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Abstract: Using methods from the conformal bootstrap, we study the properties of Noether
currents in the critical O(n) loop model. We confirm that they do not give rise to a Kac-Moody
algebra (for n ̸= 2), a result expected from the underlying lack of unitarity. By studying four-
point functions in detail, we fully determine the current-current OPEs, and thus obtain several
structure constants with physical meaning. We find in particular that the terms : JJ̄ : in the
identity and adjoint channels vanish exactly, invalidating the argument made in [1] that adding
orientation-dependent interactions to the model should lead to continuously varying exponents in
self-avoiding walks. We also determine the residue of the identity channel in the JJ two-point
function, finding that it coincides both with the result of a transfer-matrix computation for an
orientation-dependent correlation function in the lattice model, and with an earlier Coulomb gas
computation of Cardy [2]. This is, to our knowledge, one of the first instances where the Coulomb
gas formalism and the bootstrap can be successfully compared.
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1 Introduction

It is a well-known fact that ordinary two-dimensional critical statistical-mechanics systems with
continuous symmetries are described in the continuum limit by Wess-Zumino-Witten (WZW)
models on the corresponding group. While we are not aware of a rigorous proof of this result, it
has been widely used, starting with the analysis of the XXX spin chain and the corresponding O(3)
sigma model at θ = π [3], and has been a cornerstone of the discussions around the continuum limit
of the integer quantum Hall plateau transition (see [4] and references therein). The existence of
conserved charges leads, via the Noether theorem, to the existence of local currents whose conformal
dimensions are not renormalized [5], and which are of the form (∆, ∆̄) = (1, 0) and (0, 1). With
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unitarity, this is enough to assert that these currents are really chiral, and the existence of an
underlying Kac-Moody algebra follows.

Without unitarity, however, it is not guaranteed that the local currents are purely chiral, as it
could well be that their derivatives are states with zero norm-square which do not actually vanish
(i.e., they have non-zero scalar products with some other fields of the theory and hence cannot
be eliminated from the problem). In fact, it was argued long ago [6] that the conformal field
theory (CFT) for O(n) loop models is not a WZW theory. This followed from a simple counting
argument: in the partition functions, the degeneracy of fields with weights (1, 0) and (0, 1) is indeed
the dimension of the adjoint d[11], but the degeneracy of fields with weights (1, 1) is significantly
smaller that d2[11], indicating that chiral and anti-chiral components are not independent—a fact
that is possible only in the presence of logarithmic terms. A well-known example of such a situation
is provided by symplectic fermions [7]—which turn out to be relevant to the case of the O(n) model
with n = −2; see below. The first purpose of this paper is to find out what happens in the O(n)
loop model for arbitrary values of n in the critical domain, using in particular the bootstrap
techniques recently developed in [8].

The fate of the currents in this model is more than an anecdotical question: it also requires
great caution when importing arguments familiar from unitary situations. It was suggested [2, 1, 9]
for instance, using such arguments, that in self-avoiding walks (related with the limit n → 0 of the
O(n) model), orientation-dependent interactions, which can be formulated within the CFT as JJ̄
perturbations, would lead to continuously varying exponents. This prediction was never borne out
by numerical studies (see, e.g., [10] for a thorough review), and remains a mysterious discrepancy
between theory and simulations in a field otherwise thoroughly understood. We will see below how
it can be explained using the current-current Operator Product Expansions (OPEs) derived from
the bootstrap.

The paper is organized as follows. We start in Section 2 by reviewing the spectrum of the
critical O(n) loop model. In Section 3 we discuss general features of the current-current OPE
derived from the bootstrap, and we show that they fail to form a Kac-Moody algebra. In Section 4
we analyze the details of the current-current OPE, and show how the currents, while not obeying
Kac-Moody algebra relations, remain compatible with the existence of a global, non-chiral O(n)
symmetry. We also determine in this section the residue of the leading singular term in the current-
current OPE (the “level” parameter k). Remarkably, the result—obtained using the bootstrap and
its recent analytical solution—agrees with the one obtained by Cardy [9] using Coulomb Gas (CG)
techniques. In this section we also investigate numerically various aspects of the current-current
OPE, using bootstrap computations, and find excellent agreement with the theoretical predictions.
In Section 5 we examine the implications for two limits, n → ±2, in which the O(n) model can
be related to free-field theories. Finally, in section 6 we discuss the application of our results to
loop models, and we relate the parameter k to a correlation function involving oriented loops. In
particular, in section 6.1 we revisit the argument of [1] and point out explicitly how it fails once the
proper structure of the OPE is taken into account. Applications and generalizations are discussed
in the conclusion. Appendix A provides more technical information about the bootstrap solutions.
In Appendix B we obtain k numerically from the lattice model, by a transfer matrix calculation that
exploits the link established in Section 6, finding again agreement with the analytical predictions.
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2 Spectrum of the model

We provide a review on the spectrum of the critical O(n) loop model, as well as analyticity in the
model’s parameters, such as the central charge and the loop weight n. This section also serves as
an introduction to our notations.

The O(n) model and its parameters

The O(n) loop model is an ensemble of non-intersecting loops on the hexagonal lattice, wherein we
assign the weight n to each loop and the fugacity K to each monomer, see appendix B for detail
on the lattice model. The model is known to become critical at the values of K given in (B.3).

At the critical value K = Kc = (2 +
√
2− n)−

1
2 , the O(n) loop model exhibits a continuous phase

transition where the two-point functions change from an exponential decay with the distance to a
power-law decay. This fixed point is known as the dilute fixed point. At the other fixed point in
(2.2), the so-called dense fixed point, the two-point functions remain algebraic, but their critical
exponents change.

What we call the O(n) CFT is a conformal field theory that describes the continuum limit of
the critical O(n) loop model. It was defined and studied in [8]. The central charge c of the O(n)
CFT is related to the loop weight n as follows [11]:

c = 13− 6β2 − 6β−2 and n = −2 cos(πβ2) for ℜ(β2) > 0 . (2.1)

The constraint on β2 arises from the condition that correlation functions converge [12]. Values of
particular physical interest are −2 ≤ n ≤ 2, for which the dilute and dense phases are obtained
by choosing

dilute : β2 ∈ [1, 2] ⇐⇒ c ∈ [−2, 1] , (2.2a)

dense : β2 ∈ (0, 1] ⇐⇒ c ∈ (−∞, 1] . (2.2b)

In other words, the CFTs describing each phase in (2.2) are special cases of the O(n) CFT. There
also exists another critical point at K = ∞ where the ensemble of loops becomes fully packed [13],
in the sense that each lattice vertex is traversed by one loop. This distinct critical point is beyond
the scope of this paper and belongs to another universality class that is expected to be described
by a CFT with higher symmetry [14].

O(n) representations and conformal dimensions

The CFT contains a set of primary fields (local operators) that transform in representations of the
model’s symmetry. Since the O(n) CFT possesses formally a global O(n) symmetry for generic n
[15], the spectrum of the model is a set of primary fields which transform both in representations
of O(n) and of conformal symmetry. For generic n, O(n) representations can be parametrized by
Young diagrams of arbitrary size, and we shall write these Young diagrams as decreasing sequences
of positive integers. For example,

[ ] : • , [2] : , [11] : , [5421] : . (2.3)

On the other hand, Virasoro representations are labelled by conformal dimensions, which can be
conveniently parametrized by the Kac indices,

∆(r,s) =
c− 1

24
+ P 2

(r,s) with P(r,s) =
1

2
(rβ − sβ−1) . (2.4)
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Spectrum

The spectrum of the O(n) CFT was first obtained via the torus partition function computed by
the Coulomb gas technique in [11]. With our conventions, we have1 [11, 17],

SO(n) = {V D
⟨1,s⟩}s∈2N∗+1 ∪ {V λ

(r,s)}r∈ 1
2
N∗, s∈ Z

r
. (2.5)

The degenerate fields V D
⟨1,s⟩ have left and right conformal dimensions (∆(1,s),∆(1,s)) and are thus

diagonal. They transform as the singlet under O(n) symmetry and have multiplicity 1. The fields
V λ
(r,s) have conformal dimensions (∆(r,s),∆(r,−s)) and are thus in general non-diagonal (see below).

They transform in the O(n) representations λ, and have in general non-trivial multiplicities (for

example, the field V
[21]

( 5
2
,0)

has multiplicity 2). The analytic expressions of the multiplicity of V λ
(r,s)

can be written as a complicated combination of polynomials in n and can be found in [8]; we
refrain from repeating them here.

As previously mentioned, the degenerate fields V D
⟨1,s⟩ transform in degenerate representations

of the Virasoro algebra. The non-diagonal fields V λ
(r,s) may transform either in Verma modules or

the logarithmic representations described in [18], depending on their Kac indices. The summary of
how Virasoro and O(n) symmetries act upon the spectrum (2.5) can be found in [8, 17]. We refrain
from repeating these results here, but it is still useful to display, nonetheless, a few examples of how
non-diagonal primary fields with the dimensions (∆(r,s),∆(r,−s)) transform under O(n) symmetry.
For selected cases (r, s) with r ≤ 2, we find the following O(n) decompositions [17]:

(1/2, 0) : [1] , (2.6a)

(1, 0) : [2] , (2.6b)

(1, 1) : [11] , (2.6c)

(2, 0) : [4] + [22] + [211] + [2] + [ ] , (2.6d)

(2, 1/2) : [31] + [211] + [11] , (2.6e)

(2, 1) : [31] + [22] + [1111] + [2] , (2.6f)

The action of O(n) symmetry on (∆(r,s),∆(r,−s)) and (∆(r,s′),∆(r,−s′)) coincides for s − s′ ∈ 2Z:
therefore, it is sufficient to show the results for 0 ≤ s ≤ 1. Representation labels will be kept
implicit unless otherwise needed. Currents, for instance, will often be denoted as J, J̄ , keeping
implicit that they transform in the adjoint [11] and therefore come with multiplicity d[11]. When
a label is needed, as e.g. when writing the OPEs explicitly, we will use upper-case Latin letters
A,B, . . . for the adjoint (JA, J̄A) and lower-case Latin letters a, b, . . . for the fundamental.

Diagonal versus non-diagonal

In our conventions, the case s = 0 in the second component of (2.5) has zero conformal spin, but
we still refer to this case as non-diagonal: more precisely, our definition for a non-diagonal field
is a field whose fusion product with the degenerate field V D

⟨1,s⟩ gives only non-diagonal fields. For
readers more familiar with the early works on this problem, the 2r-leg “fuseau” or “watermelon”
field has conformal dimensions ∆ = ∆̄ = ∆(r,0). The energy field—coupled to the fugacity of edges

1In the dense case, our choice of parametrization for conformal weights leads, since β2 ∈ (0, 1], to conformal
dimensions ∆(r,s) where the r and s labels are interchanged as compared to the conventions of the classical references
[16, 11].
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in the lattice model—is the diagonal field with ∆ = ∆̄ = ∆⟨1,3⟩. Further reminders about the
underlying lattice model and the relationship with the O(n) CFT will be given below (see also the
introduction in the paper [8]).

3 The current-current OPEs

The definition of the model requires considering n as a continuous variable and raises questions
about the precise meaning of “O(n) symmetry”, in particular its consequences on the properties
of the CFT. Recent work on giving a categorical interpretation to the model [15] leads to the
conclusion that Noether’s theorem should still apply, and therefore that there should be in the
CFT a pair of local fields with conformal weights (1, 0) and (0, 1), respectively, obeying a local
form of charge conservation. Indeed, it is well known [6, 19] that the O(n) CFT admits a pair of
primary fields

J = V
[11]
(1,−1) , J̄ = V

[11]
(1,1) , (3.1)

with the correct conformal weights. Both J and J̄ (which will be referred to from now on as
currents) transform in the adjoint representation [11]. We will, whenever necessary, indicate this
by denoting the current components as JA, J̄A, where the label A takes values in [11].

In contrast to the case of WZW models, however, the currents J and J̄ of the O(n) CFT
are not holomorphic (anti-holomorphic). Rather, they belong to indecomposable representations
of the Virasoro algebra [19, 18]. Charge conservation—which will be discussed in more detail in
Section 3.3—imposes the constraint

∂̄J = ∂J̄ , (3.2)

but, crucially, none of these two terms vanishes. Consequently, the current-current OPEs in the
O(n) CFT will have to mix in general z and z̄ coordinates, as we shall see explicitly below.

For equation (3.2) to hold without each term being separately zero, ∂̄J and ∂J̄ must be the
same diagonal primary field of dimensions (1, 1) and zero norm-square: a non-vanishing level-one
null vector that belongs to the two modules generated by J and J̄ [20]. How the current-current
OPEs differ from those of a WZW model and what the corresponding physical consequences are
is one of the main concerns of this paper. For now, let us start with some general features of the
current-current OPEs. We start by recalling the tensor product, for generic n, of two adjoint O(n)
representations:

[11]× [11] = [1111] + [211] + [22] + [2] + [11] + [ ] . (3.3)

The next step is to write down the spectra of the fusion products JJ and JJ̄ , where the spectra
of J̄ J̄ and J̄J are the same as those first two. These fusion products were obtained in [8] by
numerically bootstrapping the current four-point function, while also taking into account the O(n)
tensor product (3.3). The result is

JJ ∼
∑

λ∈[11]×[11]

∑
k∈S[ ]

V λ
k , (3.4a)

JJ̄ ∼
∑

k∈Sλ−⟨1,s⟩D
V

[ ]
k +

∑
λ∈[11]×[11]−[ ]

∑
k∈Sλ

V λ
k , (3.4b)
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where Sλ denotes the set of Kac indices for primary fields transforming in the O(n) representations
λ. The sets Sλ can be found in the equations (4.2)–(4.7) and (4.27) of [8]. Furthermore, observe
that O(n) symmetry allows the O(n) singlets to propagate in JJ̄ since both fields transform as the
O(n) adjoint representation. However, conformal symmetry forbids the conformal singlets—the
identity field V D

⟨1,1⟩ and the other degenerate fields in (2.5)—from appearing in JJ̄ . Let us also

point out here that the multiplicities of the fields appearing on the right-hand sides of (3.4a) and
(3.4b) are not known in general: this issue still remains an open problem.

To see some other general features of the current-current OPE, we will compute explicitly the
leading terms of JJ , whereas results for JJ̄ and J̄ J̄ will be written down immediately from those
for JJ , using the degenerate shift equations of V D

⟨1,s⟩, as will be shown in (3.12) and (3.7).

