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Abstract

The existence of p-form symmetry in (d+ 1)-dimensional quantum field is known

to always lead to the breakdown of the eigenstate thermalization hypothesis (ETH)

for certain (d− p)-dimensional operators other than symmetry operators under some

assumptions. The assumptions include the mixing of symmetry sectors within a given

energy shell, which is rather challenging to verify because it requires information on

the eigenstates in the middle of the spectrum. We reconsider this assumption from the

viewpoint of projective representations to avoid this difficulty. In the case of ZN sym-

metries, we can circumvent the difficulty by considering ZN × ZN -symmetric theories

with nontrivial projective phases, and perturbing the Hamiltonian while preserving

one of the ZN symmetries of our interest. We also perform numerical analyses for

(1 + 1)-dimensional spin chains and the (2 + 1)-dimensional Z2 lattice gauge theory.

∗E-mail: osamu.f@gauge.scphys.kyoto-u.ac.jp
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1 Introduction

In isolated quantum systems, the eigenstate thermalization hypothesis (ETH) [1–3] is a

successful framework to explore stationary states after long-time quantum dynamics. It

provides a sufficient condition for thermalization, and has been studied in various contexts

including condensed matter [3–5] and high energy physics [6–13]. The statement of the

ETH can be phrased as follows: individual energy eigenstates of the system are thermal in a

sense that the expectation values of observables are equal to their thermal ensemble average.

It is known that the ETH holds for various nonintegrable systems without symmetries

[3, 14–35], while the existence of local conserved quantities, which is typically associated

with continuous symmetries or integrability, is expected to result in its violation for many

observables [36–38].

Recently, the effects of p-form symmetry on the ETH is pointed out in [39]. In general,

p-form symmetries are characterized by (d−p)-dimensional topological symmetry operators

in (d+1)-dimensional quantum field theories [40–42] (for recent review, see [43–49]). Under

some reasonable assumptions, the system with p-form symmetry is shown to accommodate

many (d − p)-dimensional ETH-violating observables other than the symmetry operator

itself. The assumptions consist of i) the endability of the symmetry operator, ii) mixture

of symmetry sectors in a given energy shell, and iii) nonvanishing microcanonical average

of the operator of our interest. The outcome of these conditions is applicable to general
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nondegenerate Hamiltonians with p-form symmetry. Surprisingly, this statement holds even

for the systems only with nonlocal conserved quantity originated from discrete symmetries.

In many cases, it is believed that systems with local conserved quantities such as integrable

models satisfy the ETH only if all of the symmetry sectors for the conserved quantities

are resolved, while the ETH does not hold with the mixed symmetry sector. The result

in [39] indeed provides a proof to the violation of the ETH in the presence of higher-form

symmetry. Note that it is also applicable even to the case of non-local conserved quantities

since discrete symmetries typically give them.

Higher-form symmetries occasionally appear with projective representations rather than

standard linear representations. A projective representation is defined as a group homo-

morphism from a group G to End(H)/(C\{0}), where H is the Hilbert space of the system.

Such a structure can be realized, for example, through higher-group, symmetry fractional-

ization, and ’t Hooft anomaly. The ’t Hooft anomaly is defined as an obstruction to promote

global symmetry to local gauge symmetry and is known to constrain the infrared theories of

systems with conventional symmetries [50–55] or generalized symmetries [40–42,56,57]. One

of the significant consequences of ’t Hooft anomaly for discrete symmetries is degeneracies

of the ground states. From the viewpoint of projective representation, we can see that the

degeneracy exists not only for the ground states but for all the energy eigenstates [58].

The purpose of this paper is to reconsider the sufficient conditions for the ETH-breakdown

by p-form symmetry. Specifically, the condition ii) above involves detailed information about

the eigenstates in the middle of the energy spectrum, and thus it is rather challenging to

verify this condition without explicit numerical calculations in general. The main idea here

is to work with the projective representations involving the ZN p-form symmetry under

consideration. In this paper, we employ a G = ZN × ZN symmetry with a projective rep-

resentation, and perturb the Hamiltonian to explicitly break one of the ZN symmetries.

By choosing the perturbation parameter λ appropriately, we obtain a theory with the ZN

p-form symmetry, which satisfies the condition ii). Since the broken symmetry is expected

not to affect the thermal ensemble in the thermodynamic limit, the system just reduces

to have the (d − p)-dimensional ETH-violating operators eventually. It is remarkable that

along this construction, we do not need any direct reference to the details of the energy

eigenstates in the middle of the spectrum.

This paper is organized as follows. Section 2 provides the brief review of the ETH-

violation caused by p-form symmetry. In Section 3, we discuss the degeneracies caused

by a ZN × ZN projective representation, and present a symmetry-breaking perturbation
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so that the conditions for the ETH-violation are satisfied. We also carry out numerical

analysis to demonstrate this argument in Section 4. The models includes (1+1)-dimensional

Z2-symmetric/Z3-symmetric spin chains and (2 + 1)-dimensional Z2 lattice gauge theory.

