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I unveil a novel variant of Anderson localization. This emergent phenomenon pertains to the motion of a
dopant in a thermal spin lattice, rendered localized by thermal fluctuations. This is in stark contrast to the intrin-
sic origin of localization for quenched disorder. The system of interest consists of spin-1/2 particles organized
in a two-leg ladder with nearest neighbor Ising interactions J . The motion of a hole – the dopant – is initialized
by suddenly removing a spin from the thermal spin ensemble, which then moves along the ladder via nearest
neighbor hopping t. I find that the hole remains localized for all values of J/t and for all nonzero temperatures.
The origin is an effective disorder potential seen by the hole and induced by thermal spin fluctuations. Its length
scale is found to match with the underlying spin-spin correlation length at low temperatures. For ferromagnetic
couplings (J < 0), the associated localization length of the hole increases with decreasing temperature and
becomes proportional to the correlation length at low temperatures, asymptotically delocalizing at low temper-
atures. For antiferromagnetic couplings (J > 0), there is a smooth crossover between thermal localization at
high temperatures to localization driven by the antiferromagnetic order at low temperatures. At infinite temper-
atures, the dynamics becomes independent of the sign of the spin coupling, whereby the localization length is
a universal function of |J |/t, diverging as (t/J)2 for |J | ≪ t. Finally, I analyze a setup with Rydberg-dressed
atoms, which naturally realizes finite range Ising interactions, accessible in current experimental setups. I show
that the discovered localization phenomenon can be probed on experimentally accessible length- and timescales,
providing a strong testing ground for my predictions.

I. INTRODUCTION

The motion of dopants in magnetic spin lattices is crucial to
our understanding of strongly correlated materials. The pos-
sible formation of polaronic quasiparticles and their induced
interactions are believed [1–3] to be deeply connected to high-
temperature superconductivity [4]. Indeed, the behavior of
such magnetic polarons in antiferromagnetic lattices [5] has
been shown to compare very well with exact diagonalization
studies at zero temperature [6–8]. Furthermore, exciting new
experiments has enabled the direct observation of dopant mo-
tion [9], made possible by the quantum simulation of Fermi-
Hubbard-type models [10–26] combined with single-site res-
olution techniques [27–30]. The observed dynamics was suc-
cessfully explained [31] by the correlated formation and prop-
agation of magnetic polarons [32], in which the dopant even-
tually slows down and moves with a greatly reduced propaga-
tion speed. Despite these recent successes, there is still debate
about the accuracy of this quasiparticle description [33–38].

The observation of such propagation dynamics [9], as well
as the measurement of the spatial structures appearing around
dopants [19], is a major new vantage point for our microscopic
understanding of these systems. Indeed, previous work has
mainly focused either on macroscopic observables such as cur-
rents driven by extrinsic force fields, spectroscopic measure-
ments [39–42], or Ramsey interferometry [43–47]. While the
measurement of currents gives invaluable insights into e.g. the
physics of topological systems [48, 49], and spectral analyses
gives access to some aspects of the appearing quasiparticles, it
does not offer us detailed knowledge about their propagation.
In particular, it does not provide a deep and microscopic un-
derstanding of the impact of the order – or lack thereof – of
the environment. Recently, theoretical studies of dopant mo-
tion in thermal spin lattices [50–52] has ventured into this new
paradigm. While some evidence of delocalization above the

FIG. 1. (a) Motion of a single hole (green circle) along a spin ladder
consisting of spin-↑ (red balls) and spin-↓ (blue balls), with hopping
t. The spins are assumed to feature Ising-type nearest neighbor spin
couplings J . (b) The hole experiences an emergent disorder potential
V due to the thermal spin fluctuations. In (b), 50 realizations of this
potential at infinite temperatures is shown as a function of the distance
x of the hole to its origin (grey lines), of which three are highlighted
in color (red, blue, green). The variance of the potential grows as
|J |

√
x (black lines). As a result, no matter the realization, the hole

will eventually backscatter and become Anderson localized (colored
lines with arrows). Here, this is shown for a hole with initial kinetic
energy of t = 4J .

Néel temperature in a spin Ising environment [52] and hints of
diffusive behavior at intermediate timescales at infinite tem-
peratures has been seen for a more generic Fermi-Hubbard
setup [50], these studies were limited to fairly short evolution
times and/or system sizes. As a result, the nature of the prop-
agation on long timescales remains unsettled.

Intrigued by these investigations, I study the motion of a
dopant in a thermal Ising spin ensemble. In particular, I con-
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sider a mixed-dimensional model in a two-leg ladder [53–55].
Here, the doped hole is allowed to move only along the ladder
with nearest neighbor hopping t, while the spin-1/2 particles
are assumed to couple with Ising-type nearest neighbor spin
couplings J [Fig. 1(a)]. I investigate both ferro- (J < 0) and
antiferromagnetic (J > 0) couplings. The non-equilibrium
motion of a hole at zero temperature in these two scenarios fea-
tures highly distinct behaviors. Indeed, while the hole for anti-
ferromagnetic couplings is localized due to a confining string
potential [55], it moves completely freely in the ferromagnetic
phase. However, at any nonzero temperatures I find that the
hole experiences an emergent disorder potential, which local-
izes the hole at any value of J/t and at any nonzero temper-
ature. This realizes a novel, emergent type of Anderson lo-
calization [56–58], as it is the backscattering of the hole on
the disorder potential [Fig. 1(b)] that leads to its localization.
I emphasize that the origin of the localization does not come
from quenched disorder from, e.g., a random distribution of
onsite energies [56], but is an emergent property of the system
itself [59] arising at nonzero temperatures due to thermally in-
duced spin fluctuations.

The present studies, hereby, establishes rare insights into
how the disorder in the underlying spin lattice crucially im-
pacts the motion of dopants. Moreover, it describes an abrupt
change in their qualitative characteristics. Indeed for ferro-
magnetic spin couplings, the dopant behaves as a free parti-
cle at zero temperature, but as soon as the phase transition at
T = 0 is crossed, it completely looses its quasiparticle char-
acter, and its motion becomes localized. In this connection, it
is interesting to note that absence of ballistic motion has been
seen in similar systems with impurities and/or spin excitations
[60–63]. While such behavior can arise due to a quasiparti-
cle breakdown [62, 63] of the impurities, such systems still
support slow, subdiffusive, transport. In this regard, the total
absence of transport found in the current model in of itself also
seems to be rare effect, which strongly hinges on the correlated
motion of the dopant with the underlying physical spins.

Finally, to showcase the possibility of detecting this local-
ization phenomenon experimentally, I analyze a setup with
Rydberg-dressed atoms in a two-leg optical lattice that sup-
ports finite-range Ising-type interactions [64], already demon-
strated experimentally [12]. Here, I find that the localization
can be probed on realistic timescales and system sizes, provid-
ing a strong testing ground for the predicted results.

The currently discovered localization effect would strictly
speaking occur simultaneously with regular Anderson local-
ization in one dimension for any realistic medium that would
feature a nonzero disorder strength. In this context, I stress that
the localization length due to thermal spin fluctations found in
the present analysis should very easily be orders of magnitude
smaller than the one arising due to Anderson localization, and,
therefore, completely dominate the phenomenology. The com-
putation of these results rests on a combination of two precise
approaches. First, for a specific spin realization, I determine
numerically exactly the non-equilibrium hole motion. Second,
using large-scale Monte Carlo sampling of the thermal ensem-
ble, I determine the appropriate thermal average of these pure
state evolutions.

The Article is organized as follows. In Sec. II, I describe
the overall setup, including a description of the system Hamil-
tonian, as well as the thermal initial state of the spin ensemble,
and finally the exact computation of the non-equilibrium hole
motion for a specific spin realization in Sec. II A. In Sec. III, I
describe the universal regime of infinite temperatures. In Sec.
IV, I go away from this universal limit and give a detailed anal-
ysis of the propagation across a wide range of temperatures. In
Sec. V, I give qualitative arguments for the dependencies on
spin coupling and temperature seen in Secs. III and IV. In Sec.
VI, I finally analyze the Rydberg-dressed atoms setup, before
I conclude in Sec. VII. Throughout the Article, I work in units
where the reduced Planck constant, ℏ, and the lattice spacing
is set to 1.

