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h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND
FROBENIUS-POINCARE FUNCTION

CHENG MENG AND ALAPAN MUKHOPADHYAY

ABSTRACT. Given ideals I, J of a noetherian local ring (R, m) such that I + J is m-
primary and a finitely generated R-module M, we associate an invariant of (M, R,I,J)
called the h-function. Our results on h-functions allow extensions of the theories of
Frobenius-Poincaré functions and Hilbert-Kunz density functions from the known graded
case to the local case, answering a question of V.Trivedi. When J is m-primary, we
describe the support of the corresponding density function in terms of other invariants
of (R,I,J). We show that the support captures the F-threshold: ¢’(I), under mild
assumptions, extending results of V. Trivedi and Watanabe. The h-function encodes
Hilbert-Samuel, Hilbert-Kunz multiplicity and F-threshold of the ideal pair involved.
Using this feature of h-functions, we provide an equivalent formulation of a conjecture
of Huneke, Mustata, Takagi, Watanabe; recover a result of Smirnov and Betancourt;
prove that a result of Hanes comparing multiplicities, is equivalent to an a priori weaker
containment condition on ideals. We also point out that a conjecture of Smirnov-
Betancourt as stated is false and suggest a correction which we relate to the conjecture
of Huneke et al.

We develop the theory of h-functions in a more general setting which yields a density
function for F-signature. A key to many results on h-functions is a ‘convexity technique’
that we introduce, which in particular proves differentiability of Hilbert-Kunz density
functions almost everywhere on (0, c0), thus contributing to another question of Trivedi.
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1. INTRODUCTION

Hilbert-Kunz multiplicity and F-signature are numerical invariants appearing in prime
characteristics commutative algebra and algebraic geometry. These quantify severity of
singularities at a point of a variety and also relate to other invariants, such as the cardi-
nality of the local fundamental group of the punctured spectrum of a strongly F-regular
local ring; see [AEO08], [CST18] and Section 2. The theory of Hilbert-Kunz multiplicity in
the graded case has witnessed two new generalizations in recent years: the Hilbert-Kunz
density function and the Frobenius-Poincaré function. Fix a standard graded ring S in
prime characteristic and a homogeneous ideal a of finite colength. When dim(S) > 2,
Trivedi has proven the existence of a compactly supported real valued continuous function
gs.a of a real variable- called the Hilbert-Kunz density function- whose integral is the
Hilbert-Kunz multiplicity egg(a,S); see Section 2 for details. For the pair (S, a), where
dim(S) is not necessarily at least two, the associated Frobenius-Poincaré function is an
entire function in one complex variable, whose value at the origin is the Hilbert-Kunz
multiplicity epg(a,S); see Section 2. These two functions not only encode more subtle
invariants of (S, a) than the Hilbert-Kunz multiplicity but also allow application of geo-
metric tools, such as sheaf cohomology on Proj(.S), and tools from homological algebra.
Successful applications of the Hilbert-Kunz density functions have resolved Watanabe and
Yoshida’s conjecture on the values of Hilbert-Kunz multiplicity of quadric hypersurfaces,
rationality of Hilbert-Kunz multiplicities and F-thresholds of two dimensional normal
rings among other results; see [Tri23], [TW21], [Tri05], [Tril9].

Building extensions of these two theories to the setting of a noetherian local ring is a
natural question; see Trivedi’s question [Tril8, Question 1.3]. In this article, we extend
the theories of Hilbert-Kunz density function and Frobenius-Poincaré function to the local
setting. Our extensions are facilitated by a systematic study of a new function, which we
call the h-function.

Fix a noetherian local domain (R, m) of prime characteristic p > 0 and Krull dimension
d, where the Frobenius endomorphism is a finite map. Fix two ideals I, J of R such that
I + J is m-primary. We prove:

Theorem A: Consider the sequence of functions of a real variable
A
(ITsp"1 4 J"HR”
where JIP"! is the ideal generated by {fP" | f € J}; and [(__) is the length function.

(1) (Theorem 3.7, Theorem 3.29) There is a real-valued function of a real variable
denoted by hy ;(s) such that given an interval [s;, so] C R, there is a constant C
depending only on si, s satisfying

hn,I,J(S)
pnd

hn’]“](S) = l(

|hry(s) — | < g, for all s € [sq, so] andn € N.
pn
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Consequently, the sequence of functions h"‘zf;;i(s) converges to hy s(s) and the

convergence is uniform on every compact subset of R.
(2) (Theorem 3.30, Theorem 3.20) Given real numbers sy > s; > 0, there is a constant
(- depending only on s1, sy such that for x,y € [sq, $q],

\hig(x) = hi(y)| < Clz —yl.
That is, away from zero, hy ; is locally Lipschitz continuous.

The function h; s is called the h-function associated to the pair (I, J). In fact we prove a

version the above theorem for an ideal I and a family of ideals J, satisfying what we call
Condition C allowing for applications to other numerical invariants such as F-signature;
see Theorem 3.7.

Special instances of this h-function have been considered by different authors: in [Tay18§]
when both I and J are m-primary, in [BST13] when R is regular, I is principal and J = m
to study F-signature of a pair and in [Kos17] in the same set up but in a different context.
Theorem A generalizes their results. Moreover the techniques involved in our proofs
yield uniform convergence which is crucial for us.

In Theorem 3.16, we prove that there is a polynomial P;(s) of degree dim(R/J)
such that hrs(s) < Pi(s) for all s. Using this polynomial bound we prove existence
and holomorphicity of a function Fgy s(y) on the open lower half complex plane; see
Theorem 4.3. We moreover show:

FR7[7J(y) = \/hLJ(t)e_ity(Z.y)dt.
R

When J is m-primary, we prove Fr j(y) is entire. When (R, m,J) comes from a graded
pair (S, a), i.e. (R,m) is the localization of a standard graded ring S at the homogeneous
maximal ideal, I is the homogeneous maximal ideal and J comes from a homogeneous
ideal of finite colength a, Fp; ;(y) coincides with the Frobenius-Poincaré function of the
pair (S, a); see Proposition 6.8,(3). Unlike [Muk22], our treatment allows us to consider
Frobenius-Poincaré function of (S, a), where a need not have finite colength; see Proposi-
tion 6.8, (2).

Extending the theory of Hilbert-Kunz density functions is more involved. Set

Fuls) = hor s (s + %) ~ sy (s).

When (R, m, J) comes from a graded pair (S, a), where dim(S) > 2, we point out that
the sequence of functions
fn(s)
()
converges uniformly to the Hilbert-Kunz density function of (S, a); see Theorem 6.6. But
for arbitrary ideals I, .J of a local ring (R, m), the pointwise convergence of f,(s)/(p™)4?
at every s is not clear. In fact when I = 0 the sequence does not converge at s = 0,

see Example 5.12. In this direction, we relate the convergence of f,(s)/(p")?! to the
differentiability of A ; at s. In Theorem 5.8 we prove,

If hy s (s) if differentiable at s, f,(s)/(p")*~" converges to b} ;(s).
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In the direction of differentiability of h, we prove:

Theorem B:(Theorem 5.4,(3),(4)) Let h; s be as before.

(1) The left and right hand derivative of h exist at all nonzero points.
(2) Outside a countable subset of (0,00), h is continuously differentiable.

Theorem B, (2) implies that if (R, m) is local, then for any R-ideals I,.J,f,(s)/(p")?*
converges outside a countable subset of R and coincides with the derivative of hy ;(s),
thus outside this countable set the limiting function f,(s)/(p™)? ! yields a well-defined
notion of density function. In Theorem 5.4, we actually prove existence of density function
more generally for a family satisfying Condition C. This generalization in particular
yields a density function for F-signature. When (R, m,J) comes from a graded pair
(S, a) with dim(S) > 2, we prove that the corresponding h-function hpgy s is continuously
differentiable and the derivative coincides with the Hilbert-Kunz density function that
Trivedi defines. We moreover prove the existence and continuity of the density function
to the case when a does not have finite colength; see Theorem 6.7. Our work shows that
h-function is twice differentiable outside a set of measure zero contributing to Trivedi’s
question about the order of differentiability of the Hilbert-Kunz density function; see
[Tri23, Question 1], Remark 5.5.

Theorem B is a consequence of a ‘convexity technique’ that we introduce. For fixed
sp > 0, in Theorem 5.3, we construct a function H(s, sg) which we prove to be convex
and show that

H(s.50) = h(s)/c(s) ~ hisa)/e(so) + [ h)/0)/e (),
S0
where c(s) = s#71 /(1 — 1)!, u being the cardinality of a set of generators of I. Theorem
B then follows from general properties of convex functions. The underlying idea of the
same convexity argument is used to prove Lipschitz continuity of h-functions stated in
Theorem A.

The behaviour of h; ; near zero is more subtle. We prove h; ; is continuous at zero if
and only if I is nonzero. In fact our result implies,

Theorem C:(Theorem 8.12) Suppose dim(R/I) = d'. Denote the set of minimal primes
of R/I of dimension d' by Assh(R/I). Then

. h(s) 1

sgr(l;l+8d*d/ = (d _ dl)' Z GHK(J, R/P)e([7 RP)?

PecAssh(R/I)

where e(I, ) denotes the Hilbert-Samuel multiplicity with respect to 7. In particular, the
order of vanishing h(s) at s =0 is d — d’. Theorem C extends part of [BST13, Theorem

4.6], where R is assumed to be regular, I a principal ideal and J = m.

The h-function treats different numerical invariants of (R, I,J) on an equal footing,.

when [ is m-primary, for s > 0 and close to zero hy j(s) = e({, R)%; see Lemma 8.3.
When J is m-primary, for large s, hy ;(s) = egx (R, J). Since hy j(s) is a non-decreasing
function there is a smallest point after which h; ;(s) = egx(R,J). We describe this

‘minimal stable point’ of hy ;(s).
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Theorem D:(Theorem 8.7, Lemma 8.4)Suppose J is m-primary. Let ag;; = sup{s €
R|s>0,h;(s) # eux(J,R)}. Consider the sequence of numbers,

r{(n) = max{t € N|I' ¢ (JP"))*},

where (JIP")* denotes the tight closure of the ideal (JP"); see Definition 2.5. Then
(r{(n)/p™). is a non-decreasing sequence converging to agr.;.

Moreover, the density function fg; s is zero outside [0, ag,s] and nonzero at every
point in (0, ars,s) where it exists; see Corollary 8.8. The above description of ag s,
resembles that of the well known F-threshold ¢/(I); see Definition 8.1. Recall that F-
threshold is an invariant extensively studied in prime characteristic singularity theory; see
[Hun+08b], [MTWO05] and is closely related log canonical threshold via reduction modulo
p; see [TWO04], [HWO02]. In general, ag ;s is bounded above by ¢’(I). We prove, under
suitable hypothesis, for example, strong F-regularity at every point of Spec(R) — {m},
ar.1.7 coincides with ¢/(I); see Theorem 8.10. Whenever h; ; is differentiable, the support
of Lh; ;- which agrees with the Hilbert-Kunz density function of (R, I, J)- is [0, ap 1,s];
see Corollary 8.8. Thus Theorem 8.7, Theorem 8.10 and Corollary 8.8 extend Trivedi and
Watanabe’s description of the support of Hilbert-Kunz density function when R is graded
and strongly F-regular on the punctured spectrum; see Remark 8.9, [TW21, Theorem
4.9]. We do not know whether ag ;s always coincides with ¢/(I); see Question 10.1.

Our applications of the theory of hA-functions in Section 9 highlights its feature of captur-
ing different numerical invariants such as F-threshold, Hilbert-Kunz and Hilbert-Samuel
multiplicity simultaneously. In Section 9.1 we discuss Watanabe’s question comparing
Hilbert-Samuel and Hilbert-Kunz multiplicity. This question has been affirmatively con-
firmed by Hanes. Our theory of A-functions shows that Watanabe’s question is equivalent
to, a priori, a weaker problem about containment of ideals; see Proposition 9.1, Remark 9.2.
In a different direction, we show that even a coarse approximation of an A-function recovers
Smirnov and Betancourt’s result comparing Hilbert-Kunz multiplicity of a ring and its
quotient by part of a system of parameters; see Theorem 9.12. We point out that their
conjecture motivating their aforesaid result is false; see Proposition 9.8. So we propose a
corrected version in Conjecture 9.10. Indeed Proposition 9.9 shows that a special case
of this corrected version is equivalent to another conjecture of Huneke, Mustata, Takagi
and Watanabe; the latter has been already verified when the rings and ideals involved are
graded. We show that the general case of Huneke et al.’s conjecture is equivalent to a
question about A-functions; see Proposition 9.13.

Some questions regarding h-functions and the resulting density function are listed in
Section 10.

Notation and conventions: All rings are commutative and noetherian. The symbol
p denotes a positive prime number. Unless otherwise said, the pair (R, m) denotes a
noetherian local ring R- not necessarily a domain- with maximal ideal m. By saying
(R, m) is graded, we mean R is a standard graded ring with homogeneous maximal ideal
m. When (R, m) is assumed to be graded, R-modules and ideals are always assumed to
be Z-graded. We assume R has characteristic p and R is F-finite, i.e. the Frobenius
endomorphism of R is finite. We index the sequences of numbers and functions by n.
Whenever the letter ¢ appears in such a sequence, ¢ denotes p”. For an ideal I C R, I"]
or 14 denotes the ideal generated by {f?| f € I'} and is called the ¢ or p"-th Frobenius
power of I. The operator [gr(__) or simply /(__) denotes the length function. For an
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R-module M, FI'M denotes the R-module whose underlying abelian group is M, but
the R-action comes from restriction scalars through the iterated Frobenius morphism
F": R — R.

2. BACKGROUND MATERIAL

Let (R,m) be a noetherian local or graded ring, J be an m-primary ideal, M be a
finitely generated R-module. Although the germ of Hilbert-Kunz multiplicity was present
in Kunz’s seminal work [Kun69], its existence was not proven until Monsky’s work:

Theorem 2.1. (see [Mon83]) There is a real number denoted by ey (J, M) such that,

M . . )

The number ey (J, M) is called the Hilbert-Kunz multiplicity of M with respect to J.

Smaller values of ey (R, m) predicts milder singularity of (R, m); see for e.g. [AEO08,
Cor 3.6, [Man04]. It is imperative to consider Hilbert-Kunz multiplicity with respect to
arbitrary ideals, for e.g. to realize F-signature (see Example 3.10)- an invariant character-
izing strong F-regularity of (R, m)- in terms of Hilbert-Kunz multiplicity; see [PT18, Cor
6.5]. We refer the readers to [Hun13], [Muk23, Chapter 2] and the references there in for
surveying the state of art.

When (R, m) is graded, Trivedi’s Hilbert-Kunz density function refines the notion of
Hilbert-Kunz multiplicity:

Theorem 2.2. (see [Tril18]) Let (R,m) be graded, J be a finite colength homogeneous
ideal, M be a finitely generated Z-graded R-module. Consider the sequence of functions of
a real variable s, v
Gnara(8) = l([m]quJ)-
(1) There is a compact subset of R containing the supports of all g,’s.
(2) If dim(M) > 1, there is a function-denoted by gar,s- such that ()™M 1, ar 5(s)
converges pointwise to g s(s) for all s € R.
(3) When dim(M) > 2, the above convergence is uniform and gar.y is continuous.

(4)

GHK(J, M) = /QM’J(S)dS.
0
Definition 2.3. The function gy s is called the Hilbert-Kunz density function of (M, J).

For a graded ring (R, m), the Frobenius-Poincaré function produces another refinement
of the Hilbert-Kunz multiplicity. Frobenius-Poincaré functions are essentialy a limiting
function of the Hilbert series of - in the variable e=", see [Muk22, Rmk 3.6].

Theorem 2.4. (see [Muk22]) Let (R,m) be graded, M be a finitely generated Z-graded
R-module, J be a finite colength homogeneous ideal. Consider the sequence of entire

functions on C
_ (Namny M i

(1) The sequence of functions Gy, ar.5(y) converges to an entire function Gy (y) ' on
C. The convergence is uniform on every compact subset of C.

!Note the difference in notation from [Muk22].
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(2)
GMJ(O) = eHK(J, M)

The last theorem holds for any graded ring which are not necessarily standard graded.
For the notion of Hilbert-Kunz density function in the non-standard graded setting, see
[TW22]. By [Muk23, Theorem 8.3.2], for a standard graded (R, m) of Krull dimension at
least one, the holomorphic Fourier transform of gas s is Gy, i-e.

o0

Gua(y) = /gM,J(S)eiysds.

0

Thus when dim(M) > 2, the Hilbert-Kunz density function and the Frobenius-Poincaré
function determine each other; see [Muk23, Rmk 8.2.4]. Both Hilbert-Kunz density
function and Frobenius-Poincaré function capture more subtle graded invariants of (M, J)
than the Hilbert-Kunz multiplicity. For example, when R is two dimensional and normal,
J is generated by forms of the same degree, g ; and G ; determine and are determined
by slopes and ranks of factors in the Harder-Narasimhan filtration of a syzygy bundle
associated to J on Proj(R); see [Tri05], [Bre07], [Tril8, Example 3.3|, [Muk22, Chap 6].
For other results on Hilbert-Kunz density functions and Frobenius-Poincaré functions, see
the reference section of [Muk23]. These two functions and the Hilbert-Kunz multiplicity
of (R, J) detects J up to its tight closure. Recall:

Definition 2.5. ([HH90, Def 3.1]) Let A be a ring of characteristic p > 0. We say x € A
is in the tight closure of an ideal I if there is a ¢ not in any minimal primes of A such that
ca?" € IP"] for all large n. The elements in the tight closure of I form an ideal, denoted
by I*.

Theorem 2.6. ([Hunl13, Prop 5.4, Thm 5.5/, [HH90, Thm 8.17]) Let I C J be two ideals
in (R, m).

(1) ]fI* = J*7 €HK(I,R) = €HK<J, R)

(2) Conversely, when R is formally equidimensional, i.e. all the minimal primes of the
completion R have the same dimension, enk(I,R) = egk(J, R) implies I* = J*.
Therefore, when (R,m) is a graded ring where all the minimal primes have the
same dimension, §rr = gsr or Grr = Gypr implies [* = J*.

