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Abstract

Sequential lateration is a class of methods for multidimensional scaling where a suitable sub-
set of nodes is first embedded by some method, e.g., a clique embedded by classical scaling, and
then the remaining nodes are recursively embedded by lateration. A graph is a lateration graph
when it can be embedded by such a procedure. We provide a stability result for a particular
variant of sequential lateration. We do so in a setting where the dissimilarities represent noisy
Euclidean distances between nodes in a geometric lateration graph. We then deduce, as a corol-
lary, a perturbation bound for stress minimization. To argue that our setting applies broadly,
we show that a (large) random geometric graph is a lateration graph with high probability under
mild conditions, extending a previous result of Aspnes et al (2006).

1 Introduction

In multidimensional scaling (MDS), we are provided with some pairwise dissimilarities between
a number of items, and the general goal is to embed these items as points in a Euclidean space
of given dimension in such a way that the resulting Euclidean distances reproduce, as faithfully
as possible, the dissimilarities. MDS is a well-studied problem in psychometrics [14], mathematics
and computer science (embedding of metric spaces) [13], in optimization (Euclidean distance matrix
completion) [52], and engineering (sensor network localization) [57], and it is an integral part of
multivariate statistical analysis [4, 64] and unsupervised machine learning [35]. MDS is closely
related to the problem of graph drawing [10, 44].

1.1 Setting

More formally, we are given an undirected graph G = (V, E), with node set V = [n] := {1, . . . , n}
and edge set E ⊂ V ×V, together with non-negative weights on the edges. The weight on (i, j) ∈ E
is referred to as the dissimilarity between i and j, and denoted dij . The (possibly incomplete)
matrix D = (dij) stores these dissimilarities. Based on this information, we seek to embed the
nodes into a Euclidean space of given dimension, denoted p, as accurately as possible. Specifically,
we seek a configuration y1, . . . , yn ∈ Rp such that ∥yi−yj∥ ≈ dij for all or most (i, j) ∈ E . A notion
of stress, for example, the s-stress of Takane et al. [70] defined as∑

(i,j)∈E

(
∥yi − yj∥2 − d2ij

)2
, (1.1)
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offers a way to quantify the accuracy of the embedding. Throughout, the dimension p will be
assumed given and ∥ · ∥ will denote the Euclidean norm in Rp.

We say that the graph is realizable (in dimension p) if there is a point set y1, . . . , yn ∈ Rp such
that ∥yi − yj∥ = dij for all (i, j) ∈ E , or in words, if there is a configuration with zero stress. In
this paper we are most interested in the noisy realizable situation in which

d2ij = ∥xi − xj∥2 + εij , (i, j) ∈ E , (1.2)

where {x1, . . . , xn} ∈ Rp will be referred to as the latent configuration1 and {εij : (i, j) ∈ E}
represents measurement noise, possibly stochastic. This additive noise model is considered in a
number of places, e.g., [3, 41, 54]. It includes, as a special case, the following multiplicative noise
model

dij = (1 + ηij)∥xi − xj∥, (i, j) ∈ E ,

by simply setting εij = 2ηij∥xi − xj∥ + η2ij∥xi − xj∥2 in (1.2). Although the model (1.2) is in
principle completely general, in our results we will bound the error terms. It is possible to study
the problem under more general assumptions as recently done in [47, 55], but the model above is
most appropriate for our purposes as will become clear below.

1.2 Methods

A wide array of approaches have been proposed to tackle this problem, starting with classical
scaling, the oldest and still the most popular method, proposed by Torgerson [73, 74] and further
developed by Gower [32], with roots in a mathematical inquiry by Young and Householder [81] into
necessary and sufficient conditions “for a set of numbers to be the mutual distances of a set of real
points in Euclidean space” — to quote the abstract of their cornerstone paper. Kruskal [48, 49]
formulated the problem as minimizing a notion of stress that he suggested for that purpose — same
as (1.1) but without the squares inside the brackets. Many other optimization approaches have
been tried, including second order methods [42], as well as other Newton and quasi-Newton variant
procedures [30, 43]; augmentation and majorization [22, 36], which include the SMACOF algorithm
[23, 24, 56], itself closely related to the fixed point iteration approach of Guttman [34]; incremental
and multigrid approaches [15, 19, 78]; divide-and-conquer or patch-stitching algorithms [21, 26, 38,
45, 46, 65, 68, 75, 80, 82]; semidefinite programming (SDP) formulations where the constraint on the
embedding dimension is removed [1, 11, 12, 17, 26, 41, 69, 77]; and the completion of the dissimilarity
matrix by graph distances before applying a method like classical scaling [50, 60, 62, 66]. See the
book by Borg and Groenen [14] and the PhD thesis of Klimenta [44, Ch 2, 3] for partial reviews of
the literature.

