
ories are non-hermitian dielectrics [32], odd-viscosity [33],
and recently also odd-elasticity [34]. Contrary to these
works, here we study passive disordered systems by in-
troducing a new odd term in our proposed mechanical
screening tensor. We show that odd-dipole screening ac-
curately predicts the intricate mechanics of disordered
solids.
We first introduce a first-principles-based theory of odd
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FIG. 1. The basic mechanical screening modes, their realizations, and the corresponding geometric charges. (a) Strain-induced
particles rearrangement and the resultant quadrupole of angle deficit/excess marked by ±. The quadrupole magnitude is
proportional to the inducing strain, as indicated by the color-bar. On the right, a heat map displays induced charge, with
dark/bright colors representing negative/positive charges. (b) A visual representation of the linear relation between the inducing
strain modes and the induced quadrupole charges. (c) Displacement-induced particles rearrangement results in non-uniformly
distributed quadrupoles. On average, deformation description necessitates a combination of a quadrupole and a dipole, as
shown in the asymmetric charges heat map on the right. (d) A visual representation of the linear relation between the inducing
displacement and the induced dipole charge P = Γd. In the example shown in (c) the displacement and dipole are parallel,
corresponding to 𝜅𝑜 = 0.

dipole screening (ODS), for passive systems that possess
internal degrees of freedom of non-conservative strain re-
laxation. The elastic content of ODS assumes a reference
state that can be modified in response to mechanical per-
turbations via particles rearrangements. The emergent
elastic stress may be fully screened for certain mechan-
ical perturbations, or partially screened for others. The
screening mechanism is encoded in a constitutive rela-
tion that relates mechanical deformations with particles
rearrangement. This relation contains an odd compo-
nent 𝜅𝑜 next to the usual even screening modulus 𝜅𝑒.
We show that 𝜅𝑒 quantifies strain relaxation as recently
proposed in [26], and the odd modulus 𝜅𝑜 quantifies the
amount of work that can be harnessed or stored within
a closed deformation cycle, as attributed to particles re-
arrangements. We quantitatively test the theory against
unexplained features in the continuum strain fields in an
experimental model passive amorphous material [35]. As
we will see, ODS quantitatively predicts an experimen-
tally observed anomalous coupling between orthogonal
components of the displacement field. Importantly, the
values of the new moduli display physically meaningful
behavior. At small strains, 𝜅𝑒 and 𝜅𝑜 emerge as well-
defined constants that characterize the material, as ex-
pected from a linear continuum theory. As we extend our
analysis to finite strains, we find that the moduli adhere
to a universal, strain-dependent relationship. Remark-
ably, this relationship remains independent of initial con-
ditions or packing fraction. This revelation provides new

impetus to the search for the underpinnings of plasticity
in granular matter, and offers many tantalizing perspec-
tives in a wider application of ODS to the broader field
of disordered materials. Most importantly, we confirm
that continuum theories of matter can describe large de-
formations in disordered materials experiencing particles
rearrangements.

II. MECHANICAL SCREENING

One ingredient of the theory is the assumption that the
primary function of localized particles rearrangements is
to suppress (or screen) elastic fields by modifying the
rest state relative to which strains are measured [26].
A mechanical screening theory based on this concept
has already been successful in describing certain types
of anomalous deformation modes in amorphous systems
[36, 37]. The natural relaxing degrees of freedom have
been shown to be quadrupolar geometric charges, which
unify the description of force-dipoles, Eshelby inclusions,
holes, and more [38–40]. In the current context of disor-
dered matter these charges, denoted 𝑄𝛼𝛽, describe par-
ticles rearrangements and are induced by an imposed
strain as illustrated in Fig. 1(a). The elastic strain is
then related with the strain 𝑢el = 𝑢 − 𝑞 where 𝑢 is de-
rived from the displacement fields, and 𝑞 is the adju-
gate of 𝑄. The elastic energy is quadratic in 𝑢el, with
the mechanical tensor A encoding bare mechanical mod-
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FIG. 2. The displacement induced by a body shear as ob-
tained by solving (1) without (a) or with (b) odd dipole
screening. Arrows indicate the displacement direction and
background colors indicate displacement magnitude.

uli 𝜆0, 𝜇0. Without screening these constants coincides
with Lame coefficients. See methods for the relation be-
tween 𝜆0, 𝜇0 and the actual observed mechanical mod-
uli. A typical particles rearrangement is shown to in-
duce a quadrupole of angle excess or deficit, thus act-
ing as a source of stress when implemented in an elas-
tic solid [39, 41]. For quasistatic deformations the dissi-
pative equations of motion reduces back to the equilib-
rium equations, which include a screening relation and
a force-balance equation (see methods). The linear rela-
tion between the inducing strain and the induced charge,
illustrated in Fig. 1(b), establishes the basis for a the-
ory of quadrupoles mediated mechanical screening. This
relation accompanies the force balance equation, which
in the presence of screening dresses the stress field and

reads 𝜕𝛼𝜎
𝛼𝛽

el
= 𝜕𝛼 (𝜎𝛼𝛽 + 𝜇0

4 𝑄𝛼𝛽) = 0. Our approach
to mechanical screening is strongly inspired by electro-
static screening, and the regime of quadrupole screening
is analogous to electrostatic dipole screening as in dielec-
tric materials.

