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Abstract—The increasing complexity of modern deep neural
network models and the expanding sizes of datasets necessitate
the development of optimized and scalable training methods. In
this white paper, we addressed the challenge of efficiently training
neural network models using sequences of varying sizes. To
address this challenge, we propose a novel training scheme that
enables efficient distributed data-parallel training on sequences
of different sizes with minimal overhead. By using this scheme
we were able to reduce the padding amount by more than 100x
while not deleting a single frame, resulting in an overall increased
performance on both training time and Recall in our experiments.

Index Terms—distributed, training, machine learning, multi-
GPU

I. INTRODUCTION

The increasing complexity of modern deep neural network
models and the expanding sizes of datasets necessitate the
development of optimized and scalable training methods.
Neural networks are commonly trained using multiple GPUs
either within a single machine or distributed across a cluster
of nodes. Traditional distributed training schemes, such as
distributed data-parallel (DDP) [1], have been widely em-
ployed. While this scheme is popular, it struggles with data
sequences of varied lengths, like videos of different durations.
To address this challenge, we propose a novel training scheme
that enables efficient DDP training on sequences of different
sizes with minimal overhead and is publicly available at
https://github.com/RRuschel/BLoad.

II. PROBLEM STATEMENT AND CURRENT LIMITATIONS

We consider a dataset D comprising N samples, where each
sample Si∈N represents a video with dimensions H×W ×T .
Here, H and W denote the height and width of each frame,
respectively, while T represents the duration of the video. Our
objective is to train a deep neural network model efficiently
using a DDP scheme while accommodating varying values of
H , W , and T for each sample Si. While our primary focus
is on videos, we expect our method to be applicable to other
data types like audio and text.

Using PyTorch’s Distributed Data-Parallel with datasets
of varying lengths can lead to stalled training without any
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Fig. 1. Sample dataset with 8 videos of varying length - Each Vi represents
an individual video, and each yellow square represents a frame.

error message. The root of this issue is in the gradient syn-
chronization step. Here, each GPU process collects gradients
from other processes to compute an average gradient, which
updates the model. If sequences differ in size, each process
gets varying sample counts, potentially causing a deadlock
as processes await others indefinitely, unable to calculate the
gradient.

To illustrate the problem, consider the sample dataset from
figure 1. It has 8 sequences with lengths varying from 2 to 6
frames. Initiating a DDP training with a batch size of 2 using
random sampling can produce situations like that in figure 2.
Here, GPU 1 handles two videos, each 2 frames long, while
GPU 2 manages two videos, each 6 frames long. After just 2
iterations, GPU 1 completes its batch, leaving it idle, as GPU
2 continues processing. New data is only retrieved once all
GPUs finish their batches. Consequently, when GPU 2 tries to
gather gradients from GPU 1, it faces an indefinite wait since
GPU 1 has no gradient to return.

A common strategy to resolve this issue involves padding
each sample to match the duration Tmax of the longest
sequence in the dataset (as illustrated in figure 3). While
this method solves the stalling problem, it becomes highly
inefficient when Tmax is significantly larger than the average
sequence length, resulting in substantial padding and unnec-
essary computations during training.

Another strategy entails breaking down each data sample
into smaller chunks of size H ×W ×Tblock and treating each
smaller block as an individual sample, as employed in [2], [3].
While this approach resolves synchronization issues, it cannot
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Fig. 2. Deadlock situation when each GPU receives sequences of different
lengths. In this situation, after the third iteration, GPU 1 will not have any
gradients to report, causing GPU 2 to wait without any error message.

Fig. 3. Naive padding solution - Every sequence on the dataset is padded to
match the length of the largest sequence, generally by adding 0’s or repeating
the last entry of the sequence

be applied to train neural networks that incorporate feedback,
such DDS [4]. Breaking down the original data sample into
smaller pieces destroys the temporal relationships inherent in
the original sequence, as shown in figure 4.