II. SETUP

I consider a system of spin-1/2 particles placed along a two-
leg ladder, described by a t-J model with nearest neighbor
Ising interactions,

Ĥ = −t
∑

⟨i,j⟩∥,σ

[
c̃†iσ c̃jσ + c̃†jσ c̃iσ

]
+ J

∑
⟨i,j⟩

Ŝ
(z)
i Ŝ

(z)
j . (1)

The hopping is constrained through the operator c̃†iσ = ĉ†iσ(1−
n̂i), such that at most a single spin resides on each site. I,
furthermore, assume a mixed-dimensional setup in which the
spins are only allowed to hop along the ladder. I will both
analyze antiferromagnetic (J > 0) and ferromagnetic (J <
0) spin-coupling cases. To have an efficient description of
the hole and spin excitation degrees of freedom, I employ a
Holstein-Primakoff transformation on top of the ferromagnetic
ground state |FM⟩ = |.. ↑↑↑ ..⟩, with all spins pointing up. As
a result, the Hamiltonian Ĥ = Ĥt + ĤJ may be written in
terms of the hopping,

Ĥt = t
∑
⟨i,j⟩∥

[
ĥ†
jF (ĥi, ŝi)F (ĥj, ŝj)ĥi

+ ĥ†
j ŝ

†
iF (ĥi, ŝi)F (ĥj, ŝj)ŝjĥi

]
+H.c., (2)

and the spin coupling

ĤJ = J
∑
⟨i,j⟩

[1
2
−ŝ†i ŝi

][1
2
−ŝ†j ŝj

][
1−ĥ†

i ĥi

][
1−ĥ†

j ĥj

]
. (3)

Here, the spin excitation operator ŝ†i is bosonic, and creates
a spin-↓ on site i. Also, the hole is created by the operator
ĥ†
i , and inherits the statistics of the underlying spins, be it

fermionic or bosonic [55]. In the hopping Hamiltonian Ĥt,
the operator F (ĥ, ŝ) =

√
1− ŝ†ŝ− ĥ†ĥ ensures the single-

occupancy constraint. The two terms in the bracket of Ĥt de-
scribe distinct hopping events. The first term describes a hole
hopping from site i to j in the absence of a spin excitation on
site j. The second term, on the contrary, describes this hopping
in the presence of a spin excitation, whereby the hole and spin
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excitation swap places. While the Holstein-Primakoff trans-
formation slightly complicates the expression for the Hamilto-
nian, it makes it much easier to write down concise expressions
for the non-equilibrium wave functions to come.

I assume that the system is closed and initially thermalized
in the Gibbs state of the spins ρ̂J = e−βĤJ/ZJ , i.e. in the
absence of holes. Note, however, that I make no assumptions
about how thermal equilibrium is established. One particular
scenario would be via a controllable coupling to an external
heat bath. Once the system has reached thermal equilibrium
in the steady state, the coupling to the bath could be shut off.
The resulting partition function ZJ = tr[e−βĤJ ] along with
the spin-spin correlator,

Cz(d) = 4 ⟨Ŝ(z)
i Ŝ

(z)
i+dx̂⟩0

= C(1)
z e−d/ξ1(βJ) + C(2)

z e−d/ξ2(βJ), (4)

is derived analytically in Appendix A, where explicit expres-
sions for the coefficients C(i)

z are also given. I, here, use the
transfer matrix formalism [65] originally used for the Ising
chain [66] to the present two-leg ladder. As required by the
one-dimensional geometry, the system is disordered at any
temperature T = (kBβ)

−1. While there are two correlation
lengths, I find that ξ1(βJ) > ξ2(βJ) for any temperature. This
correlation length,

ξ1(βJ) =

[
− β|J |

4
+ ln

(
coth

1

2
β|J | cosh 1

4
β|J |

+

√(
coth

1

2
β|J | cosh 1

4
β|J |

)2

− 1

)]−1

, (5)

therefore, sets an essential length scale in the system at finite
temperatures. In Eq. (5), cosh(x) and coth(x) are the hyper-
bolic cosine and cotangent, respectively. The non-equilibrium
quench dynamics is now initialized by suddenly removing the
spin at the origin i = 0, leading to the initial density matrix

ρ̂(τ = 0) =
∑
σ0

ĉ0σ0 ρ̂J ĉ
†
0σ0

= ĥ†
0ρ̂J ĥ0 + ĥ†

0ŝ0ρ̂J ŝ
†
0ĥ0, (6)

where σ0 =↑, ↓ designates the spin configurations at the ori-
gin, and the latter expression rephrases it in terms of hole and
spin-excitation operators. This setup is analogous to the situ-
ation studied in Ref. [52] in the two-dimensional Ising anti-
ferromagnet. I stress, however, that while they find some evi-
dence that the hole deconfines from its initial position some-
what above the Néel temperature, I, on the contrary, find that
the hole is localized even in such a disordered phase, and both
for ferro- and antiferromagnetic spin couplings. A plausible
reason for this discrepancy is that Ref. [52] considers quite
strong hopping amplitudes t ≥ J , and system sizes of about
10×10, which is likely too small to distinguish delocalization
from a localized though highly spread out hole at these high
hopping amplitudes. It is, however, also possible that a hole
moving in two dimensions will undergo diffusive or subdiffu-
sive propagation on long timescales, and further studies should
be carried out to settle this question.

Since the system is assumed to be closed, the ensuing dy-
namics is unitary, i.e. ρ̂(τ) = e−iĤτ ρ̂(τ = 0)e+iĤτ . Ex-
pressing the density operator in the Ising basis with spin con-
figurations σσσ, this, hereby, allows us to write the time-evolved
density matrix as the Boltzmann-weighted sum of pure-state
time evolutions

ρ̂(τ) =
∑
σ0,σσσ

e−βEJ (σ0,σσσ)

ZJ
|Ψσσσ(τ)⟩ ⟨Ψσσσ(τ)| , (7)

where EJ(σ0,σσσ) is the magnetic energy of the spin realization
σ0,σσσ before the hole is introduced. With the hole and spin ex-
citation operators at hand, we may express the non-equilibrium
pure states |Ψσσσ(τ)⟩ quite concisely. For a spin realization σσσ,
subsets S1

σσσ, S
2
σσσ of the sites in the first and second leg will have

spins pointing down. Writing i = l, j in terms of the legs
l = 1, 2 and site number along the leg j, the initial wave func-
tion can be expressed as

|Ψσσσ(τ = 0)⟩ = ĥ†
1,0

∏
j∈S1

σσσ

ŝ†1,j
∏
j∈S2

σσσ

ŝ†2,j |FM⟩ . (8)

As the hole starts to move along the ladder, the spins in leg 1
can be moved by a single lattice, while the spins in leg 2 remain
stationary. Therefore, the state at any later time τ is

|Ψσσσ(τ)⟩=

[∑
x≥0

Cσσσ(x, τ)ĥ
†
1,x

∏
j∈S1

σσσ
0≤j≤x

ŝ†1,j−1

∏
j∈S1

σσσ
j>x

ŝ†1,j

+
∑
x<0

Cσσσ(x, τ)ĥ
†
1,x

∏
j∈S1

σσσ
x≤j<0

ŝ†1,j+1

∏
j∈S1

σσσ
j<x

ŝ†1,j

]∏
j∈S2

σσσ

ŝ†2,j |FM⟩ .

(9)

The upper (lower) line describes that the spin excitations are
moved by one site to the left (right), if the hole has passed it,
and otherwise it remains where it was. Crucially, the proba-
bility amplitude to find the hole at site x and time τ for a given
spin realization σσσ only depends on these three variables, since
the spin background is static. Moreover, the probability to ob-
serve the hole at position x after time τ is simply the thermal
average of the probabilities |Cσσσ(x, τ)|2,

P (x, τ) = tr
[
ĥ†
1,xĥ1,xρ̂(τ)

]
=
∑
σ0,σσσ

e−βEJ (σ0,σσσ)

ZJ
|Cσσσ(x, τ)|2. (10)

In this manner, the problem of describing the motion of the
hole has now been reduced to finding the probability ampli-
tudes Cσσσ(x, τ) for a given spin realization σσσ and then per-
forming the sum in Eq. (10). While this is hardly feasible
to do exactly, I employ a standard Metropolis-Hastings algo-
rithm [67, 68] to perform accurate sampling of the sum, from
which the root-mean-square distance is calculated

xrms(τ) =

[∑
x

x2P (x, τ)

]1/2
. (11)
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FIG. 2. As the hole moves through the ladder (top to bottom), it
breaks up spin bonds across (dark blue) and along (light blue) the
ladder. In the same manner new spin bonds are created across (dark
red) and along (light red) the ladder. The effective magnetic potential
experienced by the hole, hereby, arises by subtracting the energy of
the broken spin bonds and adding the energy of the newly formed.