A key property in this class of models is the
dipole field P which quantifies non-uniformly distributed
quadrupoles 𝑃𝛼 = 𝜕𝛽𝑄

𝛼𝛽. This is illustrated in Fig. 1(c)
where we show that particles displacement induces non-
uniform quadrupoles. Consequently, the deformation de-
scription of a collection of particles requires a combina-
tion of a quadrupole and a dipole. Then, the equilib-

rium equation reflecting force balance is accompanied by
a screening constitutive relation which relates inducing
displacement with induced dipoles 𝑃𝛼 = Γ𝛼𝛽d𝛽, with Γ

the screening tensor, as illustrated in Fig. 1(c,d). In ho-
mogeneous, isotropic, conservative systems the screening
tensor can be expressed as Γ = 𝜅𝑒 𝐼 with 𝐼 the identity.
In this case the inducing displacement is parallel to the
induced dipole, as in Fig. 1(c).
In states exhibiting elastic-like behavior, for ex-

ample disordered matter under strong confinement,
quadrupoles will form only sparsely. Consequently, no
dipoles will form, corresponding to 𝜅𝑒 = 0. Conversely,
in situations where the cost associated with quadrupole
formation is negligible, as in disordered matter with le-
nient confining conditions, quadrupoles form abundantly,
corresponding to a finite 𝜅𝑒. In this case the screening
relation modifies the form of the force balance equation.
Upon integrating out the screening degrees of freedom,
the force balance equation in 2𝐷 reduces to

Δd + 𝑟∇ (∇ · d) = −Γd . (1)

with 𝑟2D = 1+𝜈
1−𝜈 and 𝜈 the Poisson’s ratio; this can be

generalized to 3D [42]. Equation (1) is a mechanical ana-
logue of Helmholtz equation in Debye-Hückel theory of
ionic liquids. An immediate and important implication
of this theory is the protocol-dependent value of effective
elastic moduli. In methods we show that pure shear does
not support stress whereas simple shear does.

III. ODD DIPOLE SCREENING

Eq. (1) is derived from a potential energy, which im-
poses a symmetry condition on the screening tensor
Γ𝛼𝛽 = Γ𝛽𝛼. However, in realistic (yield stress) materials,
energy is not conserved due to particles rearrangements
[28]. During quasi-static shear, particles rearrange, and
upon completing a closed loop in strain space, e.g. by
sequentially applying different shear strain modes, it is
likely that the system will not end up in the same state.
This basic observation from many amorphous materials
reflects the existence of multiple meta-stable states, and
even fractal-like energy landscape [27]. Consequently,
during this work cycle net work can be extracted or
stored in the system.
This suggests that Eq. (1) with Γ = 𝜅𝑒 𝐼 cannot provide

a complete description of disordered solids. Therefore, as
a second ingredient of the theory, we need to remove the
assumption on the existence of potential energy while
retaining the successful modeling picture of mechanical
screening theory. To do so, we allow Γ to contain an
anti-symmetric (odd) screening modulus

Γ =

(
𝜅𝑒 −𝜅𝑜
𝜅𝑜 𝜅𝑒

)
≡ 𝜅Rot(𝜃𝜅 ) (2)

Here 𝜅 =
√︁
𝜅2𝑒 + 𝜅2𝑜 quantifies the screening magnitude,

and Rot(𝜃𝜅 ) is a rotation operator with tan 𝜃𝜅 = 𝜅𝑜/𝜅𝑒,
which we term the odd screening phase. Geometrically,
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the odd screening modulus 𝜅𝑜 quantifies the rotation an-
gle between an inducing displacement field and the in-
duced dipole. From a mechanical perspective, 𝜅𝑜 quan-
tifies the amount of work extracted or stored during the
work cycle due to particle rearrangements. Explicitly,
Δ𝑊 =

∮
𝑓 𝛼𝑑𝛼d

2𝑥 ∝ 𝜅𝑜, see methods for detailed calcula-
tion.

IV. ANOMALOUS DISPLACEMENT
COUPLING

An immediate implication of ODS is the new cou-
pling between the different displacement components in
Eq. (1). This anomalous coupling is absent from other
theories of matter in homogeneous and isotropic solids,
and is crucial for describing disordered solids. To illus-
trate its implications we solve Eq. (1) for the two most
studied loading protocols of shearing a material either
in an annular or in a rectangular domain, as studied in
an immense volume of works, see for example [3, 43–46]
and references therein. Our predictions for the case of
a rectangular domain are given in detail and compared
to experimental measurements; the case of an annular
domain is presented in the SI.