Section 5 is then devoted to conclusion and discussion.

2 Conditions for the ETH-violation by p-form symme-

try

In this section, we briefly review how the ETH is broken due to the p-form symmetry, and

sort out its sufficient conditions in [39]. We consider a (d+1)-dimensional manifold M×R,
where M is a d-dimensional space manifold. Let the system have a G p-form symmetry

with (d − p)-dimensional topological symmetry operator, where G is an Abelian group.

Throughout this paper, symmetry operators extend to the spatial directions, and they are

represented as unitary operators Uα(C̃) with the support C̃ ⊂ M.

The main claim in [39] states that higher-form symmetry of a non-degenerate Hamilto-

nian leads to the breakdown of the ETH for nontrivial (d − p)-dimensional operators. To

show this statement, we assume the following:

i) The symmetry operator Uα(C̃) can be decomposed as Uα(C̃) = Uα(γ)Uα(γ̄) for an

arbitrary (d−p)-dimensional submanifold γ (⊂ C̃) and the complement γ̄ := C̃\γ (see

Fig. 1 (a)). This implies the operator with boundaries U(γ) and U(γ̄) are well-defined

(not-null) operators.

ii) An energy shell [E,E+ δE] contains eigenstates in different symmetry sectors defined

by Uα(C̃), i.e., for at least one nontrivial closed surface, say C̃ (⊂ M), there exist

energy eigenstates |En⟩, |Em⟩ with En, Em ∈ [E,E + δE] such that ⟨En|Uα(C̃)|En⟩ ≠
⟨Em|Uα(C̃)|Em⟩.

iii) Given an energy shell [E,E + δE], the microcanonical average ⟨Uα(γ)⟩δEmc(E) takes a

nonzero value in the thermodynamic limit.

It follows that either Uα(γ) or Uα(γ̄) necessarily breaks the ETH within the energy shell

[E,E + ∆E] under the above condition1. It can be shown as follows (the proof for more

1Although the operators Uα(γ) and Uα(γ̄) are not Hermitian in general, the ETH-violation for these

operators entails ETH-violation for certain Hermitian operators as well. Indeed, the breakdown of the ETH

for either of the Hermitian operators Uα(γ̄) + U†
α(γ̄) or i(Uα(γ̄) − U†

α(γ̄)) follows from the ETH-violation

for Uα(γ̄).
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general case can be found in Supplemental Material of [39]). We first consider a (d − p)-

dimensional surface γ with boundary, which satisfies the property iii). In the case where

Uα(γ) does not satisfy the ETH, our claim holds in the first place; we thus suppose Uα(γ)

satisfies the ETH, i.e.,

⟨En|Uα(γ)|En⟩ ≃ ⟨Em|Uα(γ)|Em⟩ ≃ ⟨Uα(γ)⟩∆E
mc (E). (2.1)

The Hamiltonian H is assumed to have no degeneracy, and thus its eigenstates |En⟩, |Em⟩
are eigenstates of Uα(C̃) as well. Since the group G is abelian, the eigenvalues are expressed

as

Uα(C̃)|En⟩ = eiαqn|En⟩, Uα(C̃)|Em⟩ = eiαqm|Em⟩, (2.2)

where qn, qm ∈ R. The assumption ii) now indicates that |En⟩ and |Em⟩ belong to different

sectors, i.e., eiαqn ̸= eiαqm . The definition of γ̄ leads to

⟨En|U−1
α (γ̄)|En⟩ = ⟨En|Uα(γ)Uα(C̃)

−1|En⟩ = e−iαqn⟨En|Uα(γ)|En⟩ (2.3)

and ⟨Em|U−1
α (γ̄)|Em⟩ = e−iαqm⟨Em|Uα(γ)|Em⟩. Recalling iii) and the supposition of the

ETH, i.e.,

⟨En|Uα(γ)|En⟩ ≃ ⟨Em|Uα(γ)|Em⟩ ≃ ⟨Uα(γ)⟩∆E
mc (E) ̸= 0, (2.4)

we obtain the relation

⟨En|U−1
α (γ̄)|En⟩ ≠ ⟨Em|U−1

α (γ̄)|Em⟩ ⇒ ⟨En|Uα(γ̄)|En⟩ ≠ ⟨Em|Uα(γ̄)|Em⟩. (2.5)

After all, we see that Uα(γ̄) violates the ETH, and the claim has been proven.