3. h-FUNCTION

Given ideals I, J of a local ring (R, m) such that I + J is m-primary and a finitely
generated R-module M, we assign a real-valued function hysr s of a real variable, which
we refer to as the corresponding h-function. The existence and continuity of has 7 s is
proven in Section 3.4. When R is additionally a domain and M = R, given an ideal I and
a family of ideals {.J,, }nen- satisfying what we call Condition C below- in Section 3.1,
we associate a corresponding h-function which is continuous on R..

3.1. h-functions of a domain.

Definition 3.1. Let I, = {I, },en be a family of ideals of the F-finite local ring R.
(1) I, is called a weak p-family if there exists ¢ € R not contained in any minimal

primes of maximal dimension of R such that ¢I” € I, ;.

(2) I, is called a weak p~'-family if exists a nonzero ¢ € Homg(F.R, R) such that
O(Filpi1) C 1.

(3) A big p-family (resp. big p~*-family) is a weak p (resp. p~!)-family I, such that
there is an « € N for which mP"™1 C I, for all n.
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A family of ideals where (1) holds with ¢ = 1 and mP"] C I,,, has been called a p-family
of ideals; see [HJ18]. Notions of p and p~!-families provide an abstract framework for
proving existence of asymptotic numerical invariants:

Theorem 3.2. (see [PT18, Theorem 4.3]) Let (R,m, k) be an F-finite local domain of
dimension d, {I, }nen a sequence of ideals such that mlP'l c I, for all n € N.

(1) If there exists a nonzero ¢ € R such that cL[Lp] C I,y1 for all n € N, then
n = lim, 500 1/p"Ur(R/1,) exists, and there exists a positive constant C' that only
depends on c such that n — 1/p"Ug(R/I,) < C/p" for all n € N.

(2) If there exists a nonzero ¢ € Hompg(F.R, R) such that ¢(F.l,+1) C I, for all
e €N, then n = lim, o 1/p"Ur(R/1,) exists, and there exists a positive constant
C' that only depends on ¢ such that 1/p™Ixr(R/IL,) —n < C/p"™ for alln € N.

(3) If the conditions in (1) and (2) are both satisfied then there exists a constant C
that only depends on ¢ and ¢ such that |1/p"p(R/1,) — n|< C/p™.

Lemma 3.3. Let (R, m) be a local domain. Let I, J, be two weak p-families, then so
is the family I, + J,,. If I,, J, are two weak p~-families, then so is the family I,, + J,.
When one of the families are big (p or p~'), then so is their sum.

Proof. Suppose there are nonzero elements ¢, co such that cll}[bp e I,.1 and ¢ J,[lp I c Jn+1,
then ¢ = ¢y is still nonzero and satisfies CL[«?] C Iy, cJ,[lp} C Jpt1. So (I, + Jn)[p} -
Ihi1 + Jusr1. Suppose there are nonzero elements ¢, ¢y € Hompg(F, R, R), such that
O1(Fulp1) C I, and ¢o(Fidyi1) C J,. For ¢ € Homg(F.R,R) and r € R, define
F.r-¢ € Homg(F.R, R) by the formula (F.r - ¢)(F.s) = ¢(F.(rs)). This puts an F,R-
module structure on Hompg(F, R, R), which turns out to be a torsion free module of rank
one. So the F, R-submodules of Homg(F, R, R) generated by ¢; and ¢, have a nonzero
intersection, or in other words, there exist nonzero c¢;,co € R and a nonzero element
¢ € Hompg(FLR, R) such that ¢ = ¢1(Fi(c1+)) = ¢p2(Fi(ca+)). Thus, ¢(Filni1) C I, and
O(Fedns1) C Jp. So ¢(Fu(Inyr + Jnv1)) C Ly + .

To prove the ‘big'ness, assume that there is an « such that mP""1 C I,. Then we have
mlP" N C 1L+ O

Condition C: Let (R, m) be an F-finite local ring, I is an ideal and J, = {J,, }nen be a
family of ideals in R. We say I, J, satisfies Condition C if

(1) The family J, is weakly p and also weakly p~*.
(2) For each real number ¢, there is an o such that mP*™" C 1741 4 . for all n.

Condition C provides the right framework where we can prove existence of h-functions;
see Theorem 3.7.

Definition 3.4. Let (R, m) be a local or graded ring. Let I be an ideal and J, = {J,, }nen
be a family of ideals in R- homogeneous when R is graded, such that I + J, is m-primary
for all n. For a finitely generated R-module M (homogeneous when R is graded) and
s € R, set

(1) hparr,a.(s) = l(m)
(2) For an integer d, set

1 M
hoannsna(®) = g 37

(3) We denote the limit of the sequence of numbers hy, prs ., 4($), whenever it exists,
by hM,I,J.,d(S)-
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Whenever one or more of the parameters M, I, J, is clear from the context, we sup-
press those from hy, ars 5, (5), hoarg...a(S) or harrg,.a(s). In the absence of an explicit
d, it should be understood that d = dim(M). When J, = JP* for some ideal J,
hn7M7[7J, hn’M7]’J7d, hMJJ stand fOI' hn7M7]7J.7 hn7M7[7J.7d and hMJvJud respectively.

Remark 3.5. (1) With the notational conventions and suppression of parameters declared
above, hy, arr.; stands for both l(m) and qdin}(wl((IDq]AfJn)M). But in the article,
it is always clear from the context what h,, 5s 7 s denotes. So we do not introduce further
conventions.

(2) When (R, m) is graded, M, I and J, are homogeneous, hy ar.17 = Rn My IRy Jun- SO
once we prove statements involving h,,’s in the local setting, the corresponding statements
in the graded setting follow.

The following comparison between ordinary powers and Frobenius powers is used
throughout this article:

Lemma 3.6. Let R be a ring of characteristic p > 0, J be a nonzero R-ideal generated
by 1 elements, k € N, and g = p" is a power of p. Then JUW+k=1)  (Jldyk c jak,
Proof. The second containment is trivial. We prove the first containment. Let J =
(a1, ...,a,), then JI#+5=1) ig generated by a'...ay" where Y u; = q(pu + k — 1). Let
a = a{*..ay”, v; = |u;/q] and b = a}*...a;’, then since qu; < u;, b? divides a. Now
qui > ui—q+1,80 > qui > qglp+k—1)4+(—¢g+p=qlk—1)+pu > qlk—1), so
> wv; > k. This means b € J* and a € Jkld = jldk, O
Theorem 3.7. Let (R,m, k) be an F-finite local domain of dimension d. Let J, be a
family of ideals such that there is a nonzero ¢ € R and ¢ € Homg(F.R, R) satisfying
CJT[LP] C Jus1 and ¢(Fudpyq) C J,. Let I be an ideal such that for each s € R, there is an
integer o such that mP"™1 C 11541 + J for all n. Set I,(s) =119 + J..

(1) Fizt € R. Choose o € N such that mlP"™1 C It 4 ] for all n. Then there exists
a positive constant C' depending only on c, ¢, I, and independent of the specific
choice of Jo, such that for any s € (—o0, ],

hr1.d(s) = lim 1/p"g(R/1,(s)) exists, and
n—oo

(3.1) 11/p" Ir(R/1,(5)) — hrr...a(s)| < C/p" for alln € N.
(2) Given choices I, J, and t € R, one can choose C depending only on t, such that
Equation (3.1) holds on [0,t].
(3) On every bounded subset of R, the sequence of functions hy, 1, 4(s) converges
uniformly to hr .. (s).
Proof. (1) When I =0, I,,(s) = J,,, so everything follows from Theorem 3.2.
We assume I is nonzero for the rest of the proof. Note cl,,(s)P! = cIlsallPl 1 cJP C
cIlsale  cglPh C [Tspal 4 11 as [sq]p > [sqp]. So
(3.2) el (s)P C I 4(s) .
Suppose [ is generated by pu-many elements. Then
Pl C Jlsalp—p C [[P](fﬂﬂ—li); see Lemma 3.6.

Fix a nonzero r € (I")P). Then the last containment implies,

(3.3)
O(ForFo 01 (s)) = G(F (rI™P)) 4¢(Fu(rJng)) € d(FL (PPN 4, C I,(s)for alls € R.
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Equation (3.2) and Equation (3.3) imply that, for all s, the nonzero elements ¢ € R
and ¢(F.r- ) € Homg(F.R, R) endow I,(s) with weakly p and p~!-family structures,
respectively. The ideal mP"™*) is contained in I,,(t) and hence in I,(s) for s < t. The
rest follows by applying Theorem 3.2 to the family I, ,(s) for every s < t. The feasibil-
ity of choosing C' depending only on ¢, ¢, « and r also follows from Theorem 3.2. Since
re (I “)[p ) can be chosen depending only on I, the choice of C' depends only on ¢, ¢, « and I.

(2) Once 1, J, satisfying the hypothesis is given and ¢ € R is given, ¢, ¢, a can be chosen
depending only on I, J,,t.

(3) Every bounded subset of R is contained in some interval (—oo,t]. The dependence of
C only on [, J, and t implies (3). d

The domain assumption is made in the above theorem just so that we can apply
Theorem 3.2.

Lemma 3.8. Suppose I and J, satisfy the hypothesis of Theorem 3.7. Suppose there is an
integer v such that I"™"" C J, for alln. Then h, r..(s) and hr j, 4 are constant on [r,oc).

The next two propositions produce examples of an ideal I and ideal family J, satisfying
Condition C. For specific choices of J, and I, the corresponding functions h; , 4 encode
widely studied invariants of a prime characteristic ring such as Hilbert-Kunz multiplicity,
F-signature, and F'-threshold. We do not assume R is a domain in the next two examples.

Proposition 3.9. Let J, be a family of ideals which is a big p and also p~'-family. For
any ideal I, I, J, satisfy Condition C.

Proof. Since J, is big, there is an « such that mP"™1 C J,. Thus for every s € R,
mlP" ™ C plsal 4 g 0

When R is a domain, a big p, p~!-family .J, thus produces an h-function. Thanks to
Lemma 3.8 such an Ay, is eventually constant.

Example 3.10. Examples of J, which are both big p and also p~' include J, = JP"],
where .J is an m-primary ideal. Another example of interest is when .J,, is the sequence of
ideals defining F-signature of (R, m) which we now recall. Set p® = [k : k?]. Take

Jn ={x € R|¢(z) € m, for all¢ € Homg(F'R, R)}.

Then p**l(R/1,) coincides with the free rank of F'R: the maximal rank of a free module
M such that there is an R-module surjection F'R — M; see [Tucl2, Prop 4.5]. The
family J, is both weakly p and p~!, and J,, contains m"l. Thanks to Theorem 3.2, the
limit ) R
1 “\dim(R) 7/~

S(R) = lim (2)01(57)
exists. The number s(R) measuring the asymptotic growth of the free rank of F'R is
called the F-signature of R. The ring (R, m) is strongly F-regular if and only if s(R) is
positive; see [AL03, Theorem 0.2]. When R is a domain, for any nonzero ideal I, we have
hr.(s) = s(R) for large s. The continuity, left-right differentiability of such h; ;, are

consequences of Theorem 5.4.

The examples of h-functions produced by the result below are central to extending theories
of Frobenius-Poincaré and Hilbert-Kunz density functions to the local setting.

Proposition 3.11. For any pair of ideals I,.J such that I + J is m-primary, the ideal I
and the family J, = JP"! satisfies Condition C.
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Proof. For any nonzero ¢ € R and nonzero ¢ € Hompg(F,R, R), c¢(JP'HF C JP"™1 and
¢(F*J[pn+l}) c JP". So the family J, = JP"! is weakly p and p~' Since I+ J is m-primary,
given a real number s, mP*l C Is14+J for some a. Then mP*™ C (Ils14. )"l C [lsal 4 jld],
So I1s4l + Jld is a big p and p~'-family. O

For two m-primary ideals I, J, in [Tay18] Taylor considers s-multiplicity (function)
which, up to multiplication by a positive number depending on s, coincides with the
corresponding hy ;. When J,, = J [ our proof of the existence of h-function in Theorem 3.7
is not only different from the proof of Theorem 2.1 of [Tay18], but also still valid when
both I and J are not necessarily m-primary. Moreover, in Theorem 3.7, the flexibility
of choosing C' depending only on ¢ and c is a byproduct of our proof; this flexibility is
crucial in Theorem 3.13 and later.

3.2. Growth and m-adic continuity of h-function. Next, we investigate how h,, 1 ;. (s)
changes when the I or J, is replaced by another ideal or ideal family which is m-adically
close to the initial one. The results we prove are used later in Section 6, for example,

to prove continuity of Hilbert-Kunz density function gps; for non m-primary J; see
Theorem 6.7.

Lemma 3.12. Let R be a noetherian local ring, I, J be two R-ideals such that I +.J is m-
primary. Let I', J' be two ideals such that I C I', J C J'. Then hynrr,.5(8) > hoar,o ().

Proof. f I C I', J C J' then (1Pl + JPY A (I'TsP1 + JP) M, so 1(M/(ITP1 + JP) M) >
Z(M/(]/(SP] + J/[p])M), which jUSt means hn7M7]’J(S> Z hn7M7]/7J/(S). O

Theorem 3.13. Let (R, m) be a noetherian local ring. Assume I, J, satisfy Condition
C
(1) Fixz so € R. We can choose t depending only on I, J,, sy such that for any ideals

JcmtIcCl, and alln,
Prntrr,70(8) = Ny ar gy gomi () for s < sq.

(2) Assume J, is both big p and p~'-family. There exists a constant ¢ such that for any
ideals I' Cm', t € N and s € R,

honr,0.(s = ¢/t) < hparrsr g0(8) < b r00(S) < hoarisr,g. (s +¢/t).

(8) Fix sy > 0. There exists a ty and a constant ¢, both only depending on sy, I, Js such
that for any t > ty, I, C m!,

hopairg.(s —¢/t) < hparisr,g.(8) < hparg,(8) < hparisr, g, (s +c/t),
for s < sq.

Proof. (1) Let t be the smallest integer such that m!4 c 504l 1 J for all n. By the
previous lemma, it suffices to consider the case where J = mt. So for I C I,

risal g =1 4 g 4 midfors < spand alln € N,

proving the desired statement.

2) Since J, is a big family, we can choose ty such that m®ld C J, for all n. We
g y
may also assume I’ = m’. Let m be generated by u-elements, set ¢, = tou/t. Then
mtledl C mtora C mbold c J, for all n. So
([+mt)fsq1 — Z [lsal=imti = lsal=Tea] y ntled] - plsal=Ted] o g pls—top/tal 4y
0<5<[sq]

Thus we have
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LM/ (ITe=tor/al 1 J AN < I(M /(1 + w0 + J)M) < 1(M/(IT%9) + J,)M).

So taking ¢ = tou verifies the first two inequalities. These equalities are independent of s,
so we may replace s by s+ ¢/t to get the third inequality.

(3) By (1) we can choose t; depending on s, I, J, so that h, 1 1 5. et (S) = P ar s, (5)
whenever I C I’ and s < sg + 1. By (2), we can choose ¢ depending on J, and m* such

that
C C
P a1, Tt ) (8 — Z) < Pt rdygermtr 0 (8) < Ty ag g gesminta (8) < Ry g g, gumiala (5+¥)»

for I, € m'. Take ty = c. Since for t >ty and s < sg, s + £ < 80+ 1, the above chain of
inequalities imply
Pong,a,(8 = ¢/t) < honrrin,g, () < Poargg, () < Boargir,,g.(s +c/t).
0
Assertion (1) of the theorem above allows us to replace J, by a big p and p~!-family
in questions involving local structure of h-functions. This observation is repeatedly used
later; see Theorem 6.7.
Next we prove that the sequence hy, 1 s, a(s) is uniformly bounded on every compact
subset. When J, = JIP"l for some J, we refine the bound to show that h,, s s, 4(s) is
bounded above by a polynomial of degree dim(R/J) in Theorem 3.16. The uniform (in

n) polynomial bound on h,, is used in the extension of the theory of Frobenius-Poincaré
functions in Lemma 4.1 and Theorem 4.3.

Lemma 3.14. In a local ring (R,m), let I, J, satisfy Condition C. Let M be a finitely
generated R-module. Given sg € R, there is a constant C' depending only on so such that

Boaria.(s) < Cq
for all s < so and alln € N.

Proof. Choose « such that mP"1 C plsodl 4 Jn. So for s < s,

hn,M,I,J. (3) < Z(M

The last ineuqality is a consequence of [Mon83]. O

) < Cq”.

Remark 3.15. Given a noetherian local ring (R, m, k) containing I, and a field extension
k C L, denote by S the m-adic completion of L ®; R. Here R is the m-adic completion of
R which can be treated as a k-algebra thanks to the existence of a coefficient field of R; see
[Sta23, tag 0323]. The residue field of the local ring S is isomorphic to L. The natural map
R — S is faithfully flat. Now given a finite length R-module M, Ir(M) = ls(S ®r M).
We use this observation to make simplifying assumption on the residue field of R.

Theorem 3.16. Let (R, m) be a noetherian local ring of dimension d, I,J be two R-ideals
such that I + J is m-primary. Assume I is generated by p elements, M is generated by v
elements, and d' = dim R/J. Then:

(1) There ezist a polynomial Py(s) of degree d' such that for any s > 0,
I(M/(ITsa 4 Jlad) M)

Z(R/m[Q])
Moreover if d' > 0, the leading coefficient of P, can be taken to be

S P1(5>.

ve(I,R/J)
d’!
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(2) There ezist a polynomial Py(s) such that
(M /(T4 CINYs
Qe SO
q
In other words, hy ara(s)/q? < Pa(s).

(3) There exists a polynomial Py of degree d' and leading coefficient
that for any s > 0,

l/e(I,R/jl)!eHK(R) such

I(M /(1791 Jlad) M)
g

Proof. We may assume that the residue field is perfect using Remark 3.15.

limy, o0

< Ps(s).

(1) Suppose M is generated by v many elements. Then
I(M /(I + JW Y < wi(R/ I  Jlaly
< VZ(R/(IM)M + J[q])
< VI(F'"R/(I"*! + J)F"R)
< vur(EPR)(R/IPT + )
Let Py be the Hilbert-Samuel polynomial for the I-adic filtration on R/J; Py has

degree d' and leading coefficient % > 0. Since F, is a polynomial with positive

leading coefficient, we can fix sg such that for s > sq, [(R/I'*1 + J) = Py([s]) and
Py is non-decreasing. Thus for s > s,
WR/TH 4+ J) < Py(s + 1).