Sequential lateration

We place our attention on sequential lateration, which is an approach in which a suitable subset
of nodes is first embedded by some method — e.g., a clique embedded by classical scaling — and
then the remaining nodes are recursively embedded by lateration [8, 9, 27, 29, 33, 43, 53].

Lateration is the problem of locating a point based on its (possibly inaccurate) distances to a
set of given points often referred to as anchors, beacons or landmarks. The problem is known under

1Note that the latent configuration is only determined up to a rigid transformation, as we do not assume that any
anchor is available. However, this duplicity does not cause any trouble.
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different names, including ‘trilateration’ or ‘multilateration’, or simply ‘lateration’, in engineering
[5, 18, 28, 59, 63, 79], while ‘external unfolding’ is favored in psychometrics [14, 16].

Aspnes et al. [8], developing ideas already present in their prior work [27], introduce2 the notion
of lateration graph (in dimension p), which they define as a graph with n ≥ p + 1 vertices that
admits an ordering of its vertices, say v1, . . . , vn, such that the subgraph induced by v1, . . . , vp+1 is
complete and, for each j > p + 1, vj is connected to at least p + 1 vertices among v1, . . . , vj−1 —
they call this a laterative ordering (in dimension p). They show in [8, Th 10] that the problem of
Section 1.1 is solvable in polynomial time by sequential lateration in the realizable situation (1.2)
(with εij ≡ 0) when the latent points x1, . . . , xn are in general position and the graph (V, E) is a
lateration graph. We say that a configuration is in general position if any (p + 1)-tuple from the
configuration spans the entire space.

1.3 Contribution and content

Our main contribution is establishing a perturbation bound for sequential lateration. Such a bound
helps us understand how the performance of a method degrades with the presence of noise. While,
as already mentioned, sequential lateration is exact in the realizable setting when the latent points
are in general position and the graph is a lateration graph, our study provides an understanding of
how the method behaves in the noisy realizable setting (1.2).

As our second contribution, we use our perturbation bound for sequential lateration to derive
a perturbation bound for stress minimization in the same setting of a lateration graph. Although
stress minimization is not an algorithm per se, we show that the set of configurations that minimize
the stress (1.1) is stable in the presence of noise in the sense that any minimizing configuration
is within a distance (up to rigid transformations) to the latent configuration in (1.2) controlled in
terms of the amount of noise.

Only a few perturbation bounds exists in the MDS literature. For classical scaling, some partial
results were developed early on by Sibson [67] and later revisited by de Silva and Tenenbaum [25],
but a true perturbation bound was only established recently in [6], where perturbation bounds
for the completion by graph distance method of Kruskal and Seery [50] and the SDP method of
Weinberger et al. [77] — in the context of manifold learning in the form of isomap [71] and maximum
variance unfolding [76] — were also obtained. Similarly, some perturbative results were derived
in [25] for lateration, but a true perturbation bound was only achieved in [6] (to our knowledge).
Moore et al. [58], inspired by the earlier work of Eren et al. [27], propose a method for sequential
trilateration and carry out a very limited mathematical analysis, restricting themselves to analyzing
the probability of a gross error or ‘flip’ in one trilateration step. We are not aware of any other
results.

Our perturbation bound for sequential lateration was perhaps anticipated by Anderson et al.
[3], who discuss this as an open question in their last section:

“An important problem, linked but separate from the one treated in this paper, is how
(numerically) to solve the minimization problem. The corresponding problem in the
noiseless case is how to perform localization. For a localization problem to be solvable
in polynomial time, it is generally necessary that some special structure holds for the
graph; for example, in the case of trilateration graphs, localization can be done in linear
time with suitable anchors [2]. We would expect, although we have no formal proof, that

2They use ‘trilateration graph’ and ‘trilaterative ordering’ as they focus on the case of dimension p = 2.
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such geometries will also be important in ensuring that a noisy localization problem is
computationally tractable.”

Perturbation bounds and, more generally, a better understanding of the MDS problem under
noise, were open problems discussed at length by Mao et al. [57] in their well-cited review paper of
the engineering literature on the topic. We leverage our perturbation bound for sequential lateration
to obtain another result that contributes to that endeavor: we show, in the same context, that any
configuration that minimizes the stress (1.1) is necessarily close to the latent configuration. In
doing so, we recover a result of Anderson et al. [3] in the special case of a lateration graph.

