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Quantum criticality within Dirac fermions harbors a plethora of exotic phenomena, attracting
sustained attention in the past decades. Nevertheless, the nonequilibrium dynamics therein has
rarely been studied. To fill in the gap, we explore the imaginary-time relaxation dynamics in a typical
Dirac quantum criticality belonging to chiral Heisenberg universality class. Performing large-scale
quantum Monte Carlo simulation, we unveil rich nonequilibrium critical phenomena from different
initial states. Particularly, a new dynamic exponent characterizing the non-stationary evolution in
the short-time state is determined as θ = −0.84(4), in sharp contrast with the prevalent belief that θ
is positive as demonstrated in classical cases. Furthermore, we propose a universal dynamic scaling
theory governing the fruitful nonequilibrium properties in Dirac quantum criticality. Armed with
the scaling theory, we develop a new framework to investigate fermionic quantum criticality based
on short-time dynamics, paving a promising avenue to fathoming quantum criticality in diverse
fermionic systems with high efficiency.

Introduction— Quantum phase transitions, describing
abrupt changes in ground states of quantum systems,
remain central topics in modern physics [1]. A promi-
nent example is the interaction-driven quantum critical-
ity in Dirac systems. Such transitions were originally dis-
cussed in the high-energy physics to mimic chiral symme-
try breaking and spontaneous mass generation [2]. Re-
cently, owing to the inspiring experimental advances in
graphene [3] and topological materials [4, 5], quantum
criticality in Dirac fermions has garnered increasing in-
terests in condensed matter physics. Vast efforts have
been paid in this field, including sophisticated renormal-
ization group analyses [6–17], conformal bootstrap [18],
quantum Monte Carlo simulation [19–32] and tensor net-
work method [33, 34], resulting in tremendous achieve-
ments. It was shown that fluctuations from gapless Dirac
fermions enormously fertilize the fundamental research of
quantum criticality, not only contributing to the Gross-
Neveu fixed point [6–49], which is among the simplest
examples of quantum critical points that do not exhibit
classical analogs, but also yielding a profound mechanism
for the Landau-forbidden quantum criticality [50–55].

On the other hand, equilibrium state in nature is just
the exception rather than the norm. Universal critical
phenomena are manifested not only in the long-time equi-
librium states but also in short-time nonequilibrium pro-
cesses [56–60]. For instance, in classical systems, after a
sudden quench to the critical point, the relaxation dy-
namics shows a non-stationary initial slip evolution in
the short-time stage [61–63]. Associated with this crit-
ical initial slip, it turns out that there exists an addi-
tional critical exponent that describes how the system re-
members its initial information [61]. Similar short-time
scaling behaviors are also found in the quench dynam-
ics of quantum systems, wherein the universal dynamics

is shown to be controlled by a non-thermal fixed point,
rather than the one describing the quantum phase tran-
sition in ground state [64–72].
Aside from the real-time dynamics, imaginary-time dy-

namics in quantum systems is also of great interest and
significance. As a routine unbiased approach to identify
the ground state, the imaginary-time evolution works not
only extensively in numerical simulations, but also in viv-
ifying quantum computers [73–75], which has been see-
ing fervent activity spurred by the recent availability of
noisy intermediate-scale quantum hardware and provides
a promising platform to explore various exotic quantum
phases [76, 77]. Near a quantum critical point (QCP),
it was shown that the imaginary-time critical dynam-
ics demonstrates colorful universal scaling behaviors in
both short-time and long-time stages [78–81]. So far,
the imaginary-time relaxation dynamics has been stud-
ied in various quantum systems, providing an abundance
of intriguing perspectives in the field of quantum crit-
icality [81–85]. Moreover, the imaginary-time scaling
has been observed in an experimental platform of quan-
tum computer and shows its power in determining the
critical properties with high efficiency and scalability in
fast-developing quantum devices, circumventing difficul-
ties induced by critical slowing down and divergent en-
tanglement in conventional method based on equilibrium
scaling [86].
However, the intriguing nonequilibrium dynamic be-