When R/J has Krull dimension zero, we can take the constant polynomial P (s) =
I(R/J) < oo, then I(R/I"*1 + J) < P,(s) for all s. When R/J has positive Krull
dimension, we can add a suitable positive constant to Py(s+ 1) to get a P; so that
I(R/I5) + J) < Py(s) on [0, sg + 1] and thus on R.

(2) Since lim,_,o [(R/ml?) /¢? = e (R) exists,

C = sup [(R/ml) /¢
exists. So for any n, [((R/ml)/¢* < C, and P, = C'Py satisfies (2).
(3)
I(M (1Tl + Jldypr)

lim,, 00 y
q
_ I(M /(119!  Jldypry [(R/mld)

S €HK(R)P1(S).
So P3 = epyg(R) P, works.
l

3.3. Lipschitz continuity of h-functions: Application of a ‘convexity technique’.
Proving continuity of hg;j,- when R is a domain is more involved than proving its
existence. In this subsection, we develop results aiding the proof of Lipschitz continuity of
hg.r,5, proven in Theorem 3.20. When J,, = J [ these results are used to prove existence
and continuity of the hA-function of a finitely generated module in Theorem 3.29, by
reducing the problem to the case where R is reduced. The key result which allows these
reduction steps is Theorem 3.19. We prove Theorem 3.19 by utilizing the monotonicity
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of a certain numerical function. This technique of using the monotonicity which we call
the ‘convexity technique’ is repeatedly used later for example to prove left and right
differentiability of the h-function among other properties. The required monotonicity
result appears in Lemma 3.17. This is an adaptation and generalization of Boij-Smith’s
result in [BS15] which is suitable for our purpose.

Lemma 3.17. Let (R, m) be a noetherian local ring, I be an m-primary ideal generated by
1 elements, M be a finitely generated R-module, S be the polynomial ring of p-variables
over R/m. Then the function i — [(I'"M/I"T1M)/1(S;) is decreasing for i > 0.

Proof. Consider the associated graded ring gr;(R). Since I is generated by a set of u
elements, as a graded ring gr;(R) is a quotient of the standard graded polynomial ring
R/I[Ty, ..., T,] over R/I. Recall S = &[Ty, ..., T,]. Since M/IM is Artinian, there exists
a filtration

0=NyCN;y C..CN =MJ/IM, such that N;41/N; = R/m for0 < j <[ —1.

Let M; be the gr;(R)-submodule of gr;(M) spanned by N;. Then M;,/M; is annihilated
by mgr;(R). So it is naturally a gr;(R)/mgr;(R)-module, hence is an S-module, and it is
generated in degree 0. So by Theorem 1.1 of [BS15], for any i > 0,

W Mjr [M;)i/1(S:) 2 (M1 /Mj)ia /U Sis1)-
Since truncation at degree i is an exact functor from gr;(R)-modules to R-modules, taking
sum over 0 < j <1 —1 we get [(M;);/1(S;) > l(M;)i11/1(Si41). Since M; = gr;(R)N;, =
gr; (M), we are done. O

When [ is a principal ideal, the above lemma manifests into the following easily verifiable
result.

Example 3.18. Let R be a noetherian local ring, f be an element in R such that R/fR
has finite length. Then for any j > > 0, I[(f'R/f"™™R) > I(fR/f’*'R). This means
that the function ¢ — I[(R/f*R) is convex on N; see Definition 5.2.

Theorem 3.19. Let R be a noetherian local ring, M be a finitely generated module of
dimension d. Suppose I, J, satisfy Condition C. Fiz 0 < s1 < sy < oo € R. Then there
1s a constant C' and a power qy = p™° that depend on sy, S2, but independent of n such
that for any s1 < s < sy —1/q and q > qo

(ITsal + J )M
(ITsal+1 4 J, )M
In other words, whenever s1 < s < sy — 1/q and q > qo,

|hnar(s+1/q) — hpa(s)| < Cqt L.

Proof. We may assume si, sy € Z[1/p|. Otherwise, since Z[1/p] is dense in R, we can
choose s) € (0,s1) NZ[1/p], s € (s2,00) N Z[1/p] and replace s1,s9 by s/, s5. Choose
s3 € Z[1/p] such that 0 < s3 < s; and choose ¢q such that s1qo, S2qo, S3g0 € Z. Let I be
generated by a set of g many elements. Applying Lemma 3.17 to the module M/ J, M we
know for any 0 < ¢ < [sq],

) < Cg*!

l( ITsa1 (M) J, M) ) l( It(M/Jn, M) )

ITsa1+ (M J, M) T L(M] T, M)
(u+ (sq]fl) — (/ﬁ-t—l)
pn—1 pn—1

Rewritten, the above inequality yields



h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND FROBENIUS-POINCARE FUNCTION 15

I (Ileal4 1) M ) l(((It—l—Jn)M )

aTsal 1y g )M I 7,)M
p+lsq]—1 - ptt—1
() (50

Thusfor81§s§82—$andq2q0,

sq]—1 (It+J,)M
(o] — spa)i( Lo My (ot [oa] = 1Y N U dwn)
’ (I[th—l"‘Jn)M - u—l (;H—t—l)

t=s3q p—1

R GRR R R AIT
) L

< @y W goan) ~ s ar)
R L

< (u-i-j_ql—l) [ ((]S2q + Jn)M) B ((Is3q + Jn)M)]

Therefore for 51 < s < 59 — % and q > qo,

My L U Dy My My o
(I(sq1+1_|_Jn)M ~ 510 — S3q (M-‘r;_ql—l) (I%29 + J,) M (Issa + J, )M’ — .
By Lemma 3.14, we can choose a constant C’ depending only on s, such that for s < s,,
M
l(m) < C'q".
Since (“+:fq1_1) / (“Jr:iql_l) is bounded above by a constant depending on s, s, s3 and s3

depends only on s, we can choose C' depending only on s, so such that for all n and
q Z qo,

( (11l + J, )M
(ITsal+1 4 J )M
Here C' is a constant only depending on s1, o, 3, and s3 depends only on s;. U

) < Cg'

Therefore, whenever hyy 1 j, exists, it is locally Lipschitz continuous away from zero.

Theorem 3.20. Let I be an ideal and J, be a family of ideals satisfying Condition C
in a domain (R,m) of Krull dimension d. Given real numbers 0 < sy < sq, there is a
constant C' depending only in s, o such that for any x,y € [s1, sa),

|hr(x) — hr(y)| < Clz -y
Proof. Given sy, so as above and z,y in [s1, so], by Theorem 3.19, we can choose a constant
C depending only on si, so such that
ons) = o e0)] = Vet 1) = (122D < € P 0 g

Divide both sides by ¢¢ and take limit as n approaches infinity. Since for any real number

s, 1) and [gs]/q converge to hg(s) and s respectively,

q
\hr(x) — hr(y)| < Clz —yl.
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Lemma 3.21. Assume the residue field of R is perfect and M is a module of dimension d.
For each integer ng > 0 and fized 0 < s1 < so < o0 € R, there is a constant C' independent
of n such that

|Pngngnr1,0(8) = Ry propy g (8)] < Cq'!
for any s; < s < s5.

Proof. For any qo, [sqqo] < [sqlqo < [sqqo] + go- We have,

|Prntng 1,0 (8) — hn,FfoM,I,J,d(5)|
= |Z(M/([[sqqo1 + J[qqo])M) — Z(FSOM/U(@ + J[q]>F*nOM)|
— U(M/([[sqqd + J[qqo})M> _ Z(M/(ﬂsqﬂqo] + J[qqo})M)’
- (l(]fsqq(ﬂ + J[qqo})M/(_ﬂquqo + J[qqo])M) + l(ﬂStﬂqo + J[QQO})M/(]fSlﬂ lao] 4 J[qqo})M)) )
Note that 1/qo[sqqe] > sq > [sq] — 1, so [sq]qo < [sqqo] + qo, so I1sa%1+a  [lsalao,
Suppose I is generated by p elements, then by Lemma 3.6, [[#d1%0 ¢ [(Isal=#+Dlo]  Now

by Theorem 3.19, we can choose a constant C' depending only on s, s, but independent
of ¢ such that for all s € [sq, sa],

(ITsae0l  jlaaoly Ny (ITsalao 4 laaoly pp
(TTsdtao  Jlaaol)r) "\ (FToallao] - Jlawol) 27
[sqqo0] [g0] ([sq]—p+1)[qo] [990]
< (1 + Juoh M (1 + Joh M < Cqtt

(](quUW-i-qo + J[QQO])M +1 (][stﬂ l90] 4 J[QQO])M -
]

The lemma above allows us to replace M by F]M in the proof of the existence of
har1.g4. Since we may replace R by R/ann(F]M) and for large enough ng, ann(F;° M)
contains the nilradical of R, we may assume R is reduced while proving the existence of
hoarr,g
Corollary 3.22. Assume the residue field of R is perfect. For each ng > 0, hps s .s.a4(s)
exists if and only if hipnoy, ;5 4(s) exists, and if they both exist then

qcc)th,I,J,d(S) = thO M,I,J,d(s)'

3.4. h-function of a module. For a noetherian local ring (R, m), R-ideals I, J such
that I 4+ J is m-primary and a finitely generated R-module M, we prove the existence of
harr,g in Theorem 3.29 and prove the local Lipschitz continuity of Ay 7,y in Theorem 3.30.
First, we prove preparatory results to reduce the problem of the existence of has ;s to the
situation where M = R and R is a domain. Recall:

Definition 3.23. Set AsshR = {P € SpecR : dim R = dim R/P}.

Lemma 3.24. [Mon83, Proof of Lemma 1.3]If M, N are two R-modules such that Mp =
Np,VP € AsshR. Then there is an exact sequence

0—-Ny—>M-—-N—>N;—0

such that dim Ny, dim Ny < dim(R) — 1. Moreover it breaks up into two short exact
sequences:

0—>N,—>M — N3 —0
0—> N3 —> N — Ny — 0.
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Lemma 3.25. Let N C M be two R-modules of finite length, and take a € R, then
I(M/aM) > 1(N/aN).

Proof. Consider the commutative diagram,

00— 0:na y N —2 5 N >y X > 0
0—— 0:ya » M —2— M > AL » 0

We see the map 0 :xy a — 0 :p; a is injective. By the additivity of length on exact
sequences we see [(M/aM) =1(0:p a) > 1(0:5 a) = (N/aN). O

Lemma 3.26. Let (R,m, k) be a local ring of dimension d. Suppose I, J, satisfy Condi-
tion C, and M is a module of dimension d < d—1. Fiz sy € R. Then there are constants
C1, Cy depending on sq but independent of n such that [(Torg (R/ (191 +.J,), M)) < Cyq?!
and 1(Tor®(R/(IT91 + J,), M)) < Caq®" for any s < so. Moreover if J, is big, Cy,Cy
can be chosen independent of s.

Proof. Since I, J, satisfy Condition C, we can find an m-primary ideal J such that for
s < sg, JI C 11591 -, for all n. As M/JWM surjects onto Tor(R/ (117 + J,), M), and
we can find a constant Cy, such that [(M/JM) < Cyq¥™ M [(Torf(R/IT + Jldl M) <
C’lqd_l.

To see the bound on Tory, for a fixed s < sg, consider the exact sequence:

0— (Il 47,y = R/ J9 — R/(1T=41 4+ Jld)y 5 0
So by the long exact sequence of Tor, it suffices to show that we can choose C satisfying

]fSlﬂ + Jn
Jldl
Choosing a Cj satisfying the first inequality is possible thanks to [HMMO04, Lemma 1.1].
For the remaining inequality, by taking a prime cyclic filtration of M, we may assume
M = R/P for some P € Spec(R) with dim M < dim R — 1. In this case, P ¢ Assh(R).
So we can choose b € P such that dim R/bR < dim R — 1. Apply Lemma 3.25 to
ITsal 4 jla/ jlad ¢ R/J we see that we can enlarge C independently of s and ¢ so that

Ifsal + g, Ifsal + .

(5" ®r R/P) < 1U(—5" @ R/bR)

<UR/J9 @5 R/bR) = I(R/bR + JU) < Cog?.

[(Torf'(R/J, M)) < Coq™ " and ( ® M) < Cog™".

If J, is big then for large s, I1*71  J, for all n. So we can find constant D such that
for every n, I(Torf(R/(I"*? + J,), M)) and (Torf(R/(1'9! + J,), M)) are constant for
s> D. So C},Cy can be chosen independent of s € R. So we are done. O

Lemma 3.27. Let M, N be two finitely generated R-modules that are isomorphic at
P € AsshR. Then for any t > 0, there is a constant C' depending on M, I, J,t but
independent of n such that for any s <t

|Pna,a(s) = hana(s)] < Clqg

Moreover if J is m-primary, then C' can be chosen independently of t.

Proof. By Lemma 3.24, there is an exact sequence

0—>N,—->M-—>N—>Ny—0
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such that dim N;,dim Ny < d — 1. And it breaks up into two short exact sequences:
0—>N —>M—N3—0
0—+Ns—>N—-Ny—0

Now by the long exact sequence of Tor we get

UL/ JIAL) = LN/ (1) TN | < U/ (1) TN,

N. N
|I( ° ) — U )|
(NSM _|-J[q})N3 ([fS(ﬂ —|-J[Q])N
N, R R
= l((]fscﬂ 4 J[Q])N2> +{(Tor; ([fscﬂ 4 J[Q]’N2>) ’

Thus by Lemma 3.26, there is a constant C' such that
[[(M /(1T + gy Ary — (N (179 + JYN)| < Cgt
and divide both sides by ¢ to get the conclusion. U
Lemma 3.28. Let (R, m, k) be a local ring, 1, J be two ideals such that I+ J is m-primary,
and M be a finitely generated R-module of dimension d. For any 0 < s; < sp < 00,

there is a constant C depending on M, 1, J, s1, so but independent of n such that for any
s1 <5 < 859

|in+1.00.4(8) = hnpra(s)| < C/q

Proof. We may assume that the residue field is perfect using Remark 3.15. Choose
sufficiently large ng such that R/ann(F"0 M) is reduced. The positive constants C1, Cy, Cs
chosen below depends only on M, I, J, s1, so and is independent of n. By Lemma 3.21,
| Ao na,1,0(8) — hn,FSOM,LJ(SN < Clqd_l
and
\Ponnot1,00,1,5(8) — hn+1,Ff°M,I,J(8)‘ < Clqdfl

So it suffices to prove existence of a suitable C' such that

g1 mr0ar,a(8) = By proaga(s)| < O
Replacing M by FM and R by R/ann(F]°M), so we may assume R is reduced. In this
case it suffices to prove

| s1,01,0,5(8) = hn poasra(s)] < Cag® .

Thanks to the reducedness of R, Rp = Rp/PRp is a field and Mp is free over Rp for
any P € Assh(R). Applying equation 2.2 of [Kun76] to the domain R/P, we see the
localizations of M®P" and F.M are isomorphic at all P € AsshR. So by Lemma 3.27,

\hn ronar,0(s) — pdhn,M,I,J(S)| < Ozqt.

Thus one can choose a C’ which depends only on M, I, J, s1, so such that for all s € [s, $9]
and n € N,

| hnt,01,0,0(8) = PP haang,i(s)] < C'qg
Dividing by (pq)? and letting C' = C"/p?, we get

\hns10a,1,0.4(8) = hnarr,a(s)| < C/q.
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Theorem 3.29. Let (R, m, k) be a noetherian local ring, I,J be two R-ideals such that
I+ J is m-primary, and M is a finitely generated R-module. Then for every s € R,

iyt 12.(5) = s (9

exists. Moreover the convergence is uniform on [s1, se] for any 0 < s; < sy < 00.

Proof. By replacing R by R/ann(M), we may assume dim(M) = dim(R). Given sy, 5 as
in the statement, it follows from Lemma 3.28 that h, as7.s(s)/q ™) is uniformly Cauchy
on [s1, s3]. So the theorem follows. O

We also have:

Theorem 3.30. Let (R, m, k) be a local ring of dimension d, I, J be two R-ideals such
that I + J is m-primary, and M be a finitely generated R-module. Then:

(1) har(s) is Lipschitz continuous on [sy, s3] for any 0 < s < s9 < 0o. Consequently,
it is continuous on (0, 00).

(2) ha(s) is increasing. It is 0 on (—o00,0]. It is continuous if and only if it is
continuous at 0, if and only if lim, o+ har(s) = 0. The limit limg_,o+ hpr(s) always
exists and is nonnegative.

(3) Assume J is m-primary. Then for s >> 0, h,p(8) = egx(J, M) is a constant.

(4) There is a polynomial P(s) of degree dim R/J such that hy(s) < P(s) on R.

Proof. (1) An argument similar to that in the proof of Theorem 3.20 with R replaced
by M and J, = J yields a proof. The difference is that when .J,, = J!9, we know
the existence of hasz,;.

(2) If 51 < sy, then [s1q] < [s2q], so 115291  [1519]. This implies
LM /(I8 4 J Ny < (M (17290 + Jlay g,
which is just
hn,M(Sl) S hn,M(82)-
So after dividing p and let n — oo, we get hps(s1) < hp(s2). This implies
har(s) is increasing; so in particular the limit lim, o+ has(s) always exists and is at
least hys(0). If s <0, then [sq] <0, so I = R. Thus M/(I#191 + Jld)M =0
and hy, pr(s) = 0 for any n, so hp(s) = 0. So hp(s) is continuous on (—oo, 0) and
(0,00), and lim, - har(s) = 0 = hp(0), so we get (2).
(3) Let J be generated by u elements. For s >> 0, Is/#l ¢ J. So Ils7l ¢ [ls/wlan
T C T, 50 g (s) = UM/ JUM) and hyy(s) = limg oo 52 = e (J, M),
(4) This is a corollary of Theorem 3.16 and Theorem 3.29.

n dim M

O
We record the associativity formula for h-function Lemma 3.27.