Although not all graphs are lateration graphs, the setting covers the main stochastic model
used in the literature, that of a random geometric graph. While this was already known to Aspnes
et al. [8], Eren et al. [27], as our third contribution, we provide a much more general result, showing
that a large random geometric graph is a lateration graph with high probability under very mild
assumptions on the underlying sampling distribution.

The remainder of the paper is organized as follows. In Section 2, we derive a perturbation
bound for sequential lateration. In Section 3, we obtain as a corollary a perturbation bound for
stress minimization. This is placed in the broader context of rigidity theory. In Section 4, we
provide rather mild conditions under which a large random geometric graph is a lateration graph
with high probability. Some numerical experiments meant to illustrate the theory are presented in
Section 5. And Section 6 is a discussion section.

2 Perturbation bound for sequential lateration

The particular variant of sequential lateration that we work with is based on classical scaling and
what we call classical lateration, a method for lateration that was originally proposed by Gower
[32] and later rediscovered by de Silva and Tenenbaum [25], and is the analog of classical scaling
for the lateration problem.

The procedure works as follows. For each (p+1)-tuple of nodes within V = [n], if it is complete,
meaning that the (p+1)-tuple forms a clique, we embed it by classical scaling; we then recursively
embed by classical lateration any node that is neighbor to at least p + 1 nodes that have already
been embedded. We can think of two main variants: in the ‘first’ variant, we stop at the first
full embedding achieved in this manner; in the ‘best’ variant, we go through all full embeddings
and select the one with smallest stress (1.1). Both variants run in polynomial time, although the
‘best’ variant is prohibitively expensive to run in practice, having a complexity of order ≍ np+1

since there are (p+1)-tuples to go through and, for each of them, running the sequential lateration
has complexity O(n). Our perturbation bound applies to either variant, and any other variant ‘in
between’.

Theorem 2.1. In the context of Section 1.1, consider a noisy realizable situation as in (1.2) in
which the network structure (V, E) is a lateration graph and the latent configuration is in general
position. Then, there is σ > 0 and C > 0 such that, if

∑
(i,j)∈E ε

2
ij ≤ σ2, sequential lateration

outputs an embedding y1, . . . , yn satisfying

min
g

∑
i∈[n]

∥yi − g(xi)∥2 ≤ C
∑

(i,j)∈E

ε2ij , (2.1)

where the minimization is over the rigid group of transformations of Rp.

As in [3], the constants σ and C depend on the graph and the latent configuration.
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The proof of Theorem 2.1 occupies the rest of this section. It uses two perturbation bounds
from [6], one for classical scaling (Lemma 2.2) and one for classical lateration (Lemma 2.3). We
start with a stability result for classical scaling.

Lemma 2.2 (Corollary 2 in [6]). Consider a configuration x1, . . . , xm ∈ Rp that affinely spans the
entire space, and a complete set of dissimilarities (dij), and define

η4 =
∑

1≤i<j≤m

(
d2ij − ∥xi − xj∥2

)2
.

Then there are constants η0 > 0 and A > 0 depending on the configuration such that, if η ≤ η0,
then classical scaling with input dissimilarities (dij) (and given dimension p) returns a configuration
y1, . . . , ym satisfying

min
g

∑
i∈[m]

∥yi − g(xi)∥2 ≤ Aη4,

where the minimization is over the rigid group of transformations.

Next is a stability result for classical lateration — the lateration method that we consider —
where stability is considered with respect to noise both at the level of the dissimilarities and at the
level of the landmarks.

Lemma 2.3 (Corollary 3 in [6]). Consider a configuration x1, . . . , xm ∈ Rp that affinely spans the
entire space, and an arbitrary point x ∈ Rp. Let y1, . . . , ym ∈ Rp be another configuration and let
d1, . . . , dm be set of dissimilarities, and define

ν2 =
∑
i∈[m]

∥yi − xi∥2, and η4 =
∑
i∈[m]

(
d2i − ∥x− xi∥2

)2
.

Then there are constants ν0 > 0 and B > 0 depending on the configuration x1, . . . , xm such that, if
ν ≤ ν0, classical lateration with inputs y1, . . . , ym and d1, . . . , dm outputs an embedding y satisfying

∥y − x∥2 ≤ B(ν2 + η4).

In the statement, x1, . . . , xm play the role of landmarks and x is the unknown point to be
recovered; y1, . . . , ym should be seen as noisy versions of x1, . . . , xm, and d1, . . . , dm should be seen
as noisy versions of ∥x− x1∥, . . . , ∥x− xm∥.