havior in Dirac quantum criticality has been sparsely ex-
plored to date. Given the unique universal physics in-
herent in Dirac systems, it is immensely desired to inves-
tigate the nonequilibrium properties in the presence of
gapless Dirac fermions, and particularly, establish a gen-
eral theoretical framework to describe the dynamic scal-
ing behavior in Dirac quantum criticality. Here, we ex-
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plore the imaginary-time critical dynamics of a paradig-
matic Dirac-fermion quantum critical point, namely chi-
ral Heisenberg Gross-Neveu quantum criticality hosted
by the honeycomb Hubbard model [35–39]. Employ-
ing sign-problem-free QMC simulation [87–95], we un-
ambiguously demonstrate that the system features rich
short-time scaling behaviors for different initial states.
We develop a general nonequilibrium scaling theory uni-
fying these exotic scaling properties of short-time dynam-
ics. In particular, with a disordered initial state, a novel
critical initial slip behavior with a negative character-
istic exponent is uncovered, which is remarkably differ-
ent from the bosonic cases in which the critical initial
slip exponent is usually positive. We point out that this
anomalous behavior is attributed to the gapless fluctua-
tions arising from Dirac fermions. Moreover, through the
application of scaling theory of imaginary-time dynamics,
we successfully determine the critical exponents of chiral
Heisenberg Gross-Neveu quantum criticality, consistent
with previous studies on equilibrium cases. Hence, our
scaling theory offers not only a unified framework to un-
derstand nonequilibrium imaginary-time critical dynam-
ics of Dirac systems, but also an amenable and innovative
route to investigating the critical properties in strongly
correlated systems.

Hamiltonian and quench protocol— To explore the dy-
namic scaling in chiral Heisenberg universality class, we
start with the Hubbard model defined on the honeycomb
lattice, characterized by the Hamiltonian [35–39]:

H = −t
∑
⟨ij⟩,σ

c†iσcjσ + U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
, (1)

in which c†iσ (cjσ) represents the creation (annihilation)
operator of electrons with spin polarization σ, niσ ≡
c†iσciσ is the electron number operator, t is hopping am-
plitude between the nearest neighbor sites, and U rep-
resents the strength of on-site repulsive interaction. As
shown in Fig. 1, when U/t ≪ 1 the system is in the
Dirac semimetal (DSM) phase characterized by the four-
component Dirac excitation with flavor number Nf = 2;
whereas for large U/t≫ 1 the system hosts an antiferro-
magnetic (AFM) phase with a finite charge gap. A phase
transition separating these two phases happens at a finite
Uc/t ≈ 3.9 and belongs to the chiral Heisenberg univer-
sality class [35–39]. For simplicity, we set t to unity in
subsequent discussions.

For the imaginary-time relaxation dynamics, the wave
function |ψ(τ)⟩ evolves according to the imaginary-time
Schrödinger equation

− ∂

∂τ
|ψ(τ)⟩ = H|ψ(τ)⟩, (2)

imposed by the normalization condition. The formal so-
lution of the Schrödinger equation is given by |ψ(τ)⟩ =
e−τH |ψ(0)⟩/Z(τ), in which Z(τ) ≡ ⟨ψ(τ)|ψ(τ)⟩ is the

Uc

U
DSM AFM

T

RS

FIG. 1. Sketch of the phase diagram and the quench protocal
in imaginary-time with different initial states. The initial
states are prepared as (i) the Dirac semimetal (DSM) phase,
(ii) the saturated AFM state, and (iii) the random spin (RS)
state. All states correspond to the fixed points of the initial
states under the renormalization group transformation.

normalization factor and |ψ(0)⟩ is the initial wavefunc-
tion. As illustrated in Fig. 1, we will consider three kinds
of initial states: (i) the saturated AFM state, (ii) the non-
interacting DSM state, and (iii) the random spin (RS)
state. In the following, we will employ the large-scale
determinant quantum Monte Carlo (DQMC) method to
investigate the imaginary-time relaxation dynamics. The
model does not suffer from sign problem, such that it
is feasible to access the numerically accurate properties
with large system sizes.
General scaling theory— Near the critical point, the

equilibration time tends to infinity in the thermodynamic
limit, leading to a macroscopically long time scale of the
remanent of the initial state. Generally, for an observable
P its dynamic scaling should satisfy [81, 96]:

P (τ, g, L, {X}) = τ−
κ
z fP

(
gτ

1
νz , L−1τ

1
z , {Xτ− c

z }
)
,

(3)
in which g ≡ (U − Uc)/t, L is the lattice size. κ is the
critical exponent related to the scaling dimension of P ,
and ν is the correlation length exponent. z is dynamical
exponent, and z = 1 for the Dirac QCP in Eq. (1) because
the nonrelativistic corrections are irrelevant. {X} with
its exponent c represents the possible relevant variables
associated with the initial state.
Two remarks on Eq. (3) are listed as follows. (a) For