Proposition 3.31. Let M be a d-dimensional finitely generated R-module. Let Py, P, ...,
P, be the d-dimensional minimal primes in the support of M. Then,

t
hM,I,J,d(S) = Z lRpj (MPj)hR/Pj,IR/Pj,JR/Pj,d(S)-

J=1

Proof. By replacing R by R/ann(M ), we can assume dim(R) = d. We can always assume
R is reduced. Indeed, since R is noetherian, we can choose ey such that the image of the
nilradical of R under the ey-th iteration of the Frobenius is zero. Now by Corollary 3.22,
we can replace M by some F°M and pass to the reduced case. Once R is reduced, the
two modules



20 CHENG MENG AND ALAPAN MUKHOPADHYAY

t
M and @

j=1

R \ig, (Mp))
(%)

J

are isomorphic after localizing at each of the primes P;’s. So the result follows from
Lemma 3.27.
O

We analyse how hp s depends on different closure operations of ideals. We refer to
[HSO06] for results on integral closure of ideals.

Proposition 3.32. Let (R, m) be a noetherian local ring of dimension d.
(1) Let I,J be ideals such that I + J is m-primary. Let J* be the tight closure of J.
Then hRJJ = hR7I’J*.
(2) Assume R is a domain. Let I, J, satisfy Condition C? . Let I be the integral
closure of I. Then hpr.j, = hg7 .-

Proof. We first prove (1).

1 1 1 ITsal 4 (J*)[q] 1 (J*)[tﬂ
(3.4) Ehn,R,I,J(S) — Ehn,R,I,J*<S) = @l W) < @l( 7Tl ) -

Since R is noetherian there is an element ¢ € R which is not any minimal primes of
R such that c(J*)[q] C Jl for all q. Fix a choice of r-many generators of J*, the ¢-th
powers of these generate (J*). Thus the length of (J*)!/J4 is bounded above by
rl(R/(c, J)). Since the Krull dimension of £ is at most d — 1, {(R/(c, JW)) = O(¢*")
by Lemma 3.14. Thus taking limit as ¢ approaches infinity in Equation (3.4), we conclude
hR,I,J(S) = hR,I,J*(S)-

For (2), recall that there is a natural number ng such that

—n+no

]n—i-no g I g ]ﬂ)

for all natural numbers n. Thus for a positive real number s and ¢ large enough,

1 U 1 1

Ehn,R,I,J.(S - ;) < Ehn,R,T,J.(S) < Ehn,R,I,J.(S)'
Thus for a positive real number s, hp7 ;. (s) = hgrr.s,(s); see Theorem 3.20. The desired
equality at zero follows from definition. U

4. FROBENIUS-POINCARE FUNCTION IN THE LOCAL SETTING

We prove the existence of Frobenius-Poincaré functions in the local setting. Given an
ideal I and a family J, and a finitely generated R-module M, set

1
Jor1.0.(8) = hoarra. (s + a) — hn1,0. ().

When J, = J4 f, 111.(s) represents f, 177, (s). We drop one or more parameters in
fn.m1.5, when there is no resulting confusion. For the rest of this article, we denote the
imaginary part a complex number y by Sy and the open lower half complex plane by €2,

ie. Q= {y e C|SQy <0}

2We do not need the domain assumption when J,, = J.
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Lemma 4.1. Let (R,m, k) be a local ring of dimension d, I, J be two R-ideal, I + J is
m-primary, and M be a finitely generated R-module. Consider the function defined by the
infinite series

[e.e]
Fomr(y) = Z fanrra(j/q)e
=0

Then F,ar1.5(y) defines a holomorphic function on §2. We often drop one or more
parameters in F, 7.5 when there is no chance of confusion.

Proof. There is a polynomial P such that f,, ap(s) < hpa(s+ 1) < P(s) for any s; see
Theorem 3.16, Theorem 3.30, assertion (2). Thus

|\ fortrrs(G/q)e ™79 < P(j/q)e’>V/1.

Since for fixed € > 0, the series > ;. P(j/ q)e7¢/7 converges, on the region where
Sy < —¢, the sequence of functions > 72 fuarrr,s(j/ q)e~"/7 converges uniformly. The
limit function is thus holomorphic [Ahl79, Theorem 1, Chap 5]. Taking union over all
e > 0, we see F,, p(y) exists and is holomorphic on (2. O

Remark 4.2. For a big p, p~'-family J,, the analogous F}, a7, (y) defined using fo, a1z,
is entire since the corresponding sum is a finite sum of entire functions.

Now, we want to check the convergence of (Fy, ar1.5(y)/q ™), whenever it exists. We
will be repeatedly using the dominated convergence: if a sequence of measurable functions
fn converges to f pointwise on a measurable set 3 and there is a measurable function ¢
such that |f,| < g on ¥ for any n and [ [g| < oo, then [ |f, — f| converges to 0, so in
particular fz fn converges to fz f.

Theorem 4.3. Let (R,m, k) be a local ring, I, J be two R-ideal, I + J is m-primary, and
M be a finitely generated R-module of dimension d.

(1) Assume J is m-primary. Then Fy g 5(y) = limy, o Foar(y)/p™ exists for all y € C.
This convergence is uniform on any compact set of C. Suppose hy(s) is constant for
s> C, then Farrg(y) = fOC hor(t)iye=™tdt + hyr(C)e=C.

(2) Assume J is not necessarily m-primary. Then for every y € Q, F, a(y)/p™ converges
to

Fura(y) = /hM(t)e_iytiydt.
0

Moreover, this convergence is uniform on any compact subset of Q@ and Fp(y) := Far1.5(y)
s holomorphic on Q.

Proof.
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(1) Since J is m-primary, then hy(s) = hp(C) for some fixed C' > 0 and any s > C; see
Lemma 3.8 and Proposition 3.31. Then,

Fon(y) =Y fama(G/q)e ¥/
j=0

[
WE

(hpat((J+1)/q) — hn,M(j/q))e—iyj/q

Q .
S|
| o
—

(haar (G 4 1)/@) = haar (/@) 47/

Il
Q .
Ny
Lo

1

hnyM(j/qufiy(jfl)/q _ efiy(j)/q) + hn,M(C)e_iy(C_E)

I
Q .
1 1M
)

Bt (/@) ¥919(17 — 1) 4 hy pr(Ce™¥C0)

<.
Il
o

T v ()13 (99 — 1)dt 4 hy 1 (C)e™C3)

I
c\
Q

Fix a compact subset K of C. Given § > 0, choose b > 0 such that for all y € K, t € R
and n € N

N

b
1 . . .
/ (llaar (721 = 1)| 4 (0 Gl <
0

We have

1 c o .
i Faar(y) - / has (£)e™ ¥ (i) dt — has (C)eC|
0

c
< / [ ara(t)e™ 1 aq (et — 1) — h(y)iye™|dt + [haar(C)e™™ ™) — hag(C)e™
0
b
< / ([P ara(t)e™ 1 9g (/e = 1)| + [har(t)e™ ™ (iy)|)dt
0
c
[ nanatte Vg€ = 1)~ hly)ive a4+ nar(C)e O  har(Che ).
b
Moreover for y € K, there is a constant C” independent of n such that for all ¢ € [b, C]

\hnaca([tq]/q) — hau ()] < C'/qand [e¥Hal/2g(e/e — 1) — ' (iy)| < C'/q.

Thus we can choose Ny such that for all n > Ny and y € K,

1 c 4 ,
|$Fn,M<y> - / hM(t)e_Zyt(iy)dt — hM(C)e_ZyC| S (5
0

This proves the desired uniform convergence.
(2)We prove uniform convergence of F,, pr/q? to the integral on every compact subset of ©;
the holomorphicity of F); is then a consequence of [Ahl79, Theorem1, Chap 5]. We have
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FnM(y) = an,M(j/(])G_iyj/q
j=0
=S " (G +1)/0) = hure(G/a))e 9/
7=0
=5 i (G/a) (e G0/ — v/
j=0

- Z hn,M(j/q)e_iyj/q(eiy/q ~1)
=0

— / hmM(t)e_inqqu(eiy/q — 1)dt .
0

The rearrangements leading to the second and third equality are possible thanks to the
absolute convergences implied by Theorem 3.16. Fix any compact K C (2. Using triangle
inequality, we get

| a(t)e ™ 0 (/1 — 1) — h(t)e~ " (iy)|

[tq] [tq]
q

< Jhat) = h(B)[le ™0 g(e/® — 1)| + |A()]]e ™ T — e~ ¥||g(e/t — 1))
HR(E)] e~ ||g(e™/1 — 1) — iy|
= |hna(t) — h(E)]Je™ ¥ 0 (/1 — 1)] + |h(t)e= ]|~

Hh(E)e " lg(e' — 1) — iy .

[tal
q

—1lg(e” — 1)

It follows from the power series expansion of e* at zero and the boundedness of K that
there are constants C7, Cs such that forally € K ,t € Randn € N

. 4 , 2 al tq
(e = 1) < Cubl la(e — 1) — ] < G ey < oy -

Choose € > 0 such that K C {y € C|Qy < —e}. Using the comparisons above, we get
forallye K ,t € Rand n € N,

i a(t)e™™ 5 (/1 — 1) — h(t)e~ ¥ (iy)|

o —et —et 2 2 [tq—l . €t w
< hna(t) = h(t)le™"Cilyl + |h(t)e™|CF|y] |T t[ + [h(t)e”|C: .

2 2
< [na(t) = (D)™ Cily| + |h<t>e“\€f% - 'h<t>€“|02% '

Taking integral on Rs(, we get for y € K and all n € N

1
|¥Fn,M(y) — Fu1.0(y)]

[e.9] ) 00
< Cilyl / [Fina(t) —h(t)le‘“dt+(cf+02)% / |h(t)|e~dt .
0

0
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Thanks to Theorem 3.16, (2), we can choose a polynomial P, € R[t] such that |h, 4(t)] <
| P2(t)] for all n and ¢ € R. Since | Py(t)e™ | is integrable on Rsg, by dominated convergence

o0

lim | |hna(t) — h(t)]e”dt = 0.
n—oo
0
Using this in the last inequality implies uniform convergence of q—lan, m(y) to Farrs(y) on

K. U

Remark 4.4. Suppose hy(y) is constant for y > C. Since for y € €, hy(C)e=%¥C converges
to zero as y approaches infinity, the two descriptions of Ay, in this case match on €2. When
J, is both big p and p~!, our argument actually produces a corresponding entire function
Fura, ().
Definition 4.5. Let I, J be two ideals in (R, m) such that I + J is m-primary. For a
finitely generated R-module M, the function Fi; s(y) is called the Frobenius-Poincaré
function of (M, I,J).

We drop one or more parameters from Fj 7 ; when there is no possible source of
confusion.

The next result directly follows from Proposition 3.31.

Corollary 4.6. Let M, N be two R-modules such that dim M = dim N = dim R and
their localizations are isomorphic at all P € AsshR. Then Fy(y) = Fn(y).

Proof. This is true because hy;(s) = hy(s). O

5. EXISTENCE OF DENSITY FUNCTION IN THE LOCAL SETTING

In this section, we discuss the extension of the theory of Hilbert-Kunz density function
in the local setting.

Definition 5.1. Let [ be an ideal and J, be a family of ideals in (R, m) satisfying
Condition C. For a finitely generated R-module M and s € R, recall

( Ilsal Jo )M
CEEYAITA
Whenever ((%)dim(M )7L o ai1.0.(8))n converges, we call the limit the density function of
(M, I,J,) at s and denote the limit by fasr.s.(s). Whenever fyr 5, (s) exists for all s € R,
the resulting function fus s, is called the density function of (M, 1, J,).
We often drop one or more parameters from f,, a7, (), farr.s.(5), farr.s, whenever
those are clear from the context.

1
o 1.0.(8) = hoarra. (s + 5) — by, (s) = 1U(

In Theorem 5.8, we relate the existence of fa 1, (s) to the differentiability of ka1,
at s-whenever hy s, exists. We show that hjs s, is always left and right differentiable
everywhere on the real line. The new ingredient is our ‘convexity technique’. The h-
function being Lipschitz continuous is differentiable outside a set of measure zero. But
our method shows that the h-function is continuously differentiable outside a countable
set. Recall:

Definition 5.2. Let S be a subset of R. We call a function A : S — R to be convez if for
elements of S, 51 < 89 <ty < to,

A(s2) — A(s1) S A(t2) — )\(tl).
S9 — 81 - tQ — tl
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Convexity is a notion that appears naturally in mathematical analysis. For references
on convex functions, see [NP0G6.

Let I, J,, M be as above. Now we lay the groundwork for the construction of the convex
function H(s, sp) in Theorem 5.3. Fix p such that [ is generated by p-many elements.
Set M, = M/J,M and S to be the polynomial ring in 4 many variables over R/m. Given
a compact interval [a,b] C (0, 00), thanks to Theorem 3.19 we can choose C' such that for
all z € [a,b] and n € N

I'=al M, 1 di
4 _ Y im(M)—1
TN, hy(z + q) ha(z) < Cq .

Recall,
(Sfe)) = (’“‘ * leal = 1) (= DN ([aq)) + O(Tag] ).

Fix sg € R. Taking cues from these two estimates, for s > sq we define

[sq]—1
(5.1) (s,50) = »_ @ OO M, /P M,)/1(S)) .
j=Is0q]
Theorem 5.3. Let I, J, in the local ring (R, m) satisfy Condition C, M be a finitely

generated R-module of Krull dimsnion d, I be generated by a set of u elements. Set
M, = M/J,M, fiz so € Ryy. Consider the two situations:

(A) R is a domain and M = R.
(B) J, = J9 for some ideal J such that I + J is m-primary and M is any finitely
generated R-module.
Set c(s) = %, where p is such that I admits a set of generators consisting of
elements. In the context of (A) or (B)?, set

H(s, 50) = hary 1 (5)/c(5) — har 1 (50) (o) + / hansn (B )/ () dt

s0
(1) On any compact subset of (s, 00), Hnu(s, so) uniformly converges to H(s, so).
(2) The function H(s, so) is a convez function on (sg,00).

Proof. (1) Let H, (s, so) be as in Equation (5.1). We have

[sq]—1

Hols,s0) = Y "7 (I M,/ M,)/1(S;)

J=[s0q]
[sq]—-1 , j
ST @AM,/ P, — (M, /M) /IS
j=[soq]

= M T M) (ST 1) = UM/ T 1) (S )
[sq]—1

) @M/ P M) (L/U(S5) = 1/U(S))) -

Jj=lsoq]+1

Since we are in the context of (A) or (B), ¢"~4 (M, /I M,)/I(S[s-1) converges to
h(s)/c(s) and g @=1I(M, /1709 M) /1(Sspq1) converges to h(sg)/c(so). Also,

3has1., exists in the context of (A) or (B)
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[sq]—1

ST M, P M) (/S ) — 1/I(S))
j=[so0q]+1

s=Y/a 1 (T N 1 1
[ U
% q U(Stig1—1)  U(Spq))

When ¢ approaches infinity, %

converges to hy(t), and (l(S[tllﬂ—l) - l(S(lm))(qu)

converges to ¢/(t)/c?(t). Also, all these convergence are uniform on any compact subset of
(0,00). So we get a uniform convergence (uniform on s) on any compact subset of (s, 00):

s=Va (N /Tltal pp 1 1
/ ( Q/ . q) )(q“)dt
s q [(S|tg)-1) Z(SLtq)

— / 2(t)dt.

This proves that H,(s, sg) converges to H(s, sg) and the convergence is uniform on any
compact subset of (sg, 00).

(2) We claim H,, is convex on 1/p"Z N (sg,00). To this end, it suffices to show

1+ 1 ) 142 1+ 1
H,(——,80) — Hn > H, ,S0) — Hp(——
(pn 0) (p 50) (p 0) (

n 780)-
By definition, this is equivalent to showing
W(I'M, /T M) J1(S;) > 1T M,/ T2 M) J1(Siya),

which follows from Lemma 3.17. This convexity of H,(s, so) implies the convexity of
the limit function H(s, sg) on (sg,00) N Z[1/p]. Therefore for s < so < ¢ < t3 in
(807 OO) N Z[l/p]a

H(s2,50) — H(s1, 80) > H(ta, s0) — H(t1, 80)

S9 — 81 - t2 — tl ’
Since H(s, sp) is continuous on (sg, 00), (s,t) — H(t,so) — H(s, s0)/(t — s) is continuous.
Moreover as Z[1/p] N (sg, 00) is dense in (sg, 00), the slope inequality defining a convex
function (see Definition 5.2) holds for H(s, sq) for points in (s, 00). O

Theorem 5.4. With notations set in the statement of Theorem 5.3, set H(s) = H(s, so).
Denote the left and right derivative of a function X at s € R by N_(s) and X_(s) respectively.
In the context of situation (A) or (B) stated in Theorem 5.3,

(1) Outside a countable subset of (sg,00), the derivative of H exists and is also
continuous. The left and right derivative of H exists everywhere on (sg,00). The
second derivative of H exists almost everywhere, i.e. outside a subset of Lebesgue
measure zero of (Sg, 00).

(2) The left and right derivatives of H are both decreasing in terms of s. We have
H' (s) <H' (s), and if s1 < 59, H' (52) < H' (51).

(3) Outside a countable subset of (0, 00), the derivative of h exists and is also continuous.
The left and right derivative of h ezists everywhere on (0,00). The second derivative
of h ezists almost everywhere on (0, c0).

(4) On (s9,00), b (s) =H' (s)c(s), W' (s) = H' (s)c(s) exists, and b’ (s) < h' (s) for
any s € (0,00).
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Proof. Thanks to the convexity of H proven in Theorem 5.3, (2), outside a countable
subset A of (sg,00), H is differentiable. On (sg,00)\ A, the derivative of H is decreasing as
‘H is convex. Now a decreasing function defined on a subset of R can have only countably
many points of discontinuity. So there is a countable subset of (sg, 00) outside which A is
continuously differentiable.

(2) follows from properties of convex functions.

(3), (4): Recall

H(s, s0) = harr,.(s)/c(8) — harr..(s0)/c(s0) + /S hasg.g.(t)c (1) /2 (t)dt.

S0

Since in the context of (A) and (B) hpsr.y, is continuous on (0, 00), the part of H(s, so)
given by the integral is always differentiable. So (3) follows from the analogous properties
of H(s,sp) in (1) by varying so. The formulas in (4) follow from a direct computation.
That b/ (s) < h’_(s) follows from these formulas and (2). O

Remark 5.5. Trivedi asks when the Hilbert-Kunz density function of a graded pair (R, J)
is dim(R) — 2 times continuously differentiable; see [Tri23, Question 1]. In general the
Hilbert-Kunz density function need not be dim(R) — 2 times continuously differentiable;
see [Muk23, Example 8.3.2]. Our work shows that the Hilbert-Kunz density function
is always differentiable outside a set of measure zero. Indeed, a convex function on an
interval is twice differentiable outside a set of measure zero; see [NP06, Section 1.4]. Thus
from Theorem 5.3, it follows that outside a set of measure zero the h function is twice
differentiable. Now from Theorem 6.7, we conclude that the Hilbert-Kunz density function
of a graded domain of dimension at least two is differentiable outside a set of measure
Zero.