For a rectangular domain subjected to a body shear,
as studies in [7], the equilibrium equation (1) is supple-
mented with the conditions 𝑑𝑦 (𝑥) = 𝑢𝑥𝑦𝑥 and 𝑑𝑥 (±𝐿/2) =
0. The deformation protocols and the corresponding so-
lutions are illustrated in Fig. 2. In the absence of ODS
𝜅𝑜 = 0, the response is purely affine 𝑑𝑦 (𝑥) = 𝑢𝑥𝑦𝑥, with
𝑑𝑥 (𝑥) = 0, as illustrated in Fig. 2(a). In the presence of
ODS, we find a non vanishing solution

d𝑥 (𝑥) = 𝜏

(
𝑥 − sin (𝜁 𝑥)

sin (𝜁)

)
, (3)

with 𝜏 = 𝑢𝑥𝑦 tan 𝜃𝜅 , 𝜁 =
√︁
cos 𝜃𝜅 𝜅/(1 + 𝑟) 𝐿/2, and 𝑥,

and 𝑑 are measured in units of 𝐿/2. This solution is
illustrated in Fig. 2(b).

V. RESULTS

The anomalous displacement coupling predicted by
ODS align with observations from recent experiments
on two-dimensional granular model system subjected to
simple body shear [35]. In this experiment nonzero dis-
placement fields 𝑑𝑥 ≠ 0 emerged, and thus serves as
the ultimate test for the theory of ODS. We investigate
a disordered system of 2D pre-jammed granular mat-
ter composed of bi-dispersed frictional disks. The body
shear protocol is applied quasistatically by uniformly de-
forming the underlying table (see method for further de-
tails). We explore a range of imposed strains, up to
22%, and initial packing fractions within the range of
0.692 < 𝜙 < 0.816. To assess sensitivity to initial con-
ditions, each experiment is repeated five times. In the

experiment, we measure the displacement field of each
particle and, due to the system’s symmetry, we average
it along the 𝑦 direction before comparing it with the pre-
diction of (3). For each measurement of the displacement
field, we fit the parameters 𝜂 and 𝜏, from which we ex-
tract the screening moduli 𝜅 = 𝜅/(1 + 𝑟) and 𝜃𝜅 . To mea-
sure 𝑟 further independent perturbations are required,
e.g. isotropic compression, but are beyond the scope of
our experiment. The observation that the system is un-
jammed aligns with the theory, as pure dipole screening
predicts a vanishing observable resistance to pure-shear
deformation (see methods). In left panel of Fig. 3, we
present plots of the induced transverse displacement 𝑑𝑥
as a function of position 𝑥 together with our predictions.
In (a) we present plots for various values of packing frac-
tions with a fixed imposed strain, and in (b) we present
plots for various values of imposed strains with a fixed
packing fraction. We observe that (3) fits very well and
perfectly reproduces the functional form of the anoma-
lously induced displacement.
The success in recovering the functional form of the

displacement field by fitting the screening moduli is a
promising step. To further demonstrate that that the
screening moduli are proper macroscopic quantifiers for
the state of jammed granular matter, in the method sec-
tion, we show that for small strains, both screening mod-
uli remain independent of the initial conditions and as-
sume constant values as a function of strain, independent
of the initial configurations. Surprisingly, our analysis
reveals that these explicit moduli are also unaffected by
variations in the initial packing fraction, with values of
𝜂 ≈ 11𝐿2 and 𝜃𝜅 ≈ 0.94𝜋. Notably, the value of the odd
screening phase 𝜃𝜅 indicates that the screening effect is
predominantly even 𝜅𝑜/𝜅𝑒 ≈ −0.2.
Another surprising discovery is that the theory, ini-

tially designed for small deformations based on linearized
strain-stress and dipole-displacement relations, describes
the displacement field accurately even at substantial
strains exceeding 20%. Drawing an analogy to non-linear
optics, where the permittivity can explicitly depend on
the field’s magnitude, it is plausible that at large defor-
mations, the screening moduli might exhibit a depen-
dence on the strain. As expected, we observe that at
finite strains 𝜃𝜅 and 𝜅 deviate from their constant values
at low strains (see methods for plots of 𝜅). In Fig. 3(c) we
show plots of 𝜃𝜅 for five different realizations of identical
initial packing fraction 𝜙 = 0.736. Remarkably, we find
that in all experiments the dependence of 𝜃𝜅 on the im-
posed strain 𝑢𝑥𝑦 is identical, with a variance that is prac-
tically zero, up to strain of 10%, which is possibly the
onset of fragility. At larger strains 𝜃𝜅 (𝑢𝑥𝑦) still acquire
a clear functional form, though with different functional
form for different initial conditions. This observation sug-
gests that the system is self averaging up to strains as
high as 10%, thus allowing its description within a con-
tinuum theory even for large deformations. The origin
of the precise functional form of 𝜃𝜅 (𝑢𝑥𝑦) is an exciting
avenue for much future work, while the large strain ef-
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FIG. 3. Odd-displacement coupling in disordered granular matter Left panel: Theory (solid lines) and experimental
data (dots) for anomalous displacement 𝑑𝑥 (𝑥) induced by an affine shear 𝑑𝑦 = 𝑢𝑥𝑦 𝑥. The displacement is averaged along the
𝑦 direction and fitted to Eq. (3) with respect to 𝜅 and 𝜃𝜅 . In (a), we present the experimental and theoretical displacement
fields for various packing fractions at a fixed imposed shear, and in (b), we display them for various shear loadings at a fixed
packing fraction. Right panel: 𝜃𝜅 as function imposed shear 𝑢𝑥𝑦 . In (c), we illustrate 𝜃𝜅 for various initial realizations with a
fixed packing fraction. The variance is shown in red, with virtually no variance observed up to strains of 10%. In (d) we depict
the ensemble-averaged screening phase ⟨𝜃𝜅 ⟩ for a range of initial packing fractions, highlighting its independence not only from
initial conditions but also from the initial packing fraction.