τ → ∞, Eq. (3) recovers the usual finite-size scaling form
and {X} becomes irrelevant. (b) All three kinds of initial
states studied here, namely AFM state, DSM state and
RS state, correspond to three stable fixed points, respec-
tively. Thus, {X} does not explicitly appear in Eq. (3).
However, the scaling functions fP vary for different initial
states.
Relaxation dynamics with AFM initial state— First,

we study the relaxation dynamics starting with the
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τ/L=0.34

(a)

(b)

τ/L=0.5

τ/L=0.34

τ/L=0.3

τ/L=0.3

FIG. 2. The results of correlation-length ratio R against in-
teraction U for various sizes during the short-time stage, with
a fixed value of τL−z. (a) Estimation of the critical point via
the intersection points of curves for τL−z = 0.3 (Main panel),
0.34 and 0.5 (Inset). (b) Estimation of ν by scaling collapse
analysis of correlation-length ratio.

AFM initial state. To illustrate the nonequilibrium scal-
ing properties, we explore the critical dynamics of the
correlation-length ratio defined as [97]:

R ≡ S(0)/S(∆q), (4)

where ∆q is minimum lattice momentum and S(q) is the
antiferromagnetic structure factor:

S(q) =
1

L2d

∑
i,j

eiq·(ri−rj)⟨Sz
i S

z
j ⟩, (5)

with Sz
i being the staggered magnetization operator de-

fined as Sz
i ≡ c⃗†i,Aσ

z c⃗i,A − c⃗†i,Bσ
z c⃗i,B and c⃗† ≡ (c†↑, c

†
↓).

As a dimensionless variable, R in the relaxation process
obeys the following dynamic scaling form according to
Eq. (3):

R(g, τ, L) = fR(gL
1/ν , τL−z), (6)

which indicates that with a fixed τL−z the correlation-
length ratio R does not depend on the system size when
g = 0, thereby providing a method to pinpoint the critical
point.

As shown in Fig. 2 (a), we calculate R as a function
of U with fixed τL−z = 0.3 for different sizes, and find

(a1) (a2)

(b1) (b2)

FIG. 3. Relaxation dynamics of the order parameter with the
AFM initial state. (a) Curves of m2 versus τ at the critical
point for different sizes before (a1) and after (a2) rescaling.

The dashed line representing m2 ∝ τ−2β/νz with β/ν esti-
mated from (a2) is plotted in (a1) for comparison. (b) Curves
of m2 versus U with fixed τL−z = 0.3 before (b1) and after
(b2) rescaling.

that the curves almost cross at a point. By extrapolating
the intersection points Uc(L) between curves for L + 3
and L to the thermodynamic limit according to Uc(L) =
Uc + aL−w, one can determine the critical point as Uc =
3.91(3). Upon fixing Uc = 3.91 into Eq. (6), we adjust
the value of ν for the rescaled horizontal variable gL1/ν

to make curves of different sizes collapse with each other,
yielding the value of ν as ν = 1.17(7). Remarkably, both
values of Uc and ν are consistent with those obtained
from equilibrium finite-size scaling within one standard
deviation, albeit slight deviations arise possibly due to
the scaling corrections [8, 39]. However, significantly less
effort is required as the results are obtained in the short-
time stage and long enough imaginary-time evolution to
achieve the ground state in the usual equilibrium method
is not required here. Moreover, Eq. (6) also provides a
self-consistent way to confirm the results. As shown in
Fig. 2 and the supplementary materials [98], for different
τL−z, consistent Uc and ν are obtained in a similar way,
highlighting the validity of Eq. (6).