Proof of Theorem 2.1. Assume without loss of generality that (1, . . . , n) is already a laterative or-
dering. We first apply classical scaling to (dij)1≤i<j≤p+1, which we can do since these dissimilarities
are available because of the assumption that (1, . . . , n) is a laterative ordering. We let y1, . . . , yp+1

be the output and use Lemma 2.2 to quantify its accuracy. By assumption,

η4 :=
∑

1≤i<j≤p+1

ε2ij ≤
∑

(i,j)∈E

ε2ij ≤ σ2.

Let η0 > 0 and A > 0 denote the constants of Lemma 2.2, which depend on the configuration
x1, . . . , xp+1, and therefore, on the entire configuration x1, . . . , xn. Assuming σ is small enough
that σ2 ≤ η40, so that η ≤ η0, that same lemma gives that∑

1≤i≤p+1

∥yi − g(xi)∥2 ≤ A
∑

1≤i<j≤p+1

ε2ij ,
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for some rigid transformation g. Henceforth, we assume that g is the identity transformation, which
we can do without loss of generality.

Define
Ek :=

{
(i, j) ∈ E : i, j ∈ [k]

}
= E ∩ [k]2,

and, for k ≥ p+ 1, assume that we have already embedded y1, . . . , yk in such a way that, for some
constant Ck depending the on configuration,∑

1≤i≤k

∥yi − xi∥2 ≤ Ck

∑
(i,j)∈Ek

ε2ij . (2.2)

We are now poised to obtain yk+1 by lateration based on p + 1 points in {y1, . . . , yk} and the
corresponding dissimilarities. Assume these points to be yi1 , . . . , yip+1 , so that the corresponding
dissimilarities are dk+1,i1 , . . . , dk+1,ip+1 , and yk+1 is the output of classical lateration based on these
inputs. We have

ν2k+1 :=

p+1∑
j=1

∥yij − xij∥2 ≤
∑

1≤i≤k+1

∥yi − xi∥2

≤ Ck

∑
(i,j)∈Ek

ε2ij ≤ Ck

∑
(i,j)∈E

ε2ij ≤ Ckσ
2,

using our induction hypothesis (2.2) and by assumption. And we also have

η4k+1 :=

p+1∑
j=1

(
d2k+1,ij

− ∥xk+1 − xij∥2
)2

=

p+1∑
j=1

ε2k+1,ij
≤

k∑
i=1

ε2k+1,i.

Let ν0 > 0 and B > 0 denote the constants of Lemma 2.3, which depend on the configuration
xi1 , . . . , xip+1 , and therefore, on the entire configuration x1, . . . , xn. Assuming that σ is small
enough that Ckσ

2 ≤ ν20 , so that νk+1 ≤ ν0, the same lemma then gives us the error bound

∥yk+1 − xk+1∥2 ≤ Bν2k+1 +Bη4k+1

≤ BCk

∑
(i,j)∈Ek

ε2ij +B

k∑
i=1

ε2k+1,i

≤ B(Ck + 1)
∑

(i,j)∈Ek+1

ε2ij ,

thus enabling us to continue the induction. At the end of the induction, when all the yi have been
embedded, we obtain the announced bound (2.1).

3 Perturbation bound for stress minimization

In the noisy realizable setting (1.2), the stress clearly functions as a proxy for the noiseless stress,
defined as ∑

(i,j)∈E

(
∥yi − yj∥2 − ∥xi − xj∥2

)2
. (3.1)
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In turn, the noiseless stress functions as a proxy for the complete noiseless stress, defined as∑
1≤i<j≤n

(
∥yi − yj∥2 − ∥xi − xj∥2

)2
. (3.2)

We establish below that, in some actionable sense, the stress tracks the complete noiseless stress in
the context of a lateration graph.

3.1 Rigidity theory

To investigate this, we turn to rigidity theory, which examines the question of uniqueness (up to
a rigid transformation) when realizing a weighted graph in a given Euclidean space [7, 51, 72].
We introduce some vocabulary from that literature (in particular, from [20]). As we have already
seen, a configuration is a set of n points in Rp indexed by [n] = {1, . . . , n}. A configuration is
generic if the set of its coordinates do not satisfy any nonzero polynomial equation with integer
coefficients. We say that two configurations y = {y1, . . . , yn} and z = {z1, . . . , zn} are congruent
if there is a rigid transformation f : Rp → Rp such that zi = f(yi) for all i ∈ [n]. A configuration
y = {y1, . . . , yn} and a graph G = (V = [n], E), together, form a framework, denoted G(y). We say
that two frameworks, G(y) and G(z) are equivalent if

∥yi − yj∥ = ∥zi − zj∥, ∀(i, j) ∈ E .