Remark 5.6. The conclusions of Theorem 5.3 and Theorem 5.4 are deduced in the context
of situation (A) or (B), because we prove existence and continuity of hys s s, in those
two contexts. So even outside the context of (A) or (B) whenever there is an h-function
continuous on (0, 00), we have a corresponding version of Theorem 5.3 and Theorem 5.4.

We return to the question of existence of fi 7. (s) at a given s € R. We make
comparisons between the limsup and and liminf of the sequence defining fas 7, (s) and
the corresponding A/, (s) and A’ (s).

Lemma 5.7. With the notation set in Theorem 5.3, set
Dy = fuprr,0.(t/p") = hoarg0,(E+1)/0") = hnarga, (8/D").

In the context of situation (A) or (B),
(1)

[sp™p"]+p"—1

Dm—l—n,t
/ o . . t= [Spmp”q
) = B T
(2)
[sp™p"]—1
Dern,t

t=[spmp"]—p"

W-(s) = lim_lim prld=1) pd
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Proof. (1) Note

[Spmpn'l +pn —1

Z Dm+n,t
t=[sp™p"]
= D> (/")
t=[sp™p"]
= R ([5p™ "1/ + 1/P"™) = B aa ([sp™p" 1 /p™P") -
Since in the context of (A) or (B), the h-function exists, the right hand side of the desired
equation in (1) is

Pongna ([sp™ 0™ /07" 4 1/D™) = B ([sp™ 0™ /0" p")

n%l—{noo nh—>nc}o pm(d—l)pnd
1/p™) —
o harls 1™ — hu(s)

=N, (s).
(2) Note
[sp™p"]—1
Z D m—+n,t
t=[spmpm]—p"
[sp™p"]—1

= D fmma (/7P

t=[spmp™]—p"
= Pt ([sp™P"1/P"D") = hnn e ([sp™p" 1 /p"p" = 1/p™)

Thus the right hand side of the desired equation in (1) is

P pr ([ 800" /070") — Bngna ([sp™p™ ] /p™p" — 1/p™)

Jim_ iz o
o Ba(s) — harls — 1)

=h_(s) .
U

Theorem 5.8. With the same notation as in Theorem 5.3, in the context of situation

(A) or (B),

(1) for any s >0,
hl—l—(s) S h—mn—mome,I,J.(S)/pn(d_l) S mn—)oofn,M,I,J. (8)/pn(d_1) S h/—(8)7
where lim and lim denote liminf and limsup respectively.

(2) At s >0, if hyy is differentiable, then fu1.,(s)- the density function of (M, I, J,)
at s exists and is equal to Wy ;5 (s). If har(s) is a C'-function, then fa(s) is
continuous.

(3) There is a countable subset of (0,00) outside which farr..(s) exists and is equal to

h/M,I,J. (s).

Proof. (1) In the proof, we also use the notation set in Lemma 5.7, (1). Set

pw+t—1
(67 = .
,Lt,t ILI/ _ 1
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Note D, = I((I* + J,)M /(I + J,,)M). For a fixed n, D,,;/a,; is a decreasing function
of t, thanks to Lemma 3.17. So for [sp™p™] < ¢ < [sp™p"] + 0" — 1, Dpins/us <

Dm+n,f8p p”1/0‘u,(8p mpn], SO

(6%
st
Dm+n,t S Dern, [spmpn]

Qp,[spmp™]

O, [spmp™]+p™

< Dm+n,f5pmp"1 Qpr ]
| sp™p™

Also oy, is a polynomial of degree u — 1 in ¢, so

M n n 7110 n\p—1
lim T Qeferedee g ([P 4 p")

M—00N—00  (lyy [spmpn] M—00 N—00 [gpmpn—l p—1
m 1 pn—1
— lim M
m—00 (spm)ﬂ—l
=1.
So
[sp™p™]+p"—1
Dm-‘,—n,t
/ o . t=[sp™p™]

Mels) = Jim i

"
D" Dinin, [spmpn] QO [spmpn]+pn
—===n—0o0 m(d—1),nd
pmd=bp Qo [spmp™]

< lim lim

————m—>00

P" Dingen, [spmpn]
N—r00 pm(dfl)pnd

=lim . lim

Dmnsmn

= hmm—>oo n—)oopm(dfl)pn(dfl) .

For a sequence of real numbers (3, and any m, lim, . Byin = lim, . 5, is independent

Dm+n [s n n,[sp™]
lim,, _}OOWPP(”) =lim, , i Therefore we have

of m, so lim,_,

Dn sp™ . n
Wo(s) < lim, 2ty Jls)

n—00 pn(dfl) =22n—00 pn(dfl) :

The proof of the last inequality is similar. First we have If [sp™p™] —p" <t < [sp™p™] —1,
then Dm+n7t/a“7t Z Dm_t'_n’l'spmpn'l /Oéu,"spmpn" y SO

Qt

Dm+n,t > l)ern,[spmp"]—7
Qp,[spmp™]
Qp, [spmpn] —p»
2 Do, [spmpn] :
Qp, Tspmpn]
Also a,,; is a polynomial of degree ;r — 1 in ¢, so

i T Sl o (Tt =t
M—00 N—00 O[#’[spmpn] M—00 N—+00 [Spmpn'l u—1
(sp™ — 1)

m—00 (Spm)/‘_l
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So
[spmp™]—1
Dm+n,t
/ Y . t=[spmp]—p"
M) = B T e

D" Dinin, [spmpn] O, [spmpn]—pr
pm(d—l)pnd

> Timo0limy, 0
Q,[spmp™]
pm(dfl)pnd

D m+n,[spmp™]

= lim,,, oolim,, o Pl pe(d=1)

For a sequence of real numbers 3, and any m, lim,, 5,4+, = lim,, .3, is independent

of m, so hmm_mohmn_mp,,:'{d+;fn7;’f?> = hmn_m%. Therefore we have

Y. Dn sp™ e n
B (s) > T,y —l2 ] Jn(s)

=1 My — 00 =1

(2) If hyy is differentiable at s, A, (s) = h’_(s). Thus (1) implies that f, a(s)/q%"" exists
and is equal to h/(s), rest of (2) is clear.

(3) follows from Theorem 5.4, (3). O

Remark 5.9. We prove Theorem 5.8 in the context of situation (A) or (B) defined in
Theorem 5.3- which is precisely the contexts where we prove existence of hys 1 s, in this
article. Thus when (R, m) is a domain, 7, J, satisfy Condition C, we get a corresponding
density function which is well-defined outside a countable subset of (0, 00). One particular
special case, potentially important for its application to prime characteristic singularity
theory, is when J, is the ideal sequence that defines the F-signature of (R, m); see
Example 3.10.

When J, = J4 Theorem 5.8 yields a Hilbert-Kunz density function of (I,.J) well
defined outside a countable subset of (0, 00).

The function hyy, 7 s, need not be continuous or differentiable at zero. In Theorem 8.12, we
prove that for a local domain R, hp 1 s is continuous at zero if and only if dim R—dim R/ >
1 and differentiable at zero if and only if dim R — dim R/I > 2.

The following consequence of Theorem 5.4 and Theorem 5.8 is used in Theorem 8.15.
For the notion of integral closure and analytic spread appearing below, we refer to [HS06].

Proposition 5.10. Let (R, m) be a noetherian local domain, I, J, satisfy Condition C.
Let r be an integer greater than the analytic spread of I. Denote the right and left hand
derivatives of hr g, at s > 0 by h'(s) and h__(s) respectively. Then,

(1) Both the functions Zﬁfsl) and hs;fsl) are decreasing on (0, 00).
(2) Let fr.5, be the corresponding density function. For positive real numbers s; < so
such that fr j,(s1), fr.y.(s2) exist, we have

J1,.7.(52) < fI,J.(Sl).

syt T st

Proof. Once we prove either (1) or (2) for a certain r, the corresponding assertion follows
for a larger value of r follows immediately. So we assume r is the analytic spread of [.
Without loss of generality we can assume that the residue field of R is infinite. So there
exists r elements xq, s, ..., x, of I such that the integral closure of (z1,xs,...,x,) is I.
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We prove (1) now. By Proposition 3.32, we can assume [ is generated by r elements. By

Theorem 5.3, assertion (2) and Theorem 5.4, assertion (4), both hsifi) and hszfsl) are right
and left hand derivatives of a convex function. Since the right and left hand derivatives of
a convex function are always decreasing, we prove (1).

Assertion (2) follows from the following comparisons:

fr..(s2) < h_(ss) < . (s1) < fr.0.(s1)

r—1 — r—1 — r—1 — r—1
S2 2 S1 S1
see Theorem 5.8, assertion (1). O

Example 5.11. We point out that the h-function need not be differentiable on (0, 00).
Our example of a non differentiable h-function comes from [BST13]. Fix a regular local
domain (R, m) of dimension d and a nonzero f € R. For t € R, [BST13] considers the
function t — s(R, f*): the F-signature of the pair (R, f*) which is shown to be the same

as
1 R
s(, 1) = Jim, Gl )
With I = (f), hrrm(t) =1 — s(R, f*); see [BST13, section 4]. At ¢t = 1, the left hand
derivative of h; is the F-signature of R/ f; see [BST13, Theorem 4.6], while the right hand
derivative is zero since h(s) = 1 for s > 1. So h is not differentiable at one if and only if
the F-signature of R/f is nonzero, precisely when R/ f is strongly F-regular. A concrete

example comes from the strongly F-regular ring, F,[[z, v, z]]/(z* + y* + 2?) with p > 3.

Example 5.12. We point out that the limit defining the density function at a particular
s € R, ie. of forrr.(5)/q@ ™™~ may not converge. For example, when I =0, M = R,
then f,177.7(0) = I(R/J9); thus f, 1.7.(0)/q ™ = ey (J, R) is a nonzero real number,
0 fnarr.y(0)/qi™ =1 goes to infinity. This example implies that some assumption is
necessary to guarantee the existence of the density function at every point.

Example 5.13. In the definition of the density function if we replace [sq] by |sq], then
we have more examples where the density function does not exist. We recall Otha’s
example mentioned in [Kosl7, sec 3] which produces such instances. Let R be the

power series ring k[[z1,...,z411]], a1 < ... < agq1 be a sequence of positive integers,
I=(2f"...2371") be a monomial principal ideal, J = (x1,...,2441) be the maximal ideal

of R. Assume moreover that ag < agi1, age1 does not divide p,and €, € [0, gy — 1] is
the residue of p" modulo agy1. Let f be the density function defined using |sq|, then
limy, 00 fn,R,I,J(alerl )/(p™e,) exists and is nonzero. So lim,, fn’RJ’J(alerl )/p"¢ exists if
and only if €, is a constant sequence- this is false in general. In general, ¢, is a periodic

function and its period is the order of p + a,,11Z in the multiplicative group (Z/a,417Z)*.

Example 5.14. We give an example, where the density function exists everywhere
although the h-function is not differentiable everywhere. Note that the resulting density
function is not continuous in this case; compare with Theorem 6.4. Let M = R = k[[z]]
be the power seires ring, I = J = (x). Then h,(s) = ((R/I"" + J@) = min{[sq], ¢}
By simple calculation we get f,(s) =1 when —1/¢ < s <1 —1/q and is 0 otherwise. So
f(s) =1 when 0 <s < 1and f(s) =0 otherwise.

Here f, converges pointwise but not uniformly. Outside an arbitrary neighborhood of 0
and 1 then f,, converges uniformly.

On the other hand, h(s) is 0 when s < 0, s when 0 < s < 1, 1 when s > 1, and is
continuous. We have f(s) = h/(s) when s # 0, 1; when s = 0,1 h/(s) does not exist and
f(s) =N (s). This leads us to guessing that whenever the density function exists at s, it
coincides with the right hand derivative b/ (s).
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Remark 5.15. Assume J, is big and hyr g, is differentiable everywhere. Since hp 1,
is eventually constant (Lemma 3.8), the resulting density function fas; s, = hiy; ;. is
supported on some compact interval [0,b]. So the density function has to increase and
decrease on [0,b]. By Theorem 5.4, far ;5. = I'(s) = H'(s)s*7'/(n — 1)!, where H' is
decreasing since H is convex; so this gives a natural way to represent fas s s, as a product
of a decreasing and an explicit increasing function, namely ¢(s). This may help analyzing
the monotonicity of the density function.

6. RELATION AMONG h, DENSITY, AND FROBENIUS-POINCARE FUNCTIONS

In Section 4 we developed a notion of Frobenius-Poincaré function in the local setting.
Work of Section 5 gives a notion of Hilbert-Kunz density function in the local setting, at
least outside a countable subset of (0, 00). When (R, m) is graded, we compare these local
notions defined using the m-adic filtration with the classical notion of Frobenius-Poincaré
function and Hilbert-Kunz density function defined (see Section 2) using the graded
structure of the underlying objects.

Lemma 6.1. Let (R,m) be a standard graded ring, M be a finitely generated Z-graded
module of dimension d, J be a homogeneous ideal of finite colength. Set

1 M M
Gn,M,Jd—1(8) = Fl(m)w, Gnm,a(8) = l(m)w -

(1) When M is generated in degree zero, for any graded submodule N C M, (M/N); =
m/(M/N)/m/T1(M/N).
M

(2) When M is generated in degree zero, gn a,s(S) = Z(J[q—]M)(s(ﬂ = fommi(9).

Proof. Let N be any submodule of M, then M/N is also generated in degree 0, so
(M/N)s; = w/(M/N) and (M/N); = mI(M/N)/m/T(M/N) for any j. This implies
gn,M,J<S) = fn,M,m,J(S)‘ u

Lemma 6.2. We define an equivalence relation ~ on Z-graded modules over a standard
graded ring R of positive dimension over a field: we say M ~ N when there is a
homogeneous map ¢ : M — N such that dim Ker¢, dim Coker¢ < dim R — 1, and let ~
also denote the minimal equivalence relation generated by such relations. Then M 1is
equivalent to some module generated in degree 0.

Proof. Since dim R > 0, we can choose an element ¢ € Ry such that dim R/cR < dim R.
First, we find a sufficient large n > 0 such that M is generated in degree at most n.
Then we truncate at degree n to get My, := @72, M;, which is generated in degree n.
The module M/Ms,, is Artinian. The inclusion Ms,, < M shows M, ~ M. The map
Ms,, — Ms>,[n] given by multiplication by ¢” has its kernel and cokernel annihilated by ¢".
So the kernel and cokernel have dimension less than dim R. Thus M ~ M, ~ Ms,[n] .
Since M>,[n] is generated in degree zero, we are done. U

The next result follows directly from the lemma above and Proposition 3.31.

Lemma 6.3. Let (R, m) be standard graded, M be a finitely generated Z-graded R-module,
1, J, be homogeneous, assume that the corresponding objects obtained by localizing at m
satisfy condition (A) or (B) stated in Theorem 5.3. Then there is a finitely generated
N-graded R-module M' generated in degree zero such that, hys g5, = b 1., -

In the context of (A) or (B) stated in Theorem 5.3 there is an h-function and an
associated density function defined outside a countable subset of (0, 00). Although the
limit defining the density function may not exist at every point of (0, 00), we can define
the integral of f on any bounded measurable subset X of [0, 00) by integrating the class
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in L'(X) represented by the density function. Fix the maximal subset A of [0, c0) where
the density function fas s s, exists. The continuity of fy; at s € A refers to the notion of
continuity coming from the subspace topology on the domain A inherited from R. With
this understanding, we have the following theorem.

Theorem 6.4. Let (R,m), I, J,, M be as in Theorem 5.3. Then in the context of
situation (A) or (B) as stated in Theorem 5.3, we have for any s > 0,

. (s) = lim bagss(so) = [ fun ()t
sog—0t 0

Moreover if the density farr,, exists and is continuous at s > 0, then hyrr 5, s differen-

tiable at s and fr(s) = by (s).

Proof. Given s > 0, choose [a,b] C R containing s. For a fixed sy in [a,b] and s > s,
we have

[sq]—1

a(s) = halso) = 3 £l2).

Jj=[so0q]
Thus
1 1 L)
@hn(S) — Ehn(So) = / qdfl dt

1
So— =
0 q

By Theorem 3.19, we can choose a constant C' such that for any n € N and ¢ € [a, b].

fa(t) < C.

qd—l

Thus taking limit as n approaches infinity and using dominated convergence, we get

hoaer,g.(s) = hacr,g. (s0) = / faag.(t)dt.
50

Taking limit as so — 0+ we get the conclusion involving integrals. Note that lim, o+
exists as h is increasing.

Whenever fy(t) exists at s and is continuous at s, the differentiability of hy, at s and
that 1y, (s) = fu(s) follows from the second fundamental theorem of Calculus. O

Proposition 6.5. Continue with the same notation as in Lemma 6.1 but M not necessarily
generated in degree zero. Set

nraa1(s) = WM/ JDOM) ) /g
If additionally d = dim(M) > 2, the two limits below ezist for all s € R:
gar,i(s) = nh_{{.lo GnM,0.d-1(8), gur,s(s) = nh—>r20 G, 5,d-1(8).
Moreover gar.j(s) = ga,s(S)-

Proof. By [Tril8|, Gnar.sa-1(s) converges for all s € R. For s € Z[1/p], gnrga-1(s) =
Gn.,0.d-1(8) for ¢ large; so we conclude convergence of g, ar,74-1(s). When s is not in

Z[1/pl,
gn7M7J7d_l(8) = gn,M,J,d—l(S + 5)-

Now for d > 2, the uniform convergence of the sequence of functions g, s4-1 and
continuity of gas s imply that the sequence g, ar,s.4—1(s + %) converges to gas.s($). O
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Theorem 6.6. Let (R, m) be standard graded, J be a homogeneous m-primary ideal, M
be an R-module of dimension d > 2. Then

(1) harmy is differentiable on R. The density function farm.s(s) exists everywhere on
R and is the same as Wy, ;(s).

(2) Moreover fyrm. is the same as Trivedi’s Hilbert-Kunz density function gar.s(s);
see Section 2.