To delve deeper into the relaxation dynamics governed
by model (1), we study the dynamics of structure factor,
namely the square of order parameter m2 = S(0). Ac-
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(a) (b)

FIG. 4. Relaxation dynamics of the order parameter with
the DSM initial state. Curves of m2 versus τ at the critical
point for different sizes before (a) and after (b) rescaling. The

dashed line representing m2 ∝ τd/z−2β/νz is plotted in (a) for
comparison. The critical exponents used here are estimated
from Fig. 3 (a).

cording to Eq. (3), starting from a completely ordered
AFM initial state, the decaying behavior of m2 should
satisfy [62, 81]:

m2(g, τ, L) = τ−2β/νzfm(gL1/ν , τL−z), (7)

where β/ν is the exponent associated with scaling di-
mension of order parameter. Note that Eq. (7) is equiv-
alent to m2(g, τ, L) = L−2β/νfm1(gL

1/ν , τL−z) so that
the usual finite-size scaling is recovered as τ → ∞.
Figure 3 (a1) shows the evolution of m2 at g = 0 for

different system sizes. At first, as shown in Fig. 3 (a2),
data collapse analysis of the results yields the exponent
β = 0.80(3), which is close to the result obtained in previ-
ous studies on equilibrium systems [38, 39]. The collapse
of rescaled results for different systems sizes into a single
curve unequivocally demonstrates the dynamic scaling
behavior with AFM as initial state, as depicted in Eq. (7).
Moreover, as shown in Fig. 3 (a1), one finds that in the
short-time stage, m2 ∝ τ−2β/νz and the scaling behavior
is almost independent of the system size. The underlying
reason is that the initial state is an uncorrelated state and
the correlation length ξ increases with time as ξ ∝ τ1/z.
In the short-time stage, ξ < L and the finite-size effects
are negligible; whereas in the long-time stage, ξ > L and
the system enters the finite-size scaling region in which
m2 ∝ L−2β/ν . These results demonstrate that it is feasi-
ble to infer the critical properties in the thermodynamic
limit directly from the short-time dynamics.

Besides, for a fixed τL−z, Eq. (7) reduces tom2(g, L) =
L−2β/νfm2(gL

1/ν). Note that this scaling form is dif-
ferent from the equilibrium finite-size scaling since their
scaling functions are different. Fig. 3 (b) depicts the
dependence of m2 on U for different system sizes at
τL−z = 0.3. By tuning the exponents to make the
rescaled curves of m2 versus g collapse, we determine the
exponents as ν = 1.025(9) and β/ν = 0.735(2), as shown

(a) (b)

FIG. 5. Critical initial slip manifested in the evolution of the
auto-correlation function A with the RS initial state. Curves
of A versus τ for different sizes at the critical point before (a)
and after (b) rescaling.

in Fig. 3 (b2). These values are also consistent with the
previous results of equilibrium systems [39]. In this way,
we further verify Eq. (7), and more crucially, determine
the critical exponents from the nonequilibrium approach.
Relaxation dynamics with DSM initial state— We pro-

ceed to explore the relaxation dynamics from the non-
interacting DSM state. For this state, it is straightfor-
ward to show that AFM structure factor obeys the scal-
ing m2 ∝ L−d. This size-dependent scaling affects the
relaxation dynamics in the short-time stage, giving rise
to the short-time dynamic scaling of m2:

m2(g, τ, L) = L−dτd/z−2β/νzfm3(gL
1/ν , τL−z). (8)

To demonstrate the dynamic scaling Eq. (8), we show
in Fig. 4 the evolution of m2 at the critical point, namely
g = 0 in Eq. (8). In the short-time stage, m2 increases as
m2(g, τ, L) ∝ τd/z−2β/νz for given L, qualitatively differ-
ent from the dynamic behavior with AFM initial state;
whereas in the long-time stage, m2 begins to saturate.
In addition, by rescaling m2 and τ according to Eq. (3)
with the exponents determined in previous section, one
finds that the curves collapse onto each other. These
results reveal the dynamic scaling behavior with DSM
initial state described by Eq. (8).
Critical initial slip with RS initial state— Then we

study the relaxation dynamics from the RS state, for
which every site has one electron with its spin randomly
distributed. Practically, this state can be prepared at a
high temperature. With this uncorrelated initial state,
the evolution of m2 still satisfies Eq. (8) except for a dif-
ferent scaling function, as discussed in the supplementary
materials [98].
Furthermore, when initiating from the RS state, we

observe a universal critical initial slip behavior in the
short-time stage. Intriguingly, the scaling property of
the initial slip behavior is determined by an independent
dynamic exponent θ, which does not exist in the equilib-
rium critical behavior. To characterize the critical initial
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slip, the auto-correlation function A was introduced, de-
fined as [61, 62]:

A =
1

Ld

∑
i

⟨Si(0)⟩⟨Si(τ)⟩, (9)

where the overline denotes the average on the initial state
configurations. At the critical point, the auto-correlation
function obeys the following scaling form:

A(τ) = τ−d/z+θfA(τL
−z), (10)

As shown in Fig. 5, by rescaling A and τ according to
Eq. (10) and adjusting the trial value of the θ to make
the rescaled curves collapse onto each other, we access
the dynamic exponent θ = −0.84(4).