The framework G(y) is said to be globally rigid if, whenever G(y) and G(z) are equivalent, then
necessarily y and z are congruent. The graph G is said to be generically globally rigid if G(y) is
globally rigid whenever y is generic.

The complete noiseless stress (3.2) is exactly zero when ∥yi − yj∥ = ∥xi − xj∥ for all i < j,
and we know this to be equivalent to y = {y1, . . . , yn} and x = {x1, . . . , xn} being congruent. For
the noiseless stress (3.1), the same is true if G(x) is globally rigid. This is by mere definition,
and we would like to know when this happens. Also by definition, it happens when x is a generic
configuration and G is generically globally rigid.

Generic configurations are ‘common’ in the sense that those configurations that are not generic
have zero Lebesgue measure (in Rnp). This is simply because there are countably many polynomials
with integer coefficients and each one of these defines a surface (its null set) of zero Lebesgue mea-
sure. In particular, if a configuration is drawn iid at random from a density, then the configuration
is generic with probability one.

The question of whether a graph is generically globally rigid or not, is a delicate question. In
the very special but useful case of dimension p = 2, Jackson and Jordán [39] have shown that if
the graph is 6-vertex connected, meaning that it remains connected even after the removal of any
5 vertices, then the graph is generically globally rigid. The situation in dimension p ≥ 3 is more
complex, although some useful results exist; see, e.g., [2, 37]. A necessary and sufficient condition
exists in terms of the existence of an equilibrium stress matrix, which for a framework G(x) is
defined as a matrix ω = (ωij) satisfying

∑
j:(i,j)∈E ωij(xi−xj) = 0 for all i ∈ [n]. To a stress matrix

ω, we associate another matrix Ω = (Ωij) with Ωij = −ωij when i ̸= j, and Ωii =
∑

j ωij . (If we
see ω as the weight matrix of a graph, then Ω is the corresponding Laplacian.) Connelly [20] and
Gortler et al. [31], together, have shown that if G has n ≥ p+2 nodes and is not the complete graph,
and if x is a generic configuration, then G(x) is globally rigid if and only if there is a equilibrium
stress matrix ω with rankΩ = n− p− 1.
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3.2 Rigidity theory in the presence of noise

What we have learned so far is that, if the graph G = (V, E) given in the embedding problem
is generically globally rigid, and we are in a realizable situation with an underlying configuration
x1, . . . , xn that is generic, then the noiseless stress (3.1) is minimized exactly where the complete
noiseless stress (3.2) is minimized, that is, at all the rigid transformations of the configuration.
These conditions are fulfilled with high probability by a random geometric graph under additional
mild conditions (Section 4). But all this does not imply much about the noisy stress (1.1).

While most of the literature on rigidity theory focuses on the noiseless setting, Anderson et al.
[3] consider the question of stability in the presence of noise. They do so in the realizable setting in
dimension p = 2, and in the setting where anchors are given. (Anchors are points whose position
is known.) The graph is generically globally rigid with an underlying generic configuration. With
anchors, the configuration is effectively unique, not just up to a rigid transformation. In this
context, they show that the distance between the minimizer of the stress (1.1) constrained by the
anchors and the underlying configuration is bounded by a constant multiple of the noise amplitude.
Their analysis in based on the results of Connelly [20] and Gortler et al. [31] mentioned above.

We prove an analogous result in the present anchor-free setting for an arbitrary embedding
dimension. We do so for lateration graphs, which in addition to including important models (Sec-
tion 4), allows for a completely different proof based on the perturbation bound just established in
Theorem 2.1.

Theorem 3.1. In the context of Section 1.1, consider a noisy realizable situation as in (1.2) in
which the network structure (V, E) is a lateration graph and the latent configuration is in general
position. Then, there is σ > 0 and C > 0 such that, if

∑
(i,j)∈E ε

2
ij ≤ σ2, any minimizer y∗1, . . . , y

∗
n

of the stress (1.1) satisfies

min
g

∑
i∈[n]

∥y∗i − g(xi)∥2 ≤ C
∑

(i,j)∈E

ε2ij ,

where the minimization is over the rigid group of transformations.

Once again, and as is the case in [3], the constants σ and C depend on the graph and the latent
configuration, namely, on the framework G(x). (As it turns out, the proof below shows that we can
use the same σ and a small multiple of the constant C of Theorem 2.1.)