A. Determining the probability amplitudes

In this subsection, I describe how the probability amplitudes
Cσσσ(x, τ) are determined numerically exactly, by which we can
accurately describe the motion of the hole at essentially any
temperature. The key insight is that the structure of the states
in Eq. (9) lead to a very simplistic set of equations of motion,

i∂τCσσσ(x, τ) =Vσσσ(x)Cσσσ(x, τ)

+ t [Cσσσ(x− 1, τ) + Cσσσ(x+ 1, τ)] . (12)

Here, Vσσσ(x) designates the magnetic potential experiences by
the hole as it moves through the lattice. This arises because
motion of the hole changes the magnetic energy of the un-
derlying spin lattice. Put in another way, as the hole moves
through the ladder it breaks up a series of spin bonds and cre-
ates new ones as illustrated in Fig. 2. The effective potential,
Vσσσ(x) = Vσσσ,∥(x) + Vσσσ,⊥(x), can be decomposed in terms of
an intra-leg potential

Vσσσ,∥(x) = J [σ1,1σ1,−1 − σ1,xσ1,x+1], x > 0,

Vσσσ,∥(x) = J [σ1,1σ1,−1 − σ1,xσ1,x−1], x < 0. (13)

and a trans-leg potential

Vσσσ,⊥(x) = J

x∑
j=+1

σ1,j [σ2,j−1 − σ2,j ], x > 0,

Vσσσ,⊥(x) = J

x∑
j=−1

σ1,j [σ2,j+1 − σ2,j ], x < 0. (14)

Here, the index of the spins σ = ±1/2 ≡↑, ↓ refer to their
positions before the hole has started to move. In Eq. (13), the
term Jσ1,1σ1,−1 refers to the spin-bond energy arising around
the origin as the hole has moved, while the term Jσ1,xσ1,x+1

for x > 0 is the energy of the bond broken up by the hole once
it has moved to position x. These are shown in light red and
light blue in Fig. 2. Similarly, the two terms in the summand
of Eq. (14) correspond to the energies Jσ1,jσ2,j−1, Jσ1,jσ2,j

of the newly established and broken bonds every time the hole
hops, shown in dark red and dark blue in Fig. 2.

The equations of motion in Eq. (12) may actually be solved
exactly by a Fourier transform [see Appendix C]. However,
the accompanying Fourier transform back to the time domain
makes this computation less efficient than applying an exact
diagonalization method. To set this up, we use Eq. (12) to
define the effective HamiltonianHσσσ for a given spin realization
σσσ with the matrix elements

Hσσσ(x, x) = Vσσσ(x),

Hσσσ(x± 1, x) = Hσσσ(x, x± 1) = t. (15)

By vectorizing the components Cσσσ(x, τ) into Cσσσ(τ), I obtain
the time-evolution of the probability amplitudes by computing

Cσσσ(τ) = e−iHσσστCσσσ(0), (16)

with the initial condition that the hole starts out at x = 0:
Cσσσ(x = 0, τ = 0) = 1. I compute this using the Python func-
tion ”expm multiply” in the ”scipy.sparse.linalg” package. By
taking into account the sparseness of Hσσσ , and the fact that its
size is only quadratic in the system size, this approach is highly
efficient and allows system sizes of at least 20.000 sites long.

III. INFINITE TEMPERATURE LIMIT

In the limit of infinite temperature, βJ = J/kBT → 0, the
partition function simply becomes the number of spin configu-
rations ZJ = 22N , where N is the number of sites in each leg.
Furthermore, the terms in Eq. (10) all have the same statistical
weight

P (x, τ) → 1

22N−1

∑
σσσ

|Cσσσ(x, τ)|2. (17)

As a result, we need to describe how the hole moves in a com-
pletely random spin ensemble. As was previously noticed in
the context of Bethe lattices [32], the resulting potential expe-
rienced by the hole, Vσσσ(x), becomes a disordered potential. In
fact, in any hop, the potential changes at random by an amount
|J |/2. This is detailed in Fig. 3. The equations of motion in
Eq. (12) now becomes very reminiscent of the 1D Anderson
model for Anderson localization [56]. However, in contrary to
the original model, the potential is correlated from site to site,
as is also apparent from Fig. 3, and the trans-leg potential
Vσσσ,⊥(x) becomes arbitrarily large at large x. This is in con-
trast to the usual case studied in Anderson localization, where
some constant width of for the disordered potential is usually
assumed. In fact, the potential performs a classical random
walk in its allowed values. As a result, its variance,

Var[Vσσσ(x)] =
J2

8
[|x|+ 1] , (18)

scales linearly in |x|, as shown explicitly in Appendix B. Due
to the differences with the usual Anderson model, it is a priori
not clear whether the hole will localize or not in this specific
kind of disorder potential. By closer inspection of the proba-
bilitic behavior of the potential sketched in Fig. 3, it becomes



5

FIG. 3. At infinite temperature, the magnetic potential is random.
(a) In each hop (arrows), the potential across the ladder remains un-
changed with probability P = 1/2 (left), or goes down (middle) or
up (right) by J/2 with probability P = 1/4. A purple ball indicates
that it does not matter, whether that spin is ↑ or ↓. (b) The potential
along the ladder, V∥(x), can only take the values 0,±J/2, and the
change depends on whether V∥(x) = 0 (left), V∥(x) = −J/2 (mid-
dle), or V∥(x) = J/2 (right).

clear that the behavior at infinite temperature does not depend
on the sign of the spin coupling, J , and the motion of the hole
becomes universal in this limit.

The only remaining parameter in the system is |J |/t. For a
given value of this ratio, I, thus, generate Nσσσ = 2000 samples
by using the probabilistic update rules for the potential shown
in Fig. 3. For each of the generated realizations, I compute
Cσσσ(x, τ) up to very large times and from there the rms dis-
tance (Eq. (11)). An example of the rms distance dynamics is
given in Fig. 4(a) for three indicated value of the spin coupling.
For all of these, we clearly see that the hole remains localized,
stalling at a finite distance to its origin. This is further backed
up by the underlying hole density distribution P (x, τ) shown
in Fig. 4(b) for indicated times. This explicitly shows that the
hole remains exponentially localized. I, thus, define the local-
ization length as the long-time asymptote of the rms distance.
This is plotted in Fig. 4(c) for a wide range of spin couplings.
In the limit of small spin couplings of |J |/t ≪ 1, I find very
good agreement with a power-law behavior

lloc → 16

[
t

J

]2
. (19)

This power-law behavior strongly suggests that the hole will
remain localized at any value of |J |/t, analogous to the fact
that a particle moving in a one-dimensional random potential
is localized for any disorder strength, W , and only asymptot-
ically move ballistically in the extreme limit of |J |/t → 0. It
is worth noting that the scaling behavior is the same as in the
usual 1D Anderson model [57]. This should be regarded as a
non-trivial result for two reasons. Firstly, the disorder potential
in this case is correlated between nearest neighbors, since the
potential changes at most by |J |/2 from site to site. Secondly,
the variance of the disorder potential grows linearly with |x| in
this model, whereas it is constant in the usual Anderson model.
Thirdly, Figure 4(c) also reveals that the behavior at any finite
temperature is qualitatively different, scaling asymptotically as
t/|J |. In Sec. V, I will return to these peculiarities.

FIG. 4. (a) Rms distance of the hole versus time for indicated values
of the spin coupling on a log-log scale. This shows an initial ballistic
behavior with expansion speed

√
2t (black line), before being local-

ized on long timescales (dashed lines). (b) Hole density P (x, τ) at
indicated times for the same values of |J |/t as in (a), showing expo-
nential localization of the hole. (c) Extracted localization length lloc
as the long-time asymptote of the rms distance as a function of |J |/t
at infinite temperature (red dots) compared to finite temperature (blue
squares). For large spin couplings, lloc approaches a nonzero value,
whereas small spin couplings leads to distinct power-law behaviors at
infinite [∝ (t/J)2] and finite [∝ t/|J |] temperatures. The estimated
statistical errors on the sampling are smaller than the linewidth/point
size and are omitted.