3.1 Case of JJ and J̄ J̄

First, we introduce the two-point and three-point structure constants BV and CV1V2V3 :

⟨V1(z1, z̄1)V2(z2, z̄2)⟩ = δ12BV1z
−∆1
12 z̄−∆1

12 , (3.5a)〈
3∏

i=1

Vi(zi, z̄i)

〉
= CV1V2V3F

(3)(∆i, zi)F
(3)(∆̄i, z̄i) , (3.5b)

where we denote zij := zi − zj. For compactness, we have introduced the function

F(3)(∆i, zi) = z∆3−∆1−∆2
12 z∆2−∆1−∆2

13 z∆1−∆2−∆3
23 . (3.6)

In principle, the OPEs JJ and J̄ J̄ share the same qualitative features, since the OPE coefficients
of JJ and JJ̄ are related by the shift equations

CJJV

CJ̄ J̄V

=


∏

σ,η=±

(P 2
(1,σ) − P 2

(r,ηs))
η for V = V λ

(r,s) ,

1 for V = V D
⟨1,1⟩ .

(3.7)

The relations (3.7) can be obtained by studying OPE coefficients of J and J̄ in the s-channel of
⟨JV JV ⟩ and ⟨J̄V J̄V ⟩. Therefore it is sufficient to discuss only the results for JJ . We will focus
on the leading terms of this OPE, which can be obtained in a pedestrian way by solving Ward
identities systematically. Similar computations can be found in the book [21] and we will only
display the results here. Let us start with the leading terms in the singlet channel of JJ . We
normalize the two-point function of the identity field V D

⟨1,1⟩ to be 1, and find

J(z, z̄)J(0)
∣∣∣
[ ]
∼ k

{
V D
⟨1,1⟩ +

2

c
z2T (z) +

2

c
z̄2T̄ (z̄)

}
+

C
JJV

[ ]
(2,0)

B
V

[ ]
(2,0)

|z|2∆(2,0)V
[ ]
(2,0)

+ |z|2∆(2,2)

{
z̄2
C

JJV
[ ]
(2,2)

B
V

[ ]
(2,2)

V
[ ]
(2,2) +

C
JJ(L0−∆(2,−2))W

[ ]
(2,2)

B
(L0−∆(2,−2))W

[ ]
(2,2)

|z|2 log |z|(L0 −∆(2,−2))W
[ ]
(2,2)

}
+ . . . ,

(3.8)

where the notation ∼ means that overall scale factors—such as those written out in (3.5)—have
been omitted for convenience, whereas T (z), T̄ (z̄) denote the usual components of the stress-energy
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tensor, and we recall that V(2,2) and V(2,0) have the same O(n) decomposition. Furthermore, we
have also introduced the parameter k as a shorthand for the two-point structure constants of the
currents,

k = BJ = BJ̄ . (3.9)

How to determine exact formulae for the leading three-point and two-point structure constants in
the current-current OPEs will be discussed in Section 4.

The striking feature of (3.8) is that the OPE is not only non-holomorphic but also involves
some logarithmic dependency on the coordinates z and z̄. The latter property follows from the
fact that some of primary fields on the right-hand side of (3.4a) have non-vanishing null vectors,
which in turn have logarithmic partners. For example, V(2,2) has a non-vanishing level-two null

vector (L0 −∆(2,−2))W
[ ]
(2,2) that comes with a logarithmic partner W(2,2) [18], whose coefficient can

be completely determined by using only conformal symmetry, however we refrain ourselves from
writing it down explicitly. Next, we consider the adjoint channel of JJ , wherein J itself appears:

J(z, z̄)J(0)
∣∣∣
[11]

∼ CJJJ

k

{
zJ +

1

2
z2∂J +

β2 − 1

β2 + 1

(
z̄J̄ +

1

2
z̄2∂̄J̄

)}
+

C
JJV

[11]

(2, 12 )

B
V

[11]

(2, 12 )

z
∆

(2, 12 ) z̄
∆

(2,− 1
2 )V

[11]

(2, 1
2
)
+

C
JJV

[11]

(2,− 1
2 )

B
V

[11]

(2,− 1
2 )

z
∆

(2,− 1
2 )z

∆
(2, 12 )V

[11]

(2,− 1
2
)
+ . . . . (3.10)

From (3.1), the second Kac indices of J and J̄ considered as primary fields differ by 2, and thus
the ratio between three-point structure constants CJJJ and CJJJ̄ is fixed by the degenerate shift
equation of the degenerate field V D

⟨1,s⟩. We find

CJJJ̄

CJJJ

=
β2 − 1

β2 + 1
, (3.11)

which yields the coefficient of J̄ in (3.10). Furthermore, from direct computation, we also find
that the logarithmic partner W(1,1) of ∂̄J and ∂J̄ decouples from the OPE (3.10). From our
previous work, this decoupling of W(1,1) from the OPE JJ had also been observed at the level
of correlation functions: the logarithmic conformal block of J in the current four-point function
⟨JJJJ⟩ becomes accidentally non-logarithmic due to cancellations of singularities in the conformal
block. See Section 3.1 of [8] for a detailed discussion.

From (3.10)–(3.11), it is then clear that the JJ OPE is non-holomorphic for generic β2. How-
ever, observe that, in the limit β2 → 1, J̄ and its descendants decouple from JJ . Therefore we
expect JJ to be holomorphic in this special case (and this case only), as will be discussed in
Section 5.1.

3.2 Case of JJ̄

As previously mentioned, the OPE JJ̄ can be obtained directly from JJ , since these two OPEs
are related by the degenerate shift equation of V D

⟨1,s⟩, which reads

CJJV

CJJ̄V

=


∏
η=±

(P 2
(1,−η) − P 2

(r,ηs))
η for V = V λ

(r,s) ,

0 for V = V D
⟨1,1⟩ .

(3.12)
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Notice that the special case (3.11) can be recovered from this by considering the first of the above
relations (3.12) as the limit ϵ → 0 of V = V(1,−1+ϵ). One of way of deriving (3.12) is by considering
the OPE coefficients of J and J̄ in the s-channel of ⟨JV JV ⟩ while assuming the normalization
(3.9). Notice also that the shift equations (3.12) are independent of the O(n)-label λ, since these
relations are consequences of conformal symmetry only.

For generic n, the set of equations (3.12) implies that the spectra of the OPEs JJ̄ and JJ only
differ by the degenerate fields V D

⟨1,s⟩ in JJ . In other words, the singlet channel of JJ̄ reads

J(z, z̄)J̄(0)
∣∣∣
[ ]
∼

CJJ̄V(2,0)

BV(2,0)

|z|2∆(2,0)V(2,0) + . . . , (3.13)

wherein V D
⟨1,s⟩ are absent. For the adjoint channel, using (3.11), we find

J(z, z̄)J̄(0)
∣∣∣
[11]

∼ β2 − 1

β2 + 1

(
zJ +

1

2
z2∂J

)
+

(β2 − 1)2

(β2 + 1)2

(
z̄J̄ +

1

2
z̄2∂̄J̄

)
+ . . . (3.14)

Observe that neither J nor J̄ appears in JJ̄ at n = 2, where we expect the O(n) currents to
become holomorphic. We will elaborate on this special case in Section 5.1.

3.3 No Kac-Moody algebra

As discussed in the introduction, one of our goals is to study more precisely how the currents in
our model—which enjoy a local, continuous symmetry (albeit at the price of a continuation in n,
or a more categorical description)—end up not giving rise to a Kac-Moody algebra.

Obviously, the OPEs JJ and JJ̄ in the O(n) CFT are quite different from those in WZW
models, in particular because of the non-chiral terms which we saw in (3.8) and (3.10). At first
sight, these OPEs are rather close to the current-current OPEs of the deformed supergroup WZW
models [22, 23], which are also non-chiral. However, the OPEs in these references only involve
integer powers of z and z̄, whereas in our case we also have non-integer powers. (Maybe this is
because the OPEs in [22, 23] are only valid to leading order in perturbation theory.) Also, we find
logarithmic terms in both the JJ and JJ̄ OPEs, whereas logarithmic terms in [22, 23] only occur
in JJ̄ .

To make things more concrete, we shall focus in what follows on only a few terms, with the
specific goal of connecting our computations with physical observations and the global symmetry
of the model. We have the general structure

JA(z, z̄)JB(w, w̄) =
kδAB

(z − w)2
+ fAB

C

[
λ

JC

z − w
+ µ

z̄ − w̄

(z − w)2
J̄C

]
+ . . . , (3.15a)

JA(z, z̄)J
B
(w, w̄) = fAB

C ν

[
JC

z̄ − w̄
+

J
C

z − w

]
+ . . . , (3.15b)

Here the labels A,B,C run over the adjoint representation [11] of dimension n(n− 1)/2, and fAB
C

are the O(n) structure constants, which take values 0 or ±1. This will be discussed in detail in
Section 6. In (3.15), the dots stand for non-chiral terms, some of which also depend logarithmically
on |z|, as we have seen in (3.8). Furthermore, the coefficients k, λ, µ, ν are all well defined up to a
global multiplicative factor to be discussed below.
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Zero-mode algebra

We shall mostly be interested in the algebra of zero modes that results from (3.15), and thus turn
to equal-time commutators, following [22, 23]. To proceed, it is more convenient to switch from
the complex coordinates, z and z̄, to time and spatial coordinates, τ and σ. Setting z = σ + iτ
and z̄ = σ − iτ , the equal-time commutators for two local operators, V1(σ, τ) and V2(σ, τ), are
obtained as the limit

[V1(σ, τ), V2(σ
′, τ)] = lim

ϵ→0

(
V1(σ, τ + ϵ)V2(σ

′, τ)− V2(σ
′, τ + ϵ)V1(σ, τ)

)
. (3.16)

Using the OPEs (3.15) with the commutation relation (3.16), we find

1

2πi
[JA(σ, τ), J̄B(σ′, τ)] = −fAB

C νδ(σ − σ′)
[
JC(σ, τ)− J̄C(σ, τ)

]
+ . . . , (3.17a)

1

2πi
[JA(σ, τ), JB(σ′, τ)] = −kδABδ′(σ − σ′) + fAB

C δ(σ − σ′)
[
λJC(σ, τ) + µJ̄C(σ, τ)

]
+ . . . ,

(3.17b)

where we have used the following identities for the Dirac delta function,

lim
ϵ→0

(
1

σ − iϵ
− 1

σ + iϵ

)
= 2πiδ(σ) , (3.18a)

lim
ϵ→0

(
σ + iϵ

(σ − iϵ)2
− σ − iϵ

(σ + iϵ)2

)
= 2πiδ(σ) , (3.18b)

lim
ϵ→0

(
1

(σ − iϵ)2
− 1

(σ + iϵ)2

)
= −2πiδ′(σ) . (3.18c)

Next, we compactify the theory on a cylinder of circumference 2π, that is to say, we impose the
constraint σ = σ + 2π. With this compactification, the currents admit the mode expansions

J(σ, τ) = i
∑
n∈Z

e−inσJn(τ) , (3.19a)

J̄(σ, τ) = −i
∑
n∈Z

e−inσJ̄n(τ) , (3.19b)

where we have used the identity

δ(σ) =
1

2π

∑
n∈Z

einσ . (3.20)

The zero modes being

JA
0 =

1

2πi

∫ π

−π

dσJA(σ, τ) , (3.21a)

J̄A
0 = − 1

2πi

∫ π

−π

dσJ̄A(σ, τ) (3.21b)

(since they are conserved by Noether’s theorem, they do not depend on the time τ), we obtain
from (3.17)[

JA
0 , J

B
0

]
= fAB

C

(
λJC

0 − µJ̄C
0

)
, (3.22a)[

JA
0 , J̄

B
0

]
= fAB

C ν
(
JC
0 + J̄C

0

)
, (3.22b)
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and finally[
JA
0 + J̄A

0 , J
B
0 + J̄B

0

]
= ifAB

C (λ− µ+ 2ν)
(
JC
0 + J̄C

0

)
. (3.23)

The sums JA
0 + J̄A

0 are (proportional to) the global O(n) charges in the model. We now decide to
fix the global normalization in (3.15) so that the zero modes exactly satisfy the global O(n) com-
mutation relations.2 This will make easier the comparison with numerical results, to be discussed
later. It follows that we should have

λ− µ+ 2ν = 1 . (3.24)

However, it also follows from (3.15) that

⟨JA(z1)J
B(z2)J

C(z3)⟩ = kλ
fAB
C

(z1 − z2)(z2 − z3)(z3 − z1)
, (3.25a)

⟨JA(z1)J
B(z2)J

C
(z3)⟩ = kµ

fAB
C (z̄1 − z̄2)

(z1 − z2)2(z̄3 − z̄2)(z̄3 − z̄1)
. (3.25b)

By symmetry, it follows that µ = ν; alternatively this can also be deduced from the constraint
∂̄J − ∂J̄ = 0 applied to (3.15). We are thus left with the condition

λ+ µ = 1 . (3.26)

Recall now that the ratio of three-point functions in (3.25) also obeys the shift equation (3.11):
solving these two simple equations for λ and µ, we find

λ =
β2 + 1

2β2
and µ =

β2 − 1

2β2
. (3.27)

These agree with known examples3 of λ, µ for specific values of the central charge c:

β2 c (λ, µ)

1 1 (1, 0)

2 −2 (3
4
, 1
4
)

(3.28)

Formulas of the same nature appear in [23], with λ and µ now given by rational functions of
the amplitude of the kinetic term and the level in deformed supergroup WZW models.

4 The current four-point functions

To proceed, we now consider the current four-point function ⟨JJJJ⟩ by using the conformal
bootstrap technique. Using the degenerate shift equations (3.7) and (3.12) with ⟨JJJJ⟩, we can
then obtain similar results for other current four-point functions, such as ⟨JJJ̄J̄⟩ and ⟨J̄ J̄ J̄ J̄⟩. The
goal of this section is to compute exactly the leading terms in the current-current OPEs (3.15a).