Note here that symmetries do not automatically lead to the degeneracy of the spectrum

and the mixing of the symmetry sectors. As a simple example, we can consider a Hamiltonian

H = diag(1, 1,−1,−2) and a charge Q = diag(1, 1, 1,−1). The operators H and Q commute

each other, but there are energy eigenstates without degeneracy, and the eigenstates with

H = 1 do not exhibit the mixing of the symmetry sectors. However, in the presence of

symmetries with nontrivial projective phases, we can always obtain the degeneracies and

the mixture of the symmetry sectors as discussed in Section 3, and this is a key to the

following discussion.

Let us comment on the volume of the “bath” for the ETH-breaking observables (say,

Uα(γ̄)). Let Vγ̄ and VM\γ̄ denote the volume of γ̄ and M\γ̄, respectively. For the operator
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Uα(γ̄) with the (d − p)-dimensional support, the d-dimensional complements M\γ̄ can be

regarded as the bath. If we consider a 0-form symmetry, the ratio Vγ̄/VM\γ̄ remains finite

in the thermodynamic limit V := Vγ̄ ∪ VM\γ̄ → ∞, and thus the breakdown of the ETH

may be attributed to the smallness of the bath. In contrast, for higher-form symmetry with

p ≥ 1, the volumes scales as Vγ̄/VM\γ̄ → 0 in the thermodynamic limit since γ̄ and M\γ̄
are (d − p)-dimensional and d-dimensional, respectively. Thus, the higher-form symmetry

hinders thermalization even when the support of the observable is much smaller than its

bath.

Figure 1 (b) shows the numerical result for the (2 + 1)-dimensional Z2 gauge theory,

which is described in detail in Section 4.2. The 1-dimensional operator U(γ̄) := U1(γ̄)

violates the ETH while the ETH for the local operator U(γ) holds. Although the conditions

i), ii) and iii) are indeed satisfied in this case, it is generally challenging to confirm whether

the conditions, especially ii), are satisfied without explicit numerical calculation. In the

following sections, we show that the condition ii) is satisfied when the system incorporate

a projective representation for the symmetry of interest and an auxiliary symmetry that is

to be broken by perturbations for the Hamiltonian.

Figure 1: (a) Schematics of γ and γ̄ for M = T 2. The union of γ and γ̄ constitutes a closed manifold C̃.

(b)(c) The expectation values of the operator U(γ̄) and U(γ) with respect to the energy eigenstates for the

Z2 gauge theory. The ETH for U(γ̄) can be seen violated because there are deviations for a fixed energy E,

while the ETH for U(γ) holds.

We comment on a related framework referred to as the subsystem eigenstate thermaliza-

tion hypothesis (ETH) [59]. The subsystem ETH claims energy eigenstates can be regarded

as the microscopic thermal equilibrium (MITE) [60, 61], where the reduced density matrix

tends to the microcanonical density matrix in the thermodynamic limit. This condition is

stronger than the ETH for operators with a given small support. Thus, the violation of

the ETH for U(γ̄) also indicates the breakdown of the subsystem ETH with respect to the

conventional microcanonical ensemble.
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3 Projective representation for Abelian group

In this section, we show that the condition ii) can be always satisfied if a ZN ×ZN symmetry

with a projective representation is explicitly broken by perturbations. Before delving into

such perturbations, we first discuss the degeneracy due to projective representations.

3.1 Degeneracy by projective representation

Let G be an Abelian group and the theory have a G symmetry. In the operator formalism,

a projective representation of the G symmetry is realized as

Ug1Ug2 = eiϕ(g1,g2)Ug1g2 , g1, g2 ∈ G.

Ug1Ug2 = eiϕ(g1,g2)−iϕ(g2,g1)Ug2Ug1 ,
(3.1)

where Ug1 , Ug2 are unitary operators, and ϕ : G × G → R is the projective phase. Since

the theory has the G symmetry, the Hamiltonian H commutes with the unitary operators

[H,Ug] = 0, ∀g ∈ G. The non-vanishing projective phase with exp(i(ϕ(g1, g2)− ϕ(g2, g1))) ̸=
1 immediately leads to the degeneracy of arbitrary eigenstates of the Hamiltonian. This is

because if you have a simultaneous eigenstate s.t. H |E⟩ = E |E⟩ and Ug1 |E⟩ = eiα |E⟩ , α ∈
R, we obtain

⟨E|Ug2 |E⟩ = ⟨E|U †
g1
Ug2Ug1 |E⟩ = e−(iϕ(g1,g2)−iϕ(g2,g1)) ⟨E|Ug2 |E⟩ ⇒ ⟨E|Ug2 |E⟩ = 0.

(3.2)

Since |E⟩ and Ug2 |E⟩ are orthogonal to each other, they are degenerate energy eigenstates

with the eigenvalue E. Note that |E⟩ and Ug2 |E⟩ belong to different symmetry sector of

Ug1 :

Ug1(Ug2 |E⟩) = eiϕ(g1,g2)−iϕ(g2,g1)eiα(Ug2 |E⟩), (3.3)

where α is the charge for the state |E⟩.