Proof. We first bound the minimum value of the stress. Let y1, . . . , yn be the embedding given by
sequential lateration. Let σ > 0 and C0 > 0 denote the constants of Theorem 2.1. Assuming that∑

(i,j)∈E ε
2
ij ≤ σ2, the theorem gives that∑

i∈[n]

∥yi − g0(xi)∥2 ≤ C0

∑
(i,j)∈E

ε2ij , (3.3)

for some rigid transformation g0. Let y
∗
1, . . . , y

∗
n be a stress minimizer. Since x1, . . . , xn is feasible,

it must be the case that the stress achieved by y∗1, . . . , y
∗
n is not larger than than the stress achieved

by x1, . . . , xn, so that∑
(i,j)∈E

(
∥y∗i − y∗j ∥2 − d2ij

)2 ≤ ∑
(i,j)∈E

(
∥xi − xj∥2 − d2ij

)2
=

∑
(i,j)∈E

ε2ij . (3.4)

Therefore, if we define ξij = d2ij − ∥y∗i − y∗j ∥2, we have that∑
(i,j)∈E

ξ2ij ≤
∑

(i,j)∈E

ε2ij ≤ σ2. (3.5)
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Applying Theorem 2.1 with the same dissimilarities (dij) and same graph structure but the con-
figuration y∗1, . . . , y

∗
n instead of the configuration x1, . . . , xn, which we can do because of (3.4), we

obtain that ∑
i∈[n]

∥yi − g1(y
∗
i )∥2 ≤ C0

∑
(i,j)∈E

ξ2ij , (3.6)

for some rigid transformation g1. Combining (3.3) and (3.6), together with (3.5), and using the
triangle inequality, yields∑

i∈[n]

∥g1(y∗i )− g0(xi)∥2 ≤ 2
∑
i∈[n]

∥g1(y∗i )− yi∥2 + 2
∑
i∈[n]

∥yi − g0(xi)∥2

≤ 2C0

∑
i∈[n]

ξ2ij + 2C0

∑
(i,j)∈E

ε2ij ≤ 4C0

∑
(i,j)∈E

ε2ij .

We then conclude the proof by observing that ∥g1(y∗i )− g0(xi)∥ = ∥y∗i − g2(xi)∥ with g2 := g−1
1 ◦ g0

being a rigid transformation.

4 Random geometric graphs

In the literature, the main stochastic model is a random geometric graph [61]. Such a graph has
node set representing points that are drawn iid from some distribution on Rp and edges between
any two of these points within distance r. For example, Aspnes et al. [8] show that, for the
uniform distribution on [0, 1]2, as the size of the configuration increases, if the connectivity radius
is not too small, the probability that the resulting graph is generically globally rigid, and that the
corresponding framework is globally rigid, tends to one. We generalize their result.

Theorem 4.1. Suppose a configuration of cardinality n is drawn iid from a density supported on
Ω̄ ⊂ Rp, where Ω is bounded, open, and connected. Considering the asymptotic regime n → ∞,
there is rn → 0 such that a graph built on this configuration with a connectivity radius r ≥ rn is a
lateration graph with probability tending to one.

The conditions on the support of the distribution generating the locations of the sensors are
very mild. We could even relax the condition that Ω is connected as long as the connectivity radius
r exceeds the maximum separation between its connected components.

Proof. Let Gr(x) be the neighborhood graph with connectivity radius r built on the point set
x = {x1, . . . , xn}. It is obvious that the property of being a lateration graph is monotonic in r in
the sense that if Gr(x) is a lateration graph then so is Gs(x) for any s > r. It therefore suffices to
find rn → 0 such that Grn(x1, . . . , xn) is lateration graph with probability tending to 1. (All limits
are as n → ∞ unless otherwise specified.)

Ω being bounded, for any m ≥ 1 integer, it can be covered with finitely many, say Nm, open
balls of radius 1/2m centered on points belonging to Ω. (We even know that the minimum number
Nm satisfies Nm ≤ C0m

p, where C0 depends on diam(Ω) and p, although this will not play a role in
what follows.) We consider such a covering, with balls denoted Bm

1 , . . . , Bm
Nm

. Let Aj := Bj∩Ω ̸= ∅
for all j. Form the following graph: the node set is Am

1 , . . . , Am
Nm

, and Am
j and Am

k are connected
if they intersect. We call this the cover graph. Because Ω is connected, the cover graph must also
be connected, and may therefore be traversed by, say, depth-first search, which starting at any
Am

j0
results in a (finite) path in the cover graph that passes through the entire graph, meaning, a
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sequence (Am
js

: s = 0, . . . , Sm) with Ims := Am
js−1

∩ Am
js

̸= ∅ for all s, with the property that, for
any j, there is s such that Am

js
= Am

j . Note that, by construction, each Ims is a nonempty open
subset of Ω of diameter < 1/m; together, these subsets cover Ω. (Note that some of these sets
might coincide, but this is unimportant.)