2We therefore do not choose k = BJ = 1, as would be natural for “standard” primary fields.
3See below for β2 = 2.
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4.1 Conformal bootstrap

Recall that the current J(z, z̄) transforms in the adjoint representation [11], and it carries a label
that we have denoted by A,B,C, . . . so far, corresponding in fact to a pair of O(n) tensor indices
a, b, c . . ., which are antisymmetric under permutation. We can regard the O(n) tensor indices as
two lines originating from the point (z, z̄). Connecting these lines is then equivalent to contracting
the indices. For example, we can represent ⟨JabJab⟩ as the following diagram:

⟨JabJab⟩ :

bb

aa

. (4.1)

Notice that there are some subtleties in the above construction, having to do with anti-symmetriza-
tion, that are discussed in more detail in Appendix A. For the current four-point function, there
are 6 different inequivalent ways of contracting the indices, which gives rise to 6 different diagrams:

K1

1

2 3

4

K2 K3 L1 L2 L3

, (4.2)

where Ki and Li are simply the name for each diagram. The diagrams in (4.2) are examples
of combinatorial maps, two-dimensional graphs which parameterize correlation functions in loop
models [24]. The two different sets of objects in (4.2) and (3.3) are just different choices of bases
for crossing-symmetric solutions of the current four-point function: these two bases are related by
a linear transformation, which will be discussed in detail in Appendix A.

Let us now decompose the current four-point function in the base (4.2). The s-channel decom-
position reads

⟨J(z, z̄)J(0)J(∞)J(1)⟩ =
∑

Λ∈{Ki,Li}

ΛFΛ
(s)(z, z̄) , (4.3)

where we have used the global conformal invariance to fix the positions {z2, z3, z4} to be {0,∞, 1},
and FΛ

(s) are crossing-symmetry solutions, which depend on the positions, the conformal dimen-
sions, and the central charge. These crossing-symmetry solutions can be further decomposed into
the interchiral conformal blocks [25], objects which can be completely determined by conformal
symmetry and the existence of degenerate fields. The decomposition reads

FΛ
(s)(z, z̄) =

∑
(r,s)∈SΛ

DΛ
(r,s)G

(s)
(r,s)(z, z̄) , (4.4)

where G
(s)
(r,s) are the interchiral conformal blocks, and DΛ

(r,s) are four-point structure constants.

Details on G
(s)
(r,s) and DΛ

(r,s) will be discussed below. Moreover, we use SΛ to denote the spectra

for the decomposition (4.4). In particular, the sets SΛ depend on the diagrams Λ and have been
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completely determined in [8, 24]. We summarize them here in table form:

Λ
Spectra

s-channel t-channel u-channel

K1 S1
even ∪ {V D

⟨1,1⟩} − {V(3,± 2
3
)} S2 S2

K2 S2 S1
even ∪ {V D

⟨1,1⟩} − {V(3,± 2
3
)} S2

K3 S2 S2 S1
even ∪ {V D

⟨1,1⟩} − {V(3,± 2
3
)}

L1 S1 S1 S2
even

L2 S1 S2
even S1

L3 S2
even S1 S1

(4.5)

where

Sℓ = {V(r,s) ∈ (N+ ℓ)× (−1, 1]|rs ∈ Z} , (4.6a)

Seven = {V(r,s) ∈ S|rs ∈ 2Z} , (4.6b)

and the notations for primary fields have been recalled in Section 2.

Interchiral conformal blocks

The existence of the degenerate fields V D
⟨1,s⟩ in the spectrum of the model allows us to analytically

determine the ratio of structure constants between any pair of primary fields which have the same
first Kac indices, but whose second Kac indices differ by even integers [26]. Using this type of
analytic ratios, we can combine a tower of infinitely many Virasoro-conformal blocks into a single
object: an interchiral conformal block [25]. Schematically, we have

G
(s)
(r,s) =

∑
j∈2Z

DΛ
(r,s+j)

DΛ
(r,s)

J(z, z̄)

V(r,s+j)

J(1)

J(0) J(∞)

, (4.7)

where each diagram represents Virasoro-conformal blocks of V(r,s+j), and all ratios of structure
constants in (4.7) have been determined in [8] (for more detail, see Section 3.1 of that paper).

Structure constants

Using the main result of a companion paper [27], we can now display explicitly the formula for the
s-channel four-point structure constants DΛ

(r,s),

DΛ
(r,s) = NδΛ,Li

(
qΛ(r,s)(n)− δΛ,K1δ(r,s)∈N∗×Z

2(−1)(r+1)sp(r,s)
n+ (−1)r+1xr(n)

) Cref
JJV(r,s)

Cref
V(r,s)JJ

Bref
V(r,s)

, (4.8)

which also includes the structure constant of the identity field V D
⟨1,1⟩ as follows:

DΛ
⟨1,1⟩D = DΛ

(0,1−β2) . (4.9)
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As shown by the prefactor in (4.8), the structure constants of the solutions FLi

(s) in (4.3) have an
extra factor of N, which is thus the relative normalization between the two types of diagrams: Ki

and Li. How to fix N will be discussed at the end of this section. Let us also stress here that the
analytic formula (4.8) is only valid for non-rational β2, since structure constants and conformal
blocks for rational β2 may diverge—for instance, observe that (4.14) may have pole for rational
value of β2. While we do not know yet the complete mechanism of how divergences would cancel,
we expect that those divergences should always cancel, since four-point functions of the lattice
O(n) loop model exist for generic n (including rational β2). That is to say, four-point functions of
the O(n) CFT are expected to be finite for rational β2, provided that the inequality in (2.1) holds.

The formula (4.8) is made of four ingredients: qΛ(r,s)(n), the pole term, Cref
JJV(r,s)

, and Bref
V(r,s)

. We

now explain each of them in detail.
Let us start with the second term inside the parentheses in (4.8), which we call the pole term.

The functions xr(n) in the denominator are polynomials in n which obey the recursion:

nxr(n) = xr−1(n) + xr+1(n) with x1(n) = n and x0(n) = 2 . (4.10)

For example,

x2(n) = n2 − 2 , (4.11a)

x3(n) = n(n2 − 3) , (4.11b)

x4(n) = n4 − 4n2 + 2 , (4.11c)

x5(n) = n(n4 − 5n2 + 5) . (4.11d)

Whenever (r, s) ∈ N∗×Z, the structure constants DK1

(r,s) pick up the pole term in (4.8), with residue
given by

p(r,s) =
∏
ϵ=0,2

r−1−ϵ
2∏

j
1
=− r−1−ϵ

2

4 cos2 π
(
jβ2 + s−ϵ

2

)
. (4.12)

(The index j may be fractional, but as shown by the notation it is incremented in steps of 1 inside
the product.) More precisely, the pole term appears only in the structure constants of channels
containing the identity field V D

⟨1,1⟩, so by (4.5) this only affects the diagram K1 in the s-channel

expansion, explaining the factor δΛ,K1 in (4.8). Still by (4.5), we would find the same pole term
with the same residue in the solutions FK2

(t) and FK3

(u) for the other two channels. Furthermore, for

r ∈ 2N∗+1, we find p(r,1) = 0 for r ∈ 2N∗+1, since (4.12) always produces a factor sin π = 0. Having
these vanishing residues is also consistent with the permutation symmetry of (4.3), which requires
any structure constants with rs ∈ 2N∗+1 to vanish. Now, recall the relation cos(j arccos n

2
) = Tj(

n
2
)

where Tj(x) are Chebyshev polynomials of the first kind. Therefore, using (2.1), we can always
rewrite the product (4.12) as polynomials in n. For the sake of easy reference, we here display the
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non-vanishing pr,s for r ≤ 5:

p(1,0) = 2 , (4.13a)

p(2,0) =
1

2
(n− 2)2 , (4.13b)

p(2,1) =
1

2
(n+ 2)2 , (4.13c)

p(3,0) = 8n4 , (4.13d)

p(4,0) =
1

2
(n− 2)6(n+ 1)4 , (4.13e)

p(4,1) =
1

2
(n+ 2)6(n− 1)4 , (4.13f)

p(4,0) =
1

2
(n− 2)6(n+ 1)4 , (4.13g)

p(5,0) = 8n8
(
n2 − 2

)4
. (4.13h)

The functions Cref
V(r1,s1)

V(r2,s2)
V(r3,s3)

and Bref
V(r,s)

in (4.8) are crucial building blocks of four-point

structure constants in the O(n) CFT, and we call them reference structure constants. Reference
structure constants are universal factors of structure constants models that are independent of the
model’s global symmetry, namely O(n) symmetry for our case. In other words, reference structure
constants serve as references for structure constants of primary fields with the same dimensions
but transform in different O(n) representations. These reference structure constants depend only
on the conformal dimensions and the central charge, and have the expressions:

Cref
V(r1,s1)

V(r2,s2)
V(r3,s3)

=
∏

ϵ1,ϵ2,ϵ3=±

Γ−1
β

(
β+β−1

2
+ β

2
|
∑

iϵiri|+
β−1

2

∑
iϵisi

)
, (4.14a)

Bref
V(r,s)

=
(−1)rs

2 sin (π(frac(r) + s)) sin (π(r + β−2s))

∏
±,±

Γ−1
β

(
β ± βr ± β−1s

)
,

(4.14b)

where we use frac(r) := r − ⌊r⌋ to denote the fractional part of r ∈ 1
2
N∗, for example frac(2) = 0

whereas frac(3
2
) = 1

2
. The functions Γβ(x) appearing in (4.14) are Barnes’ double Gamma functions,

which obey the functional relations (shift equations)

Γβ(x+ β)

Γβ(x)
=

√
2πββx− 1

2Γ−1(βx) , (4.15a)

Γβ(x+ β−1)

Γβ(x)
=

√
2πβ

1
2
−β−1xΓ−1(β−1x) . (4.15b)

Notice that Bref
V(r,s)

is not well defined for r, s ∈ N∗ × Z due to the poles of double Barnes’

Gamma functions. For this case, Bref
V(r,s)

can be computed by taking the limit from generic values

of s. Moreover, observe that the special case Cref
V(0,s1)

V(0,s2)
V(0,s3)

coincides with the c ≤ 1 Liouville

structure constant of [28].
As to the final ingredient of (4.8), the functions qΛ(r,s)(n) are polynomials in n, which depend

on the diagram Λ. They can be uniquely determined by the crossing-symmetry equation. Guided
by the results obtained in [27] for qΛ(r,s)(n) with r ≤ 5, we conjecture that the degrees of qΛ(r,s) for
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any r, s in the s-channel obey the bounds:

degqK1

(r,s) ≤ r2 − 4 , degqK2,K3

(r,s) ≤ r2 − 2 , and degqL1,L2,L3

(r,s) ≤ r(r − 1) . (4.16)

Observe from (4.1) that the degrees of qΛ(r,s) could increase quickly as we increase r, therefore

computing qΛ(r,s) for higher r could require bootstrapping the four-point functions (4.3) for many

values of n. For instance, if we want qΛ(r,s) for r = 6, we would need to compute the diagrams K2

for 34 different value of n: this is difficult to reach by our standard laptop. This is why we only
computed the examples of qΛ(r,s) for r ≤ 5. We do not know, at this stage, an analytical means

of obtaining the general expression for coefficients of qΛ(r,s). Nonetheless, our numerical bootstrap

results are accurate enough to determine exactly several examples of qΛ(r,s). Furthermore, the

degenerate fields put constraints on the polynomials qΛ(r,s) as follows:

qΛ(r,s)

∣∣∣
⟨JJJJ⟩

= qΛ(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

= qΛ(r,s)

∣∣∣
⟨J̄ J̄JJ⟩

. (4.17)

To arrive at the above relation, we first recall the analytic expressions of the residues pr,s in (4.8)
for the four-point functions ⟨JJJJ⟩, ⟨J̄ J̄ J̄ J̄⟩, and ⟨J̄ J̄JJ⟩ from Section 2 of the companion paper
[27]. We find

p(r,s)

∣∣∣
⟨JJJJ⟩

= p(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

= p(r,s)

∣∣∣
⟨J̄ J̄JJ⟩

. (4.18)

Then, we recall that the ratio between D(r,s)

∣∣∣
⟨JJJJ⟩

and D(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

is completely fixed by the

degenerate-shift equation (3.7). Next, using (4.14), it can be shown thatDref
(r,s)

∣∣∣
⟨JJJJ⟩

andDref
(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

coincide with such degenerate-shift equation. Together with (4.18) , we can write

D(r,s)

∣∣∣
⟨JJJJ⟩

D(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

=
Dref

(r,s)

∣∣∣
⟨JJJJ⟩

Dref
(r,s)

∣∣∣
⟨JJJJ⟩

=⇒ qΛ(r,s)

∣∣∣
⟨JJJJ⟩

= qΛ(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

, (4.19a)

D(r,s)

∣∣∣
⟨JJJJ⟩

D(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

=
Dref

(r,s)

∣∣∣
⟨JJJJ⟩

Dref
(r,s)

∣∣∣
⟨J̄ J̄JJ⟩

=⇒ qΛ(r,s)

∣∣∣
⟨J̄ J̄ J̄ J̄⟩

= qΛ(r,s)

∣∣∣
⟨J̄ J̄JJ⟩

. (4.19b)

Therefore, we will only display explicitly the polynomials qΛ(r,s) for ⟨JJJJ⟩. From [27], the

polynomials qΛ(r,s) obey the relations: qΛ(r,s) = qΛ(r,−s) and qΛ(r,s) = qΛ(r,s+2). Taking into account these

symmetries, let us now display the independent polynomials for r ≤ 3 (or 4 in some cases). We
refrain from displaying the polynomials at r = 5 because they have very complicated expressions
due to their high degrees. For the s-channel of K1, we find

qK1

⟨1,1⟩D = 1 , (4.20a)

2qK1

(4,0) = n2
(
n2 − 4

)3 (
n2 − 1

)2
, (4.20b)

2qK1

(4, 1
2
)
= −n4(n2 − 3)2(n2 − 2)2 , (4.20c)

2qK1

(4,1) = n2
(
n2 − 4

)3 (
n2 − 1

)2
. (4.20d)
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For the s-channel of K2,

2qK2

(2,0) = n2 − 4 , (4.21a)

2qK2

(2, 1
2
)
= −n2 , (4.21b)

2qK2

(2,1) = n2 − 4 , (4.21c)

3qK2

(3,0) = n3(n2 − 4)(n2 − 12) , (4.21d)

3qK2

(3, 1
3
)
= −n(n2 − 9)(n2 − 1)2 , (4.21e)

3qK2

(3, 2
3
)
= n(n2 − 3)2(n2 − 1) , (4.21f)