IV. FINITE TEMPERATURE BEHAVIOR

For finite temperatures, I employ a standard Metropolis-
Hastings Monte Carlo algorithm [67, 68] to generate a total of
Nσσσ = 2000 samples for every investigated value of kBT/|J |.
This sampling, in particular, uses single spin flip dynamics.
An important question is how to appropriately perform this
sampling, as a Monte Carlo algorithm inherently leads to au-
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FIG. 5. (a) Rms distance of the hole versus time for indicated val-
ues of the temperature for |J |/t = 2.5. The black line again shows
ballistic behavior with expansion speed

√
2t, and dashed lines shows

the asymptotic flat behavior. (b) Hole density P (x, τ) at indicated
times for the same values of J/kBT as in (a), again showing expo-
nential localization of the hole. (c) Localization length lloc versus
J/kBT for indicated values of |J |/t. On the antiferromagnetic side,
J/kBT > 0, lloc decreases and eventually approaches the zero tem-
perature value indicated by the lines to the right. The asymptotic
value for |J |/t = 20 is below the scale of the plot. On the ferro-
magnetic side, J/kBT < 0, lloc increases, but remains finite for any
temperature on a length scale that is larger than the spin-spin correla-
tion length (black line). The estimated statistical errors on the Monte
Carlo sampling are smaller than the linewidth/point size and omitted.

tocorrelation between the samples [69]. This is addressed in
Appendix D, in which I show that by increasing the sampling
interval, i.e. the number of generated samples for every kept
sample the estimated statistical errors dramatically decreases
and convergence is observed for sampling intervals above 104
or so, even at very low temperatures. To avoid any sensitivity
to this effect, I, therefore, stay well above this threshold and

generally use sampling intervals of 106, keeping one in every
one million generated samples.

In Fig. 5(a), I compare the hereby obtained rms distance
dynamics for |J |/t = 2.5 at |J |/kBT = 2 to the infinite
temperature limit. Although the hole spreads out significantly
more on the ferromagnetic side, it remains localized at this
intermediate temperature. I support this further by showing
the hole density distribution in Fig. 5(b), which again shows
exponential localization of the hole to its origin. In fact, in
Fig. 5(c) I show the localization length across a broad range
of temperatures and values of |J |/t, revealing that the hole re-
mains localized for all investigated temperatures and interac-
tions. This shows that the localization phenomenon discovered
in the previous section at infinite temperatures is a robust ef-
fect and seems to happen as long as the temperature is nonzero.
The underlying reason for this robustness, I believe, is that the
system, due to its one-dimensional geometry, is always disor-
dered. Therefore, on length scales longer than the spin-spin
correlation length ξ1(βJ) [see Eq. (5)], the hole still sees a
randomized potential V (x). To check this intuition, I com-
pare the extracted localization length to the correlation length
in Fig. 5(c). Indeed, we see that the correlation length fol-
lows the trend of localization length on the ferromagnetic side.
Moreover, the effect of decreasing temperature is also seen to
accelerate when the correlation length starts to exceed 1.

To get a better understanding of the above effects, I next
replot the localization length as a function of the correlation
length. This is shown in Fig. 6(a). This reveals that at low
temperatures, corresponding to ξ1(βJ) ≫ 1, the localization
length becomes linear in the correlation length for ferromag-
netic couplings,

lloc(βJ) = γ × ξ1(βJ). (20)

The analysis additionally unveils that the prefactor γ increases
with decreasing |J |/t. In this manner, the hole motion only
delocalizes in the asymptotic limit of zero temperature. Here,
all spins align at T = 0 and the magnetic potential obtained
in Eqs. (13) and (14) vanishes identically, whereby the hole is
free to move ballistically through the system.

On the antiferromagnetic side, the localization length is
conversely seen to decrease. The reason is that at zero tem-
perature, the accompanying magnetic potential defined in
Eqs. (13) and (14) increases linearly with distance, V (x) =
J/2[|x|+1], as also obtained previously [55], which localizes
the hole more strongly than in the disordered case. Moreover,
the decrease in localization length is seen to be very rapid at
low ξ1, but quickly saturates as ξ1 ≫ lloc. This is also intu-
itively clear, since the correlation length sets the typical length
scale over the system is ordered. Therefore, if the localization
length is much smaller than the correlation length, it does not
see the long-range disorder.

V. SEMI-CLASSICAL ANALYSIS OF LOCALIZATION

To qualitatively understand the dependency on spin cou-
pling and temperature seen in the previous two sections, I an-
alyze these dependencies using a semi-classical energy argu-
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FIG. 6. (a) Localization length plotted as a function of the spin-spin
correlation length ξ1(kBT/J) for indicated values of the spin cou-
pling. The inset shows the same plot on a bigger scale. For ferromag-
netic couplings (FM, J < 0), I multiply ξ1 by −1. In this regime, the
localization length is linear in ξ1 at low temperatures. For antiferro-
magnetic couplings (AFM, J > 0), the localization length decreases
and reaches a plateau at low temperatures as in Fig. 5. The local-
ization across all temperatures is traced back to an emergent disorder
potential V (x) experiences by the hole, whose variance shown in (b)
is linear for all temperatures T = 1/kBβ. (c) The associated length
scale of the potential xfl is plotted as a function of ξ1, showing a lin-
ear dependency at large ξ1.

ment. First, For large values of |J |/t and for ferromagnetic
spin couplings, J < 0, the hole meets a potential wall of or-
der ∼|J | that it cannot pass with its minuscule kinetic energy
∼ t, as soon as its effective potential Vσσσ(x) deviates from zero.
The length scale for this to happen is set by the size of ferro-
magnetic clusters, which in turn is given by the spin-spin cor-
relation length ξ1 [Eq. (5)]. This explains the low-temperature
behavior shown in Fig. 6(a) in the limiting case of |J | ≫ t in
terms of an immediate backscattering of the hole as soon as
the potential changes away from 0.

Second, keeping this backscattering in mind, for interme-
diate to low values of |J |/t, we may instead ask at what
length scale the initial kinetic energy will typically match
the potential energy. To understand this, we first have to
realize that the effective potential both has a positive mean
value, ⟨Vσσσ,⊥(x)⟩ > 0, as a well as nonzero fluctuations,
Var[Vσσσ(x)] > 0, given by

⟨Vσσσ(x)⟩ =
|J |
2

|x|
xave

+ bave,

Var[Vσσσ(x)] =
J2

8

|x|
xfl

+ bfl, (21)

both of which scale linearly in the distance |x|. The mean value
is calculated analytically from Eq. (14), leading to the length
scale

xave =
2

C(1)− C(
√
2)

, (22)

defining the nearest and next-nearest neighbor correlators
C(1) = 4 ⟨σ1,0σ2,0⟩, C(

√
2) = 4 ⟨σ1,0σ2,1⟩ across the lad-

der. Importantly, xave scales as exp(3β|J |/2) ∝ ξ
3/2
1 at low

temperatures.
Moreover, the linearity of the variance is found not only to

be true at infinite temperatures [Eq. (18) with xfl = 1], but
also at any finite temperature. This is establishes numerically
in Fig. 6(b), and the temperature dependent length scale is
found to be closely tied to the spin-spin correlation length [Fig.
6(c)]

xfl(βJ) = 1 + [ξ1(βJ)]
2, ξ1(βJ) ≪ 1,

xfl(βJ) = 1 + ξ1(βJ), ξ1(βJ) ≫ 1.
(23)

The crossover between the two behaviors is very rapid and hap-
pens around ξ1(βJ) = 1, corresponding to kBT ≃ −J . Im-
portantly, this shows a linear dependency on ξ1 at low tem-
peratures. A physically intuitive way to understand this is to
imagine a typical state at very low temperatures in the ladder.
This will consists of domains of size ξ1. As a result, every
time the hole has traversed a distance of ξ1 it will at random
go up or down by |J |/2, performing a classical random walk
with length scale xfl ≃ ξ1 instead of xfl = 1 in Eq. (18).