We define simultaneous eigenstates of the Hamiltonian H and Ug1 by

H |E,α⟩ = E |E,α⟩ , H |E, β⟩ = E |E, β⟩ , (3.4)

Ug1 |E,α⟩ = eiα |E,α⟩ , Ug1 |E, β⟩ = eiβ |E, β⟩ , (3.5)

The charged operator under the symmetry G can be also introduce as

U †
g1
WqUg1 = eiqg1Wq, U †

g2
WqUg2 = eiqg2Wq. (3.6)
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Now we consider the matrix elements of the charged operator Wq. The diagonal part

satisfies

⟨E,α|Wq |E,α⟩ = ⟨E,α|U †
g1
WqUg1 |E,α⟩ e−iqg1 = ⟨E,α|Wq |E,α⟩ e−iqg1 ,

⇒ ⟨E,α|Wq |E,α⟩ = 0, (3.7)

if the operator Wq is nontrivially charged under the action of g1, i.e., e
−iqg1 ̸= 1. On the

other hand, the operator with trivial charge under g1, but charged under g2, i.e., e
−iqg2 ̸= 1

can have the nonvanishing expectation value in this basis while the off-diagonal part with

α ̸= β necessarily vanishes:

⟨E,α|Wq |E, β⟩ = ⟨E,α|U †
g1
WqUg1 |E, β⟩ = ei(β−α) ⟨E,α|Wq |E, β⟩ ,

⇒ ⟨E,α|Wq |E, β⟩ = 0. (3.8)

We stress that all of the properties discussed here can be applied not only to the ground

states but also to arbitrary energy eigenstate, although topological robustness of degeneracy

does not hold for general eigenstates since the gaps are exponentially small.

3.2 Symmetry violating perturbation

We now discuss a consequence of weak breaking of symmetries with a projective representa-

tion. To this end, let G1 and G2 be Abelian groups and the group G = G1×G2 projectively

acts on the Hilbert space of the theory. The corresponding unitary operator is given by Ug1

and Ũg2 for G1 and G2, respectively. We consider a situation such that each of the symmetry

is realized by a standard linear representation, but they have nontrivial projective phases

between them: Ug1Ũg2 = eiϕ(g1,g2)Ũg2Ug1 . We perturb the Hamiltonian by adding a term∑
siteWq, where Wq is a charged operator under G2 but trivially transforms under G1, i.e.,

U †
g1
WqUg1 = Wq, Ũ †

g2
WqŨg2 = eiqg2Wq, g1 ∈ G1, g2 ∈ G2. (3.9)

Here, we assume the the operator Wq is a local operator.

In the following, we focus on the system with a discrete spectrum realized by appropriate

regularizations. For brevity, we specify G1 = G2 = ZN as the symmetry groups and thus

the charge of Wq is simply given by qm = qm for m ∈ G2 = ZN . As explained in the

previous subsection, arbitrary energy eigenstates are degenerate, and then we work with

the simultaneous eigenbasis of the unperturbed Hamiltonian H and Ug1 (∀g1 ∈ G1 = ZN),

i.e., H |E,α⟩ = E |E,α⟩, Ug1 |E,α⟩ = eiα |E,α⟩. Note that the number of the degen-

eracy of each energy eigenstate is at least N as long as exp(i(ϕ(g1, g2)− ϕ(g2, g1))) ̸= 1
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with ∀g1 ∈ G1,
∀g2 ∈ G2, since Ũm |E,α⟩ (m ∈ G2 = ZN) are eigenstates of Ug1 with

different eigenvalues, and ⟨E,α| Ũ †
mŨn |E,α⟩ = ⟨E,α| Ũn−m |E,α⟩ = 0 for n ̸= m. Al-

though extra degeneracies are possible in general, such accidental degeneracies can be re-

moved by deforming the Hamiltonian while preserving the ZN × ZN symmetry. We thus

assume that all of the energy eigenstates are N -fold degenerate in the following discussion.

The degenerate subspace H(E) := span{|E,α⟩ |α = 0, 1, . . . , N − 1} is also expressed as

H(E) = span{Ũg2 |E,α⟩ , ∀g2 ∈ G2}.