fectiveness of the continuum modeling directly reduces
the need for expensive mesh-free methods to predict ma-
terial behavior at large strains. The situations becomes
even more surprising when 𝜃𝜅 (𝑢𝑥𝑦) is computed for dif-
ferent initial packing fraction, where we discover that all
initial conditions and all packing fractions have exactly
the same form, as shown in Figure 3(d). This universal
form indicates a universal underlying nonlinear screening
mechanism independent of the packing fraction.

The weak decay of the screening phase 𝜃𝜅 , transition-
ing from approximately 𝜋 to 0.8𝜋, signifies an impor-
tant new physics of screening within disordered media.
Screening can be equivalently achieved by either generat-
ing new charges, depending on the protocol, or releasing
pre-existing ones. In the latter scenario, the availability
of pre-existing charges is limited, resulting in an expected
weakening of the screening effect during the process.
Consequently, the decline in 𝜃𝜅 signifies that screening
predominantly occurs through the release of pre-existing
charges, which were trapped within the system during
the jamming process. This conclusion finds independent
support in the relationship between the screening mag-
nitude, 𝜅, and the applied shear stress, 𝑢𝑥𝑦, which ex-
hibits an exponential decay, indicating the lack of existing
charges to be released (see App.A). Our theory, therefore,
posits that a fundamental formulation of screening the-
ory, rooted in microscopic principles, necessitates a com-
prehensive understanding of the initial jammed state’s
pre-existing charges. It is noteworthy that the charges
induced as a response to shear jamming and isotropic
pressure may fundamentally differ, thus prompting the
need for a quantitative investigation into the connection
between jamming and induced charges.

VI. SUMMARY

In conclusion, our ODS theory correctly captures small
and large strain behavior of a model disordered media
via the introduction of only one new modulus. The new
screening modulus has a clear physical microscopic in-
terpretation and is observed to be indeed universal for
the experimental model system used. Our work calls for
much future work, such as applying to the wide range of
other disordered materials like colloidal glasses, foams,
emulsions and microgels. ODS can explain unusual de-
formation modes that can be captured by performing
new or different types of rheological experiments. It is
clearly possible expand our findings by developing a non-
linear version of ODS to comprehensively analyze the
failure modes of disordered solids. As our theory now
only works in quasi-static deformation, there is an ob-
vious perspective to incorporate dynamical and dissipa-
tive mechanisms. Crucially, since odd-elasticity and odd-
screening are two independent extensions of two different
theories, they should be integrated and applied to experi-
mental active solids that include relaxational modes, such
as epithelial tissue.

VII. METHODS

Experiment Setup. We applied quasi-static simple
shear to a bi-dispersed granular system composed of elas-
tic discs. Shear was performed in an apparatus that sup-
presses shear bands allowing us to study large strains
before the onset of shear bands [47]. Particles were
carried by separate slats that form the shear box base.
These slats moved affinely in accordance with the applied
shear [47, 48]. Discs were cut from elastic sheets (Vishay
PSM-4), resulting in a friction coefficient 𝜇 ≈ 0.7 [47, 49].
The system contained approximately 45×20 discs with a
diameter ratio 1 : 1.25 and a large to small number ratio
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1 : 3.3 to prevent crystallization. Every run at a given
packing fraction 𝜙 was repeated five times, with the ini-
tial stress-free state being prepared anew for each run.
Shear was applied quasi-statically in the 𝑦 direction to a
shear box (Fig. 4(a)). Starting from a stress-free state,
the system was sheared by a strain step of 𝛿𝛾 = 0.0027.
Then the system was left to relax for six seconds, followed
by taking an images which reveal information on parti-
cle position. Such a process – stepwise shearing, relaxing
and imaging – was repeated until a certain amount of
total strain was achieved. The maximum shear strain 𝛾

that studied in this work is 0.24 (24%). From the images,
we tracked particle positions and computed the displace-
ment field. All tracking data are available upon request.
[49–51].

FIG. 4. (a) Schematic of special apparatus for applying simple
shear strain to a collection of photoelastic discs at the different
strain steps (strain steps increase from light to dark colors).
In the sketch, the slats are drawn much larger relative to
the particles than in the real experiment. The 𝑥 − 𝑦 axes
indicate the coordinate system in the lab frame, where simple
shear is applied along the y axis. (b) Example of particle
displacements 𝑑𝑥 in a system with initial packing fraction
𝜙 = 0.742, after a shear strain of 5%.