We are now ready to estimate the localization length. First,
if the bias of the potential dominates over its fluctuations at the
relevant length scale, ⟨Vσσσ⟩ > (Var[Vσσσ])

1/2, then we may sim-
ply equate the initial kinetic energy to the bias: t = ⟨Vσσσ(lave)⟩.
This gives the length scale

lave =
4

C(1)− C(
√
2)

t

|J |
, (24)

Secondly, if the fluctuations of the potential dominate
(Var[Vσσσ])

1/2 > ⟨Vσσσ⟩, the backscattering happens on a length
scale set by t = (Var[Vσσσ])

1/2. This gives a fluctuation induced
localization length scale

lfl = 8xfl(βJ)

[
t

J

]2
. (25)

From Eqs. (24) and (25), we are now ready to understand the
intricate dependencies of the localization on spin coupling and
temperature. At infinite temperatures, the correlators C(1)

and C(
√
2) both vanish and the localization length set by the

average potential in Eq. (24) diverges. Moreover, in this limit
xfl(βJ) → 1, and so the localization becomes solely de-
termined by the fluctuations given in Eq. (25) and goes as
lfl ∼ [t/J ]2 in agreement with Eq. (19) and Fig. 4(c). For
any fixed finite temperature and decreasing values of |J |/t, on
the other hand, the fluctuation length scale lfl will eventually
surpass the bias length scale lave. As a result, the localization
will eventually be set by the bias following Eq. (24), as evident
in Fig. 4(c).
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Finally, the bias and fluctuation length scales in the low-
temperature limit goes as lave ∼ ξ

3/2
1 t/|J |, and lfl ∼ [1 +

ξ1][t/J ]
2. Therefore, at fixed spin couplings |J |/t and de-

creasing temperatures, βJ → −∞, eventually the fluctuation
length scale becomes the shortest, lfl < lave, and the localiza-
tion length is once again set by the fluctuations. This explains
the simple proportionality with the correlation length ξ1 ob-
served not only at strong spin couplings |J |/t ≫ 1, but also at
intermediate and weak values.

Moreover, this competition of two effects, localization due
to the fluctuations and due to a biased potential, also explains
the non-monotonic dependency of the localization length on
the temperature at a low value of |J |/t = 0.5 seen in Figs.
5(c) and 6(a) in the following sense. At infinite temperatures,
the localization length scales as (t/J)2, but as soon as the tem-
perature drops, the bias of the potential becomes nonzero, and
the localization length now scales as t/|J |, hereby contracting
the hole cloud. This leads to a drop in lloc until temperatures
are so low that the bias decreases again and the localization
length scales as ξ1 × (t/J)2.

VI. DETECTION IN OPTICAL LATTICES WITH
RYDBERG-DRESSED ATOMS

In this section, I describe how the discovered localization
phenomenon can be detected using current experimental se-
tups with Rydberg-dressed atoms [12]. Such a setup natively
implements finite range density-density interactions,

ĤJ =
1

2

∑
i̸=j

Jijn̂i↑n̂j↑, (26)

of the internal atomic state |↑⟩ that is being dressed by a
higher-lying Rydberg state via an optical light field. Here,
Jij = J0/(1+(|i−j|/rc)6) takes on a soft-core shape, with rc
the soft-core size [64]. The |↓⟩ state remains uncoupled from
the light field and does not experience the interaction. Further-
more, an interstate Feshbach resonance may be used to drive
the system into the Mott-insulating phase, such that there is
at most a single spin on each site. Crucially important, the
associated onsite interaction U between |↓⟩ and |↑⟩ can be in-
creased independently of the light-induced interaction Jij. As
a result, low-energy spin-exchange interactions ∝ 4t2/U [3]
can be made negligible compared to the interactions of Eq.
(26) on the investigated timescales.

The density-density interaction in Eq. (26) can equivalently
be thought of as asymmetric finite-range Ising interactions.
Doping the system with holes and allowing the spins to tun-
nel along the ladder with rate t, hereby, realizes a modified
Ising t-J model that can be used to test the predictions made
in this Article. In particular, we can express Eq. (26) in terms
of spin excitation and hole operators as

ĤJ =
1

2

∑
i̸=j

Jij
[
1−ŝ†i ŝi

][
1−ŝ†j ŝj

][
1−ĥ†

i ĥi

][
1−ĥ†

j ĥj

]
, (27)

and I will then analyze the motion of a hole starting out at
i = 0. While precise experimental control of the tempera-

ture is generally difficult, we can take an alternative route to
investigate the propagation of the hole in an effectively dis-
ordered medium. In particular, the system can be initialized
with a hole at i = 0 by applying a strong repulsive light field
to that site [9]. Moreover, I assume that the spins are ini-
tially all polarized into the non-interacting |↓⟩ state, such that
|Ψπ/2⟩ =

∏
i̸=0 ĉ

†
i↓ |0⟩. Then, a depolarizing field can be ap-

plied to mix the |↑⟩ and |↓⟩ states on each site with a specified
mixing angle θ

|Ψθ⟩ =
∏
i̸=0

[
cos(θ)ĉ†i↑ + sin(θ)ĉ†i↓

]
|0⟩ . (28)

With this as the initial state for a given mixing angle θ, the light
field on site i = 0 can be turned off such that the hole is now
allowed to tunnel along the ladder, as described by Ĥt in Eq.
(2). The ability to turn off hopping between the legs relies on
an additional energy offset between the legs [54]. Although
this at face value is different from the nonzero temperatures
considered previously in the Article, the dynamics of the hole
can be described in a completely equivalent manner. In partic-
ular, the probability of finding the hole at site x at time τ

P (x, τ) = ⟨Ψθ| e+iĤτ ĥ†
1,xĥ1,xe

−iĤτ |Ψθ⟩

=
∑
σσσ

pσσσ(θ)|Cσσσ(x, τ)|2, (29)

takes on exactly the same form as Eq. (10) for the nonzero
temperature case. The probabilities pσσσ(θ) are now, however,
not given by the thermal statistics, but a binomial distribution
depending on the number of spin-↓ atoms, N↓(σσσ) in the spin
realization σσσ

pσσσ(θ) = [sin2 θ]N↓(σσσ)[cos2 θ]N−N↓(σσσ). (30)

As a result, such an experimental setup simulates the ther-
mally induced localization phenomenon described in the pre-
vious sections. Here, the ferromagnetic states correspond to
θ = 0, π/2, whereas the infinite temperature limit corresponds
to θ = π/4. Note that this defines another way of effec-
tively achieving an initial infinite-temperature thermal ensem-
ble. For other value of θ, there is strictly speaking no one-to-
one correspondence with a specific temperature, but the vari-
ation of θ in the interval [0, π/2] qualitatively describes the
same behavior as a varying temperature. Moreover, as the hole
hops through the system, it experiences a magnetic potential
akin to Eqs. (13) and (14). Specifically, for a given initial spin
realization σσσ, a certain subset of the sites S↑(σσσ, 0) contains
spin-↑ atoms. This leads to the overall energy offset

V0 =
1

2

∑
i,j∈S↑(σσσ,0)

Jij. (31)

As the hole hops, the surpassed spin hops one site in the op-
posite direction. As a result, the subset of sites S↑(σσσ, x) with
spin-↑ depends on the position of the hole x. The resulting
magnetic potential is then simply the magnetic energy differ-
ences

Vσσσ(x) =
1

2

∑
i,j∈S↑(σσσ,x)

Jij − V0. (32)
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FIG. 7. (a) Rms distance versus time for J0 = 10t and indicated
mixing angles shown on the Bloch sphere (inset), corresponding to
θ = π/2, 0.7π/2, 0.6π/2, 0.4π/2 for black, red, green and blue re-
spectively. For θ = π/2 (black), the hole is free to propagate and
only attains an oscillatory behavior due to the finite size of the sys-
tem (total length of N = 41). (b) Long-time average of rms distance
for indicated values of J0 as a function of the mixing angle θ, follow-
ing the black line on the Bloch sphere in (a). This shows a minimum
between θ = π/8 and θ = π/4 due to localization. The estimated
standard errors are smaller than the dot size and are omitted for clar-
ity. I use a soft-core size of rc = 1.

experienced as the hole moves through the system. With this
at hand, the computation of the hole dynamics now follows the
same recipe as in Sec. IV. In this case, I assume a finite size
of the system with hard-wall boundary conditions and a total
length N = 41 to properly describe a feasible experimental
setup. The Metropolis-Hastings algorithm again uses Nσσσ =
2000 samples, and is benchmarked by comparing the achieved
magnetization per spin to the exact value of [cos2 θ−sin2 θ]/2.
I find agreement within 1% for any value of θ.