The perturbed Hamiltonian is defined by

H̃(λ) := H + λH1, H1 :=
∑
j: site

Wq(j) +Wq(j)
†

2
, (3.10)

where λ is the perturbation parameter. After this perturbation, the system with H̃(λ)

only exhibits G1 symmetry since the operator Wq(j) has a trivial charge under G1. The

perturbation part H1 is diagonalized by |E,α⟩ basis in the subspace H(E) since the off-

diagonal part ⟨E,α|Wq |E, β⟩ (α ̸= β) always vanishes as in (3.8). In order to estimate

the energy modification, we utilize the Hellmann-Feynman theorem for degenerate spectra

[62–67]. Once the operator dH̃(λ)/dλ = H1 is diagonalized in the subspace H(E), we can

obtain

dE(α;λ)

dλ
= ⟨E,α;λ|H1 |E,α;λ⟩ =

∑
j: site

Re ⟨E,α;λ|Wq(j) |E,α;λ⟩ , (3.11)

where E(α;λ) is the energy eigenvalue for the eigenstate that depends on the parameter λ:

E(α;λ) |E,α;λ⟩ = H̃(λ) |E,α;λ⟩. In the first order, the perturbed energy reads

E(α;λ) = E + λ
∑
j: site

Re ⟨E,α|Wq(j) |E,α⟩+O(λ2). (3.12)

Significantly, for all elements of H(E), the expectation ⟨E,α;λ|Wq |E,α;λ⟩ have different

values because of the relation ⟨E,α;λ| Ũ †
mWqŨm |E,α;λ⟩ = eiqm ⟨E,α;λ|Wq |E,α;λ⟩. Ex-

cept for the case ⟨E,α;λ| Ũ †
mWqŨm |E,α;λ⟩ = ⟨E,α;λ|Wq |E,α;λ⟩∗, we can see that the

perturbed energies (3.12) are split for |E,α;λ⟩ and Ũm |E,α;λ⟩. Even if the energies are

still degenerate in the first order perturbations, the degeneracies are lifted by higher order

perturbations due to the mixing with other energy eigenstates.

Note here that the standard perturbation theory for higher order breaks down in the large

system-size limit V → ∞. Since the separations of the energies tend to be exponentially

small in the limit, they become small enough compared to the perturbation, i.e., E −E ′ ≃
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λ ⟨E,α|H1 |E,α⟩, where E ′ is an energy eigenvalues of another eigenstate. The higher-

order perturbation is no longer valid unless λ ⟨E,α|H1 |E,α⟩ ≃ O(e−V ), and thus we have

to resort to the Hellmann-Feynmann theorem as in (3.11).

After all, we obtain the energy eigenstates with the energy separations of order λ (see

Fig. 2). The key point is that these eigenstates in H(E) have distinct charges of Um. In the

thermodynamics limit V → ∞, we should take the width of the energy shell δE = O(V 1/2),

and we suppose the energy splitting also scales as O(V 1/2), i.e.,

λ

(∑
j: site

Re ⟨E,α|Wq(j) |E,α⟩ −
∑
j: site

Re ⟨E, β|Wq(j) |E, β⟩

)
≃ O(V 1/2), α ̸= β.

(3.13)

This relation is expected to be naturally realized, but we can also force (3.13) by e.g.,

setting λ ≃ O(V −1/2) since Wq is a local operator. Another approach is to implement a

weak randomness such that λH1 = λ
∑

j rjWq(j), where rj is a uniformly chosen constants

from [−r, r], 0 < r ≪ 1. Assuming the expecation value ⟨Wq(j)⟩ is almost uniform, we

obtain the variation ⟨H1⟩ ≃ O(V 1/2). Under the supposition (3.13), we notice that given

an energy window with the width δE, we can arrange eigenstates with different symmetry

sectors with respect to G1 within it by tuning the parameter λ. This exactly indicates the

condition ii) is satisfied.

Figure 2: Schematics for the spectrum. α denotes the charge for Um s.t. Um |E,α⟩ = eiα |E,α⟩. After the

perturbation with sufficiently small λ, the degeneracies are resolved so that the condition ii) is satisfied.

4 Demonstration for lattice models

In this section, we demonstrate the statement discussed in Section 3 by numerically calcu-

lating the energy spectra for concrete examples.
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4.1 (1 + 1)-dimensional spin chains

As the first example, we consider a (1 + 1)-dimensional Z2 × Z2-symmetric spin chain and

its Z3 × Z3-symmetric generalization. Both of the models only exhibit 0-form symmetries,

and thus the ETH-violating operators based on the mechanism in [39] are 1-dimensional.

Even though one can not tell whether ETH violation is caused by the smallness of the baths

for such operators that have the same dimensionality with the space, it is instructive to

illustrate that the discussion in Section 3 indeed holds for those models.

A projective representation of ZN × ZN is realized on the N -dimensional Hilbert space

spanned by |g⟩, g = 0, 1, . . . , N − 1. The generators of each ZN are represented by “clock”

operators Z and “shift” operators X, which satisfy the relations [68]

ZX = e
2πi
N XZ. (4.1)

The operators act on the Hilbert space as

Z |g⟩ = e2πi
g
N |g⟩ , X |g⟩ = |g + 1 mod N⟩ . (4.2)

In the matrix form, they can be explicitly expressed as

Z =



1 0 0 · · · 0

0 e2πi
1
N 0 · · · 0

0 0 e2πi
2
N · · · 0

...
...