3qK2

(3,1) = −n3(n2 − 4)2 . (4.21g)

For the s-channel of L2,

qL2

(2,0) = n2 − 4 , (4.22a)

qL2

(2,1) = −(n2 − 4) , (4.22b)

3qL2

(3,0) = 32n2(n2 − 4) , (4.22c)

3qL2

(3, 2
3
)
= −4(n2 − 1)(n2 − 3) , (4.22d)

qL2

(4,0) = (n− 2)3(n+ 1)2(n+ 2)
[
n6 + 2n5 − 2n4 − 8n3 + 9n2 − 4n+ 4

]
, (4.22e)

qL2

(4, 1
2
)
= 2n5(n2 − 3)(n2 − 2) , (4.22f)

qL2

(4,1) = −(n− 2)(n− 1)2(n+ 2)3
[
n6 − 2n5 − 2n4 + 8n3 + 9n2 + 4n+ 4

]
. (4.22g)

And finally, for the s-channel of L1,

qL1

(1,0) = 1 , (4.23a)

qL1

(1,1) = 1 , (4.23b)

qL1

(2,0) = −(n− 2) , (4.23c)

qL1

(2, 1
2
)
= −n , (4.23d)

qL1

(2,1) = −(n+ 2) , (4.23e)

3qL1

(3,0) = 2n2(n4 − 6n2 + 32) , (4.23f)

3qL1

(3, 1
3
)
= (n2 − 1)(n4 − n2 + 18) , (4.23g)

3qL1

(3, 2
3
)
= −(n2 − 1)(n2 − 2)(n2 − 3) , (4.23h)

3qL1

(3,1) = −2n2(n2 − 4)2 . (4.23i)

In any CFT, four-point structure constants can be factorized into products of three-point structure
constants, and it is clear that the reference structure constants in (4.8) admits such factorizations,
for instance we expect

CJJV ∼ (polynomial in n)× Cref
JJV , (4.24)

where the above polynomial in n would result from rewriting qΛ(r,s) as a sum over products of

three-point functions. However it is not yet clear to us how to rewrite the polynomials qΛ(r,s) in
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terms of three-point functions. For instance, qL2

(4,1) cannot be factorized, but it could be a sum of

factorized polynomials. This would suggest that fusion rules in the O(n) CFT come with non-
trivial multiplicities, which also seems consistent with the facts that primary fields in (2.5) have
non-trivial multiplicities. We leave this issue of factorization for the future work.

Furthermore, we have argued that the polynomials qΛ(r,s) can be uniquely determined by the
crossing-symmetry equation. Admittedly we do not yet know how to derive them analytically, and
our argument is based on purely numerical observations. Having their analytic derivation would
mean having a proof for the crossing symmetry of the O(n) CFT. This issue is beyond the scope
of the present paper, but we hope to return to it in the future.

4.2 Numerical results

Let us now compare the exact formula (4.8) with numerical results for the same structure constants
obtained by the numerical bootstrap of [8]. The code for numerical results in this paper can be
found in the notebook On current.ipynb in [29]. Throughout this section, we shall consider the
four-point function ⟨J̄ J̄ J̄ J̄⟩, instead of ⟨JJJJ⟩. Our bootstrap program in [8] is designed for
four-point functions of primary fields whose both Kac indices are non-negative integers. Since the
four-point functions ⟨J̄ J̄ J̄ J̄⟩ and ⟨JJJJ⟩ have the same polynomials qΛ(r,s), as discussed in (4.17),

we do not need to adjust our bootstrap program and can just use the results for ⟨J̄ J̄ J̄ J̄⟩. For
convenience, we first summarize the main ideas of the numerical bootstrap approach of [8].

1. We truncate the infinite spectra SΛ of (4.4) by introducing a cutoff ∆max on conformal
dimensions in SΛ, including the descendant fields, so that only fields with ℜ(∆+∆̄) ≤ ∆max

are included in the sum. This truncation applies, in particular, to the sums (4.4) and (4.7),
and to the conformal blocks in (4.7).

2. Therefore, the crossing-symmetry equation of the truncated four-point function is a linear
system for the structure constants. For instance, the crossing-symmetry equation of the
truncated diagram K1 in (4.2) reads

ℜ(∆+∆̄)≤∆max∑
(r,s)∈SK1

DK1

(r,s)G
(s)
(r,s)(z, z̄) =

ℜ(∆+∆̄)≤∆max∑
(r,s)∈SK2

DK2

(r,s)G
(t)
(r,s)(z, z̄) =

ℜ(∆+∆̄)≤∆max∑
(r,s)∈SK3

DK3

(r,s)G
(u)
(r,s)(z, z̄) ,

(4.25)

where the interchiral blocks are completely known and the structure constants are the un-
knowns. Furthermore, using the permutation symmetry, we find that the t- and u-channel
structure constants of K1 are equal to the s-channel structure constants of K2 and K3,
respectively.

3. In practice, we can obtain a linear system out of the crossing-symmetry equation (4.25) by
computing (4.25) at as many positions {z, z̄} as the number of unknown structure constants.
Solving this linear system gives us numerical values for the structure constants, whose nu-
merical errors are controlled by the cutoff ∆max: the data becomes more accurate as we
increase ∆max.

For instance, let us compute the ratio between the s-channel structure constants DK1

⟨1,1⟩D and DK1

(2,0),
by deploying the the numerical bootstrap at a generic value β = 0.8+0.1i and using various cutoffs
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∆max:

∆max ℜ(DK1

⟨1,1⟩D/D
K1

(2,0))

20 −19.481571855960358191873988829635529835459930433020

40 −19.481588812013838561064490240458880763822971041937

60 −19.481588812013838554229126790222375189584131387574

(4.26)

On the other hand, using the exact formula (4.8), we find

DK1

⟨1,1⟩D

DK1

(2,0)

=
n+ 1

n− 2

×
β−β2−1Γβ

(
2
β
− β

)
Γ8
β

(
3β
2
+ 1

2β

)
Γ2
β

(
5β
2
− 1

2β

)
Γ2
β

(
5β
2
+ 3

2β

)
Γ2
β

(
β2−1
2β

)
Γ2
β

(
β2+3
2β

)
sin (2πβ2) Γβ

(
1
β
− 2β

)
Γ3
β

(
1
β

)
Γ6
β(β)Γβ(3β)Γ2

β

(
β + 2

β

)
Γβ

(
2β − 1

β

)
Γ3
β

(
2β + 1

β

)
Γ (−β2)

,

(4.27)

where the rational function in n on the first line comes from the residue factor in (4.8) (recall
that qK1

(2,0) = 0), while the combination of double Gamma functions on the second line comes from

the reference structure constants. To compare the analytic result (4.27) with (4.26), we compute
(4.27) numerically,

ℜ

(
DK1

⟨1,1⟩D

DK1

(2,0)

∣∣∣
β=0.8+0.1i

)
= −19.48158881201383855422912679022255620616 · · · . (4.28)

In the table (4.26), we have underlined the decimals of the numerical results that coincide with
(4.28). It is seen that the numerical result with ∆max = 60 in (4.26) agrees with (4.28) to a
precision of 32 significant digits. Such excellent agreement strongly confirms that (4.8) is indeed
correct.

For other structure constants, let us first point out that it is sufficient to display the results for
the s-channel expansions of the diagrams K1, K3, L1 and L2, since the s-channel expansion of K2

and L3 in (4.2) can be obtained by applying a permutation of the points {z3, z̄3} and {z4, z̄4} to
K3 and L1, respectively. In particular, we have the relations:

DK2

(r,s) = (−1)rsDK3

(r,s) , (4.29a)

DL1

(r,s) = (−1)rsDL3

(r,s) . (4.29b)

Below, we display the numerical data for the structure constants with r ≤ 4 of K1, K3, L1, and L2,
and we choose the cutoff ∆max = 40, still with the parameter value β = 0.8 + 0.1i. Furthermore,
we normalize K1 and L2 such that Ds-channel

(2,0) = 1, whereas K3 and L1 are normalized such that

the u-channel structure constant Du-channel
(2,0) is 1. Furthermore, we have set the s-channel structure

constant DK1

(3,± 2
3
)
to be zero, according to (4.5). With this choice of parameters, results from the

numerical bootstrap coincide with the exact formula (4.8) to a precision of around 15–20 digits.
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The s-channel expansion of K1 at β = 0.8 + 0.1i and ∆max = 40

(r, s) ℜ(Numerical bootstrap) ℜ(Exact formula/Ds-channel
(2,0) )

⟨1, 1⟩D −19.481 588 812 013 84 −19.481 588 812 013 838 554

(1, 0) 8.028 922 218 606 04 8.028 922 218 606 040 328 9

(2, 1) −15.862 593 142 515 996 −15.862 593 142 515 996 439

(3, 0) −0.089 843 063 382 462 06 −0.089 843 063 382 462 066 314

(3,±2
3
) 0 0

(4, 0) 0.009 980 294 352 557 147 0.009 980 294 352 557 146 767 3

(4, 1
2
) −0.022 950 732 471 538 973 −0.022 950 732 471 538 973 019

(4,−1
2
) 0.000 811 237 468 070 619 4 0.000 811 237 468 070 619 365 89

(4, 1) 0.024 769 209 718 927 935 0.024 769 209 718 927 933 329

(4.30)

The s-channel expansion of K3 at β = 0.8 + 0.1i and ∆max = 40

(r, s) ℜ(Numerical bootstrap) ℜ(Exact formula/Du-channel
(2,0) )

(2, 0) 2.284 558 017 555 141 4 2.284 558 017 555 141 386 5

(2, 1
2
) −2.610 531 470 599 97 −2.610 531 470 599 970 044 9

(2,−1
2
) −0.845 307 560 519 607 −0.845 307 560 506 499 924 93

(2, 1) −9.999 899 257 657 525 −9.999 899 257 657 524 598 3

(3, 0) −0.625 977 342 543 057 4 −0.625 977 342 543 057 408 48

(3, 1
3
) −1.598 818 949 423 807 −1.598 818 949 423 807 034 7

(3,−1
3
) 0.062 751 940 073 252 92 0.062 751 940 073 252 918 708

(3, 2
3
) −1.935 921 799 647 064 1 −1.935 921 799 647 064 047 3

(3,−2
3
) 0.017 224 692 366 348 8 0.017 224 692 366 348 799 55

(3, 1) −0.036 580 027 738 847 26 −0.036 580 027 738 847 262 748

(4.31)

The s-channel expansion of L2 at β = 0.8 + 0.1i and ∆max = 40

(r, s) ℜ(Numerical bootstrap) ℜ(Exact formula/Ds-channel
(2,0) )

(2, 1) −2.361 190 498 900 769 −2.361 190 498 900 768 612 7

(3, 0) −0.001 694 847 951 130 24 −0.001 694 847 951 130 239 907 9

(3, 2
3
) 0.321 006 969 243 882 3 0.321 006 969 243 882 279 55

(3,−2
3
) 0.004 871 812 705 290 773 0.004 871 812 705 290 772 872 5

(4, 0) 0.001 342 521 205 278 614 2 0.001 342 521 205 278 614 058 3

(4, 1
2
) 0.003 341 488 652 166 565 0.003 341 488 652 166 565 311 4

(4,−1
2
) −0.000 025 014 269 611 482 264 −0.000 025 014 269 611 482 263 912

(4, 1) −0.004 092 010 932 285 123 −0.004 092 010 932 285 123 001 5

(4.32)
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The s-channel expansion of L1 at β = 0.8 + 0.1i and ∆max = 40

(r, s) ℜ(Numerical bootstrap) ℜ(Exact formula/Du-channel
(2,0) )

(1, 0) −0.837 344 424 545 152 7 −0.837 344 424 545 152 645 65

(1, 1) −0.440 124 757 133 424 2 −0.440 124 757 133 424 181 9

(2, 0) −0.310 923 294 757 472 4 −0.310 923 294 757 472 386 22

(2, 1
2
) 0.043 517 729 818 157 457 0.043 517 729 818 157 457 078

(2,−1
2
) 0.217 309 139 486 404 96 0.217 309 139 483 146 103 66

(2, 1) −1.781 999 088 411 457 4 −1.781 999 088 411 457 347 3

(3, 0) −0.003 457 370 114 695 005 −0.003 457 370 114 695 005 371 3

(3, 1
3
) 0.007 797 247 811 040 619 0.007 797 247 811 040 614 080 8

(3,−1
3
) 0.000 396 394 247 792 850 7 0.000 396 394 247 792 853 003 7

(3, 2
3
) −0.362 505 201 829 360 6 −0.362 505 201 829 360 638 23

(3,−2
3
) −0.002 546 405 571 949 778 6 −0.002 546 405 571 949 779 390 9

(3, 1) 0.627 554 657 208 865 5 0.627 554 657 208 865 456 38

(4.33)

4.3 The level parameter k

Let us now translate the structure constants (4.8) of the current four-point function (4.3) into the
OPE coefficients of the current-current OPE (3.15a). We are particularly interested in computing
the level parameter k. From the current-current OPE (3.15a), we deduce that it is related to the
s-channel structure constants of (4.3) as follows:

DK1

⟨1,1⟩D = 16k2 , (4.34a)

DL1
J = −DL3

J = 4λ2k , (4.34b)

DL1

J̄
= −DL3

J̄
= 4µ2k , (4.34c)

where the factors of 4 ensure us that k(n → 2) = 1
2
. Recalling (3.26) and (3.27), we find that k is

given by

k =
1

4

(
1 +

µ

λ

)−2 DK1

⟨1,1⟩D

DL1
J

,

=
(β2 + 1)2

16β4

DK1

⟨1,1⟩D

DL1
J

. (4.35)

From (4.8), computing the above ratio of structure constants requires fixing N, which can be done
by writing down the relation between diagrams in (4.2) and O(n) irreducible representations in
(3.3). This is done in Appendix A. To proceed, we rewrite (4.3) as follows:

⟨J(z, z̄)J(0)J(∞)J(1)⟩ = P [1111]F
[1111]
(s) + P [211]F

[211]
(s) + P [22]F

[22]
(s)

+ P [11]F
[11]
(s) + P [ ]F

[ ]
(s) + P [2]F

[2]
(s) , (4.36)
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where P λ have an O(n) tensorial structure, to be discussed in detail in the appendix, and F λ
(s) are

still solutions to the crossing-symmetry equation in the s-channel.
The next step is to consider the solution F