(Even) Mechanical Screening This section is sup-
plemented with a Mathematica notebook available on-
line, where all calculations, including lengthy ones, are
given in full detail.

The deformation of elastic solid is described by a dis-
placement field d. The elastic strain, which measures
deviations of actual lengths from their rest values, is
𝑢𝛼𝛽 = 1

2 (𝜕𝛼𝑑𝛽 + 𝜕𝛽𝑑𝛼). The elastic energy density is
then

W =
1

2
A𝛼𝛽𝛾𝛿𝑢𝛼𝛽𝑢𝛾𝛿 . (4)

where A is the elastic tensor.
Mechanical screening is the process at which internal

degrees of freedom are available to relief strains. Then
one should distinguish between the configurational strain
𝑢 derived from the displacement field, and the elastic
strain 𝑢el for which elastic energy penalizes for

𝑢el = 𝑢 − 𝑞 (5)

Here 𝑞 is the local anelastic (screening) strain. In gen-
eral, it has three independent degrees of freedom, corre-
sponding to relaxing isotropic strain and the two modes
of shear strain. While the theory is applicable to arbi-
trary form of 𝑞, particles rearrangements allow to relax
only shear strain and not isotropic one, thus we assume
trace(𝑞) = 0.
The elastic energy is

Wel =
1

2
A𝛼𝛽𝛾𝛿𝑢el𝛼𝛽𝑢

el
𝛾𝛿 . (6)

The induced local anelastic strain 𝑞 creates elastic
fields that relaxes the total strain but cost energy due to
its nucleation. Therefore the total energy contain another
term for the nucleation cost associated with the induced
strain relaxation. For that we note that a distribution
of relaxing 𝑞’s induces elastic strains whose sources (ge-
ometric charges) are 𝑄𝛼𝛽 = 𝜀𝛼𝜇𝜀𝛽𝜈𝑞𝜇𝜈 (that is 𝑞 is the
adjugate of Q: 𝑞 = adj𝑄) [39]. If the 𝑄 field is non uni-
form, according to the multipole expansion of geometric
charges a hierarchy of multipoles will form with an effec-
tive dipole field 𝑃𝛼 = 𝜕𝛽𝑄

𝛼𝛽 and an effective monopole
field 𝑀 = 𝜕𝛼𝛽𝑄

𝛼𝛽 [39]. The nucleation cost is therefore
of the form

F =
1

2
Λ𝛼𝛽𝛾𝛿𝑄

𝛼𝛽𝑄𝛾𝛿 + 1

2
Γ̃𝛼𝛽𝑃

𝛼𝑃𝛽 + 1

2
Υ𝑀2 . (7)

Since no isotropic quadrupole can form, the most general
forms of Λ and Γ in isotropic and homogeneous media are

Λ𝛼𝛽𝛾𝛿 =
1

2
𝜆
(
𝛿𝛼𝛾𝛿𝛽𝛿 + 𝛿𝛼𝛿𝛿𝛽𝛾

)
(8)

Γ̃𝛼𝛽 = 𝜅𝑒 𝛿𝛼𝛽 (9)

Monopole screening has not been observed in solid like
phases and therefore is beyond the scope of the current
work, i.e. Υ = 0. In this work we are interested in a
dissipative system that experience plastic deformations.
As such the governing equations are dissipative ones and
take the form

¤d = −𝜒𝑑
𝛿𝑊

𝛿 d
, ¤𝑄𝛼𝛽 = −𝜒𝑄

𝛿𝑊

𝛿𝑄𝛼𝛽
(10)
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with 𝑊 = Wel + F . In the limit of quasi-static deforma-
tions these equation reduces back to equilibrium equa-
tions. Consequently, the emergent quadrupole field, for
example, is permanent, and it will not be relaxed upon
releasing the mechanical perturbations. Regardless of
the specific form of (7), the 2d equilibrium equation, ob-
tained by energy minimization with respect to the dis-
placement is

Δd + 1 + 𝜈

1 − 𝜈
∇ (∇ · d) = −P (11)

where 𝜈 is the Poisson’s ratio.
This equation is supplemented by a constitutive screen-

ing relation obtained by variating the energy with respect
to the screening degrees of freedom 𝑄. For quadrupole
screening we find

P = − 1

1 + 4𝜆(1 + 𝜈)
Δd , (12)

with 𝜆 = 𝑌 𝜆. Upon substituting in (11) we find that the
form of the equation remains the same but the coefficients
are renormalized by the screening.