Proof. (1) Tt follows from [Tay18, Lemma 3.3], that for s < 1, hys(s) = e(m, M)s?/d!. So
hys is differentiable at zero and the derivative is zero. A direct computation shows that
the density function at zero exists and is zero. So we can restrict to (0,00). Thanks
to Theorem 5.8, (2), it is enough to show that h,, is differentiable on (0, 00). By using
Lemma 6.3, we can assume that M is generated in degree zero. Thus by Lemma 6.1

M

fortma(S) = Gnary(s) := l([J[pTM][S(ﬂ) for alls € R.

As d > 2, by Proposition 6.5, g, ar.7(s)/q%* converges to Trivedi’s density function gy, s(s)
for all s. Since gars(s) is continuous, farm.s(s) is also continuous. Now by Theorem 6.4,
(2), harr,s is differentiable on (0, 00).

(2) Fix an M’ which is generated in degree zero and equivalent to M in the sense of
Lemma 6.2. Thanks to Lemma 6.3 and part (1)

hae = b for = furr

The associativity formula for Trivedi’s density function implies ga,; = gar.s; see [Tril8,
Prop 2.14]. Since M’ is generated in degree zero and has dimension at least two, by
Lemma 6.1 and Proposition 6.5, gar,; = furms. Putting together we conclude that

frrmg = Gu,- O

We further strengthen the above theorem by proving it for any homogeneous J which not
necessarily has finite colength,

Theorem 6.7. Let (R, m) be standard graded, J be a homogeneous ideal, s € R, M be
a finitely generated Z-graded module of dimension d. Assume d > 2. Set Gn ar,y.4-1(5) =
U(M/JDM) s /q* . Then:

(1) The sequence (Gn ar.ga-1(8))n converges uniformly on every compact subset of R.
The limiting function is continuous.
(2) harm, ts differentiable and

M,m,J(S) = fums(s) = 0m Gnar5a-1(5).
n—oo

Proof. (1) For a positive integer N, set J' = J + m"*1. Then on [0, N], Gnrrsa1 =
Gn.pgrd—1- Since J' is m-primary, by [Tril8], G, a0 .a—1 converges uniformly to a continu-
ous function. Thus on [0, N|, §n.as54-1 converges uniformly to a continuous function.

(2) Fix a compact interval [a,b] C R. By Theorem 3.13, (1), we can choose t, such
that for all t > ¢, harms = Arrms+me ON [a,b]. Using the ideas from the argument in
part(l), fix an integer ¢ > to, ensure Gnamyd—1 = JnMJ+mtd—1 o0 [a,b] for all n. By
Theorem 6.6, hpsm  imt is differentiable on R with derivative gasjime. Thus on (a,b),
harm,s is differentiable with derivative being the continuous function gas ;. Since by
Theorem 5.8 by, = fy; on (a,b), we are done. O

We point out below that in the graded context the Frobenius-Poincaré function defined
using the underlying grading and the maximal ideal adic filtration coincide. Recall that
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by 2, we denote the open lower half complex plane. Let (R, m) be standard graded, M
be an N-graded R-module, J be a homogeneous ideal. For y € 2,

Proposition 6.8. Let (R,m) be standard graded, M a finitely generated Z-graded R-
module of dimension d, J be a homogeneous ideal. Consider the sequence of functions on
the open lower half plane

0 M iy
GTL,M,J(y) = Z l([J[q}M]])e y]/q
j=0

(1) qidGn’M”](y) defines a holomorphic function on Q) for every n.
(2) Recall that Fyr .,y denotes the Frobenius-Poincaré function defined in Definition 4.5.
The sequence
. 1
hm 7Gn,M7J(y)

n—o0 q

converges t0 Fiyym. s (y).
(3) When J is m-primary, G, ar.(y)/q? converges to Fyrm (y) on C.

Proof. Fix an N-graded module M’ generated in degree zero and equivalent to M in the
sense of Lemma 6.2.

(3) Since J is m-primary, GG,, is a sum of finitely many entire functions. So G,, is entire.
Fix a compact subset K of C. By [Muk23, Lemma 3.2.5], we can find a constant D such
that

1 1 D
|@Gn,M,J(y) — EGn,M/7J(y)| < Efor allnandy € K.

Since M’ is generated in degree zero, Fy, pymg = Guar,y. Since Fy, apm.y/q® uniformly
converges to Fyp m y on K, the last inequality implies that qidGn, w,J converges uniformly to

Fyp o,y on K see Theorem 4.3. Thanks to Lemma 6.3 and Theorem 4.3, Fapwm 7 = Farm,s
on C.

(1) There is a polynomial P of degree d with non-negative coefficients such that

U577 )) < 104) < PG).

Fix a compact subset K C 2. Choose € > 0 such that Sy < —e for every y € K. Since

oo

1,
> = |P(j)le

=0 4
is convergent, we conclude that the sequence of holomorphic functions

N

1 M —iyj/q
(@;l([(ﬂq]M}j)e / )N

converges uniformly to qidGn, s (y) on K. This proves the holomorphicity of q%Gn, Mg Ol
Q.
(2) When d = 0, the conclusion follows from a direct computation. Assume d > 1. Since

) = Wrles) = Wl
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a direct computation using the equation above shows that,

1 —Zyj/p — l M Y e~ WilP" (1 — o= W/P"Y |
(6.1) ]Zo (5] ( )
Since
S L T ) (i)
(mi+l + Jldy M (mi+l 4 Jl) M (mJ + Jld)M

a direct computation shows that,

0 m] + J[Q] M P > M i /™ —iy/p™
(6.2) JZZ W J)N )e vi/p" ZO l((ij n J[‘Z])M)e wilr" (1 — e~ lP")

Choose a such that as an R-module M is generated by homogeneous elements of degree
at most a. Therefore

m' M C M- ; C m/~eM.
So,

M Mgy sy Mt TOM

(md+1 4 Jla) M Jlapr=7 w4 Jld S
miti=apr + Jldps
< mitI M + Jld M
m/ e
" mitLA]
< o,

for some C, which is independent of ¢ and j. Using Equation (6.1), Equation (6.2) and
the comparison above, we get that for any y € 2,

i

IN

1 1 NN By »
= Gonts (¥) = — Fams(y)] < 3 O (L)tteSwi/a)1 — cmiv/s)
q q per R

=1

e—iy/q|/LSJd—1e—%yL8st
0

< C|1 — e W/ /sdlet‘\’y(snds.

Since Sy < 0 for y € Q, the last integral is convergent. It follows from the last chain of
inequalities that on a compact subset of (2,

1 1
’?Gn,M,J(y) - EFn,m,J(y)’

uniformly converges to zero. This finishes the proof of (2). O

7. ARITHMETIC PROPERTIES

In this section, we record some arithmetic properties of the function we have constructed
in the previous sections.
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7.1. m-adic continuity. We have proven that the h-function is continuous with respect
to the m-adic topology on the set of ideals in R.

Theorem 7.1. Let t € N, I, J; be two sequences of ideals such that I, + J, C m'. Then
for any s, imy_yo0 s r41,,5+,(5) = harr,y(s). This convergence is uniform with respect to
s on any compact set in (0, 00).

Proof. If s < 0 then both sides are 0, so there is nothing to prove. Fix 0 < 51 < 59 < 00
and it suffices to prove the uniform convergence on [si, so], which is true by Theorem 3.13
and Theorem 3.20. O

The Frobenius-Poincaré function also satisfies a similar property:

Proposition 7.2. Lett € N, I;, J; be two sequences of ideals such that I; + J, C m'. Then
for any y € Q: the open lower half complex plane, imy oo Enrrir, 5+0,(y) = Farrs(y). If
J is m-primary, then the above holds for y € C. In either case, the convergence is uniform
on a compact subset of €2 or C.

Proof. Fix a compact subset K of {2. Choose € > 0 such that Sy < —e for all y € K.
Recall from Theorem 3.16, that there is a polynomial P € R[t] such that hy, arr.5(s) < P(s)
for all s € R and all n; so has r41,,5+0,(s) < P(s) for all s. Notice |P(s)e™“*| is integrable
on R>( and the sequence hj 41, 5+, converges to has s s; the convergence is uniform on
every compact subset of (0,00); see Theorem 3.13. Say the absolute values of elements of
K is bounded above by D. Given § > 0, the observations above allows us to choose an
interval [a,b] C (0,00) and ty € N such that,

(a) 2 [y [P(s)]emds + 2 [ |P(s)]e™*ds < .

() |harsst,ges (@) — harrs(z)| < W for allt > tgand all s € [a, b].
Therefore by using Theorem 4.3, for gj € K and all t > ¢

\Farrrn,ae0(y) — Farro(y)] < / yllhas, 1 1,040.(8) — harr,s(s)|e”“ds
0
<D / |P(s)|e=*ds + 2 / P(s)|e—*ds
0 b
b

T / s toren(s) — harr(s)le=*ds]
<9J.

This proves uniform convergence of (Fas 41, 5+.0,(y)): to Farr.(y) on every compact subset
of Q2. The assertion for m-primary J follows from a similar argument. U

7.2. Basic properties. Let R be a local ring, ¢ be an indeterminate, I, J be m-primary
ideals, M be a finitely generated R-module.

Theorem 7.3. [Tayl8, Proposition 2.6] Assume I,J are two m-primary ideals. Then
(1) dim M < d, then hM7[7J7d(8) =0.
(2) harg.g is increasing.
(3) hMJ’J(S) S 6(], M)Sd/d'
(4) hM7[7J(8) S €HK(J, M)

Theorem 7.4. The above (1) and (2) is still true if only I + J is m-primary. (3) remains
valid when I is m-primary and (4) remains valid when J is m-primary.
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Proof. By m-adic continuity lim; oo Ans rymt,simt($) = hargs(s) and I+ mf, J + m' are
m-primary. We have:

(1) dim M < d, then hpsrimt jimt,a(s) = 0. Let t — oo, hasr,ya(s) = 0.

(2) For S1 < 8o, hM7_[+mt7J+mt<81) § hM7[+mt7J+mt(32). Let t — oo, hM,LJ(Sl) S

hM,I,J(SQ)-
(3) harrgime(s) < e(I,M)s?/d!. Let t — oo, we have hys.5(s) < e(I, M)st/d!.
(4) harrsmt g(s) <empr(J,M). Let t — oo, we have hyry s(s) < epx(J, M).
O

Proposition 7.5 (Additivity). Let 0 — M’ — M — M" — 0 be an ezxact sequence of
modules of dimension at most d. Let I,J be ideals such that I + J is m-primary. Recall
that the Kronecker delta notation 6,y represents zero if a # b and 1 if a = b.
(1) Farrg = Odim(M) dim(M")F M7, 1,7 + Odim(M) dim(m F 1,5 for F = h, F.
(2)
fM(S) = 5dim(M),dim(M')fM'(5) + 5dim(M),dim(M”)fM”(S)7
whenever hMJJ, 5dim(M),dim(M’)hM’,I,J; 6dim(M),dim(M”)hM”,I,J are all diﬁerentiable
at s.

Proof. (1)When F = h, this is true by Proposition 3.31. Then Theorem 4.3 implies the
statement for F = Fyy;.
(2) follows from Theorem 5.8. O

Corollary 7.6 (Associativity formula). The h-function, density function and Frobenius-
Poincaré function satisfy the associativity formula. To be precise,

(1) let F € {h, F'}, then
FM,d(s) = Z )\RP<MP)FR/P<3)>

PeSpec(R),dim R/P=dim R
for all s € R.
(2) At a point s where hp,p is differentiable for all P € Assh(R), the same associativity
formula holds for the density function (i.e. F = f) at s.

Theorem 7.7. Let (R,m, k) be a noetherian local ring of dimension d, M be a finitely
generated module of dimension d, I,I',J,J" be R-ideals such that I' C I,J' C J, I' +J'
is w-primary. Then hyrp y(s) > harrs(s) and equality holds if I C I' and J C J™.

Proof. The inequality is clear. For the rest, note both sides of the inequality are additive
on M. So by the associativity formula, we can replace M with R/P where dim R/P = d.
The containment hypotheses on the ideals also hold for their images in R/P for any
prime ideal P. So we may assume M = R and R is a domain. By definition of the
integral closure and tight closure we can choose a nonzero ¢ € R such that ¢[™ C I' and
cJla ¢ Jld thus ITsa1 4 jlal /p'Tsal 4 jldl i annihilated by c. So

Ilsal o jldl
['Tsal 4 Jld]
<1(0: c)

< : R
1/Tsal 4 y/ld]

i ) < Cg*t.

R e
The last equation is true because dim R/cR < dim R. This means
0 < hoarr(8) = hoara(s) < Cg* .

Dividing by ¢? and take the limit when ¢ — oo, we get has . y(s) = hars(s). OJ




h-FUNCTION, HILBERT-KUNZ DENSITY FUNCTION AND FROBENIUS-POINCARE FUNCTION 39

Theorem 7.8. Let ng € N, then

hM,I"O,J(S) = hM,I,J(SnO)a hMJJ[p"OJ (5) = pROth,I,J(S/PnO)~
Proof. If s < 0 then both sides of the equation are 0 and the equality holds. Now
we assume s > 0. By definition h,, ys. o s(s) = [(M/I™1541 + JUM). Since [sqno] <
nolsq] < [sqnol +no — 1, hnarr,s(510) < hparmo,g(8) < hoarr,g(sno + (no — 1)/q). We
have limy, ;o0 (Anarr.7(sno + (no — 1)/q) — hnar1.s(sn0))/q% = 0 by Theorem 3.20. So

Hm Ay im0 5(8)/q% = Him hyoarrs(sno)/q?,
n—o00 n—0oo

which means g mo s (s) = hagr.(sno). We have R,y ; jpmoy(s) = [(M/T191 4 JUw6IAf) =
[(M ) ITs/P0-av™0T o Jlavglpr). So

lim hn,M,I,J[P"O](3>

n—oo qd

_ pod iy Pong na,1,5(s/p™)

n—00 qdpnOd

= Pnoth,I,J(S/pno)-
O

7.3. Integration and h-function. Let R be a local ring of characteristic p, R|[[t]] be a
power series ring with indeterminate t. Let M be a finitely generated R-module, I, J be
two R-ideals such that I + J is m-primary. Let M[[t]] = M ®g R|[[t]]. We want to express

hM[[t]},R[[t]],([,ta),(J,th) in terms Of hM,R,I,J-

Theorem 7.9. (J)hM[[t]],R[[t}],(],t“),(J,tﬁ)(S> =« ssfﬁ/a hM’RJ,J(x)dx

(2)haae Ria)1.ee),0(5) = @ J§ harra,g(2)do

(3)hoariie) mie.0.009)(8) = Bharro1,s(8).
Proof. We will use the convention I* = R when s < 0. To prove the equality we may
assume s = so/qo € Z[1/p] because the functions on both sides are continuous when s > 0.
Then for g > qo, sq is an integer.

, - M) )
n, M[t]], R[], (1,t*),(J;t7) ((I,te)sa + (Jlab 8a)) M[[t]]

The above length is also equal to
M

(X 0<jcsg 177809 + (JU, 1P0)) M[¢]]

But by the convention, it is also

UML)/ Y Pt + (79, e M[t]))

0<j<oo

)

and because the existence of the t%%-term, it is also equal to
UM/ Y Poed 4 (Jl ) M)
0<j<|Bq/c]

Note that the module inside is nonzero only in ¢-degree at most f¢ — 1. So summing up
over the lengths in different t-degrees, the above length is also equal to the following sum:

L= Z I(M/(JW) 4 ea=le/ely pry

0<z<Bg—1
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Let y = |z/a] and

L, = Z (M) (J 4 psa=le/elypp),
alfg/a]<z<fq-1
Ly= Y UM/(J¥ 4 e l=led)r),

0<z<al|Bg/a|-1

Here we denote Ly = 0 if g/ € Z. Then L = Ly + Ly, and L; has at most « terms and
each term is of order O(¢?), so L; has order O(q?). Now

Ly=a > U(M/J 4 17V M)

0<y<|Bq/a) -1

=a > haara(s—y/a)

0<y<|Bg/a) -1

= aq/ hopa1,0(2)dx
s—|Bq/al/q

Now lim, o L1/¢*™ =0, so

S

lim L/¢™™ = lim Ly/¢®*! = a/ harr.g(x)de.
q—00

q—o0 S*,B/O{

Since the equation

S

(e, Rl (7,62, (J,05) = / / hat,r1,g(z)de
s—B/a

is true on Z[1/p] and both sides are continuous with respect to s, they are equal on all
of R. The rest of the two equations can be obtained by taking limit as a or 3 goes to
infinity and using the m-adic continuity proven in Theorem 3.13. U

7.4. Ring extension.

Proposition 7.10. Let (R,m) — (S,n) be a local map such that mS is n-primary and
dim R =dim S. Then

hygrs,s,is,.5(8) < s(S/mS)harrr,(s).
The equality holds when S is flat over R.

Proof. For any m-primary ideal a, we have
ls(M ®g S/(aS)M @ S) < Igr(M/aM)ls(S/mS).

This means hy, pgps.9515.75(8) < US/MS)hy arrr.0(s). All these equalities will hold if S
is flat over R. O

8. h-FUNCTION AND DENSITY FUNCTION NEAR BOUNDARIES

In this section, we discuss the behaviour of h(s) near zero and s large enough. The regions
near zero and away from zero where the h-function often shows interesting behaviour are
marked by two other already known invariants, namely F-limbus and F'-threshold. Recall
that F-threshold is a well-known numerical invariant in characteristic p which compares
the ordinary power and Frobenius power; it was defined as a limsup in [Hun+08a] and
[IMTWO05], and is shown to be a limit in [DNP18]. The F-limbus is less known, which is
defined in [Tay18].
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Definition 8.1. Let R be a ring of characteristic p > 0 which is not necessarily local,
and let I, .J be ideals of R. Define

¢f(n) =sup{t e N: ' ¢ J¥"I},
¢/(I) = lim 1(n)
n—oo  pPr
b/ (n) = inf{t € N: JP"1 ¢ '},
b/ (I) = lim br(n)

n—0o p"

Y

The number ¢/(I) is called the F-threshold of I with respect to J and the number
b7 (1) is called the F-limbus of I with respect to J. The following properties are proven in
[Tay18, Lemma 3.2].