...
. . .

...

0 0 0 · · · e2πiN−1
N


, X =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0


. (4.3)

For N = 2, these are just the standard Pauli matrices.

In order to accommodate a spin chain with L sites (L > N), we introduce the tensor

product |g⟩⊗· · ·⊗ |g⟩, and the operators acting only the j-th site Zj := 1⊗· · ·⊗Z⊗· · ·⊗1

and Xj := 1⊗ · · · ⊗X ⊗ · · · ⊗ 1. The symmetry operators are then given by

U1 :=
L∏

j=1

Zj, Ũ1 :=
L∏

j=1

Xj. (4.4)

We note that the projective phase between Ui and Ũj can be trivial for the case gcd(N,L) =

N (⇔ N |L), and thus we suppose gcd(N,L) ̸= N so that the discussion in the previous

section always holds. This projective phase can be interpreted as the ZN action by Ui on

the other symmetry operators Ũi, i.e., UjŨkU
−1
j exp(2πi · jk/N)Uk. Considering a central
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extension of ZN × ZN by Zlcm(L,N)/L, we can realize this relation as a linear representation,

where the center Zlcm(L,N)/L is generated by

L∏
j=1

e
2πi
N = e

2πiL
N . (4.5)

Z2 × Z2-symmetric spin chain

In the N = 2 case, a Z2 × Z2-invariant (1 + 1)-dimensional spin chain is given by

HN=2 =
L∑

j=1

(
Jx
j XjXj+1 + Jy

j YjYj+1 + Jz
j ZjZj+1

)
, (4.6)

where Yj := iXjZj. This Hamiltonian is nothing but the one of the XYZ Heisenberg spin

chain. To remove unwanted spacetime symmetry, we introduce a weak randomness to the

couplings Jx
j , J

y
j and Jz

j . There is still an extra symmetry that flips the sign of one of the

Pauli matrices, e.g., Yj 7→ −Yj, ∀j. We thus work with a deformed Hamiltonian

HN=2 =
L∑

j=1

(
Jx
j XjXj+1 + Jy

j YjYj+1 + Jz
j ZjZj+1

)
+ α

L∑
j=1

XjYj+1Zj+2 , (4.7)

which is indeed Z2×Z2-symmetric. Here we consider the periodic boundary condition with

j ∼ j + L, which indicates the topology of the space is S1.

To weakly break the Z2 generated by Ũ1, we perturb the Hamiltonian as

H̃N=2 := HN=2 + λ
L∑

j=1

Zj . (4.8)

The numerical results are shown in Fig. 3. Since the surviving symmetry operator is given by

U1 :=
∏L

j=1 Zj, one of the ETH-violating operator in this case is given by U1(1̄) :=
∏L

j=2 Zj.

After the perturbation, the double degeneracy is completely broken, and these eigenstates

leads to mixed symmetry sector in a energy shell.

Z3 × Z3-symmetric spin chain

In the N = 3 case, the Hamiltonian for a Z3 × Z3-symmetric spin chain is given by

HN=3 :=
L∑

j=1

(
Jw
j WjW

†
j+1 + Jx

j XjX
†
j+1 + Jy

j YjY
†
j+1 + Jz

j ZjZ
†
j+1

)
+ (h.c.), (4.9)
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Figure 3: (a)(b) Part of energy spectra for Z2×Z2-symmetry spin chain for L = 11, λ = 0.1. The coupling

constants are uniformly distributed in Jx
j ∈ [0.9, 1.0], Jy

j ∈ [0.7, 0.8], Jz
j ∈ [0.6, 0.7], and the parameter is

given by α = 0.9. The degeneracy in the original Hamiltonian (4.7) (a) is resolved by the perturbation

(4.8) (b). (c) The expectation value of U1(1̄) for L = 13, λ = 0.4. The expectations are separated into two

sectors, and thus the ETH for U1(1̄) is not satisfied.

where Wj := Z†
jXj and Yj := ZjXj. Again, we take the periodic boundary condition

j ∼ j + L. If the couplings Jw
j , J

w
j , J

w
j and Jw

j are weakly random and not real, the

theory has no relevant symmetries other than Z3×Z3 symmetry represented by Um and Ũm

(m = 1, 2). Under these symmetry action, the local operators transform as

U †
mWjUm = e

4
3
πmiWj, U †

mXjUm = e
4
3
πmiXj, U †

mYjUm = e
4
3
πmiYj, U †

mZjUm = Zj,

Ũ †
mWjŨm = e

4
3
πmiWj, Ũ †

mXjŨm = Xj, Ũ †
mYjŨm = e

2
3
πmiYj, Ũ †

mZjŨm = e
2
3
πmiZj,

(4.10)

Since the local operator Zj is not charged under Ui, a desired perturbation can be

performed as

H̃N=3 := HN=3 + λ

L∑
j=1

Zj, (4.11)

and then the Hamiltonian is invariant only under the action of Ui. As shown in Fig. 4,

the triple degeneracies of the energy spectrum are resolved by the perturbation, and the

operator U(1̄) =
∏L

j=2 Zj does not satisfy the ETH.