Now, let f be a density with support Ω̄, and let x1, . . . , xn denote an iid sample from f . For
a Borel set A, let P (A) =

∫
A f . Consider the event En,m

s that Ims contains at least p + 1 sample
points, and define En,m = ∩sE

n,m
s , which is the event that each one of the subsets Im1 , . . . , ImSm

contains at least p + 1 sample points. Let a(n,m) = 1 − P(En,m), which is the probability that
En,m fails to happen. Note that, essentially by definition, a(n,m) is decreasing in n. In addition
to that, we also have limn→∞ a(n,m) = 0. To see this, we derive, by the union bound and the fact
that the number of points falling in a Borel set A is binomial with parameters n and P (A),

a(n,m) ≤
Sm∑
s=0

(
1− P(En,m

s )
)

≤
Sm∑
s=0

p∑
k=0

(
n

k

)
P (Ims )k(1− P (Ims ))n−k

≤ (Sm + 1)(p+ 1)np(1− bm)n−p, bm := min
s=0,...,Sm

P (Ims ).

Since each Ims is a nonempty open subset of Ω, we have that bm > 0, and so a(n,m) → 0 as n → ∞
when m remains fixed. (The convergence is exponentially fast, although this will not play a role.)
The fact that a(n,m) is decreasing in n and limn→∞ a(n,m) = 0 implies, via elementary arguments,
that there is sequence mn → ∞ such that limn→∞ a(n,mn) = 0, or equivalently, P(En,mn) → 1 as
n → ∞.

We now prove that, under En,m, the neighborhood graph built on the sample points x1, . . . , xn
with connectivity radius r = 1/m is a lateration graph. Thus, we work under the situation where
each Ims contains at least p + 1 sample points. First, consider p + 1 such points in Im1 , and label
them v1, . . . , vp+1 in any order. Since diam(Im1 ) < r, the subgraph that these points induce is
complete. Recall that Im1 ⊂ Am

j0
. Label the remaining points in Am

j0
as vp+1, . . . , vn0 and note that,

since diam(Am
j0
) < r, each of these points is connected to all the points v1, . . . , vp+1. Let V0 denote

{v1, . . . , vn0}. Similarly, recall that Im1 ⊂ Am
j1
; label the remaining points in Am

j1
as vn0+1, . . . , vn1 ,

and note that, since diam(Am
j1
) < r, each of these points is connected to all the points v1, . . . , vp+1,

and therefore to at least p + 1 points inside V0; let V1 := {v1, . . . , vn1}. Suppose that we are at a
stage where we have built an ordering Vs−1 = {v1, . . . , vns−1} of the sample points in Am

j0
, . . . , Am

js−1

such that, for each p + 1 < j ≤ js−1, vj is connected to at least p + 1 points among v1, . . . , vj−1.
In particular, this includes all the points in Ims since Ims ⊂ Am

js−1
. Now, Ims ⊂ Am

js
also; label

the remaining points in Am
js

as vns−1+1, . . . , vns , and since diam(Am
js
) < r, each of these points is

connected to all the points Ims . Since Ims contains at least p + 1 points (because En,m holds), we
may continue the recursion by letting Vs = {v1, . . . , vns}. Doing so until all the sample points have
been processed provides a laterative ordering of the entire neighborhood graph Gr(x1, . . . , xn).

5 Numerical experiments

We probe the accuracy of the stability bound in Theorem 3.1 in the following numerical experiments.
We begin by noting that the constants σ,C > 0 in Theorem 3.1 depend on the graph G and the
latent configuration x1, x2, . . . , xn. In particular, for a fixed graph G the constant C depends on the
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Figure 4.1: Examples of latent configurations x1, x2, . . . , xn and the embedding y1, y2, . . . , yn ob-
tained from sequential lateration when (left) h = 0.5 and κ = 1, and when (right) h = 0.5 and
κ = 2. The model is (1.2), with εij ∼ N(0, ς2) for ς2 = 0.1.

(a) Connectivity radius r (b) Aspect-ratio κ (c) Hollowing out h2

Figure 4.2: Results of the numerical experiments. The vertical axis in all plots is the embedding
error and the horizontal axis is the variance of the noise, ς2. The results are shown on a log-log
scale. The dashed line in (a), (b) and (c) is the 45◦ line corresponding to the mean perturbation
s(ε)2 defined in (5.1).

aspect-ratio, i.e., the ratio of the largest to the smallest eigenvalue of the the latent configuration [6,
Section 3]. On the flipside, for a fixed latent configuration, the constant σ depends on the number
of edges, |E|, in the graph G.