[1111]
(s) , in which there are only primary fields that

transform as the O(n) representation [1111]. From (2.6), recall that V(2,0) does not transform as
[1111] under O(n) symmetry, and therefore, using (4.5), we find that there is only one possible
combination of diagrams in (4.3) giving such a solution,

F
[1111]
(s) = FK2

(s) + FK3

(s) − 2
DK2

(2,0)

DL3

(2,0)

FL3

(s) = FK2

(s) + FK3

(s) − 1

N
FL3

(s) , (4.37)

where we have used (4.8) to compute explicitly the ratio between DK2

(2,0) and DL3

(2,0). The subtraction

in (4.37) ensures us that the field V(2,0) does not propagate in the s-channel of F [1111]. On the other
hand, the relation between (4.36) and (4.3) found in Appendix A yields

F
[1111]
(s) = FK2

(s) + FK3

(s) + 4FL3

(s) . (4.38)

Comparing (4.37) to the above yields

N = −1

4
. (4.39)

Using (4.39) with (4.8), we find that

DK1

⟨1,1⟩D

DL1
J

=
1

N

Bref
J

Bref
V D
⟨1,1⟩

Cref
JJV D

⟨1,1⟩

Cref
JJJ

2

,

= −
ββ−2

Γβ

(
2
β
− β

)
Γ6
β

(
1
β
+ β

)
Γ2
β

(
2
β
+ 2β

)
4 sin

(
π
β2

)
Γ
(

1
β2

)
Γ4
β

(
1
β

)
Γ2
β

(
2
β
+ β

)
Γ3
β

(
1
β
+ 2β

) ,

= −8πβ2 (β2 − 1)

(β2 + 1)2 sin(πβ2)
. (4.40)

To go from the first to second line, we computed Bref
J as limϵ→0B

ref
(1,−1+ϵ) because of the poles of

double Barnes’ Gamma functions in (4.14): this explains the factor sin
(

π
β2

)
Γ
(

1
β2

)
. We then

employed the functional relations (4.15) to arrive at the final line. Putting everything together
gives us

k = − π(β2 − 1)

2β2 sin(πβ2)
, (4.41)

where k is as in (3.15a). How this parameter k corresponds to a “level” in our current algebra,
and how this compares with the constant determined in [2], will be discussed in Section 6.

5 The limits n → ±2

We now discuss two limits in which the O(n) model can be related to free field theories.
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5.1 The limit n → 2

We have already seen in Section 3 that important simplifications occur when β2 → 1, that is, when
n → 2. The level parameter (4.41) then has the limit

k(n → 2) =
1

2
. (5.1)

It is not clear, however, what to expect in this limit. From the O(n) point of view, the expected
symmetry is just O(2), an Abelian algebra with no structure constants. On the other hand, it
is known that the continuum limit of the lattice model at that point can be described as a Z2

orbifold of the SU(2)1 WZW model. In the standard notations, the torus partition function for a
free boson, taking values on a circle of radius R, is

Zcirc(R) =
1

η(q)η̄(q̄)

∑
n,m∈Z

q(m/2R+nR)2/2q̄(m/2R−nR)2/2 , (5.2)

where η is the Dedekind eta function, and q the modular parameter. We have the following
identities between the circle and orbifolded partition functions [30]:

ZWZW = Zcirc(1/
√
2) , and Zorb(1/

√
2) = Zcirc(

√
2) = ZO(n=2) . (5.3)

Of course, in the orbifolding process the SU(2) symmetry disappears. Introducing the chiral
bosonic field x(z) with propagator ⟨x(z)x(w)⟩ = − ln(z−w), the SU(2) currents are obtained via

J±(z) = e±i
√
2x(z) = J1 ± iJ2 , (5.4a)

J3(z) =
i√
2
∂x(z) (5.4b)

and obey the purely chiral OPE

J i(z)J j(w) =
δij

2

(z − w)2
+

iϵijk
z − w

J c(w) , (5.5)

where ϵijk = ϵijk is the totally antisymmetric tensor, i, j, k ∈ {1, 2, 3}. In particular, the U(1)
current obeys

J3(z)J3(w) =
1

2(z − w)2
. (5.6)

Comparing with (3.15a) we thus see that the level is k = 1
2
, in agreement with the limit n → 2 of

the general result (4.41).
While it would seem natural to expect that all but one solution of the bootstrap disappear

in the limit n → 2 (since the O(2) model admits only one current), one should remember that
the loop model potentially describes more than O(2), even at n = 2. In fact, under very simple
modifications, the loop model can be re-interpreted [31] in terms of a U(2) model, a fact closely
related with the underlying orbifold construction described above (5.3).

To see what happens to the current four-point function when n → 2, we again use methods
from the conformal bootstrap of [8]. For generic n, the spectrum (2.5) gives us 6 solutions to the
crossing-symmetry equation, in agreement with the facts that we have 6 fusion channels in (3.3),
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or equivalently a basis of 6 combinatorial maps (4.2). However, as n → 2 our numerical results
suggest that we are left with only 3 crossing-symmetric solutions. This can be explained as follows.
At n = 2, we have the following coincidence of conformal dimensions:

∆(1,−1) = ∆(1,3) . (5.7)

Therefore, in addition to the null descendant at level 1, the current J has an extra null descendant
at level 3. As mentioned in (5.3), the partition function of the O(2) CFT is equivalent to the
partition function of the Z2 orbifold of the SU(2)1 WZW model. As this model is a unitary CFT,
it follows that all null descendants in this model must vanish. In other words, at c = 1, the currents
are annihilated by the combinations of Virasoro generators,(

L3
−1 − 4L−1L−2 + 6L−3

)
J±,0 = 0 . (5.8)

Therefore, the current four-point functions should be a linear combination of the 3 solutions of the
ensuing third-order BPZ differential equation. More explicitly, using (5.4), we find

⟨J3(z)J3(0)J3(∞)J3(1)⟩ ∝ 1

z2
+

1

(z − 1)2
+ 1 , (5.9a)

⟨J+(z)J−(0)J+(∞)J−(1)⟩ ∝ 1

z2(z − 1)2
, (5.9b)

⟨J+(z)J−(0)J3(∞)J3(1)⟩ ∝ 1

z2
− 2

z − 1
. (5.9c)

It is a straightforward exercise to check that each four-point function in (5.9) is annihilated by
the Virasoro generators (5.8).Nevertheless, we do not yet understand how to associate J0 and J±

at the point n = 2 to the generic O(n) currents, neither do we know the physical meaning of the
other 3 crossing-symmetric solutions that disappear.

Now, comparing (5.2) with (2.5), we find that primary fields V(r,s) whose (r, s) /∈ Z
2
× Z

2
are

excluded from the partition function (5.2). One might wonder quite generally what happens to the
four-point functions of such fields in the limit n → 2, and what the limit means? While this issue
is beyond the scope of this paper, we note that a likely answer is that these four-point functions
make sense in a more general supersymmetric theory (see also below) of the type U(m+2|m) with
m > 0, as proposed in [6]. We hope to discuss this in more detail elsewhere.

5.2 The limit n → −2

We now turn to the limit n → −2 in the dilute phase, corresponding to β2 → 2 and the central
charge c = −2. It is well known that the lattice model underlying the O(n) loop model can be
generalized to include fermionic degrees of freedom. The spins then belong to the fundamental
representation of a superalgebra of type OSp(2m+n|2m), with m a positive integer. The partition
function of such a model with periodic boundary conditions for the fermions in both directions
coincides with the one of the O(n) model.4 This can be used, in particular, to express the limit
n → −2 in terms of an OSP (0|2) model, recovering the observation that the loop model at n = −2
can be described in terms of symplectic fermions [32] with

⟨η1(z, z̄)η2(w, w̄)⟩ = − ln |z − w|2 . (5.10)

4The fermions in this construction have integer conformal weights, so the boundary conditions are the same on
the cylinder and in the plane.
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The OSP (0|2) currents then read

J1 =
1

4
(η1∂η1 + η2∂η2) ,

J2 =
1

4
(η2∂η2 − η1∂η1) ,

J3 =
1

4
(η1∂η2 + η2∂η1) , (5.11)

together with identical expressions for the J̄a with ∂ ↔ −∂̄. Observe that these currents obey
∂J̄ = ∂̄J (since, we recall, ∂∂̄η1,2 = 0).

Extending the construction from Section 3 to the orthosymplectic case leads, for OSP (0|2),
to the replacement of the tensor δAB in the OPEs (3.15a) with ηAB = ηAB = Diag(1,−1,−1),
A,B,C,D ∈ {1, 2, 3}, so now we should have formally

JA(z(z, z̄)JB(w, w̄) =
k(n = −2)ηAB

(z − w)2
+ . . . . (5.12)

However, we find, from direct calculation

JA(z, z̄)JB(w, w̄) =
ηAB

8(z − w)2
(
−1 + η1η2 − ln |z − w|2

)
+ . . . . (5.13)

This can be interpreted by a formal divergence of the anomaly k ≈ −1
8
ln |z − w|2, in agreement

with the result (4.41) since, as n → −2, that is β2 → 2, we have k(n) → +∞.
Further calculations give, e.g.,

J1(z, z̄)J2(w, w̄) = . . .+
3

4
J3 1

z − w
+

1

4
J̄2 z̄ − w̄

(z − w)2
+ . . . . (5.14)

This corresponds, in the notations of section 3 (and using fAB
C = −ϵABDηDC), to λ = 3

4
, µ = 1

4
, in

agreement with (3.27), since β2 = 2.
As mentioned earlier, counting of the fields with conformal weight h = h̄ = 1 requires that

many of the terms one would normally denote : JAJ̄B : are in fact zero. This can be illustrated in
the case of symplectic fermions, although in this case the number of fields of weight (1, 0) is larger
than the dimension of the adjoint of OSp(0|2), which gives only three fields. In this theory, there
are in fact eight fields (the physical origin of this extra degeneracy is discussed in [33] in terms
of spontaneously broken OSp(1|2) symmetry) with weight (1, 0): any one of ∂η1, ∂η2 multiplied
by any one of 1, η1, η2, η1η2. The fields of weight (1, 1) are obtained by multiplying ∂ηi∂̄ηj by the
same four fields, resulting in a multiplicity of 4 × 22 = 16, and not (4 × 2)2 = 64. Obviously, a
field such as : (η1∂η1)(η1∂η2) : = 0, etc. As for the currents JA themselves, since they are all even
in fermions, their normal-ordered products can only expand on ∂η1∂̄η2 and ∂̄η1∂η2 multiplied by
1 or η1η2, and thus the 9 possible combinations are not all independent.

6 Application to loop models

6.1 The current-current perturbation of self-avoiding walks

The presence of local currents in the O(n) model suggests the existence of interesting current-
current perturbations. In particular, it was proposed in a series of works starting with [1] that an
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orientation-dependent interaction between neighboring monomers in the self-avoiding walk (SAW)
problem—and more generally, in the loop model—should give rise to continuously varying expo-
nents. This followed, in the logic of [1], from the fact that the combination :JJ̄ :

∣∣
[ ]
should be

an exactly marginal field with conformal weights h = h̄ = 1. This point in turn is argued in [1]
by analogy with the free bosonic theory underlying the (by now, understood to be incomplete)
Coulomb gas construction of the CFT for the loop model.

We have mentioned earlier that, by pure counting, several of the :JAJ̄B : terms had to vanish.
By looking at the OPEs discussed in the previous sections—in particular eqs. (3.13) and (3.14)—we
see that for n generic (in fact, n ̸= ±2), there are simply no such terms. The only fields with weight
(1, 1) in the loop model are the Jordan partners of the logarithmic field W(1,1). They appear as
the bottom and top components of indecomposable modules for the left or right Virasoro algebra,
according to the diagram below:

W(1,1)

L1 L̄1

L−1 L̄−1

(L0 − 1)W(1,1)

J̄ JL0 (6.1)

The W(1,1) carry labels in the adjoint representation, and thus arise with multiplicity 2 × d[11] in
agreement with the counting in the partition function.

It turns out, however, that the fields W(1,1) do not appear in normal-ordered expressions such
as : JAJ̄B :. On general grounds, we know they might have appeared in OPEs but multiplied by
logarithms; whether this means they might contribute a finite part is a moot question, since we
have seen earlier—in the discussion below eq. (3.11)—that they in fact just decouple. Hence we
conclude that

:JJ̄ :
∣∣∣
[ ]
= :JJ̄ :

∣∣∣
[11]

= 0 . (6.2)

It is thus clear that, in light of a deeper understanding of the loop model CFT, the argument
presented in [1] does not work. This should not be too much of a surprise, since the consequences
(varying exponents in the presence of orientation-dependent interactions) were never convincingly
observed numerically (for discussions, see [34, 35, 10]).

We can go a bit further and discuss what should in fact be expected from the orientation-
dependent interaction considered in [1]. Since the singlet-channel of JJ̄ exhibits, by (3.13), on the
right-hand side the term

J(z, z̄)J̄(0)
∣∣∣
[ ]
∼

CJJ̄V(2,0)

BV(2,0)

|z|2∆(2,0)V(2,0) + . . . , (6.3)

we see that a lattice current-current coupling obtained by bringing two current operators on neigh-
boring sites (the neighboring monomers) will be described, in the continuum limit, by a term where
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the cut-off still appears explicitly, multiplied by a field of conformal dimensions (∆(2,0),∆(2,0)). In
the dilute case, ∆(2,0) > 1 (for instance ∆(2,0) =

35
24

for SAW) and the perturbation is thus irrele-
vant. In the dense case on the other hand, it is relevant, and coincides in fact with the four-leg
crossing perturbation. We thus expect that, while the orientation-dependent interaction of [1]
should not change anything to long-distance properties in the dilute O(n) model, it should induce
a flow to the O(n)/O(n− 1) phase (discussed in [36]) in the dense case.

6.2 O(n) currents and lattice loop correlators

We now discuss how to measure correlators of the O(n) CFT on the lattice. We shall assume in
what follows that the reader is familiar with both the Hamiltonian and Euclidian versions of these
models—see for instance [31] for a recent thorough review.