Lemma 8.2. Let R be a ring of characteristic p > 0, and let I,.J be proper ideals of R.
(1) For any I,J, any limit above either exists or goes to infinity.
(2) If I is contained in the Jacobson radical of R, I ¢ nil(R), then b’(I) < ¢/(I).
(3) If I € /T then ¢’ (I) = oo.
(4) If I € V/J then 0 < ¢/ (I) < 0.
(5) If J & VT then b/ (I) = 0.
(6) If J C VI then 0 < b/ (I) < oo.
(7) If I € Rad(R), I € nil(R), I C /' J, J C VI, then 0 < b/(I) < ¢/(I) < o0.

Lemma 8.3. Let (R, m) be a local ring of dimension d and characteristic p, let I,J be
two proper ideals of R, and let M be a finitely generated R-module.

(1) If I is m-primary, then b’(I) > 0 and for s < b’(I), hy(s) = %e([,M).
(2) If J is m-primary, then ¢/(I) < oo and for s > ¢/(I), ha(s) = exx(J, M).

Proof. The above Lemma is a generalization of Lemma 3.3 of [Tayl8]. The proof is
identically the same since it only uses the containment relation, which does not depend
on whether I, .J are m-primary or not. If I is m-primary then J C v/I, so b’(I) > 0; if J
is m-primary then I C v/J, so ¢/(I) < oo. O

8.1. Tail: F-threshold, minimal stable point and maximal support. Let (R, m)
be a local ring of characteristic p > 0, I, J are R-ideals. Assume J is m-primary. By
Lemma 8.3, (2), when J is m-primary, the hys 1 s(s)-becomes the constant eyx (J, M) for
large enough s. Since h is increasing and hy(s) < ey (J, M) for any s, and there is a
smallest point after which hysr s(s) becomes a constant. We relate this smallest point to
another seemingly unrelated invariant of (I, J) which we call the F-threshold upto tight
closure; see Definition 8.5. The next lemma guarantees the existence of this invariant.

Lemma 8.4. (R, m, k) be a local ring of characteristic p > 0, I, J be two R-ideal, I C \/J.
Let
ri(n) = max{t € N|I' ¢ (JP"y*},

Then (r{(n)/p™). is a non-decreasing sequence converging to a real number.

Proof. Given a natural number n, pick z € I'7(" \ (Jl4)*. Note that z? cannot be in
(JPa)*. Indeed, in contrary say x? € (JP4)*. Then there is a ¢ € R not in any minimal
primes of R such that cz?™" € (JI)P™'] for any large m. This implies z € (JI4)*. So
we conclude

H(n+1) > pri(n),
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whence the desired non-decreasingness follows. By Lemma 3.6, (r{(n)/p™), is bounded
and hence converges to a real number. U

Definition 8.5. Let (r{(n)), be the same as in Lemma 8.4. The limit of (r{(n)/p").,
which exists by Lemma 8.4 is called the F'-threshold up to tight closure for the ideal pair
I, J and is denoted by rg1,;.

Lemma 8.6. Let (R,m, k) be a d-dimensional reduced local ring of characteristic p > 0,
J be an m-primary R-ideal. Then ey (J, R) = lim,, o [(R/(J19)*)/¢%.

Proof. Tt suffices to show lim,,_ [((J19)*/Jl4) /¢ = 0. There is a test element ¢ € R,
which is in not contained in any minimal primes of R such that, c¢(Jl9)* C Jl4! for all ¢;
see [Hun96]. So we have I((J9)*/J1) < 1(0 :p/ 510 ¢) = I(R/cR + J9) < Cq~! for some
constant C', so

lim [((J14)*/ Jly /g = 0.

n—oo

g

Theorem 8.7. Let (R,m,k) be a of characteristic p > 0, I be an R-ideal, J be an
m-primary R-ideal, M be a finitely generated R-module. Define

anrr.g =sup{s| ha1.s(s) # eur(J, M)} = min{s| harrs(s) = eurx(J, M)}.
Then
QR1,J = TRI,J-

Proof. For simplicity, first assume R is a complete local domain. It suffices to prove:

(1) For x € Z[1/p|, it x > rp 1 s, then x > aps;

(2) For x € Z[1/p|, it x < rps, then v < apy ;.
(1): If z > rg s, then there is an infinite sequence n;, such that xp™ > r{(n;) and zp™
is an integer for all 4. By definition of r,, I**"* c (JP")*. So

hrry(z) = lim I(R/TP"T 4 (")) /¢t = lim I(R/(J¥")*) /¢ = enx (], R).
11— 00 11— 00

The last equality in the above chain follows from Lemma 8.6. So = > agr, ;.

(2): If < rgryy, then there is an integer ng, such that zp™ < r{(ng) and ap™ is
an integer. Let gy = p". By definition of r{(n), 7% ¢ (J@I)*. Choose f € %%\ (.J®l)*,
Let J = J@l 4 fR; then eyx(J, R) < exx(J1%! R); see [Hun13, Theorem 5.5, [HH90,
Theorem 8.17]. Now fix an s < xqp, then for any ¢ = p", sq¢ < xqqo. Since f € [*0,
f1 e [*a% C [ls4] Therefore,

Ilsal 4 (J[QO] + fR)[q] — Jlsal 4 (J[QO])[CI].

This means hy ; 7(s) = hp 1 s1001(8). So for s < xqo, hg 1 ja01(s) = hp ;1 j(s) < eni(J,R) <
err(J1% R). This means QR 1 g0l = Tqo- By Theorem 7.8, hp 1 51001 (8) = q3hr1.(s/q),

(0%
R,1,J40]
QR = —— >

o 2
Now we argue that without loss of generality R can be taken to be a complete domain.
Note,

8.1 QR1J = max QR ;R ;R TRIJ = max TR ;R 1R ;.
( ) 7 @ minimal prime ofR{ @’16"]6}7 7 Q minimal prime ofR{ 5’167‘15}

The above description of ap ;s follows from Proposition 3.31. The above description
of rr .y follows from [Hun96, Thm 1.3]. Thanks to Equation (8.1), it suffices to prove
the present theorem when R is a domain. Assume R is a domain. Since J is m-primary,
TR,y coincides with 74 ;5 ;5. Indeed as J [4 is m-primary for all ¢ and R is a domain,
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(J[q]li’)* = (J[q])*é; see [HH94, Thm 7.16, (a)]. On the other hand, hr 17 = hp 1z ;55 SO
QR1,J = Qp rh i S0 without loss of generality R can be taken to be m-adically complete.
We can pass to the complete domain case using Equation (8.1). U

Since hp(s) is the integration of fy/(s), we see the minimal stable point of hy, is the
maximal support of f,;. Precisely,

Corollary 8.8. Let (R, m, k) be a local ring of characteristic p > 0, I be an R-ideal, J
be an m-primary R-ideal. Then ap ;= sup{s| fr(s) exists and is nonzero}. Moreover
for s > apry, frrs(s) is zero, and for 0 < s < gy s, it is nonzero whenever it is

well-defined.

Proof. For s > apy,j, hrs(s) is constant. So by Theorem 5.8, f; ; exists and is zero.
Since hy ; is the integral of the density function by Theorem 6.4 and h is a non-constant
increasing function on (a,apg;s) for any 0 < a < agryry, frs has to be nonzero on
a subset of (a,apys) of nonzero measure. So when f; ;(a) exists, it is nonzero by
Proposition 5.10. U

Remark 8.9. Recall from Theorem 6.7 that for standard graded (R, m) of Krull dimension
at least two and a finite colength homogeneous ideal J, Trivedi’s density function gg s
coincides with frn s and both are continuous. So Theorem 8.7 gives a precise description
of the support of g ;. Thus Theorem 8.7 and the theorem below extends [TW22, Theorem
4.9], where ag_y is shown to coincide with the F-threshold ¢/(m) under suitable hypothesis.

Theorem 8.10. Let (R, m, k) be a local ring of characteristic p > 0, I be an R-ideal, J be
an m-primary R-ideal. Then C‘](I) = rpr1, s true under either of the assumptions below:

(1) There exists a sequence of positive numbers v, such that I'= C J4 . (Jd)* for
infinitely many q > 0 and lim,, 1!, /p™ — 0.

(2) There exists a constant ng such that 1™ C J4 : (JIY* for infinitely many q¢ > 0.

(3) R is F-rational', i.e. the tight closure of every parameter ideal coincides with the
ideal and J is a parameter ideal.

(4) I C \/7T(R), where T(R) = Nacra : a* is the test ideal of R. See [HHI0, Definition
8.22, Proposition 8.23] for details on the test ideal.

(5) (Theorem 4.9, [TW21])R is strongly F-regular on the punctured spectrum.

Proof. (1) By definition 7{(n) < ¢/(n), and the condition implies ¢7(n) < r{(n) + r,,
so lim,(c!(n) —r{(n))/p" = 0 and ¢’ (I) = r/(I).
(2) By (1) and the fact that lim, ng/n = 0.
(3) If J is a parameter ideal, so is J!9. Since R is F-rational, Jl9 : (Jl4)* = R for any
q, so ng = 1 satisfies the assumption of (2).
(4) There exist an ng such that 1" C 7(R) C N,J9 : (JI9)* and this n, satisfies the
assumption of (2).
(5) In this case 7(R) is either m-primary or is the unit ideal, so I C /7(R) always
holds.
U

8.2. Head: Order of vanishing at 0 and Hilbert-Kunz multiplicity of quotient
rings. So far we have proven continuity of the h-function on R.g; see Theorem 3.20
and Theorem 3.30. In this section we determine when hys 7 ; is continuous at s = 0;
see Theorem 8.14. In Theorem 8.12, we determine the order of vanishing of A-functions
near the origin and show that the asymptotic behaviour of h; ; near the origin captures
other numerical invariants of (R, I, .J). A major intermediate step involved in proving

4see [FW89], [Smi97]
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Theorem 8.12 is Theorem 8.11, which boils down to proving commutation of the order of
a double limit. We lay the groundwork for that.

Let (R, m, k) be a local of characteristic p > 0, I, J be two R-ideals such that I + J is
m-primary. Let d = dim R, d’ = dim R/I. For a positive integer sq, consider the sequence
of real numbers:

LRI 4 gty

Fs mmn — T d—d’
0 pndpmd Sg d
h m
(8.2) lim Ty mm = —R(S(;{Z_C)l,.
nreo (s0/p™)

JP" R/ 15oP"
lim Ty = S LRI
m—00 pndSO
. QHK(J7 R/Isop")

(Sopn)d—d’

1 .
=——— Y eux(J.R/P)lg,(Rp/I"""Rp) ,

n\d—d’
(Sop ) PeAssh(R/I)

where Assh(R/I) is the set of associated primes of R/I in R of dimension dim(R/I); see
Definition 3.23.

For P € Assh(R/I), we have ht(P) < dim R —dimR/P =dim R —dim R/ =d —d'. So

. . . 1 J
Jim tm oy = lim ety > enn(R/ Pl (Rp/T Re)
PeAssh(R/I)
1
= m Z enx(J; R/P)e(l, Rp) .

" PeAssh(R/I),ht P=d—d'

When R is an F-finite domain and hence an excellent domain (see [Kun76]), for all
P € Assh(R/I), ht(P) = d — d’. So the above quantity is

ﬁ Z enr(J, R/ P)e(IRp, Rp).

" PeAssh(R/I)

When R is a Cohen-Macaulay domain and [ is part of a system of parameters, the above
quantity recovers the Hilbert-Kunz multiplicity ey (J, R/1I) as,

> enx(J,R/P)e(IRp, Rp)
PeAssh(R/I)

= > enx(J,R/P)I(Rp/IRp)
PecAssh(R/I)
= GHK(J, R/[) .

Theorem 8.11. Assume R is a domain and I # 0 and J be such that [ + J is m-primary.
Fiz a positive integer sg. Set dim(R/I) = d'. Then

) h(so/p™) 1
lim = Z
oo m\d—d’ —d

(s0/P™) (d—d)! PeAssh(R/1)

where Assh(R/I) is the set of associated primes of R/I in R of dimension dim(R/I).

eHK(Ja R/P)e(], RP) )
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Proof. We use the notation set above in this subsection. It follows from Equation (8.2)
and above that we need to show

lim lim I'y ., = lim lim Ty, 0.
m—0o00 Nn—00 n—o0 m—oQ

We already see that lim, o I's) mn and lim, o lim,, o I's) m.n exist. We claim that
that the sequence n — I’y ;. ,, is uniformly convergent in terms of m; then, by argument
of analysis, we get lim,, o lim,,_yo0 I'sy m.n exists, and is equal to lim,, oo limy, 00 I'sy -

To this end, we prove that there exist a constant C' such that |I's; mn1—sgmn| < C/p"
for all m, which implies that | limy, o0 I'sgmn — Usgmn| < 2C/p™ for all m. We can prove
it in two steps: we first prove there is a constant C such that Iy, ;41 — Dsgmn < C1/p",
then we prove there is a constant Cy such that I's) ;. — Dy mns1 < Co/p”, then C =
max{|C|, |Cs|} satisfies the statement of the claim. Without loss of generality we assume
R/m is a perfect field; see Remark 3.15.

Choice of C: since dim R = d, there is an exact sequence

0= R S FER—N-—=0
where N is an R-module with dim N < d. Then we have
(R/ 17" 4 Jw ™o’ p R/(107" 4 JPPNE,R — NJ(IP" 4+ JP PN — 0.

This means

R R
l<]sop”+1 + J[p”“pm]) = l(]smo"[p] + J[P"+1Pm]>
R N
d
S p Z(ISOP” _|_ J[pnpm]) + l(([SOPn _|_ J[pnpm]>N)
So dividing ptDdpmd s we get

Taymmit < Doy + LN/ (157" 4 JW"P" T N) fprt D pyme gd—d”

Now we claim that there is a constant C; > 0 that depends on N, I,.J and sy but is
independent of m,n such that [(N/I*?" 4 Jw"P"IN) /prid=Dtdpmd gd=d" < ¢ We have

I(N/(I*P" + J[p”pm])N)

IN

I(N/(IoP"] 4 JPP™ 1 N)
I(FPN/(I* + JP"YFrN)
< ur(FIN)U(R/T* + JP").
Since dim N < d — 1 and dim R/I = d', pr(F"N)/p™@=Y and [(R/I* + JP™1) /pm? are
both bounded. And p_dsg’d/ is independent of m,n. This means there is a constant

C; > 0 that depends on N, I,J and sy but is independent of m,n such that [(N/I%P" +
JWPTIN fprld=Dtdpmd gd=d" < 1 - Thus we have

1—\so,m,n#»l S I_\so,m,n + Cl/pn

Choice of Cy: since dim R = d, there is an injection F,R 2 R#" where dim Cokerg <
dim R. Let p be the minimal number of generators of I. Choose 0 # ¢ € [ and let
1 = c*¢. Since R is a domain, v is still an injection, and we have a short exact sequence

0— FRYSR™ 5 N 0

and we have dim N’ < dim R. Therefore, we get an exact sequence:

FR/(I°" + JWPNE.R % (R/TP" + JU v lyer' _y N'j(psor" 4 Jo ™Iy N' 0,
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We claim that ¢ induces an R-linear map ® : F,(R/(I%""" 4 Je""'p"y) % (R +

JW e Tt suffices to show o(F, (107" 4 JW"0M)) € (rsor" 4 JrTH @ We have
JooP" Tt — [sop™p — [(sop" Pl G

n+41

(E(IP

C p(F, (160" =l 4 o™ p™]y
(_] sop"—n) | J[p"p"L])¢(F*R

C c“([ sop™—p) 4 glp"p™ )(b(F*R
C (16or") 4 g P Vo (FLR

C (_](sop + (][p”p’”])@pd‘

+ J[p”*lpm])

This induces an exact sequence

n+1

Fu(R/(IoP" 4 g™y o (R0 4 g P hert o N7 (o 4 PPN

Therefore,

n+1

pdl(R/[mp" _|_J[p"p’"]) < Z(R/]sw _|_J[p”“pm])_{_l(N'/(180p" +J[p"pm])N/)

(n+1)d,,md’ ,d—d’

So dividing p P sy, we get

Lapmntt < Dsgana + LN/ (107" 4 JPI)NT) [plet Dipmd sg=d

Since dim N’ < dim R, we can use the same proof in the previous step to show that there
is a constant Cy > 0 that depends on N’, I, J and sy but independent of m,n such that
N/ (109" 4 )N [l Dby =0 < G 0

Fso,m,n S Fso,m,n—H + OQ/pn
]

Theorem 8.12. Let (R, m, k) be a local domain, I,J be two R-ideals, I # 0, I + J 1is
m-primary. Let d =dim R, d' = dim R/I. Then:

(1) limg 0 h( )/Sd ¢ = (d=d)! d' 1 EPGAssh (R/T) eHK<J R/P) (LRP)-
(2) The order of vanishing of h( ) at s =0 is exactly d — d'.
(3) h(s) is continuous at 0.

Proof. (1) Let ﬁ > peassh(r/n) €K (J, R/P)e(I, Rp) = ¢ = ¢y,y, which is a constant
that only depends on I,.J. The last theorem implies for any fixed s,

Tim A(so/p™)/(so/p™)" " =

Choose a sequence {s;}; C (0, 00) such that lim;_,o s; = 0 and lim;_,o h(s;) /s exists.
Below we argue that lim;_,o h(s;)/s¢™¢ = ¢; then (1) follows. Fix any ny € N. There
exists an integer «; for each s; such that s;p® € (p™~! p™]. Since h(s) is an increasing
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function,
h(lsig™)/a™)  _ h(s:) o h([sig™1/q™)
((Lsig™] +1)/qos )i~ = = = (([siqi] — 1)/q)
N [5iq%] yi-d h(lsiq™]/q*) _ h(s;) < [5iq°7] yi-d h([siq*1/q*)

A

71 G ey = 57 =TT =1 Tl o)
Pt e MLsig*)/g%) _ h(si) Pt aa hlsig™1/a™)
= o) G e = = G g gy

Let i — oo, then s; — 0, a; — 0o. Since |s;¢% |, [s;q™] lies in [p™ =1 p™], so there are
only finitely many possible values of |s;q* |, [s;¢*]. So by Theorem 8.11,
h i Q; (&%} h i &%) &%)
o DL )
imoo ([sig™ | /qe) " imoo ([sigi]/q) ™

This means

pno—l , , pno—l
(—————)"%c < lim h(s;)/s8F < (——-—
pno—l _I_ 1 i—00 pno—l _ 1

Since this is true for arbitrary ng, we get

lim A(s;)/s?% = c.
1— 00

)d—d’c.