Therefore, in order to investigate the stability bound, we consider the setting where the latent
configuration x1, x2, . . . , xn is drawn iid from a uniform distribution on the domain Ω(h, κ), where
for h ∈ (0, 1) and scale κ > 0,

Ω(h, κ) := [−κ, κ]× [−κ−1, κ−1] \ [−hκ, hκ]× [−hκ−1, hκ−1],

is a rectangle with aspect ratio κ2 ∈ (0, 1) and a fraction h2 ∈ (0, 1) of its area hollowed out from
the center. The parameters h and κ together account for the complexity of the latent configuration.
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(a) Comparison of performance (b) Computational time

Figure 4.3: (a) Comparison of the embedding error for SMACOF and Gradient Descent shown on a
log-log scale. The black dashed line corresponds the mean perturbation, s(ε)2, and the blue dashed
line is a plot of s(ε)2/103 which provides evidence of a lower bound for the embedding error. (b)
Computational time for sequential lateration, SMACOF and Gradient Descent for varying sample
sizes n.

We consider the setting where the dissimilarities are corrupted by additive noise εij , i.e.,
d2ij = max{∥xi − xj∥2 + εij , 0}, where εij are drawn iid from N(0, ς2). See Figure 4.1 for an
illustration. Given the graph G with dissimilarities dij , we obtain the embedding y1, y2, . . . , yn us-
ing the sequential lateration method described earlier in the paper and then compute the embedding
error

1

n

∑
i∈[n]

∥yi − ĝ(xi)∥2,

where the rigid transformation ĝ : Rp → Rp is obtained via Procrustes alignment [6]. In all
experiments we compare the embedding error of y1, y2, . . . , yn to the mean perturbation,

s(ε)2 :=
1

|E|
∑

(i,j)∈E

ε2ij , (5.1)

which is the normalized bound on the right hand side of (2.1) in Theorem 2.1. Note that, when |E|
is large, s(ε)2 ≈ E(ε2ij) = ς2 by the law of large numbers.

The results are summarized in Figure 4.2. For fixed n = 500, h = 0.2 and κ = 1, Figure 4.2a
shows the effect of the effect of the connectivity radius (r ∈ {2.25, 2.5, 2.75}) of the random geo-
metric graph on the accuracy of the bound. Figure 4.2b illustrates the effect of the aspect ratio
(κ ∈ {2, 3, 4}) at a fixed connectivity radius of r = 0.3. Lastly, for fixed κ = 1 and r = 0.3,
Figure 4.2c shows the effect of the hollowing out (h ∈ {0.25, 0.5, 0.75}) of the domain of the latent
configuration. In all cases, the results corroborate the bound established in Theorem 2.1. Further-
more, as seen in the plots, the constants are likely larger for more complex latent configurations,
i.e., when r is small, κ is small, or when h is large.

Figure 4.3 investigates the accuracy of the bound established in Theorem 3.1. We compare the
embedding error of the sequential lateration method to the embedding error from stress-minimizers,
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y∗1, y
∗
2, . . . , y

∗
n, obtained using (i) gradient descent, and (ii) the SMACOF algorithm [24]. Figure 4.3a

shows the embedding error of the three methods compared to the mean perturbation s(ε)2 (the black
dashed line), and confirms the bound in Theorem 3.1. While the embedding error of y∗1, y

∗
2, . . . , y

∗
n

marginally improves on the embedding error of sequential lateration, the advantage of the sequential
lateration procedure is the reduced computational time which, as shown in Figure 4.3b, is between
one to two orders of magnitude faster than SMACOF and gradient descent.

6 Discussion

Our main contribution in this paper is a perturbation bound for sequential lateration. This provides
a way to understand and, to some extent, quantify the stability of sequential lateration in the
presence of noise. As a corollary, we obtained a perturbation bound for stress minimization in
the setting of a lateration graph. As we mentioned earlier, this addresses the issue of noise in
multidimensional scaling / network localization discussed and formulated as a set of open questions
by Mao et al. [57] in their well-known review paper.

A related but distinct issue is the presence of outliers, by which we mean gross errors (i.e., some
of the error terms εij in (1.2) could be quite large). There are robust methods3 for MDS, e.g.,
[17, 36], but their robustness properties are not well-understood. Converting the available (metric)
data into ordinal data, by replacing dij by its rank among all dissimilarities (dkl)(k,l)∈E , and then
applying a method for ordinal MDS is likely to yield a robust method, but the robustness of such
methods are also poorly understood. For some effort in this direction, see [40].
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