The abstract generators of the O(n) algebra obey[
Qab, Qcd

]
= δbcQad − δbdQac − δacQbd + δadQbc . (6.4)

In the Hamiltonian version of the lattice model and for the dense case, the space of states is
S

O(n)
L = [1]L for a chain of length L. The O(n) symmetry is realized by defining

Qab =
L∑
i=1

1× . . .×Qab
i × . . .× 1 , (6.5)

where, in the vector representation, the generator Qi acts as a matrix with elements

(Qab)cd = δac δ
b
d − δadδ

b
c (6.6)

on the ith space in the tensor product, and as identity otherwise. In the dilute case, the space
of states becomes S

O(n)
L = ([ ] + [1])L, and the action of the generator is similar on [1], while it is

trivial on [ ].
Focussing for simplicity on the dense case, the Hamiltonian of the model takes the familiar

form

H = −
∑

ei , (6.7)

where the ei are generators of the “unoriented Jones-Temperley-Lieb” algebra uJTL. These
generators, for n a positive integer, act by contracting identical colors and projecting onto a pair
of identical colors:

eab,cd = δabδcd . (6.8)

One can then represent the propagation of a given color as a line, and define the model for n
arbitrary using the corresponding formulation of lines and loops.

In this approach, the action of the local generator Qab corresponds to having a line carrying
the color a terminate and be replaced by a new line carrying the color b, or the reverse (this time
with a “Boltzmann weight” equal to −1). While the generators themselves cannot be interpreted
for n non-integer, their correlators can, as we shall see below.

To connect with the bootstrap, it is easier to move to the Euclidian version of the model,
where an n-component spin lives on every vertex of a lattice—we choose the square lattice for
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convenience—, and the lines and loops are obtained via a high-temperature expansion. This spin
becomes the “vector field” of the sigma model in the continuum limit, whose action is

A =
1

2g2σ

∫
dxdy (∂µS⃗)

2 (6.9)

with the constraint S⃗ · S⃗ = 1. In this formulation, the local current densities jabx,y in the field
theory:5

jabx =
[
Sa(x, y)∂xS

b(x, y)− Sb(x, y)∂xS
a(x, y)

]
, (6.10a)

jaby =
[
Sa(x, y)∂yS

b(x, y)− Sb(x, y)∂yS
a(x, y)

]
, (6.10b)

can be studied at long distance by considering the lattice quantities

jabx ≈ 1

ϵ

[
Sa
(i,j)S

b
(i+1,j) − Sb

(i,j)S
a
(i+1,j)

]
, (6.11a)

jaby ≈ 1

ϵ

[
Sa
(i,j)S

b
(i,j+1) − Sb

(i,j)S
a
(i,j+1)

]
, (6.11b)

where ϵ is the lattice spacing - set equal to unity in what follows, and (i, j) are the lattice coordi-
nates. Notice the normalization is the same as in (6.5,6.6).

Consider now the correlation function〈
jaby jbay′

〉
=
〈(
Sa
(i,j)S

b
(i,j+1) − Sb

(i,j)S
a
(i,j+1)

) (
Sb
(i′,j′)S

a
(i′,j′+1) − Sa

(i′,j′)S
b
(i′,j′+1)

)〉
. (6.12)

Inserting this into the high-temperature expansion of the model, we now get a modified partition
function where, in addition to loops we have either a line connecting (a contraction) (ij) and
(i′, j′ + 1) and carrying the label a (resp. b), and one connecting (i, j + 1) and (i′, j′) and carrying
the label b (resp. a), or a line connecting (ij) and (i′, j′) and carrying the label a (resp. b), and
one connecting (i, j + 1) and (i′, j′ + 1) and carrying the label b (resp. a). The latter situation in
either case comes with a minus sign. For instance,

Sa
(i,j)S

b
(i,j+1)S

b
(i′,j′)S

a
(i′,j′+1) :

b

b

b

a

a

, (6.13a)

Sa
(i,j)S

b
(i,j+1)S

a
(i′,j′)S

b
(i′,j′+1) :

b

a

b

a

b

. (6.13b)

It follows from this discussion that the current-current two-point function in the O(n) (6.12) can be
reformulated as the difference between two well-defined geometrical partition functions with lines
connecting the insertions as in (6.13). Of course, this can be re-interpreted in terms of orientation
correlations, as we shall now see.

5The chiral components are j = jx − ijy and j̄ = −(jx + ijy), since in our conventions ∂̄j = ∂j̄.
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6.3 U(1) and loop correlators

We now observe, following [2, 1], that we could decide to orient the loops and give each oriented
loop a fugacity n

2
without changing the partition function. This would correspond to considering

instead of a real O(n) model a complex O(n
2
) one, with a modified lattice interaction

2S⃗i · S⃗j → s⃗ ∗
i · s⃗j + herm. conj. , (6.14)

with s⃗ denoting complex vectors with n
2
components and unit length. This model enjoys now a

global U(1) symmetry under s⃗ → eiϕs⃗, and the associated currents read

jx ∝ lim
ϵ→0

1

ϵ

∑
α

[
(sα(i,j))

∗sα(i+1,j) − sα(i,j)(s
α
(i+1,j))

∗] =∑
α

(sα)∗∂xs
α − sα∂x(s

α)∗ , (6.15a)

jy ∝ lim
ϵ→0

1

ϵ

∑
α

[
(sα(i,j))

∗sα(i,j+1) − sα(i,j)(s
α
(i,j+1))

∗] =∑
α

(sα)∗∂ys
α − sα∂y(s

α)∗ , (6.15b)

where the sums for α run from 1 to n
2
. The geometrical interpretation of the correlation function

(note that α ̸= β components do not couple)〈∑
α

(
(sα(i,j))

∗sα(i,j+1) − sα(i,j)(s
α
(i,j+1))

∗) ((sα(i′,j′))∗sα(i′,j′+1) − sα(i′,j′)(s
α
(i′,j′+1))

∗)〉 (6.16)

is now that we have either a line connecting (i, j) and (i′, j′ + 1) with a certain orientation, and
one connecting (i, j + 1) and (i′, j′) with the opposite orientation, or a line connecting (i, j) and
(i′, j′) with a certain orientation, and one connecting (i, j + 1) and (i′, j′ + 1) with the opposite
orientation, this latter case coming with a minus sign. This is illustrated below with the black
lines, which now carry an orientation from s to s∗:

(sα(i,j))
∗sα(i,j+1)(s

α
(i′,j′))

∗sα(i′,j′+1) : , (6.17a)

(sα(i,j))
∗sα(i,j+1)s

α
(i′,j′)(s

α
(i′,j′+1))

∗ : . (6.17b)

Clearly, this is identical to the object we defined in (6.12)—although in the second case we get a
multiplicity n

2
corresponding to the sum over all possible colors α (we do not sum over colors in

(6.12). It follows that

⟨jabµ jbaµ ⟩ = 2

n
⟨jµjµ⟩ (6.18)

The pictures (6.17) can be completed by adding red lines inside each insertion of the lattice current
operator, now oriented from s∗ to s. As a result, each of the contributions to the current-current
correlation function is represented as an oriented loop. One may then notice that ⟨jµjµ⟩ can be
interpreted as the the probability that the edges (i, j)(i, j+1) and (i′, j′)(i′, j′+1)—now considered
as having a fixed orientation along the y-direction—belong to the same loop and are traversed in
the same direction, minus the probability that they belong to the same loop but are traversed
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in opposite directions. In other words, ⟨jµjµ⟩ is a two-point correlation function of orientations
of loops. As such, this quantity has been of interest in various contexts. In particular, in [2, 9],
the authors were able to determine, using Coulomb gas techniques, the long-distance behavior of
(6.18). Setting

⟨jµ(z, z̄)jµ(w, w̄)⟩ =
κ

(z − w)2
(6.19)

and the same for j̄µ, it was found in [9] that6

κ =
(β2 − 1)

8πβ2
cot(πβ2) . (6.20)

Remarkably, this is in agreement with the exact bootstrap results, at the price of some change of
normalization, since we have

k

(2π)2
=

2

n
κ , (6.21)

where k comes from (4.41) and κ from (6.20). The factor 2
n
on the right-hand side arises from

the one in (6.18). The factors of 2π are a matter of convention: the normalization of the currents
that we have chosen in the CFT part of this paper is such that integrated charges satisfy the
O(n) Lie-algebra relations with structure constants obeying |fAB

C | = 1. Referring, e.g., to equation
(3.19) we see that, on a cylinder (of circumference 2π by convention, as usual), we have

JA
0 =

1

2iπ

∫ π

−π

JA(σ) dσ . (6.22)

On the other hand, in (6.5) and (6.12), we have used the statistical physics convention to define
current densities such that their integral (without factors of 2π) gives the conserved charges. In

other words, we must identify JA

2π
with jab, which introduces a factor 1

(2π)2
in (6.21) when comparing

the two-point functions.

7 Conclusion

Properties of currents may have further interesting applications in the case of models with U(n)
symmetry, relevant in particular to the study of hulls in the Q-state Potts model, and potentially
the plateau transition in the class-C spin quantum Hall effect [37]—we hope to report on this in
the near future.

From a more fundamental point of view, currents should play more than an anecdotic (albeit
of high physical interest) role in the analysis of the O(n) CFT. Indeed, much of the earlier progress
on this problem took place using the Coulomb gas formalism where, in particular, the concept of
charge (“electric” or “magnetic”) of physical observables, combined with the presence of a “charge
at infinity”, played a crucial role. While the bootstrap makes these considerations seem irrelevant,
it is intriguing to wonder how much of the Coulomb gas approach can be salvaged—after all, this
approach remains crucial to determine the spectrum of the theory.

6Actually, the constant called κ in [9] differs from this by a factor 16 due to a different normalization: see the
appendix for more detail.
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We will content ourselves with a simple observation here. Focussing only on fields with dimen-
sion (2, 0), we have the OPE

J(z)J(w) =
κ

(z − w)2

[
V D
⟨1,1⟩ + (z − w)2

(
2

c
L−2V

D
⟨1,1⟩ +

CJJ∂J

κ
∂J

)
+ . . .

]
=

κ

(z − w)2

[
V D
⟨1,1⟩ + (z − w)2

(
2

c
T +

1

2κ
∂J

)
+ . . .

]
, (7.1)

where we used L−2V
D
⟨1,1⟩ = T and normalized the current as usual, so that CJJJ = 1. The

coefficients of T and ∂J are completely fixed by general Ward identities. Of course we know that
the OPE should also contain infinitely many logarithmic terms in ln(z − w) and ln(z̄ − w̄), but
this will not matter for us here.

We now define normal-ordering as usual, by subtracting all terms in the OPE that are singular
as z → w. It follows that

:JJ : (z) =
2κ

c
T +

1

2
∂J . (7.2)

We can now project this equation onto the O(n)-singlet sector to obtain

T (z) =
c

2κ
:JJ : (z)

∣∣∣
[ ]
. (7.3)

The notation is of course compact. By giving indices to the currents, the right-hand side can
be interpreted as the usual O(n) quadratic Casimir contraction: we see therefore that the stress-
energy tensor in the theory has exactly the form one would expect for a WZW theory. This
happens simply because T is forced to appear in the JJ OPE due to conformal Ward identities,
and there is no other field with weights (2, 0) in the spectrum with the right symmetry.

It is tempting now to define charges via the OPEs of fields with the currents, and to interpret
the conformal weights obtained from the Coulomb gas formalism in the light of (7.3). Of course,
the currents being non-chiral, considerable care has to be exercised in extending the well-known
analysis that would hold in a WZW theory (or, more simply, a U(1) free-boson theory as in [2])
to the O(n) CFT: for instance, conformal weights are not simply squares of the charges. How this
works out—and how the charge at infinity appears—will be discussed elsewhere.
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A Diagrams and the four-point correlation function of cur-

rents

The goal of this appendix is to prove equation (4.38). This involves diagrammatic interpretations
of various O(n) algebraic objects, strongly inspired by the study of “bird-tracks” in [38, 39].
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A.1 Projectors

We use lower-case Latin letters to denote the n states in the fundamental O(n) representation. We
also use a ket notation, so [1] = Span {|a⟩, a = 1, . . . , n}. The tensor product of two fundamentals
decomposes as [1]× [1] = [ ] + [11] + [2], and we introduce the corresponding projectors:

P[2]|ab⟩ =
|ab⟩+ |ba⟩

2
− δab

n

∑
c

|cc⟩ , (A.1a)

P[11]|ab⟩ =
|ab⟩ − |ba⟩

2
, (A.1b)

P[ ]|ab⟩ =
δab
n

∑
c

|cc⟩ . (A.1c)

It will be useful in what follows to introduce the notation

|(ab)⟩ ≡ |ab⟩ − |ba⟩
2

. (A.2)

We now consider the tensor product of two adjoint representations. Reorganizing (3.3) we have

[11]× [11] = [1111] + ([22] + [2] + [ ]) + ([211] + [11]) (A.3)

(the parentheses will be explained shortly), and our goal is to write the projectors onto all the
representations on the right-hand side.