Figure 7(a) shows the resulting dynamics of the rms distance
for indicated points on the Bloch sphere. Here, the north and
south poles correspond to all spins pointing up and down, re-
spectively, such that the mixing angle θ is nothing but half the
polar angle on the Bloch sphere. The dynamics is qualitatively
similar to the cases shown in Figs. 4(a) and 5(a). The only ma-
jor difference is that the free motion of the hole at θ = π/2 now
becomes oscillatory due to the finite size of the system. We
see that as the mixing angle goes away from θ = π/2, the hole
starts to localize. This is shown in more detail in Fig. 7(b),
where the long-time average of the rms distance is plotted as a
function of the mixing angle. At θ = 0, π/2, the average rms
distance of the hole settles around half the distance to the edge
of the system. However, as the 50-50 spin mixing at θ = π/4
is approached, this dramatically decreases and reaches a min-
imum around θ = 0.75π/4. This is a direct signature of lo-

calization of the hole. Indeed, the observed localization length
around the minimum is no longer sensitive to the system size.
One may reasonably wonder why the minimum is not located
exactly at θ = π/4. The reason is that the spin interactions in
Eq. (26) are not symmetric in spin-↑ and -↓, and indeed van-
ishes identically for the latter states. Moreover, the limiting
values at the top and bottom of the Bloch sphere, θ = 0, π/2
respectively, do not perfectly coincide. This is because the re-
pulsive interactions of the spin-↑ atoms in the case of θ = 0
favors the hole not to move all the way out to the edge of the
system. This is a very minor effect that only shows up at the
sites just before the edge.

Crucially, this analysis directly shows that the localization
can be probed on reasonably short timescales of just τ = 5/t.
This is highly important for the considered experimental pro-
tocol, because the Rydberg-dressed spin-↑ atoms inherit some
of the decay of the high-lying Rydberg state. Here, it is also
beneficial that the localization can be probed on the side where
there is a majority of spin-↓ atoms (π/4 < θ < π/2), mak-
ing this inherent decay less severe. This analysis, thus, estab-
lishes that the thermally induced localization discovered in the
present Article may be realistically probed in current experi-
mental platforms using Rydberg-dressed atoms.

Moreover, I emphasize that this phenomenon should show
up in any system that has polarized interactions, like the Ising
cases considered here, and short-range hopping of a dopant.
This suggests that one could also come up with a protocol us-
ing dipolar gases in optical lattices [70, 71] or trapped ions
[72], in which a similar localization could happen.

VII. CONCLUSIONS AND OUTLOOK

In this Article, I have described a novel localization phe-
nomenon of dopants in Ising-type magnetic spin ladders. The
effect arises not due to inherent disorder in the system Hamil-
tonian, but as an emergent phenomenon [59] due to ther-
mal spin fluctuations. In particular, since the system is one-
dimensional, it is disordered at any nonzero temperature.
Therefore, even for ferromagnetic spin couplings for which
one might expect the hole to delocalize completely, I show
that it remains localized across a huge range of spin cou-
plings J/t and temperatures kBT/J . The effect is traced
back to a disorder potential experienced by the hole, whose
strength increases towards infinite temperatures. In this infi-
nite temperature limit, the dynamics no longer depends on the
sign of the spin interactions and becomes a universal function
of |J |/t. Moreover, I showcased have the localization phe-
nomenon may be explored using current experimental plat-
forms with Rydberg-dressed atoms in optical lattices.

The results strongly suggest that in general Ising environ-
ments in the disordered phase, dopants moving in one spa-
tial direction will remain localized. As a result, the system
will be an insulator provided that the inter-dopant spacing
is large compared to the localization length. This suggests
the possibility of a reversed metal-insulator transition – or at
least crossover – around the Curie temperature TC , such that
dopants are localized above TC , and delocalizes below TC .
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While this transition occurs at zero temperature, TC = 0, in
the current one-dimensional setup, it would be interesting to
study the same scenario in two and three spatial dimensions,
in which the Curie temperature is nonzero.

Additionally, it is important to analyze the robustness of the
localization phenomenon going away from the idealized mod-
els considered in the present Article. For example, does the
same phenomenology arise when the dopants are allowed to
move in two or three dimensions? Here, studies of dopant mo-
tion in a non-interacting two-dimensional spin lattice at infi-
nite temperatures [50, 51] shows that there are crucial quali-
tative differences. In particular, these results suggest diffusive
motion of the dopant due to lack of path interferences in the
disordered medium, which is in contrast to the ballistic be-
havior obtained for the one-dimensional motion in the present
setup in this limit of J/t → 0. Turning on spin interactions
in such a two-dimensional setup [52], and carefully analyz-
ing the long-time dynamics for a broad range of spin inter-
actions could help to answer this question. Along the same
lines, one could also analyze what happens in the presence of
spin-exchange processes, whose analysis should be amenable
to matrix product states approaches. Naı̈vely, the presented re-
sults suggest that the spin and charge degrees of freedom be-
come bound in such a disordered phase, only allowing the hole
to move with the slow co-propagation of the trailing spin. For
this reason, there could be very intriguing behaviors in a simi-
lar two-leg ladder setup in e.g. an XXZ model [35, 36], as one
tunes the anisotropy of the spin couplings towards the isotropic
Heisenberg model. In a similar spirit, it would also be interest-
ing to investigate what happens in the presence of an external
heat bath that drives the spins back to thermal equilibrium.
One could imagine that the hole can now diffuse through the
system depending on the coupling with the external bath. Fi-
nally, it would be intriguing to understand whether two dopants
can actually co-propagate in the ladder, establishing a novel
pairing by disorder mechanism.
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Appendix A: Thermodynamics in the absence of dopants

The thermodynamics of the system at half filling can be
studied using a transfer matrix technique closely related to the
analysis of a single chain. The Hamiltonian of the system is
simply the nearest neighbor Ising Hamiltonian

ĤJ = J
∑
⟨i,j⟩

Ŝ
(z)
i Ŝ

(z)
j → |J |

∑
⟨i,j⟩

Ŝ
(z)
i Ŝ

(z)
j . (A1)

In the last expression, I perform a local rotation on every sec-
ond site Ŝ

(z)
j → −Ŝ

(z)
j for ferromagnetic couplings, J <

0. This shows that the thermodynamics is equivalent for
antiferro- and ferromagnetic couplings. Denoting the spin
configurations in legs 1 and 2 respectively σσσ1 and σσσ2, we get
the partition function in the canonical ensemble

ZJ = tr[e−βĤJ ]

=
∑
σσσ1,σσσ2

eβ|J|σ1,1σ1,2eβ|J|σ2,1σ2,2eβ|J|σ1,1σ2,1eβ|J|σ1,2σ2,2×

· · · × eβ|J|σ1,Nσ1,1eβ|J|σ2,Nσ2,1 (A2)

for a system of length N with periodic boundary conditions.
Defining the 4× 4 transfer matrix

V σ2,1,σ2,2
σ1,1,σ1,2

= eβ|J|[σ1,1σ1,2+σ2,1σ2,2+σ1,1σ2,1/2+σ1,2σ2,2/2],(A3)

we can then write the partition function much more concisely
as

ZJ = tr[e−βĤJ ] =
∑
σσσ1,σσσ2

V σ2,1,σ2,2
σ1,1,σ1,2

× · · · × V σ2,N ,σ2,1
σ1,N ,σ1,1

=
∑

{ηl}N
l=1

Vη1,η2
Vη2,η3

× · · · × VηN ,η1
= tr[V N ]. (A4)

In the second line, I used the states |σ1, σ2⟩ in the ordered basis
{|↑↑⟩ , |↓↑⟩ , |↑↓⟩ , |↓↓⟩}, such that η = 1, 2, 3, 4 refers to these
elements respectively. The rows and columns of V correspond
to different values of (σ1,1, σ2,1) and (σ1,2, σ2,2), respectively.
Hence,

V =


e+3β|J|/4 1 1 e−β|J|/4

1 e+β|J|/4 e−3β|J|/4 1
1 e−3β|J|/4 e+β|J|/4 1

e−β|J|/4 1 1 e+3β|J|/4

 . (A5)

The problem has now been reduced to finding the 4 eigenval-
ues, v1, . . . , v4, of the transfer matrix V . In fact, letting v1 be
the largest eigenvalue, we get