The negative exponent θ is notably interesting since it
is in sharp contrast to classical criticality, in which θ is
usually positive. To illustrate the underlying physics, we
consider the short-time dynamic behavior from an ini-
tial RS state with a small residual magnetization m0.
By operator product expansion [61], it was shown that
the order parameterm evolves asm ∝ m0τ

θ in the short-
time stage. This dynamical scaling behavior is the conse-
quence of the competition between the domain expansion
of magnetization and the critical fluctuation. In classi-
cal cases, the critical fluctuations of order parameter are
weak in the short-time stage of evolution, and domain
expansion around the seeds of m0 is dominant, giving
rise to a positive θ. This scenario also holds for the
quantum Ising model (See the supplementary materials
[98]). In contrast, the presence of gapless Dirac fermions
strongly enhances the critical fluctuations of magnetiza-
tion and suppresses the tendency of domain expansion,
hence yielding the negative dynamic exponent θ. The
negative value of θ offers an extraordinary aspect to wit-
ness the fermionic quantum criticality from the perspec-
tive of nonequilibrium dynamics.

Discussions and concluding remarks— In summary, we
perform sign-problem-free QMC simulation to investigate
the imaginary-time relaxation dynamics in a Dirac QCP
belonging to chiral Heisenberg universality class. For the
first time, we develop scaling forms for different initial
states in Dirac QCP and reveal rich nonequilibrium dy-
namic scaling behaviors. Particularly, a negative critical
initial slip exponent θ = −0.84(4) is observed in the re-
laxation process from uncorrelated random spin initial
state, remarkably different from the classical cases in
which θ is positive. The negative critical initial slip expo-
nent unveiled in our study is thus a new manifestation of
Dirac QCP, shedding new light on the understanding of
QCP in fermionic systems through the lens of short-time
dynamic behavior.

Moreover, our study paves a new way to decipher-
ing the critical properties of quantum phase transition
in fermionic systems. Based on the dynamic scaling the-
ory, we develop a new framework to determine and verify

critical exponents. Compared with the usual methods
tackling critical properties in equilibrium ground state,
the nonequilibrium method is highly efficient. In our
framework, the critical exponents are accessed by the
short imaginary-time evolution, thus significantly reduc-
ing the computational time, which is generically propor-
tional to the imaginary time of the evolution in numerical
approaches such as QMC. More crucially, our study of-
fers a possible route to studying fermionic QCP in the
presence of sign problem, which is the main obstacle hin-
dering the understanding of QCP by numerical approach.
Since the severity of sign problem exponentially increases
with imaginary time in the process of evolution, the sim-
ulation on relatively large system sizes usually remains
accessible in the stage of short imaginary time. Hence, it
is promising to access the quantum critical behavior even
when the model under consideration is sign problematic.
Future works along this direction are highly desirable.
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Supplementary Materials for

Nonequilibrium dynamics in Dirac quantum criticality

DETERMINANT QUANTUM MONTE CARLO

We employ the large-scale determinant quantum Monte Carlo (DQMC) method [88] to investigate the imaginary-
time relaxation dynamics of our model. Specifically, we prepare an initial state |ψ0⟩ and set the system parameters
U/t on the critical point to observe the scaling behavior of observables during the short-time stage. When the system
evolves to imaginary time τ , the expectation value of observables is given by

⟨O(τ)⟩ = ⟨ψ0| e−
τ
2H O e−

τ
2H |ψ0⟩

⟨ψ0| e−τH |ψ0⟩
. (S1)