In the case of dipole screening, where the nucleation
cost of quadrupoles is negligible compared with that of
dipoles, we find

P =
𝑌

2𝜅𝑒 (1 + 𝜈) (d − d0) (13)

where d0 is an integration constant. This relation repre-
sent the relation between an imposed displacement and
an induced elastic dipole, as illustrated in Fig. 1. We set
d0 = 0, thus the constitutive relation loses its invariance
under translations and rotations. We denote

P = Γd (14)

with Γ𝛼𝛽 = 𝜅𝑒𝛿𝛼𝛽 and 𝜅𝑒 = 𝑌
2𝜅𝑒 (1+𝜈) . Upon substituting

in (11) we find

Δd + 1 + 𝜈

1 − 𝜈
∇ (∇ · d) = −Γd (15)

that is we recovered (1).
Measurement of mechanical and screening

moduli In classical elasticity, the components of the elas-
tic tensor are associated with the resistance of the sys-
tem to specific mechanical perturbations. For example,
in the absence of screening, the resistance to pure shear
and uniaxial strain are obtained by substituting in the
energy the corresponding strains

𝑢PS =

(
𝑢0 0
0 −𝑢0

)
, 𝑢UNI =

(
𝑢0 0
0 0

)
(16)

The corresponding expressions for the energy are

𝑊PS =
1

2
2𝜇0𝑢

2
0 , 𝑊UNI =

1

2
(𝜇0 + 𝜆0)𝑢20 . (17)

where 𝜇0, 𝜆0 are the shear and bulk moduli encoded in
the elastic tensor A. It is widely accepted that if the
observed resistance to pure-shear deformation vanishes,
the corresponding modulus 𝜇0 is zero, and similarly with
𝜆0. When it comes to disordered solids, it is known that
the same system may support one mode of deformation
and not others, implying for an ill-defined notion of the
elastic moduli. Nevertheless, the automatic association
between measurement and components of the elastic ten-
sor are still accepted. Here we show that this misconcep-
tion is resolved by the theory of mechanical screening. In
the presence of quadrupole and dipole screening, that is
Λ, Γ̃ ≠ 0 in (7), upon imposing the uniform deformations
above, one has to minimize with respect to the screening
quadrupole field the total energy

𝑊 = Wel + F =
1

2
A𝛼𝛽𝛾𝛿 (𝑢𝛼𝛽 − 𝑞𝛼𝛽) (𝑢𝛾𝛿 − 𝑞𝛾𝛿)

+ 1

2
Λ𝛼𝛽𝛾𝛿𝑄

𝛼𝛽𝑄𝛾𝛿 + 1

2
Γ̃𝛼𝛽𝑃

𝛼𝑃𝛽 . (18)

In this case the resistance to the same imposed strains
is screened by uniformly distributed quadrupoles. The
energy in each case is

𝑊PS =
1

2

2𝜇0𝜆

𝜇0 + 𝜆
𝑢20 , 𝑊UNI =

1

2

(
𝜆0 + 𝜇0

2𝜆 + 𝜇0

2(𝜆 + 𝜇0)

)
𝑢20 .

(19)
Within this picture, the vanishing resistance to pure
shear implies that either 𝜇0 = 0, or 𝜆 = 0. We
claim that what is commonly accepted as an unjammed
state in granular and disordered matter is possible with
𝜆 = 0, that is pure quadrupole screening, with finite
bare mechanical moduli 𝜇0, 𝜆0. To measure all coeffi-
cients 𝜇0, 𝜆0, 𝜆, an additional measurement is required,
e.g. isotropic compression. In that case screening is in-
active, and we find 𝑊ISO = 1

2 (2𝜇0 + 4𝜆0)𝑢20.
The measurement of Λ̃ in the presence of dipole screening
cannot rely on uniform deformations, and require situa-
tions where the induced quadrupoles have non-vanishing
divergence. The protocols studied in Appendix B pro-
vide the predicted deformation fields for different geome-
tries and perturbations. Upon successfully fitting the ob-
served and predicted displacement fields one can extract
the components of Γ̃, as done in the Results section in
the main text.
Work cycles and odd screening When a material

is deformed, the power exerted by the elastic forces is

¤𝑊 =

∫
𝑓 𝛼 ¤𝑑𝛼𝑑𝑆 (20)

where 𝑓 the force is given by

𝑓 𝛼 = 𝜕𝛽𝜎
𝛼𝛽

el
(21)

with the elastic stress 𝜎el = A𝑢el, satisfying 𝜕𝛼𝜎
𝛼𝛽

el
= 0,

which is equivalent to (11). When expressed in terms
of 𝜎 = A𝑢 we find 𝜕𝛽𝜎

𝛼𝛽 + 𝑌
4(1+𝜈)P = 0. With these



8

notations we rewrite the power exerted by the elastic
forces

¤𝑊 =

∫ (
𝜕𝛽𝜎

𝛼𝛽 + 𝑌
4(1+𝜈) 𝑃

𝛼
)
¤𝑑𝛼𝑑𝑆 (22)

we further simplify this expression by expressing 𝜎 and
P in terms of the displacement field

¤𝑊 =

∫ (
A𝛼𝛽𝛾𝛿𝜕𝛽𝜕𝛾𝑑𝛿 + 𝑌

4(1+𝜈) Γ
𝛼𝛽𝑑𝛽

)
¤𝑑𝛼𝑑𝑆 (23)