4.2 (2 + 1)-dimensional Z2 gauge theory

Here we consider the (2+1)-dimensional Z2 lattice gauge theory defined on a Lx×Ly square

lattice with the periodic boundary conditions. In this model, the argument in Section 3
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Figure 4: (a)(b) Part of energy spectra for Z3 × Z3-symmetry spin chain for L = 7, λ = 0.1. The

coupling constants are uniformly distributed in Jw
j ∈ [1.0 + 0.2i, 1.1 + 0.2i], Jx

j ∈ [0.9, 1.0], Jy
j ∈ [0.1, 0.2],

Jz
j ∈ [0.2, 0.3]. The degeneracy in the original Hamiltonian (4.9) (a) is resolved by the perturbation (4.11)

(b). (c) The expectation value of U1(1̄) for L = 8, λ = 0.4. The expectations are separated into two sectors,

and thus the ETH for U1(1̄) is not satisfied.

can be applied to the projective representation of Z2 electric one-form symmetry and “time

reversal” symmetry.

The Hamiltonian is given by [69–71]

HZ2 = −
∑
r

λr,xyσ
3
r,xσ

3
r+ex,yσ

3
r+ey ,xσ

3
r,y − λ

∑
r,j

σ1
r,j, (4.12)

where σ1,2,3
r,j denote the Pauli matrices acting on the link variable (r, j), specified by the

coordinate of vertices r and the direction j = x, y. The coupling constants λr,xy and λ

are real numbers. Along the line of Section 3, we can regard the term λ
∑

r,j σ
1
r,j, as a

perturbation term. We can observe that for λ = 0, the Hamiltonian HZ2 is invariant under

the “time reversal” symmetry2 represented by

Ũ :=
∏
r,j

σ2
r,j. (4.13)

This theory also enjoys the electric Z2 1-form symmetry, and the spatial symmetry operators

can be characterized by H1(T
2,Z2) = Z2 ⊕ Z2 [72]. The generators of Z2 correspond two

independent symmetry operators corresponding to the x-cycle and y-cycle.

Though the total Hilbert space of the system for the Lx×Ly lattice is (2
2LxLy)-dimensional,

we have to project it onto the physical Hilbert space. This is because there exist resid-

ual gauge redundancies, after the temporal gauge-fixing, which is analogous to the gauge

2This operation is not the time reversal symmetry in the usual sense, because it does not accompany the

complex conjugation. However, the complex conjugation does not affect the Hamiltonian HZ2 , and we just

referred to this symmetry as ”time reversal.”
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A0(r) = 0 for the Maxwell theory. Spatial gauge transformation is generated by the local

operator

Qv :=
∏

b: spatial link,b∋v

σ1
b , v : vertex, (4.14)

which satisfies Q2
v = 1 and [HZ2 , Qv] = 0. The physical Hilbert space is then obtained as

span
{
|ψ⟩

∣∣ Qv|ψ⟩ = +|ψ⟩, ∀v : vertices
}
. (4.15)

This constraint can be regarded as the Z2 analog of the Gauss law ∇·E|ψ⟩phys = 0 since we

can write Qv = (σ1
r−ex,x)

−1σ1
r,x(σ

1
r−ey ,y)

−1σ1
r,y. After this projection, the expectation value

of non-gauge invariant operators with respect to physical states |ψ⟩ always vanishes.

The Wilson and ’t Hooft operators on the spatial directions are defined as [73–75]

W (C) =
∏
b∈C

σ3
b , U(C∗) =

∏
b∗∈C∗

σ1
b∗ , (4.16)

where, C and C∗ are closed loops on the lattice and dual lattice, respectively (see Fig. 5).

Both U(C∗) and W (C) are gauge invariant operators since they commute with Qv.

Figure 5: Schematics for the action of the operators on the 4×3 square lattice with the periodic boundary

condition. The lattice and the dual lattice are denoted by the solid and dashed lines, respectively. The blue

lines represent the action of σ1, and the red lines indicates the action of σ3.