Herein, the imaginary-time propagator acts on the initial state, projecting it closer to the ground state. Hence,
the DQMC framework under this context is also termed propagator quantum Monte Carlo (PQMC). In numerical
calculations, we use Trotter decomposition to discretize imaginary-time propagator into M = τ/∆τ (M is integer)
time slices with

e−τH =

M∏
m=1

[
e−∆τHte−∆τHU +O

(
∆τ2

)]
, (S2)

where Ht and HU are the hopping term and Hubbard interaction term respectively in the Hamiltonian. We choose
small enough ∆τ/t < 0.05. To decouple two-body fermion-fermion coupling form of e∆τHU , we use a discrete Hubbard-
Stratonovich transformation

e−
∆τU

2 (ni↑+ni↓−1)2 =
∑

l=±1,±2

γ(l)ei
√

∆τU
2 η(l)(ni↑+ni↓−1), (S3)

to obtain one-body fermion-auxiliary field coupling. Here, we introduce a four-component space-time local auxiliary

fields γ(±1) = 1 +
√
6/3, γ(±2) = 1 −

√
6/3, η(±1) = ±

√
2
(
3−

√
6
)
, η(±2) = ±

√
2
(
3 +

√
6
)
, and use DQMC for

importance sampling over these space-time configurations. Next, we elaborate on how DQMC numerically calculates
the sampling weight.

For each imaginary time and each position of the Hubbard interaction, we employ an Hubbard-Stratonovich trans-
formation as in Eq. (S3). This means that we introduce an auxiliary field in d + 1 dimensions. As a result, the
imaginary-time propagator can be fully expressed using single-particle operators. This allows us to represent it in the
following quadratic form of fermion operators:

e−τH ≡
∑
c

e−τHc =
∑
c

Ac

M∏
m=1

ec⃗
†T c⃗ ec⃗

†Vc(m)c⃗, (S4)

where
∑

c denotes the summation over all space-time configurations of the auxiliary field. Considering that each local
component of the auxiliary field has 4 possible values, the summation comprises up to 4MN terms, where N represents
the number of spatial degrees of freedom. Hc denotes the decoupled configuration Hamiltonian, while T and Vc(m)

are the resulting quadratic coefficient matrices from the rearrangement, and Ac is the coefficient. Both Vc(m) and Ac

depend on the auxiliary field configuration. The complete form of the evolution operator has been presented above.
Next, we consider expressing the initial state. The AFM, DSM, RS initial states we use are all direct product states,
and numerically they can be written as the following Slater determinant:

|ψ0⟩ =
Ne⊗

ne=1

[(∑
x

c†xPx,ne

)
|0⟩

]
=

Ne⊗
ne=1

[(
c⃗†P

)
ne

|0⟩
]
, (S5)

where Ne denotes the number of electrons. This implies that the initial state is a direct product of Ne fermion
single-particle wave functions. The index x denotes the degree of freedom of the electron, including spatial degrees
of freedom, spin degrees of freedom, etc. The matrix element Px,ne

represents the probability amplitude of the neth
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electron on the xth degree of freedom. Note that the imaginary-time propagator e−τHc is essentially the Boltzmann
weight factor of the auxiliary field configuration in statistical mechanics. According to Eqs. (S4) and (S5), the
partition function of the auxiliary field configuration can be expressed as:

Z =
∑
c

⟨ψ0| e−τHc |ψ0⟩ =
∑
c

Ac det
[
P †Bc(τ, 0)P

]
. (S6)

Here, we use Bc to represent the exponential of the quadratic coefficient matrix:

Bc(τ2, τ1) ≡
τ2/∆τ∏

m=τ1/∆τ

eT eVc(m) . (S7)

The expression on the right side of Eq. (S6) has integrated out the fermion operators, replacing the Grassmann
numbers and fermion statistics, with a determinant representation that is computationally tractable. All matrix
operations can be performed directly on a computer.

Ultimately, our Monte Carlo sampling is conducted over space-time configurations. Numerically, the weight of a
space-time configuration is Ac det

[
P †Bc(τ, 0)P

]
. Following the classical Markov importance sampling method, we

continuously make tentative flips to the local components of this d + 1 dimensional auxiliary field. We then employ
the Metropolis algorithm to calculate the probability of accepting these changes based on the ratio of configuration
weights before and after the flip. Specifically, we need to compute the following weight ratio:

Rc′c ≡
Ac′ det

[
P †Bc′(τ, 0)P

]
Ac det [P †Bc(τ, 0)P ]

, (S8)

where c′ represents the flipped configuration and c represents the original configuration. In fact, we do not need
to compute the weights of the two configurations separately. This is because the flipping we perform is localized in
space-time, so

Bc′(τ, 0) = Bc(τ, ζ) (1 +∆c′c)Bc(ζ, 0). (S9)

Here, ∆c′c is a highly sparse matrix, where only the matrix elements corresponding to the degrees of freedom involved
in the local auxiliary field flipping are non-zero. Thus, the ratio of the two determinants can be expressed as:

det
[
P †Bc′(τ, 0)P

]
det [P †Bc(τ, 0)P ]

= det
{

1 +∆c′cBc(ζ, 0)P
[
P †Bc(τ, 0)P

]−1
P †Bc(τ, ζ)

}
. (S10)

Due to the sparsity of ∆c′c, the determinant on the right side of the above equation only requires consideration of a
few degrees of freedom involved in the flipping during computations.