ZJ = tr[V N ] =
∑
j

⟨vj |V N |vj⟩ =
∑
j

vNj → vN1 , (A6)

as N → ∞. So we only need the largest eigenvalue v1. From
here, the free energy per spin is (there are 2N spins)

F0 = − 1

2βN
lnZJ = − 1

2β
ln v1. (A7)

Diagonalizing a 4× 4 matrix is not trivial, however, since it in
general means that we have to solve a fourth order character-
istic polynomial. However, we may use that the Hamiltonian
does not couple the triplet {|↑↑⟩ , |↓↓⟩ , (|↑↓⟩+ |↓↑⟩)/

√
2} and

singlet {(|↑↓⟩−|↓↑⟩)/
√
2} subspaces. Transforming from the

former to the latter basis is done via

U =


1 0 0 0
0 0 2−1/2 2−1/2

0 0 2−1/2 −2−1/2

0 1 0 0

 . (A8)

Expressing the transfer matrix in the triplet-singlet basis yields
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Ṽ = U†V U =


e+3β|J|/4 e−β|J|/4 √

2 0

e−β|J|/4 e+3β|J|/4 √
2 0√

2
√
2 e+β|J|/4 + e−3β|J|/4 0

0 0 0 e+β|J|/4 − e−3β|J|/4.

 (A9)

Diagonalizing the remaining 3×3 matrix, the eigenvectors are

|vi⟩ =
1√
Ai


vi−(eβ|J|/4+e−3β|J|/4)

2
√
2

vi−(eβ|J|/4+e−3β|J|/4)

2
√
2

1
0

 , i = 1, 2

|v3⟩ =
1√
2

 1
−1
0
0

 , |v4⟩ =

000
1

 , (A10)

with Ai = ([vi − (eβ|J|/4 + e−3β|J|/4)]2 + 4)/4. The eigen-
values are

v1 = 2 cosh
1

2
β|J | cosh 1

4
β|J |

+ 2

√(
cosh

1

2
β|J | cosh 1

4
β|J |

)2

− sinh2
1

2
β|J |,

v2 = 2 cosh
1

2
β|J | cosh 1

4
β|J |

− 2

√(
cosh

1

2
β|J | cosh 1

4
β|J |

)2

− sinh2
1

2
β|J |,

v3 = 2eβ|J|/4 sinh
1

2
β|J |, v4 = 2e−β|J|/4 sinh

1

2
β|J |. (A11)

I find that v1 is the largest eigenvalue for any value of βJ . The
free energy of the system F0 = − 1

2β ln v1, hereby, correctly
approaches the ground state energy −3|J |/8, at zero temper-
ature: β|J | → ∞. Finally, we need the spin-spin correlation
function

Cz(d) = 4 ⟨Ŝ(z)
1,1 Ŝ

(z)
1,1+d⟩ (A12)

to compare with the localization length of the hole. I use a
similar method to the above to find an analytic solution. First,
note that

ZJCz(d) = tr
[
4Ŝ

(z)
1,1 Ŝ

(z)
1,1+de

−βĤJ

]
= tr

4Ŝ(z)
1,1

d−1∏
j=1

4(Ŝ
(z)
1,1+j)

2Ŝ
(z)
1,1+de

−βĤJ


= tr

 d∏
j=1

(4Ŝ
(z)
1,j Ŝ

(z)
1,j+1)e

−βĤJ

 . (A13)

Here, I use that (Ŝ(z)
1,1+j)

2 = 1/4 for all the Ising eigenstates.
Expressing the above equation in terms of these eigenstates
|σσσ1,σσσ2⟩, thus, yields

ZCz(d) =
∑
σσσ1,σσσ2

(4σ1,1σ1,2)V
σ2,1,σ2,2
σ1,1,σ1,2

× . . .

× (4σ1,dσ1,d+1)V
σ2,d,σ2,d+1
σ1,d,σ1,d+1 × V

σ2,d+1,σ2,d+2
σ1,d+1,σ1,d+2 ×

· · · × V σ2,N ,σ2,1
σ1,N ,σ1,1

= tr[CdV N−d] (A14)

In the last equality, I let Cσ2,1,σ2,2
σ1,1,σ1,2 = (4σ1,1σ1,2)V

σ2,1,σ2,2
σ1,1,σ1,2 .

The correlator matrix

C =


e+3β|J|/4 −1 1 −e−β|J|/4

−1 e+β|J|/4 −e−3β|J|/4 1
1 −e−3β|J|/4 e+β|J|/4 −1

−e−β|J|/4 1 −1 e+3β|J|/4

 .

(A15)
is very similar to the transfer matrix, and simply attains sign
flip with respect to V , whenever σ1,1 and σ1,2 differ in sign. I
also transform this matrix to the singlet-triplet basis

C̃ = U†CU =


e+3β|J|/4 −e−β|J|/4 0 −

√
2

−e−β|J|/4 e+3β|J|/4 0
√
2

0 0 e+β|J|/4 − e−3β|J|/4 0

−
√
2

√
2 0 e+β|J|/4 + e−3β|J|/4

 (A16)

The eigenvectors of C̃ are closely tied to those of Ṽ . I get

|ci⟩ =
1√
Ai


vi−(eβ|J|/4+e−3β|J|/4)

2
√
2

−vi−(eβ|J|/4+e−3β|J|/4)

2
√
2

0
−1

 , i = 1, 2 (A17)

|c3⟩ =
1√
2

110
0

 , |c4⟩ =

001
0

 . (A18)
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The corresponding eigenvalues are the same as for the transfer
matrix: ci = vi for i = 1, 2, 3, 4. I am now ready to calculate
the spin-spin correlation function. I get

ZJCz(d) = tr[CdV N−d] = tr[C̃dṼ N−d]

=
∑
i

⟨vi| C̃dṼ N−d |vi⟩ =
∑
i,j

⟨vi| C̃d |cj⟩ ⟨cj | Ṽ N−d |vi⟩

=
∑
i,j

cdjv
N−d
i | ⟨vi|cj⟩ |2 → vN−d

1

∑
j

cdj | ⟨v1|cj⟩ |2. (A19)

In the last expression, I use that for d ≪ N , the largest eigen-
value of V , i.e. v1, will completely dominate. Now, we sim-
ply need to get the overlaps | ⟨v1|cj⟩ |2. It turns out that only
⟨v1|c3⟩ and ⟨v1|c4⟩ are nonzero. These yield

C(1)
z = | ⟨v1|c3⟩ |2 =

[v1 − (eβ|J|/4 + e−3β|J|/4)]2

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4
,

C(2)
z = | ⟨v1|c4⟩ |2 =

4

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4
.

(A20)

Since ZJ = vN1 , we finally get

Cz(d) = v−d
1

∑
j

cdj | ⟨v1|cj⟩ |2

=
[v1 − (eβ|J|/4 + e−3β|J|/4)]2

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4

[
v3
v1

]d
+

4

[v1 − (eβ|J|/4 + e−3β|J|/4)]2 + 4

[
v4
v1

]d
=C(1)

z e−d/ξ1(βJ) + C(2)
z e−d/ξ2(βJ) (A21)

giving a sum of two exponentially decaying terms. The corre-
lation lengths are

ξ1(βJ) =

[
ln

(
v1
v3

)]−1

, ξ2(βJ) =

[
ln

(
v1
v4

)]−1

. (A22)

I note that ξ1 > ξ2 for any temperature. Inserting v1, v3 in the
upper line leads to the expression in Eq. (5) of the main text.