III. METHODS

Our proposed method builds upon the padding strategy but
significantly reduces wasteful computations. We create blocks
of size Tmax by concatenating randomly sampled sequences
with length Ti ≤ Tmax. If we cannot construct a video of size
exactly equal to Tmax, we then build a block as close to Tmax

and then pad it with 0’s to fill the block. Figure 5 shows an
example of our proposed solution.

Additionally, we create a table containing the starting index
of each new video within each particular block. This table

Fig. 4. Sampling solution, where each sequence is trimmed to match a smaller
size, usually the length of the average entry in the dataset. In this approach,
one sequence might be broken into several smaller portions, which won’t
allow the training of models with long temporal support.

Fig. 5. Our proposed padding approach - BLoad (as in block load) - aims to
construct sequences of size Tmax using shorter sequences as building blocks

can be useful during training a recurrent network, such as the
DDS, architecture shown in Figure 6 where some information
(oEt−1) from iteration n − 1 is used at iteration n. Having
the knowledge of where a new sequence starts enables reset-
ting/discarding the information from the previous iteration, as
it belongs to a different sequence, correctly maintaining the
temporal dependency of the data inside each block.

For a more technical insight into our method, we’ve pro-
vided a pseudocode outline on 7.

IV. EXPERIMENTS & RESULTS

Following the works on [4], we perform experiments on
the Action Genome dataset. This dataset is extensively used
in Scene-Graph Detection problems and contains 7, 464 videos
with 166, 785 frames in the training set and 1, 737 videos
with 54, 371 frames in the test set. To evaluate the differ-
ences between each sampling strategy, we retrain DDS using
each strategy mentioned earlier and report the amount of
padding added, number of frames deleted, time per epoch, and
performance on the recall@20 metric. The Action Genome



Fig. 6. DDS architecture from [4] - In this model, the output of frame n− 1
is used as partial input to both encoders during the processing of frame n,
resulting in increased performance on video sequences.

Fig. 7. Pseudocode for our proposed padding approach - Note that
the Random∗() function returns a random entry of Ldict such that
Tsampled sequence ≤ remaining frames

dataset is apt for these experiments, given its wide range of
sequence lengths, from brief 3-frame snippets to as long as 94
frames. Our experiments were conducted on a machine with
8 NVIDIA A100 with 40GB of memory and are reported in
table I.

TABLE I
COMPARISON OF PERFORMANCE USING DIFFERENT TRAINING

STRATEGIES

0 padding sampling mix pad block pad
padding amount 534831 0 37712 3695
# frames deleted 0 92271 40289 0
time (per epoch) 170 min 18 min 40 min 41 min
recall@20 - 41.2 42.1 43.3

From the table, it’s evident that the naive padding solu-
tion results in over 500k padding frames—almost 4x the
original data size. This rendered the training so inefficient
that we chose not to complete it for performance evaluation.
Interestingly, with the sampling strategy, despite discarding
nearly 2/3 of the data, we achieved results comparable to or
even surpassing several established models such as [5]. We
attribute this to the dataset’s high frame correlation, leading to
marginal gains with added frames. We haven’t delved deeper
into this observation as it falls outside this manuscript’s scope.
Our proposed block pad strategy offers clear advantages. It
combines zero frame removal with minimal padding, reducing
unnecessary computations and enhancing performance.

V. CONCLUSION

In this white paper, we addressed the challenge of efficiently
training neural network models using sequences of varying
sizes. We proposed a novel training scheme that combines
elements of padding and distributed data parallelism to achieve
optimal results. By padding sequences with videos of ap-
propriate lengths and employing a table of starting indices,
our method reduces wasteful computations while preserving
temporal relationships. The proposed approach opens up new
possibilities for training models on diverse data types, such
as videos, audio, and text, with varying sequence lengths. In
future research, we can delve into the method’s applicability
to different modalities and test its efficacy across various deep
learning challenges.
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