Upon integrating by parts the first term we find

¤𝑊 =

∫ (
−A𝛼𝛽𝛾𝛿𝜕𝛾𝑑𝛿𝜕𝛽 ¤𝑑𝛼 + 𝑌

4(1+𝜈) Γ
𝛼𝛽𝑑𝛽 ¤𝑑𝛼

)
𝑑𝑆 (24)

Here we assumed displacement-controlled boundary con-
ditions, thus the boundary term vanishes. Next we cal-
culate the total elastic work done during a closed defor-
mation. For the first term

Δ𝑊1 =

∮
d𝑡 ¤𝑊1 = −

∮
d𝑡

∫
A𝛼𝛽𝛾𝛿𝜕𝛾𝑑𝛿𝜕𝛽 ¤𝑑𝛼𝑑𝑆

=

∮
d𝑡

∫
A𝛼𝛽𝛾𝛿𝜕𝛾 ¤𝑑𝛿𝜕𝛽𝑑𝛼𝑑𝑆

=

∮
d𝑡

∫
A𝛾𝛿𝛼𝛽𝜕𝛽 ¤𝑑𝛼𝜕𝛾𝑑𝛿𝑑𝑆 (25)

The third equality holds from (time) integration by parts,
and the fourth equality obtained by relabeling the in-
dexes. We deduce that

Δ𝑊1 = −
∮

d𝑡

∫
1

2

(
A𝛼𝛽𝛾𝛿 − A𝛾𝛿𝛼𝛽

)
𝜕𝛾𝑑𝛿𝜕𝛽 ¤𝑑𝛼𝑑𝑆

(26)
From the major symmetry of the elastic tensor this term
is identically zero.

The second term in (24) is straightforward to handle.
The total work is

Δ𝑊2 =

∮
d𝑡 ¤𝑊2 =

∮
d𝑡

∫
𝑌

4(1+𝜈) Γ
𝛼𝛽𝑑𝛽 ¤𝑑𝛼𝑑𝑆 (27)

Integrating by parts the time-integral and relabeling the
indexes we find

Δ𝑊2 = −
∮

d𝑡

∫
𝑌

4(1+𝜈) Γ
𝛽𝛼𝑑𝛽 ¤𝑑𝛼𝑑𝑆 (28)

Hence

Δ𝑊2 =

∮
d𝑡

∫
𝑌

8(1+𝜈)

(
Γ𝛼𝛽 − Γ𝛽𝛼

)
𝑑𝛽 ¤𝑑𝛼𝑑𝑆

=

∮
d𝑡

∫
𝑌

4(1+𝜈) Γ
𝛼𝛽
o 𝑑𝛽 ¤𝑑𝛼𝑑𝑆 (29)

where Γo is the odd part of Γ. In our work this integral
is proportional to 𝜅𝑜.
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Appendix A: Values of screening moduli at small
and large strains

The screening moduli in our theory, as in any other
linear theory, hold meaning only when they remain con-
stant. However, when dealing with large strains, there
is no assurance that constant (spatially uniform) val-
ues for the elastic and screening moduli can adequately
describe the intricate and non-affine deformation field.
Nonetheless, we observe that the displacement field ac-
curately adheres to our theory at large strains, albeit with
strain-dependent moduli. This mirrors the behavior seen
in non-linear optics, where a material’s permittivity re-
mains constant under weak fields but varies with the field
magnitude under strong fields.
In Fig. 5(a), we depict the ensemble-averaged screening

magnitude ⟨𝜅⟩ as a function of imposed shear strain, cov-
ering strains up to 13%, presented on a semi-logarithmic
scale. Each plot corresponds to a distinct initial pack-
ing fraction. In (b), we zoom in on the small strain re-
gion, and present ⟨𝜅⟩ up to 1.3%. The constant value of
the screening magnitude justifies the assumption of em-
ploying continuum mechanical screening theory for small
strain analysis of the experimental system. In (c), we
zoom in on the region of large strains, revealing that the
exponential decay is consistent across all initial packing
fractions, albeit with different prefactors indicating po-
tential dependence on initial conditions.
Similarly, in Fig. 5(d), we display the ensemble-

averaged ⟨𝜃𝜅⟩ for various initial packing fractions. In (e),
we focus on the small strain region, presenting ⟨𝜃𝜅⟩ up
to 1.5%. Notably, we observe that this screening modu-
lus remains constant in this range. The inset showcases
experimentally measured displacement fields for a shear
strain of 1% enclosed by the green box, further confirming
the independence of the results from the initial packing
fraction.