It is useful to start by considering the product in SU(n):

[11]su × [11]su = [1111]su + [22]su + [211]su (A.4)

and observe that the representation [11] has the same basis for both algebras, with n(n−1)
2

states
|(ab)⟩—we label identically the basis states in the fundamental representation for the two cases.
The parentheses in (A.3) then simply indicate the branching of SU(n) into O(n) representations.
In the tensor product (A.4), the first two representations are in the symmetric (S) sector under
the exchange of the two [11], while the last one is in the antisymmetric (A) sector. These sectors
are easily obtained via

PS,A|abcd⟩ = PS,A|(ab)(cd)⟩ =
1

2

(
|(ab)(cd)⟩ ± |(cd)(ab)⟩

)
. (A.5)

Projection on [211] in SU(n) is therefore immediate:

P[211]su |(ab)(cd)⟩ =
1

2

(
|(ab)(cd)⟩ − |(cd)(ab)⟩

)
. (A.6)

All we have to do now is to subtract the trace to obtain the corresponding projector in O(n):

P[211]|(ab)(cd)⟩ =
1

2

(
|(ab)(cd)⟩ − |(cd)(ab)⟩

)
− 1

2(n− 2)

[
δbc
∑
e

(
|(ae)(ed)⟩ − |(ed)(ae)⟩

)
− δbd

∑
e

(
|(ae)(ec)⟩ − |(ec)(ae)⟩

)
−δac

∑
e

(
|(be)(ed)⟩ − |(ed)(be)⟩

)
+ δad

∑
e

(
|(be)(ec)⟩ − |(ec)(be)⟩

)]
. (A.7)
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The projector onto the remaining adjoint,

P[11] =
1

2(n− 2)

[
δbc
∑
e

(
|(ae)(ed)⟩ − |(ed)(ae)⟩

)
− δbd

∑
e

(
|(ae)(ec)⟩ − |(ec)(ae)⟩

)
−δac

∑
e

(
|(be)(ed)⟩ − |(ed)(be)⟩

)
+ δad

∑
e

(
|(be)(ec)⟩ − |(ec)(be)⟩

)]
, (A.8)

follows from P[211] + P[11] = P[211]su .
For the fully anti-symmetric sector, we can of course immediately write the projector onto the

[1111] representation:

P[1111]|(ab)(cd)⟩ = P[1111]su|(ab)(cd)⟩

=
1

6

(
|(ab)(cd)⟩+ |(cd)(ab)⟩ − |(ac)(bd)⟩

− |(bd)(ac)⟩+ |(bc)(ad)⟩+ |(ad)(bc)⟩
)
. (A.9)

We also observe that

P[1111]|(ab)(cd)⟩ = P[1111]|abcd⟩ . (A.10)

The projector for SU(n) then follows (since the first two terms in (A.4) make up the full symmetric
sector):

P[22]su|(ab)(cd)⟩ = PS|(ab)(cd)⟩ − P[1111]|(ab)(cd)⟩ . (A.11)

For completeness, we write the corresponding expression:

P[22]su|(ab)(cd)⟩ =
1

3
[|(ab)(cd)⟩+ |(cd)(ab)⟩]

+
1

6
[|(ac)(bd)⟩+ |(bd)(ac)⟩ − |(bc)(ad)⟩ − |(ad)(bc)⟩] . (A.12)

Meanwhile we can consider the double trace, which is the projector onto the O(n) identity:

P[ ]|(ab)(cd)⟩ =
2

n(n− 1)
(δbcδad − δacδbd)

∑
e,f

|(ef)(fe)⟩ . (A.13)

Exchanging e ↔ f shows that this is in the symmetric sector indeed, while the fact that we act
on |(ab)(cd)⟩ fixes the sign in the delta functions. Next, we can build by inspection the projector
onto the representation [2]:

P[2]|(ab)(cd)⟩ =
1

2(n− 2)

[
δbc

(∑
e

(
|(ae)(ed)⟩+ |(ed)(ae)⟩

))

− δac

(∑
e

(
|(be)(ed)⟩+ |(ed)(be)⟩

))
− δbd

(∑
e

(
|(ae)(ec)⟩+ |(ec)(ae)⟩

))

+ δad

(∑
e

(
|(be)(ec)⟩+ |(ec)(be)⟩

))
− 4

n
(δbcδad − δacδbd)

∑
e,f

|(ef)(fe)⟩

]
, (A.14)
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where the last term is there to ensure tracelessness. This leaves finally P[22] = P[22]su − P[2] − P[ ]:

P[22]|(ab)(cd)⟩ =
1

3
[|(ab)(cd)⟩+ |(cd)(ab)⟩]

+
1

6
[|(ac)(bd)⟩+ |(bd)(ac)⟩ − |(bc)(ad)⟩ − |(ad)(bc)⟩]

− 1

2(n− 2)

[
δbc

(∑
e

|(ae)(ed)⟩+ |(ed)(ae)⟩

)
− δac

(∑
e

|(be)(ed)⟩+ |(ed)(be)⟩

)

−δbd

(∑
e

|(ae)(ec)⟩+ |(ec)(ae)⟩

)
+ δad

(∑
e

|(be)(ec)⟩+ |(ec)(be)⟩

)]
+

1

(n− 1)(n− 2)
(δbcδad − δacδbd)

∑
e,f

|(ef)(fe)⟩ . (A.15)

In conclusion, we have built explicitly all the projectors for the product [11] × [11] in (A.3). We
note that a bird-track version of this decomposition can be found in [39].

A.2 Four point-functions

We now derive the relation between the O(n) tensors and the diagrams for four-point functions of
O(n) vectors and O(n) adjoints.

O(n) vectors

Before moving to the case of primary interest—that of adjoints—we first study a simpler example to
fix ideas. We consider the four-point function ⟨V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)⟩. Recall that V( 1

2
,0) transforms

as an O(n) vector. We therefore label this four-point function with O(n) tensor indices as follows:

〈(
V( 1

2
,0)

)
a

(
V( 1

2
,0)

)
b
V c
( 1
2
,0)
V d
( 1
2
,0)

〉
= Gcd

ab = P[2]F
[2] + P[11]F

[11] + P[ ]F
[ ] , (A.16)

where on the right-hand side we have made a decomposition, according to the O(n) tensor product
[1] × [1] = [2] + [11] + [ ] (see Section 2.1 of [17]), in terms of projectors Pλ on irreducibles λ and
the corresponding coefficients F λ. Using formulas (A.1) we have that

δabδ
cd = n(P[ ])

cd
ab , (A.17a)

δdaδ
c
b = P = (P[2] − P[11] + P[ ])

cd
ab , (A.17b)

δcaδ
d
b = I = (P[2] + P[11] + P[ ])

cd
ab . (A.17c)

This leads to

(P[2])
cd
ab =

1

2

(
δcaδ

d
b + δdaδ

c
b

)
− 1

n
δabδ

cd ,

(P[11])
cd
ab =

1

2

(
δcaδ

d
b − δdaδ

c
b

)
. (A.18)

So we can rewrite the correlator (A.16) as

Gcd
ab = δabδ

cdF
[ ] − F [2]

n
+ δdaδ

c
b

F [2] − F [11]

2
+ δcaδ

d
b

F [2] + F [11]

2
(A.19)

34



By convention, we associate with the amplitude of every product of Kronecker deltas a diagram,
Gi with i = 1, 2, 3, defined as follows:

δabδ
cd 7→ G1

1

2 3

4

δdaδ
c
b 7→ G2 δcaδ

d
b 7→ G3

(A.20)

In our convention, the O(n) labels of the points 1, 2, 3, 4 are a, b, c, d in that order. Therefore we
can write

Gcd
ab = G1δabδ

cd +G2δ
d
aδ

c
b +G3δ

c
aδ

d
b . (A.21)

Comparing with (A.17), we finally find the formula

G = 2P[2]

(
G2 +G3

2

)
+ 2P[11]

(
−G2 +G3

2

)
+ nP[ ]

(
G1 +

G2 +G3

n

)
, (A.22)

where the appearance of the projectors on the right-hand side must be interpreted by writing the
components of G in terms of matrix elements of the P ’s. Alternatively, it is sometimes useful to
think of G as an operator “propagating in the s-channel”—here acting on the states |ab⟩, with
G|ab⟩ =

∑
c,d G

cd
ab|cd⟩—, though we will not use a separate notation for this.

Formula (A.22) can in fact be found in a different, more useful way. We suppose we know (A.21)
and wish, e.g., to find F[ ] in (A.16). We isolate its contribution by computing the projection GP[ ]:

GP[ ]|ab⟩ = δab
1

n
G
∑
c

|cc⟩ = δab
1

n

∑
c,d

Gdd
cc |dd⟩ = δab

1

n

∑
c

(∑
d̸=c

Gdd
cc |dd⟩+Gcc

cc|cc⟩

)

= δab
1

n

∑
d

[(n− 1)G1|dd⟩+ (G1 +G2 +G3)|dd⟩]

= (nG1 +G2 +G3)P[ ]|ab⟩ . (A.23)

So we find F[ ] = nG1 + G2 + G3, which is indeed in agreement with the coefficient of P[ ] in
(A.22). Note this result can in fact be obtained more quickly. Since GP[ ] ∝ P[ ] all we have to
do to determine the proportionality coefficient is to consider GP[ ]|aa⟩ and extract the component
proportional to |aa⟩. P[ ]|aa⟩ is given by 1

n

∑
c |cc⟩. We consider all the choices aa, cc and draw all

the possible diagrams compatible with these colors. If c ̸= a we have one diagram G1, providing
overall n−1

n
G1. If c = a we can still have G1, so in fact G1 comes with a factor n−1

n
+ 1

n
= 1.

But if c = a we can also have G2 and G3, each coming with a factor 1
n
. Hence the amplitude is

proportional to G1 +
G2+G3

n
.

O(n) adjoints

We now consider a four-point function involving four fields, which transforms only in the adjoint
of O(n)—the so-called currents. Such an object requires a priori the introduction of indices:

G
(ef)(gh)
(ab)(cd) = ⟨J(ab)J(cd)J (ef)J (gh)⟩ . (A.24)
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It is convenient to factor out the dependency on these indices and write, in analogy with the
right-hand side of (A.16),

G = ⟨JJJJ⟩ = P[1111]F
[1111]
(s) + P[22]F

[22]
(s) + P[2]F

[2]
(s) + P[ ]F

[ ]
(s) + P[211]F

[211]
(s) + P[11]F

[11]
(s) , (A.25)

where now we have used the O(n) tensor product (3.3). Here, F λ
(s) are solutions to the crossing-

symmetry equations in the s-channel, Pλ are O(n) projectors, and the object on the left-hand side
is now thought of—see the remark after (A.22)—as an operator taking the indices of the first two
insertions to the ones of the last two ones, so

G|(ab)(cd)⟩ =
∑

(ef)(gh)

G
(ef)(gh)
(ab)(cd) |(ef)(gh)⟩ . (A.26)

We now go back to the four-point correlator of the currents and study first the component onto the
fully antisymmetric representation, ⟨JJJJ⟩[1111]. The question is how to interpret this component
in terms of diagrams.

To do this, just like in the simpler case of ⟨V( 1
2
,0)V( 1

2
,0)V( 1

2
,0)V( 1

2
,0)⟩, we consider GP[1111]|(ab)(cd)⟩

and extract the component proportional to |(ab)(cd)⟩. To proceed, we define signed diagrams as
follows. We split the points representing the operator insertions (in 1, 2, 3, 4) in as many points
as there are colors, and assign to these points colors in the same order as in the associated ket.
We then imagine drawing, starting from every such point, a (colored) dotted line going to −∞
for the insertions 1, 2 and +∞ for the insertions 3, 4. Finally, we connect identical colors (since
a, b, c, d are all different by construction no ambiguity arises), and define an index p as the number
of intersections of full lines with dotted lines of a different color. The value of the diagram is given
by (−1)p times the sum of the usual O(n) Boltzmann weights over loop configurations represented
in the diagram—see the illustrations in (A.28) below.

Now P[1111]|(ab)(cd)⟩ is given in (A.9). Imposing that the points 3, 4 are in the state |(ab)(cd)⟩
gives therefore a total of 6 × 24 terms. The multiplicity 6 comes from the antisymmetrizations
on the right-hand side of (A.9) and the multiplicity 24 arises since, for each point 1, 2, 3, 4 we can
permute the two corresponding colors. The amplitude we are looking for, F [1111], is proportional
to the sum of all diagrams corresponding to the terms in (A.9). Up to the detail of connectivities
at the split extremities, we get the diagrams K2, K3 and L3 out of the possible diagrams in (4.2).
They come with relative multiplicities 1, 1, 4 (corresponding to the 6 terms in (A.9)). It follows
that

F
[1111]
(s) ∝ FK2

(s) + FK3

(s) + 4FL3

(s) . (A.27)

Note that in fact, when writing this, we should really specify that each type of diagram should be
“decorated” by 24 different assignments of colors at its extremities, and the corresponding “point-
split” diagram evaluated with the rules discussed earlier. In particular, G

(ab)(cd)
(ab)(cd) and G

(cd)(ab)
(ab)(cd)

correspond to
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b b
a a

c c
d d

= , (A.28a)

d

d

c

c

a

a
b

b

= . (A.28b)

G
(ac)(bd)
(ab)(cd) , G

(bc)(ad)
(ab)(cd) , G

(bd)(ac)
(ab)(cd) , G

(ad)(bc)
(ab)(cd) correspond to the signed diagrams:

−

a a
b

b
dd

c

c +

b
b

a

a

dd

c

c

−

b
b
a

a
c

c
d

d

+

a a
b

b

c

c
d

d

,

so, after combining with the signs in (A.9) we obtain

4× . (A.29)

Adding this to the two terms on the right hand side of eq. (A.28) reproduces (A.27) indeed.

B A numerical determination of k using transfer matrices

The purpose of this Appendix is to construct the two-point function of the current operator directly
in the lattice model and to study numerically some of its properties. In particular we shall compute
a finite-size approximation to the level parameter k and extrapolate it to the thermodynamic limit.
It will become apparent that the lattice constructions can be generalized in various ways, e.g. to
the case of higher-point correlation functions.
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Lattice model

For definiteness we consider Nienhuis’ O(n) model on the hexagonal lattice:

(B.1)

The configurations are sets of self-avoiding and mutually avoiding closed loops on this lattice,
obtained by occupying a subset of the edges by monomers—shown below in blue color—so each
vertex is incident on zero or two monomers. The partition function is then

Z(K,n) =
∑
loops

K#monomersn#loops . (B.2)

The monomer fugacity at the critical point is known to be [40]

Kc =
(
2±

√
2− n

)−1/2
, (B.3)

where −2 ≤ n ≤ 2, and we take the plus (minus) sign for the dilute (dense) phase.

Transfer matrix

To construct a time-evolution operator (transfer matrix) we pick a distinguished “time” direction,
by convention taken to be upwards. The orthogonal, horizontal direction then defines the “space”
direction. Notice that we have oriented the lattice (B.1) so that one third of the edges are parallel
to the space direction. The mid-points of the remaining, slanted edges are called sites, and a
horizontal (i.e., space-like) line intersecting 2L sites is called a time slice. We label the sites within
a time slice i = 1, 2, . . . , 2L, from left to right. The figure (B.1) thus shows a lattice of width
L = 4.

The goal of the transfer matrix construction is to build up a semi-infinite cylinder of circumfer-
ence L, obtained by imposing periodic boundary conditions in the space direction and taking the
limit of infinite height along the time direction. To this end we first define the so-called Ř matrix
that builds up a small piece of the lattice

Řk =

k k + 1

(B.4)

by acting on the sites labelled k and k + 1. The corresponding sum over loop configurations can
be depicted as

Řk = +K +K +K2

cup

+K2 +K2 +K2 +K2

cap

(B.5)
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where we have shown in front of each diagram the local part of the Boltzmann weight, accounting
for the number of monomers. Notice that Řk constructs one horizontal edge and four slanted
half-edges. Two of the diagrams have been given convenient nicknames, “cup” and “cap”, which
will be used below.