In DQMC, to compute the physical observables, we only need to statistically analyze the configurational observable
⟨O(τ)⟩c.

⟨O(τ)⟩ =
∑
c

Prc ⟨O(τ)⟩c +O
(
∆τ2

)
, (S11)

where Prc represents the configuration probability,

Prc =
1

Z
Ac det

[
P †Bc(τ, 0)P

]
, (S12)

⟨O(τ)⟩c =
⟨ψ0| e−

τ
2Hc O e−

τ
2Hc |ψ0⟩

⟨ψ0| e−τHc |ψ0⟩
. (S13)

Since we employ importance sampling, the sampling frequency is proportional to the configuration probability. Ul-
timately, when calculating the observable, we simply take the average over the sampled configurational observables.
If the observable is a single-particle operator, meaning it can be expressed as a quadratic form of fermion operators,
then one can integrate out the fermion degrees of freedom in a manner similar to Eq. (S6) and numerically compute
using determinants. For observables of four-fermion operators or higher, we compute using the fermion equal-time
Green’s function based on Wick’s theorem. After numerically integrating out the fermion degrees of freedom, the
fermion equal-time Green’s function can be expressed using the following matrix element:

⟨c†x1
cx2

⟩
c
=
{
Bc

(τ
2
, 0
)
P
[
P †Bc(τ, 0)P

]−1
P †Bc

(
τ,
τ

2

)}
x1,x2

. (S14)
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DETERMINATION OF THE CRITICAL POINT

Here we offer supplementary details and numerical insights on pinpointing the critical point. In Fig. 2(a) of the
paper, we show that different sizes of R-U curves intersect at the critical point when τL−z is taken as 0.3, 0.34,
and 0.5. However, due to finite size effects, there may be slight deviations between the intersection points of small-
sized curves and the real critical point. We denote the intersection points of size L and L + 3 as Uc(L), which are
shown in Fig. S1. The accuracy of these intersection points is highly susceptible to errors from data points near the
intersections, especially given the small angles at which the curves cross.

FIG. S1. Determine the critical point by extrapolation. When τL−z is fixed at 0.3, 0.34, and 0.5 respectively, the intersection
points Uc(L) of the R-U curves for sizes L and L+3 are shown in the figure. The critical point is extrapolated when the system
tends to thermodynamic limit L → ∞. Note that the extrapolation results are also marked at 1/L = 0.

We extrapolate the critical point outside the thermodynamic limit L→ ∞ using the form Uc(L) = Uc+aL
−w. The

intercept shown in Fig. S1 represents the extrapolated critical point. For three different cases of τL−z = 0.3, 0.34, 0.5,
our results are Uc = 3.91(3), 3.92(1), 3.88(4) respectively. They all extrapolate to the same limit within the error
range, thus demonstrating that our method based on nonequilibrium information to determine critical points using
dynamic scaling is reliable.

The relaxation-dynamics-based method we used above to solve the critical point can be applied universally to other
fermion systems. Nevertheless, it is worth mentioning that as shown in Fig. S1, the Uc(L) approaches the critical
point with different trends as L increases when different values of τ/L are taken. Specifically, when τ/L = 0.3, the
Uc(L) under small size is smaller than the real critical point at thermodynamic limit; while when τ/L = 0.5, the
Uc(L) under small size is larger than the real critical point; even more interestingly, we found that at τ/L = 0.34,
the Uc(L) almost does not depend on size and can exhibit a real critical behavior under small sizes alone. This
means that in the short-time stage, the Uc(L) of the system tends to lean towards disordered phase, while after a
long-time evolution, it leans towards ordered phase. This reversal of Uc(L) shift has not been observed in previous
phase transitions of bosonic systems and spin systems. We are not sure if this phenomenon is universal, and more
research on the nonequilibrium of fermionic systems is needed.