The ’t Hooft operator U(C∗) satisfies [HZ2 , U(C
∗)] = 0, and serves as the Z2 1-form

symmetry operator. This operator is topological since continuous deformations of the path

C∗ do not change the action of U(C∗) on the physical states, i.e., U(C∗
1)|ψ⟩ = U(C∗

2)|ψ⟩ if
C∗

1 and C∗
2 are homotopically equivalent. If a dual closed loop C∗ is topologically trivial, it

follows that U(C∗)|ψ⟩ = |ψ⟩. The “electric” charge of the Wilson operator is measured by

the ’t Hooft operator U(C∗). Defining closed loops winding around the x-/y-cycle by Cx

and Cy (and similarly the loops on the dual lattice by C∗
x and C∗

y ), we see that the operators

14



W and U satisfy

U(C∗
y )W (Cx)U

−1(C∗
y ) = −W (Cx), U(C∗

x)W (Cy)U
−1(C∗

x) = −W (Cy),

U(C∗
x)W (Cx)U

−1(C∗
x) = +W (Cx), U(C∗

y )W (Cy)U
−1(C∗

y ) = +W (Cy),
(4.17)

which is indeed operator-realization of the electric Z2 1-form symmetry [76].

After these setups, we can explicitly observe that the symmetry operators satisfy U(C∗
x)Ũ =

−ŨU(C∗
x) and U(C∗

y )Ũ = −ŨU(C∗
y ). This projective phase arises from the Z2 action by

Ũ on the symmetry operator of the Z2 1-form symmetry. Introducing the one-dimensional

operator

Z(C∗) :=
∏

b∗∈C∗

(−1), (4.18)

which generate Z2 “1-form symmetry,” we have

ŨU(C∗)Ũ−1 = Z(C∗)U(C∗). (4.19)

In fact, this relation is incorporated into a 2-group structure.

The perturbation H1 =
∑

r,j σ
1
r,j then lift the degeneracy, and this suffices to show the

breakdown of the ETH as shown in Fig. 1, where the numerical calculation are performed

for the 5 × 3 lattice, and the coupling constants λr,xy are uniformly chosen from [1.0, 1.1]

and the parameter is set to λ = 0.6. On the other hand, the ETH holds for other operators

such as the plaquette operator Bp :=
∏

i∈p:plaquette σ
3
i and a double insertion of the Wilson

operators W (C1)W (C2) (Fig. 6). We stress that the nonlocality of the operator does not

immediately lead to the breakdown of the ETH since the non-local operator W (C1)W (C2)

satisfy the ETH.

5 Conclusion and discussion

In this paper, we have shown that the the one of the sufficient conditions for the ETH-

violation is satisfied if we consider perturbations that break the symmetry with nontrivial

projective phases. Following this treatment, we just have to suppose the following: 1)

the unperturbed Hamiltonian exhibits a ZN × ZN (p-form, in general) symmetry with a

nontrivial projective representation; 2) the symmetry operator corresponding to one of the

ZN symmetry can be divided as Um(C̃) = Um(γ)Um(γ̄) with open manifolds γ and γ̄; 3)

⟨Um(γ)⟩δEmc ̸= 0. Under these assumptions, the ETH for the (d − p)-dimensional operator
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Figure 6: (a)(b) The expectation values of the plaquette operator Bp :=
∏

i∈p:plaquette σ
3
i and a double

insertion of the Wilson operators W (C1)W (C2) with respect to the energy eigenstates for the Z2 gauge

theory. The ETH for both of the operators are satisfied while the operator W (C1)W (C2) is a 1-dimensional

non-local operator.

Um(γ) or Um(γ̄) is always violated after perturbing the Hamiltonian by λ
∑

j Wq(j) with the

scaling (3.13). Although conditions ii) in Section 2 (and in [39]) require information about

each eigenstate in the middle of the spectrum a priori, tractable conditions 1), 2), and 3) to

such eigenstates lead to the same conclusion.

We also performed numerical calculations for (1+1)-dimensional Z2×Z2-symmetric/Z3×
Z3-symmetric spin chains, and (2+ 1)-dimensional Z2 gauge theory. All of the models have

indeed the 1-dimensional ETH-violating operators, and their mechanisms are boiled down

to the general discussion above. We can thus conclude that our treatment indeed results in

the ETH-violation for these concrete examples.

As an outlook, the application of our formulation to other groups would be possible since

essential mixture of the symmetry sectors are common to the ZN × ZN case. It allows us

to find the breakdown of the ETH for broader class of systems with higher-form symmetry

including lattice gauge theories. In [13], the local ETH leads to the subsystem ETH for

the 0-dimensional subsystems. On the other hand, Many 0-form symmetries nest in general

2-dimensional CFTs, and thus the result in this paper means the violation of the ETH for

the 1-dimensional operators. This observation motivate us to consider consequences for the

subsystem ETH for 1-dimensional subsystems in the context of CFTs. It would also be

interesting to explore consequences of the mixed ’t Hooft anomaly on thermalization pro-

cesses in our various gauge theories such as Yang-Mills theories [77,78]. We hope our results

shed light on non-equilibrium dynamics for various quantum field theories and quantum

many-body systems.
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