The row-to-row transfer matrix for a system of width L builds a whole layer of the lattice,
meaning that it transfers from one time slice to the next. It can be written

T =

(
L∏

j=1

Ř2j−1

)
×

(
L∏

j=1

Ř2j

)
, (B.6)

where we have identified the site labels modulo 2L in order to have periodic boundary conditions.
Suppose first that the goal was to construct the partition function (B.2). The space of states

on which T acts would then be the set of dilute defect-free link patterns over the set of sites
{1, 2, . . . , 2L}. Such a link pattern is a collection of p arcs with 0 ≤ p ≤ L, such that each arc
connects two distinct sites, each site connects to at most one arc, and arcs do not cross. The link
patterns can be depicted by drawing the p non-intersecting arcs in the half-space below the time
slice. For example, here is a dilute link pattern with p = 4 arcs in the case L = 6:

(B.7)

The link patterns contain precisely the information necessary to compute the non-local part of the
Boltzmann weight, accounting for the number of loops. Namely, in (B.5), four of the diagrams act
trivially on the link patterns, another two just make one end of an arc jump one site to the left
or right, and the cup replaces two adjacent empty sites by an arc. The most non-trivial action is
provided by the cap, which can either concatenate two distinct arcs, or, if both sites belong to the
same arc, register the completion of a loop and provide the corresponding weight n.

The transfer matrix is also useful for building correlation functions. The simplest correlation
function is the (unnormalized) probability that ℓ open, non-intersecting paths extend from the
bottom to the top time slice of a finite-height cylinder. It can be computed by letting T act on
link patterns with ℓ defects—often called through-lines—which can move around in the same way
as the loops, but which are not allowed to undergo pairwise annihilation under the action of the
cap operator.

Spectrum

The spectrum of T within the basis of all link patterns can be decomposed with respect to
the number of through-lines ℓ (with ℓ = 0, 1, . . . , 2L), the momentum of through-lines k (with
k = 0, 1, . . . , ℓ − 1) and the lattice momentum m (with m = 0, 1, . . . , L − 1). We denote the
corresponding sets of eigenvalues by Vℓ,k,m, as in Appendix A of [41]. To obtain this decomposition
it is important to notice that the lattice (B.1) is invariant under a horizontal shift by two sites.
Accordingly T commutes with the two-step shift operator u2. The quantization of k results from
the observation, that the link pattern is unchanged if all ℓ through-lines are brought around the
periodic boundary condition and back to their initial positions. The lattice momentum m follows
from the simultaneous diagonalization of T and u2, and it is quantized by the periodic boundary
conditions.

A first technical step is to write an efficient code that extracts the transfer matrix Tℓ,k,m in
each sector. This follows Appendix A.4 of [41], the main change being that the basis states are
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now link patterns of the dilute O(n) model, rather than the completely packed link patterns used
in [41] to deal with the Potts model. The momentum sectors are constructed by selecting a
representative state for each orbit of the link patterns under the cyclic group generated by u2 and
packing (unpacking) the link patterns to (from) this smaller space just after (before) each action
by T by means of an operator Sout (Sin). This procedure is described in details in Appendix A.4
of [41].

We have checked that the spectrum of T is indeed the union of the resulting spectra Vℓ,k,m. A
novel feature, not encountered in the study of the Potts model, is that some of the eigenvalues
are not real, but appear in complex conjugate pairs. This is however still compatible with the
partition function Z(K,n) and the defect-path correlation functions being real.

Observable

Our goal is now to make the discussion of Section 6.3 amenable to the transfer-matrix setup. We
wish to compute a correlation function, in which two specific edges are required to be traversed
by the same loop, giving different signs to the two different relative directions of traversal (6.17).

To this end we first mark two space-like (i.e., horizontal) edges at the same space coordinate
and separated by t rows in the time direction, corresponding to the action of T t. We orient both
these edges from left to right.

We next define a variant transfer matrix T̃ that builds only those configurations in which the
two marked edges are forced to be occupied and to be traversed by the same loop. We call this the
marked loop; it still has a weight n. With this constraint we wish to build four distinct partition
functions Z̃α(K,n). The cases α = 1, 2, 3, 4 imply the following characterisation of the marked
loop:

• For α = 1 it is contractible, and following this loop we pass one of the marked edges in its
chosen direction and the other one in the opposite direction.

• For α = 2 it is contractible and the passage directions are identical.

• For α = 3 it is non-contractible and the passage directions are opposite.

• For α = 4 it is non-contractible and the passage directions are identical.

Notice that the destinction between these four cases does not depend on the direction in which we
follow the marked loop. The following figure illustrates the four cases:

α = 1 α = 2 α = 3 α = 4 (B.8)

We choose the boundary conditions to be empty (all sites are empty) at a time-like distance
M before (after) the insertion of the first (last) marked edge. For a chosen numerical precision
of Ndigits decimal digits, in order to emulate the situation of an infinitely high cylinder, it suffices
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to take M sufficiently large, so that the result Z̃α(Kc, n) does not depend on M to within the
chosen precision. We apply the extremely conservative choice M = LNdigits. As in [41] we take
Ndigits = 2000. In practice we can make the computations for L ≤ 5 for several hundred different
values of t (we always take t = 100, 101, . . .).

The computation of Z̃α(K,n) requires us to augment the state space of T̃ with some extra
information, which is not present in the unadorned link patterns on which T acts. A crucial point
is to keep this information at an absolute minimum, since it affects adversely the dimension of T̃ .

The key idea is to endow each arc of the link patterns with information about its possible
interaction with the marked edges. An arc can be unmarked as before (meaning that it has passed
through none of the two marked edges), or it can be simply or doubly marked (meaning that it
has passed through one or both of the marked edges). A simply marked arc moreover has an
orientation that specifies whether the edge, when followed from left to right (with respect to an
observer who looks along the time direction), has passed through the marked edge along or opposite
to the orientation of the marked edge. Obviously, there can be at most two simply marked arcs
in a given state (in which case there are no doubly marked arcs), or one doubly marked arc (in
which case there are no singly marked arcs).

The state moreover possesses an overall (i.e., not specific to each of its arcs) variable β from

which we will be able to infer to which Z̃α it will contribute at the end of the computation. This
β can take five different values, β = 0, 1, 2, 3, 4. The first one, β = 0, means that there is not yet
any doubly marked arc, and therefore the contribution of the given state to the end result is yet
undetermined. The other values, β = 1, 2, 3, 4, mean that the state gives a contribution to Z̃α with
α = β. More precisely, as soon as a doubly marked arc is formed, we set β = 1 or 2, depending
on whether the passage directions of the two marked edges are opposite or identical. Due to the
choice of boundary conditions, the doubly marked arc must eventually close so as to form a loop.
When this happens we keep the value β = 1, 2 is the marked loop is contractible, and we replace
β 7→ 2 + β if it is non-contractible. In this way we correctly find α = β once the marked loop has
been closed.

Keeping track of this information under the transitions produced by the transfer matrix T̃ is
quite non-trivial and a substantial number of cases needs to be accounted for. The salient features
of this reasoning are the following:

1. The marking of arcs will add up upon concatenation of two distinct arcs by the cap operator.
For example, the concatenation of a singly marked arc with an unmarked arc produces a singly
marked arc, while the concatenation of two singly marked arcs produces a doubly marked
arc.

2. However, the orientation of a singly marked arc may change when it is concatenated with an
unmarked arc. Indeed, depending on how the two arcs are nested, in some cases an observer
that follows the resulting concatenated arc from left to right will in fact follow the original
singly marked arc from right to left. The orientation of the singly marked arc may therefore
change upon concatenation, in some cases.

3. In a similar vein, when a doubly marked arc is formed by the concatenation of two singly
marked arcs, the choice between β = 1 and β = 2 (see above) is determined by both the
relative orientations of the singly marked arcs being concatenated and the way they are
nested.

4. The cap operator should be prevented from forming a loop out of a singly marked arc, in
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order to account for the constraint that both marked edges must belong to the same marked
loop.

The construction of T̃ just outlined has undergone extensive tests on small lattices, comparing
with an exhaustive set of diagrams drawn by hand.

Results for the spectra

We now restrict to the critical coupling, K = Kc, given by (B.3). The following results are based
on numerical computations for many values n = 1

10
, 3
10
, . . . , 19

10
along both the dense and dilute

branches.
We first focus on the decomposition of the probabilities

Pα(n) =
Z̃α(Kc, n)

Z(Kc, n)
(B.9)

for α = 1, 2, 3, 4 onto the spectra Vℓ,k,m. We stress here that the probabilities Pα(n) are computed

from T̃ , whereas the sets of eigenvalues Vℓ,k,m are those of the simpler transfer matrix T . The
amplitude of Pα(n) on each eigenvalue is found by solving a linear system using many different
values of t (see [41, 27] for technical remarks) and we are interested in the “spectrum” of each
probability, meaning the set of eigenvalues for which the amplitudes are non-zero for generic values
of n.

We draw our conclusions from the sizes L = 3 and L = 4, which are small enough that all
amplitudes can be determined, and yet large enough to contain a substantial number of different
sectors (ℓ, k,m), so that reliable conjectures about the general result can be made.

Our first observation is that the leading contributions to α = 1 and α = 4 are identical. This
can be argued graphically, since once the doubly marked arc has been formed, it has almost the
same probability to close on the front or the back of the cylinder. In the same vein, the leading
contributions to α = 2 and α = 3 are identical. We therefore analyse the combinations

P±
A = P1(n)± P4(n) , (B.10a)

P±
B = P2(n)± P3(n) . (B.10b)

Our numerically determined amplitudes then unambiguously support the following conjectures:

• P+
A and P+

B both have contributions from Vℓ,k,m with ℓ ≥ 2 even, k always even, and any m.

• P−
A and P−

B both have contributions from Vℓ,k,m with ℓ ≥ 2 even, k having the same parity
as ℓ/2, and any m.

We can also form the combinations

Pall = P+
A + P+

B , (B.11)

POrient = P−
A − P−

B = P1(n)− P2(n) + P3(n)− P4(n) . (B.12)

The first one, Pall, is just the total probability that a loop passes through the two marked edges,
regardless of any orientational information. This probability could of course have been obtained
from a much simpler transfer matrix acting on link patterns without arc orientations, yet still
having the arc markings. We find that Pall has contributions only from V2,0,m (with any m), in
full analogy with the study of two-point functions in [41]. The second one, POrient, exploits the full
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information of the decorated link patterns described above. It is the current-current correlation
function argued in Section 6.3, and also coincides with the correlation function introduced by
Cardy [2] in order to compute the area enclosed by the marked loop. We find that POrient has
contributions only from V2,1,m (with any m). In both these cases, Pall and POrient, there are no
contributions from any Vℓ,k,m with ℓ > 2.

Summarizing, Pall couples to the two-leg operator, while POrient couples to the current—and to
nothing else, in both cases (in particular, there are no contributions from sectors with ℓ > 2).

Results for the amplitudes

For −2 < n ≤ 2, using (2.1), the Coulomb gas coupling constant β2 takes the following values:

β2 =

{
1
π
arccos

(
−n

2

)
∈ (0, 1] Dense phase

2− 1
π
arccos

(
−n

2

)
∈ [1, 2) Dilute phase

(B.13)

where the central charge is given (2.1). While Cardy’s prediction for the current-current amplitude
is given by eq. (27) in [9]:

κC(β
2) =

2(β2 − 1)

πβ2
cot(πβ2) . (B.14)

We now wish to relate the probability POrient found in the lattice computations to κC(β
2). Due

to the normalization (B.9), the amplitude A(L, β2) of its leading contribution—namely the largest
eigenvalue in V2,1,m—is well defined. Notice that in our numerics we do not distinguish states
which only differ by the sign of the lattice momentum, since the corresponding transfer-matrix
eigenvalues are exactly degenerate for finite L. Recall that the lattice momentum carries over as
∆− ∆̄ in the CFT. When extracting the lattice amplitude of a spinful field—such as the current—
we therefore let A(L, β2) denote only one half of the combined amplitude of the two degenerate
eigenvalues.

We cannot compare A(L, β2) and κC(β
2) directly, because the former is computed in the cylin-

der geometry, while the CFT result pertains to the infinite plane. We study instead the conformal
amplitude A(L, β2):

ACFT(L, β
2) ≡

(
2π
√
3
2
L

)−2

A(L, β2) , (B.15)

where the geometrical factor
√
3/2 corrects for the fact that on a hexagonal lattice our discretisation

of the time and space coordinates differ by a factor that equals the height of an equilateral triangle
of side length one. The power 2 is twice the scaling dimension of the current operator.

On a practical level, the fact that we now need only the leading amplitude means that we
need only a few values of the separation t, and we can moreover work at a much smaller numerical
precision. Concretely we determine the first five amplitudes, using 100 digits of numerical precision,
which is amply sufficient to determine A(L, β2) to at least 20 correct digits. As a consequence, the
computations can now be carried out for sizes L ≤ 6.

In figure 1 we show ACFT(L, β
2), plotted against n on the dense and dilute branches, for sizes

L = 3 (red), L = 4 (blue), L = 5 (green) and L = 6 (orange). We also show various extrapolations,
using a second-order polynomial in 1/L for sizes L = 3, 4, 5 (grey) and L = 4, 5, 6 (magenta), or
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Figure 1: Comparison between ACFT(L, β
2) and the analytical result 1

16
κC(g).

a third-order polynomial for all sizes L = 3, 4, 5, 6 (purple). Finally, the quantity 1
16
κC(β

2) is
shown as a yellow dashed curve. The latter analytical result is nicely framed by the latter two
extrapolations in a band of around 1% for all values of n.

Our numerical result thus confirms that

POrient =

(
4π√
3L

)2
κC

16

( 1

2 sinh 2π√
3L
w

)2

+ h.c.

 (B.16)

where w = σ + iτ are complex coordinates on the cylinder. From (B.16) we deduce that, at small
distance

POrient =
κC

16

(
1

w2
+ h.c.

)
(B.17)

On the other hand, with the definition we have used in the text, POrient = ⟨jµjµ⟩ in (6.19). This
confirms that κ = κC

16
, where κ is the constant used in the main text and given by (6.20).
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