This finishes the proof of (1).

(2) follows from (1).

(3) Since R is a domain and I # 0, d' = dim R/I < dim R =d, d—d > 1. So the order
of h(s) at 0 is at least 1; in particular, lim,_,o+ h(s) = 0 = h(0). O

Lemma 8.13. Let (R,m) be a noetherian local domain, I1,J be two R-ideal such that
I+ J is m-primary. Then hg ;(s) is continuous at 0 if and only if I # 0.

Proof. If I # 0 then by previous theorem it is continuous at 0. If I = 0, then hg(s) =
ek (J,R) # 0 = hg(0) for s > 0, so it is discontinuous at 0. O

Theorem 8.14. Let (R, m) be a noetherian local ring, I, J be two R-ideals such that I+ J
is m-primary, M be a finitely generated R-module. Then hyrr s(S) is continuous at O if
and only if I € P for any P € Supp(M) with dim R/P = dim M. In particular, hg 1 s(s)
is continuous at 0 if and only if dim R > dim R/I. If hy; is discontinuous at 0 then we
have

lim hM<S) = Z lRP<Mp)6HK(J7 R/P)

s—0+
PeSupp(M),ICP,dim R/P=dim M

Proof. By the associativity formula for h-function in Corollary 7.6,

har(s) = > Lrp (Mp)hpyp(s).

PeSupp(M),dim R/P=dim M
For any P € Supp(M), lir&hR/ p1.s(s) is always non-negative; the limit is positive if and
s—

only if I C P, in which case the limit is eyg(J, R/P); see Lemma 8.13. Thus taking
limit as s approaches zero from the right, we get the expression of the right hand limit of
har. Since hyy is continuous at 0 if and only if lim,_,o+ hr/p(s) = 0 for any P € Supp(M)
with dim R/P = dim M, the continuity of hys at zero is equivalent to asking I ¢ P for
any P € Supp(M) with dim R/P = dim M. If M = R, then this means I ¢ P for any
P € Assh(R) which means dim R > dim R/1. O
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Now we analyse the behaviour of the density function fr;; near the origin. Our
argument below uses the monotonicity property proven in Proposition 5.10. This forces
us to make a simplifying assumption about 1.

Theorem 8.15. Let (R,m) be a noetherian local domain. Let x1,x,,...,x, be part of
system of parameters of R, where r > 1. Set I to be the integral closure of (x1,...,z,).
Fix an ideal J such that I + J is m-primary. Denote the left and right hand derivatives of
h at s by h!, and h’_ respectively. Then,

(1) Then both limg o }L/*—Ei) and limg o h/‘—(i) exist and coincide with

s” st

. hR’LJ(8) 1 R R
rim e T 2 enlUp el R Re)

P is minimal overl

(2) Let fry.s(s) be the density function associated to the pair (I,.J) at s, when it exists.

Then
. frr(s) . hrr(s) 1 R R
- e ‘Zl (e p)el e fir)
Proof. (1) First consider the case of limg_,o4 % By Proposition 5.10, &/, (s)/s" ! is a

decreasing function on the positive real line. So the limit exists. For positive real numbers
sg <t < s, the decreasingness above implies

tr—l tr—l

(8.3) Wy (s0) =g = Wy (t) > W\ (s)

r — r—1°
S0 s

Recall that outside a countable subset of (0, 00) the derivative of hg s is /.. Thus taking
integration on [sg, s|, the above inequality implies

Wolso) o hrra(s) = hrpa(so) o Pils)

r—1 = ro__ or — r—1 °
e s" — sp s

Taking limits the above chain of inequality gives,

R (s —h h R (s
lim +T(710) > lim lim r m1.(5) r.1.7(50) = lim T’M > lim +( )
so—0+ S s—0+ sg—0+ s — 36 s—0+ s s—0+ 37"*1

The claimed equality in the last chain follows as h(t) approaches zero as ¢t approaches zero
from right since we assume r > 1; see Theorem 8.12.

. h'_(s .. .
The case of limg_ sr—fl) follows by a similar argument once we use the decreasingness

of }:;—E? on (0,00) and that outside a countable set the derivative of hgr s is h”.

(2) Whenever fg s s(s) exists at some positive s, we have
W (s) < fris(s) < h' (s); see Theorem 5.8.
Rest follows from these comparisons and part (1). O

Remark 8.16. (1) Note that Theorem 8.15 includes the case when I is m-primary.
Indeed we can always assume that the residue field is infinite without loss of
generality. So we can assume that [ is integral over an ideal generated by system
of parameters; see [HS06, Ch. 8§|.

(2) When (R, m) is not necessarily a domain, one can obtain analogues of Theorem 8.12
and Theorem 8.15 using the associativity formula Proposition 3.31.
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9. APPLICATIONS

9.1. Comparison between Hilbert-Kunz and Hilbert-Samuel multiplicity. Let
(R,m) be an F-finite local ring of dimension d. It is well known that for an m-primary

ideal I,

e()

e

When d is at least 2, Watanabe and Yoshida asked whether the right most inequality is
always strict; see [Kei00, Question 2.9]°. Watanabe-Yoshida’s question was affirmatively
answered by Hanes by approximating an appropriate length function; see [Han03, Thm
2.2, 2.4]. We show that Watanabe-Yoshida’s question is equivalent to a question of
containment of ideals, which is a priori much weaker. The translation of the question
regarding multiplicities to containment of ideals is facilitated by the appropriate h-function.

6([) 2 €HK([, R) 2

Proposition 9.1. Let (R,m) be an F-finite noetherian ring of dimension d. For an
m-primary ideal I, the following statements are equivalent.

(1) emx (I, R) > <0
(2) The minimal stable point aug 1 of hr 1 is strictly larger than 1; see Theorem 8.7.
(3) There exists a ¢ = p° such that 19" is not contained in (I14)*.

Remark 9.2. The fact that ey (I, R) is strictly greater than e(I)/d! implies that 19!
can be contained in (I9)* only for finitely many ¢’s. Indeed, otherwise I(R/I9t1)/q? is
at least I(R/(I19)*)/q? for infinitely many ¢’s. Taking limit as ¢ approaches infinity, this
implies e([)/d! > egk (I, R); see Lemma 8.6. The point of the previous proposition is
that assertion (3), which is much weaker, implies assertion (1).

Proof. The value of hg;(s) at 1 and ag s are e(l)/d! and ey (I, R) respectively; see
Lemma 8.3, Theorem 8.7. If (1) holds, hg r(s) cannot be a constant on [1, ar ], so (2)
follows. Now (2) implies that hp ;s is a non-constant increasing function on [1, apg s |; see
Theorem 8.7. So (1) follows.

Now we argue that (2) and (3) are equivalent. Let rf(n) be as in Lemma 8.4. Then
(rf(n)/p™), is an nondecreasing sequence converging to ag s r; see Lemma 8.4, Theorem 8.7.
If (2) holds rf(e) is strictly greater than p® for some e, so (3) follows. Conversely if (3)
holds, 71(e) must be strictly greater than p°. So ag s must be strictly greater than 1. O

The line of argument in the above proposition shows that:

Corollary 9.3. Suppose J C I are two m-primary ideals in a local ring (R, m). Suppose
there exists some ¢ = p¢ such that 191 ¢ (J4)*. Then

e(l)

GHK(J, R) > d1m—(R)'

Remark 9.4. We do not know what motivated Watanabe-Yoshida to formulate the question
mentioned above. But from the point of view of h-functions, this inequality seems probable.
Indeed assume additionally that the density function fr;; is continuous at 1. Since
the value of the density function at 1 is me(l ) > 0, frss remains positive in
a neighborhood of 1. This implies ag;; > 1 and hence the inequality sought for by
Watanabe-Yoshida follows; see Proposition 9.1. Although we do not know whether fr
is continuous when ht([) is at least 2, we expect that to be the case; see Question 10.2.

5The original question is restricted to the case I =m.
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9.2. F-threshold and multiplicity. Comparisons among Hilbert-Samuel multiplicity,
Hilbert-Kunz multiplicity, F-threshold are abound in the literature. We show that general
properties of the A function combined with a very coarse approximation of it recover some
of these.

Motivated by the comparison between Hilbert-Samuel multiplicity and log canonical
threshold in [FEMO04] and the analogy between F-threshold and log canonical threshold
(see [MTWO04, Thm 3.3, 3.4]) the following was conjectured:

Conjecture 9.5. (see [Hun+08b, Conj 5.1]) Let (R,m) be a noetherian local ring of
dimension d containing a positive charactersitic field. Let J be an ideal generated by a
full system of parameters and I be an m-primary ideal. Then

dd
CJ(]>de(J).

e(l) >

Here e(—) denotes the Hilbert-Samuel multiplicity of the corresponding ideal.

Remark 9.6. We can assume [ is generated by a system of parameters without loss of
generality, in Conjecture 9.5. Indeed in Conjecture 9.5 one can first assume that the residue
field is infinite by making standard constructions. Recall e(I) = e(I) and ¢’(I) = ¢’(I),
where I is the integral closure of I (see [Hun-+08b, Prop 2.2, (2)]). When the residue field

is infinite, we can choose a system of parameters fi, ..., fg such that I = (f1,..., fa).

The above conjecture is settled when (R, m) is graded; see [HTW11], [Hun+08b].
Drawing motivations from [TWO04, Prop 4.5] which confirms a special case of the above
conjecture the following conjecture was made:

Conjecture 9.7. (see [NS20, Conj 1.1]) Let f1, fa, ..., f» be part of a system of parameters
of a noetherian local ring (R,m) of prime characteristic. Let J be an m-primary ideal.

Set I = (f1,...,f-)R. Then

(1), R R
) eHK(JT;T)-

We next point out that Conjecture 9.7, as stated, is false even when R is regular.

BHK(J, R) S (

Proposition 9.8. Take (R, m) to be the localization of a polynomial ring in d variables
over a prime characteristic field. Take J =m! and I = m. Then for large enough t,
¢! (I) R R)
d I'r”

GHK(J, R) > ( )deHK(J

Thus for large t, Conjecture 9.7 fails.

Proof. Since R is regular, egg(J, R) is the same as [(R/J) which is just (d;t). The
F-threshold is t + d — 1; see [Hun+08b, Example 2.7, (iii)]. Since for large ¢,

t+d t+d—1
(1) ey

we are done. ]
We now relate Conjecture 9.5 to Conjecture 9.7.

Proposition 9.9. Let (R,m) be a noetherian local ring of prime characteristics. The
following are equivalent:
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(1) For every pair of m-primary ideals I, J generated by system of parameters

e(l) =

(2) For every pair of m-primary ideals I,.J generated by system of parameters

(1), R R
J—,—=).
g ) en< )
That is the restricted case of Conjecture 9.7, where both I,.J are generated by
system of parameters, is equivalent to Conjecture 9.5.

GHK(J, R) S (

Proof. Assume (1). For an ideal generated by system of parameters the Hilbert-Kunz and
Hilbert-Samuel multiplicities are the same; see [Lec57, Thm 2]. Since [ is generated by a

system of parameters

R R R

eHK(JT’ 7) = 1(7) > e(I).

This implies (2).

Now assume (2). Choose a system of parameters fi, fo,..., fgsothat I = (f1, fa, ..., fa).
For any positive integer n, (2) yields,

CJ((f{Lafglvaf;)))d“ R )
d (i 8, f)”

Since I™ is in the integral closure of (f7*, fa', ..., f1), ¢/ ((ff, f2, ..., f7) = ¢’ (I"™). More-
over ¢/ (I") = ¢/(I)/n; see [Hun+08b, Prop 2.2, (3)]. So the last inequality gives

€HK(J, R) S (

(1) Norm—m)
J R < d 15J250 d
eHK( ) ) = ( d ) nd

for all n. Taking limit as n approaches infinity in the last inequality, we obtain (1). O

In view of the above proposition, we believe that the corrected version of Conjecture 9.7
should be as follows:

Conjecture 9.10. Let f1, fa,..., fr be part of a system of parameters of a noetherian
local ring (R, m) of prime characteristic. Let J be an ideal generated by a (full) system of
parameters of R. Set I = (fi,..., f.)R. Then
¢! (I) R R
" J—,—).

) eHK( I Y I )

In [NS20, Prop 2.1] establishes a comparison between Hilbert-Kunz multiplicity and
the F-threshold, which proves Conjecture 9.7 when r = 1. This comparison appears as

assertion (2) of the next theorem. We strengthen their result in Theorem 9.12 by using
the property of h-function proven below.

€HK(J, R) S (

Theorem 9.11. Let (R,m) be a noetherian local domain. Let x1,xs,...,x, be part of
a system of parameters of R, where r > 1. Let I be the integral closure of (x1,...,x,).
Let Jo be a family of ideals such that I, J, satisfy Condition C. Then hry y,(s)/s" is a

decreasing function on (0, 00)

Proof. For a positive s, let A’ (s) be the right hand derivative of kg s, at s, which exists
by Theorem 5.4, assertion (1). By Proposition 5.10, A/, (s)/s""! is decreasing on the
positive real line. By Theorem 5.4, outside a countable subset of (0,00), A/ (s) is the
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derivative of hg s, at s. Now given positive real numbers s; < s, and any sy € (0, s1),
integrating A/, (s), we get

hR,I,J.(Sl) - hR,I,J.(SO) > rhﬁr(sﬁ > hR,I,J.(Sz) - hR,I,J.(Sl)

T r — r—1 = T r :

Taking limit as sy approaches zero from right in the above chain of inequalities and using
Theorem 8.12, we get

har(s1) o Prpg(52) = hero(51)
st S5 = 81 '
The last inequality implies hg 1.7, (51)/87 > hr1..(52)/55. d

Theorem 9.12. Let fi, fo, ..., f- be part of a system of parameters of a noetherian local
domain (R, m) of prime characteristics with r positive; set I = (f1,..., f.). Let J be an
m-primary ideal. Let agr; be the minimal stable point of hr 1 ; as defined in Section 8.1.
Then
(1)
a’ R R
eHK(J, R) S BlJ Z GHK(JF,F)G(IRP,RP).

rl

Pis a minimal over prime I

(2)

c R R
< —, —).
€HK(J, R) > I’ ])

Proof. First we point out (1) implies (2). We know agpry < ¢/(I) (see Lemma 8.3,
assertion (2)) and e(/Rp, Rp) < lg,(Rp/IRp). The last inequality holds as IRp is
generated by a system of parameters. Using these two comparisons in (1), we get

¢ (1) R R Rp
enx(J, ) < T Z GHK(JF7 F)ZR”(E)'

P minimal prime over/

;Fhe right hand side of the above inequality is g (J%, #); see [Hun13, Thm 3.14]. So (2)
ollows.

For (1), note, since hr 1 s(s)/s" is decreasing on (0,00) by Theorem 9.11, we have

lim hR,I,J(S) S hR,I,J(aR,I,J) o 6HK(J, R)

s20+ 5T N QR QR
The above one sided limit is

1 R R

ﬁ Z eHK(JFaF)e(IRPyRP)a

" P minimal prime over I
by Theorem 8.12. So assertion (1) follows.
O

Now we point out an equivalent formulation of Conjecture 9.5 phrased in terms of h
functions.

Proposition 9.13. Let (R,) be a local domain of Krull dimension d > 1, J be an ideal
generated by system of parameters, I be an m-primary ideal. The following are equivalent.

(1)

e(l) =
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(2) There exists xo € [0,¢”(I)] such that

6([) > hR’LJ(xO) ‘

4 = d
d x

Proof. Assume (1) holds. One can extend hgr s(s)/s? to a continuous function on [0, 00)
whose value at zero is e(I)/d!; see Theorem 8.12, Theorem 8.14. Since hpr.s(s)/s?
evaluates to egx(J, R)/c’(I)? at s = ¢/(I) and

e(l) - e(l) - ear(J,R)  e(J)

A~ dl T I D)

using the decreasingness of hr s ;(s)/s?, we get (2).
Now assume (2) holds. Since hg;.s(s)/s? is decreasing by Theorem 9.11,

hip(xo) _ hroa(c'(1) _ e(J)
x5 T ) /()

So (1) follows from (2). O

10. QUESTIONS

Question 10.1. Let (R, m) be an F-finite ring; J be an m-primary ideal, I be any ideal.
Is the minimal stable point ap s of hg s the same as the F-threshold ¢’(I)?

In view of Theorem 8.7, the above question is a question about asymptotic comparisons
of J4 and (J@)*. Moreover, in view of Theorem 9.12, one may hope to replace ¢’(I)
by potentially the smaller number ag; ; in Conjecture 9.10 or Conjecture 9.5. So this
question tests the veracity of this naive hope.

Question 10.2. Let (R, m) be an F-finite ring; I, J be ideals such that [+ .J is m-primary.
(1) Find conditions on (R, I, J) such that the limit defining the Hilbert-Kunz density
function fgr s s(s):
1 Ilsal o jldl
lim ——1 ,
q—o0 qd=1 " [lsal+1 4 Jld]

exists at all s € R.
(2) Find conditions on (R, I, J) such the Hilbert-Kunz density function fg s(s) is
continuous on (0, co).

Recall that continuity of the density function is equivalent to the corresponding h-
function being continuously differentiable; see Theorem 6.4. Our result suggests that
a larger value of ht(/) may imply a better smoothness property of the h-function; see
Theorem 8.12. So we wonder whether both the questions above have affirmative answers
when ht(7) is at least 2; see Remark 9.4 for a consequence of affirmative answers. Recall
that when R is standard graded of dimension at least 2 and I = m, for any homogeneous
ideal J, the answer to both the questions are affirmative; see Theorem 6.7.

Inspired by Trivedi’s question [Tri23, Question 2|, we ask

Question 10.3. Let I, J be m-primary ideals of a noetherian local ring R of dimension at
least two. Is hg . a piecewise polynomial? In other words, does there exists a countable

subset S of R and a partition R\ S = [] (an, b,) such that on each (a,,by), hg s is given
neN
by a polynomial function?

We point out that, in the context of the question, hg; ;(s) is egx(J, R) for large s,
e(I, R)s¥™ / dim(R)! on some interval (0,a] and zero for s nonpositive.
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