Appendix B: Odd dipole screening in sheared
rectangular and annular domains

In this section we solve (1) for rectangular and annular
domain subjected to shear strain from the boundary.
For a rectangular domain we solve (1) with the bound-

ary conditions

𝑑𝑥 (𝐿) = 0 , 𝑑𝑥 (−𝐿) = 0 (B1)

𝑑𝑦 (𝐿) = 𝑑0 , 𝑑𝑦 (−𝐿) = −𝑑0 (B2)

The solution is

𝑑𝑥 (𝑥) =
𝑑0𝜅𝑜

𝜂

(
sin(𝑥/𝑙1)
sin(𝐿/𝑙1) −

sin(𝑥/𝑙2)
sin(𝐿/𝑙2)

)
(B3)

𝑑𝑦 (𝑥) =
𝑑0

2

((
1 − 𝜅𝑒𝑟

𝜂

)
sin(𝑥/𝑙1)
sin(𝐿/𝑙1) +

(
1 + 𝜅𝑒𝑟

𝜂

)
sin(𝑥/𝑙2)
sin(𝐿/𝑙2)

)
(B4)
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FIG. 5. The ensemble averaged screening moduli as function of strains. Top panel shows the screening magnitude ⟨𝜅⟩ for strain
up to %13. (a) The full range, (b) zoom in on small strains regime, and (c) zoom in on large strains regime (c). Bottom panel
shows the screening phase ⟨𝜅⟩ for large strains (d) and small strain (e). experimentally measured displacement fields 𝑑𝑥 (𝑥) for
a shear strain of 1%, confirming the independence of the results from the initial packing fraction.

with

𝑙−11 =

√︄
𝜅𝑒 (2 + 𝑟) − 𝜂

2(1 + 𝑟) (B5)

𝑙−12 =

√︄
𝜅𝑒 (2 + 𝑟) + 𝜂

2(1 + 𝑟) (B6)

𝜂 =

√︃
𝜅2𝑒𝑟

2 − 4𝜅2𝑜 (1 + 𝑟) (B7)

We see that for 𝜅𝑜 = 0 we get 𝑙1 = 𝑙2 and then 𝑑𝑥 = 0, that
is, the anomalous coupling appears only in the presence
of odd screening.

In Fig. 6 we plot the displacement fields for different
values of the screening parameters, with 𝑑0 = 0.05, 𝑟 = 1,
and 𝐿 = 0.5. For large values of 𝜅𝑒 and small 𝜅𝑜 we find
significant deviation from the classical affine response,
with non-monotonous displacement field, though with

𝑑𝑥 (𝑥) = 0. For non-zero odd screening 𝜅𝑜 ≠ 0 the dis-
placement field rotates and induces a non-zero 𝑑𝑥 com-
ponent.
For a rectangular domain we solve (1) with the bound-

ary conditions

𝑑𝑟 (𝑟in) = 0 , 𝑑𝑟 (𝑟out) = 0 (B8)

𝑑𝜃 (𝑟in) = 𝑑0 , 𝑑𝜃 (𝑟out) = 0 (B9)

We solve this boundary value problem numerically, and
in Fig. 7 we plot the solutions for different values of the
screening parameters, with 𝑑0 = 0.05, 𝑟 = 1, and 𝑟out = 1
and 𝑟in = 0.1. Similar to the rectangular case, at large
values of 𝜅𝑒 and small 𝜅𝑜 we find significant deviation
from the classical affine response, with non-monotonous
displacement field, with 𝑑𝑟 (𝑟) = 0. For non-zero odd
screening 𝜅𝑜 ≠ 0 the displacement field rotates and in-
duces a non-zero radial component 𝑑𝑟 , with spiral stream
lines.

[1] Charles S Campbell. Rapid granular flows. Annual Re-
view of Fluid Mechanics, 22(1):57–90, 1990.

[2] Heinrich M Jaeger and Sidney R Nagel. Physics of the



10

FIG. 6. Solutions for (1) with boundary conditions (B2), with 𝑑0 = 0.05, 𝑟 = 1, and 𝐿 = 0.5. Each block corresponds to a
solution with different values of 𝜅𝑒 and 𝜅𝑜.

granular state. Science, 255(5051):1523–1531, 1992.
[3] Heinrich M. Jaeger, Sidney R. Nagel, and Robert P.

Behringer. Granular solids, liquids, and gases. Rev. Mod.
Phys., 68:1259–1273, Oct 1996.
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systems in athermal, quasistatic shear. Phys. Rev. E,
74:016118, Jul 2006.

[21] Michael Lawrence Falk. Deformation and fracture in
amorphous solids. University of California, Santa Bar-
bara, 1998.

[22] Ratul Dasgupta, H. George E. Hentschel, and Itamar
Procaccia. Yield strain in shear banding amorphous
solids. Phys. Rev. E, 87:022810, Feb 2013.

[23] Eric De Giuli. Renormalization of elastic quadrupoles
in amorphous solids. Physical Review E, 101(4):043002,
2020.



11

FIG. 7. Solutions for (1) with boundary conditions (B9), with 𝑑0 = 0.05, 𝑟 = 1, and 𝑟out = 1 and 𝑟in = 0.1. Each block
corresponds to a solution with different values of 𝜅𝑒 and 𝜅𝑜.

[24] M. L. Falk and J. S. Langer. Dynamics of viscoplastic
deformation in amorphous solids. Phys. Rev. E, 57:7192–
7205, Jun 1998.

[25] Peter Sollich, François Lequeux, Pascal Hébraud, and
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