Appendix B: Disordered potential at infinite temperature

Here, I derive the probability distribution of the magnetic
potentialV (x). After |x| hops, the possible values of the trans-
leg potential are

V⊥(x) = n
J

2
, n ∈ {−|x|,−|x|+ 1, . . . , |x|}. (B1)

I want to calculate what the probabilities P (V⊥(x) = nJ/2)
are. To do so, the change in the potential may be described by
the transition operator

T =
∑
n

[
1

2
|n⟩ ⟨n|+ 1

4
|n+ 1⟩ ⟨n|+ 1

4
|n− 1⟩ ⟨n|

]
. (B2)

Here, |n⟩ denotes the outcome nJ/2. The probability of nJ/2
after |x| hops is, therefore,

P

(
V⊥(x) = n

J

2

)
= ⟨n|T |x|

⊥ |0⟩ . (B3)

To calculate this transition element, it is beneficial to use the
eigenvectors of T . In particular, we let

|n⟩ = 1√
N

∑
k

eikn |k⟩ . (B4)

Here, k ∈ (−π, π]. The transition operator is diagonal in these
vectors

T⊥ =
∑
k

tk |k⟩ ⟨k| , (B5)

with tk = [1 + cos(k)]/2 = cos2(k/2). Now,

P

(
V⊥(x) = n

J

2

)
= ⟨n|T |x|

⊥ |0⟩

=
∑
k,q

⟨n|q⟩ ⟨q|T |x| |k⟩ ⟨k|0⟩

=
∑
k

⟨n|k⟩ t|x|k ⟨k|0⟩ = 1

N

∑
k

e−iknt
|x|
k . (B6)

We may turn this into an integral, yielding

P

(
V⊥(x) = n

J

2

)
=

1

N

∑
k

e−iknt
|x|
k

→
∫ π

−π

dk

2π
e−iknt

|x|
k =

∫ π

0

dk

π
cos(kn)t

|x|
k . (B7)

For any value of n and x this allows us to get the probabilities.
Furthermore, we also compute the variance of the potential.
Explicitly,

Var[V⊥(x)] =

|x|∑
−|x|

P

(
V⊥(x) = n

J

2

)(
n
J

2

)2

=
J2

4

∫ π

0

dk

π

 |x|∑
−|x|

n2 cos(kn)

 t
|x|
k . (B8)

The sum may be evaluated using Wolfram Alpha to yield

|x|∑
−|x|

n2 cos(kn) = |x| cos(k|x|)
[
cot2(k/2) + x+ 1

]
− 1

2
cot(k/2) sin(k|x|)

[
cot2(k/2)− 2x2 + 1

]
. (B9)

Inserting this above gives the very simple result

Var[V⊥(x)] =
J2

8
|x|. (B10)
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Since the frustation potential performs a (classical) random
walk, the variance scales linearly in |x|.

Let us, equivalently, determine the probability distribution
for the intra-leg potential V∥(x). I note that the change in this
potential from site to site is equivalent to the transfer matrix

T∥ =
1

4
[|+1⟩ ⟨0|+ |−1⟩ ⟨0|] + 1

2

+1∑
n=−1

|n⟩ ⟨n| . (B11)

To determine the probability distribution in this case, given by
⟨n|T |x|

∥ |0⟩, we note that

T
|x|
∥ |0⟩ = 1

2
|0⟩+ 1

4
[|+1⟩+ |−1⟩] , (B12)

for any integer x ̸= 0. So P (V∥(x) = 0) = 1/2, and
P (V∥(x) = ±J/2) = 1/4 for any x ̸= 0, whereby the vari-
ance is

Var[V∥(x)] =

+1∑
n=−1

P

(
V∥(x) = n

J

2

)(
n
J

2

)2

=
J2

8
. (B13)

Since the trans- and intraleg potentials are uncorrelated, their
variances add

Var[V (x)] =
J2

8
[|x|+ 1] . (B14)

This shows very explicitly that V⊥(x) dominates the distribu-
tion for large |x|.

Appendix C: Exact recursive solution

In the main text, I set up an effective Hamiltonian for a given
spin realization and use an exact diagonalization (ED) package
in Python to compute the dynamics from there. Here, I show
that by going to the frequency domain, the equations of motion
may be solved exactly. The required Fourier transformation to
get the associated dynamics is, however, numerically heavier
than actually using the ED package in Python.

By expressing the non-equilibrium wave function in terms
of the retarded and advanced states [31, 73] |Ψσσσ(τ)⟩ =
|ΨR

σσσ (τ)⟩+|ΨA
σσσ (τ)⟩ = e−η|τ |[θ(τ) |Ψσσσ(τ)⟩+θ(−τ) |Ψσσσ(τ)⟩],

I express the Schrödinger equation, i∂τ |Ψσσσ(τ)⟩ = Ĥ |Ψσσσ(τ)⟩
in frequency space

(ω + iη) |ΨR
σσσ (ω)⟩ = +i |Ψσσσ(τ = 0)⟩+ Ĥ |ΨR

σσσ (ω)⟩ . (C1)

Here, η is a positive infinitesimal. Denoting the probabil-
ity amplitudes of |ΨR

σσσ (ω)⟩ as Rσσσ(x, ω) and using that the
advanced state simply has the complex conjugated terms of
the retarded state, |ΨA

σσσ (ω)⟩ = [|ΨR
σσσ (ω)⟩]∗, then shows that

Cσσσ(x, τ) can be retrieved as the Fourier transform

Cσσσ(x, τ) =

∫
dω

2π
e−i(ω+iη)τ × 2Re[Rσσσ(x, ω)]. (C2)

Crucially, the amplitudes Rσσσ(x, ω) satisfy a set of equations
of motion,

[ω + iη]Rσσσ(x, ω) = iδx,0 + Vσσσ(x)Rσσσ(x, ω)

+ t [Rσσσ(x− 1, ω) +Rσσσ(x+ 1, ω)] ,
(C3)

which may be solved recursively, as has been detailed recently
in similar contexts [55, 73, 74]. Here, Vσσσ(x) designates the
magnetic potential experiences by the hole as it moves through
the lattice. By finally defining the recursion function fσσσ(x, ω)
through the relations

Rσσσ(x+ 1, ω) = tfσσσ(x+ 1, ω)Rσσσ(x, ω), x ≥ 0,

Rσσσ(x− 1, ω) = tfσσσ(x− 1, ω)Rσσσ(x, ω), x ≤ 0. (C4)

leads to the recursive solutions

fσσσ(x, ω) =
1

ω+iη−Vσσσ(x)−t2fσσσ(x+1, ω)
, x > 0,

fσσσ(x, ω) =
1

ω+iη−Vσσσ(x)−t2fσσσ(x−1, ω)
, x < 0. (C5)

Inserting this into the equations of motion for x = 0 yields the
lowest order amplitude

Rσσσ(0, ω) =
i

ω+iη−Vσσσ(0)−t2[f(−1, ω)+f(1, ω)]
, (C6)

which may be identified simply as the retarded hole Green’s
function for the spin realization σσσ. The higher-order ampli-
tudes

Rσσσ(x, ω) = tx
x∏

j=+1

fσσσ(x, ω)×Rσσσ(0, ω), x > 0,

Rσσσ(x, ω) = t|x|
x∏

j=−1

fσσσ(x, ω)×Rσσσ(0, ω), x < 0. (C7)

are found by using the recursive structure in Eq. (C4). Finally,
using the Fourier transform in Eq. (C2), Cσσσ(x, τ) is found.

Appendix D: Appropriate sampling intervals in the
Metropolis-Hastings algorithm

In this Appendix, I briefly investigate the sensititivity of the
hole dynamics on how the sampling in the applied Metropolis-
Hasting Monte Carlo algorithm is performed. To assess this,
I compute the hole dynamics and the associated localization
length for varying sampling intervals, i.e. the number of gen-
erated samples for every kept sample. This analysis is shown
in Fig. 8. At high temperatures in Fig. 8(a), no perceived
sensitivity to the sampling interval is seen. This is presum-
ably because the autocorrelation time is much shorter than the
investigated intervals. At low temperatues, Fig. 8(b), how-
ever, it is clearly seen that at too low intervals, the localization
length is greatly overestimated. Finally, in Fig. 8(c) I plot
the underlying rms dynamics for the low-temperature case for
varying sampling intervals. This explicitly shows the dramatic
decrease in the estimated statistical errors, as well as a conver-
gence to a single well-defined line.
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FIG. 8. Obtained localization length for |J |/t = 2.5 as a function
of the sampling interval for (a) βJ = −1 and (b) βJ = −3 and
compared to the value used in the main text (lines). The error bars
show the estimated standard errors. In the high-temperature case (a),
there is no perceived sensitivity to the sampling interval. In the low-
temperature regime (b), however, an overly rapid sampling leads to
an overestimation of the localization length. For sampling intervals
above 104 all points lie within 1σ from the value used in the main
text (blue line). (c) The underlying rms dynamics for βJ = −3,
for varying sampling intervals (s.i.) is shown as a function of time
τ in units of the hopping amplitude t. The shaded areas indicate the
estimated standard error.
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