MORE RESULTS ABOUT THE CRITICAL EXPONENTS

In the main text, we use the data with fixed τL−z = 0.3 to determine the critical exponent ν. Here, we supplement
the results of τL−z=0.5 and 0.34. Fig. S2 shows the curves of different sizes’ correlation-length ratios changing with
U/t. We adjust the rescaling parameters Uc and ν to make the curves of different sizes coincide. To avoid finite size
effects as much as possible, we fit Uc and ν using curves above L = 12. For τL−z=0.5 and 0.34, we obtain results
of Uc=3.91(2) and 3.92(4), respectively, as well as ν=1.22(6) and 1.22(17). They are consistent with our results
presented in the paper within error range.



11

(a1) (a2) (b1) (b2)

FIG. S2. The variation of the correlation-length ratio with respect to U/t at fixed τL−z. (a1) display the results obtained by
setting τL−z = 0.5. (a2) shows rescaling is applied to the horizontal axis of (a1). (b1) display the results obtained by setting
τL−z = 0.34. (b2) shows rescaling is applied to the horizontal axis of (b1).

(a) (b)

FIG. S3. Relaxation behavior of order parameter with the RS initial state. (a) shows that the order parameter for large size L

increases in a form close to τd/z−2β/νz. (b) has been rescaled on both axes, and curves of different sizes overlap. The critical
exponent value chosen here is β/ν = 0.80.

Furthermore, by using these results for rescaling, in Fig. S2 (a2), it can be seen that for τL−z = 0.5, small-size
curves do not completely coincide with large-size curves; while in Fig. S2 (b2), it is shown that even small-size curves
can coincide very well for τL−z = 0.34, which also confirms what we mentioned in the previous section.
In the main text, we also examine the scaling form and critical exponents in relaxation dynamics with Dirac semi-

metal (DSM) initial state. Here, we base our examination on relaxation dynamics with random spin (RS) initial state.
We show in Fig. S3 the variation of the square of the order parameter during the relaxation with RS initial state. The
relaxation scaling used to describe DSM initial states in our paper is also applicable here, but with different specific
scaling function. At the critical point, it takes a slightly longer time for RS initial states to relax to equilibrium
compared to DSM initial states because the latter are actually correlated while the former are completely random.

In short-time stage, τL−z is small enough that scaling function fm2 (τL−z) can be approximated as a constant.
Therefore, for a given size m2 ∝ τd/z−2β/νz and different sizes L, their relaxation curves do not overlap in short-time
stage due to the factor of L−d in proportionality coefficient, but they follow the same power law with increasing τ .
As shown in Fig. S3 (a), different curves are approximately parallel with slope d/z − 2β/νz. In Fig. S3 (b), we also
verify the critical exponent β/ν = 0.80 obtained from the relaxation dynamics of AFM initial state. We rescale the
relaxation dynamics of DSM initial state using this result and find that curves of different sizes L overlap, which
self-consistently confirms our results.

CRITICAL INITIAL SLIP IN QUANTUM ISING MODELS

In the main text, we determine the critical initial slip exponent θ of the Dirac fermions through the critical relaxation
behavior of the auto-correlation function A. Here, we study the critical dynamics of the auto-correlation function A
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in the 1D and 2D transverse-field Ising models. In previous works [81, 99], the critical initial slip exponent for the 1D
and 2D Ising models is obtained from other methods. Here, we show that the critical initial slip exponent for these
models can also be obtained from the scaling of A. Figure S4 (a1) shows the relaxation process of A for various sizes
of the 1D transverse-field Ising model at the critical point h/J = 1. In Fig. S4 (a2), we rescale the relaxation process
for 1D. Here, we take θ = 0.3734 [99] and z = 1. After rescaling, the relaxation curves of different sizes overlap,
satisfying the scaling relation for A as mentioned in our main text. For the 2D transverse-field Ising model at the
critical point h/J = 3.04451, we performed similar numerical simulations, as shown in Fig. S4 (b1). The relaxation
curves of various sizes of A overlap when rescaled with θ = 0.209 [99], as shown in Fig. S4 (b2). Note that for both
1D and 2D quantum Ising models, the critical initial slip exponent is positive.

(a1) (a2) (b1) (b2)

FIG. S4. The relaxation behavior of the auto-correlation function A in the quantum Ising model. (a1) and (b1) respectively
show the results in 1D and 2D. (a2) and (b2) are their rescaled results, where the relaxation curves of different sizes overlap.
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