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Motivated by the recent experimental breakthrough on the observation of the fractional quantum
anomalous Hall (FQAH) effects in semiconductor and graphene moiré materials, we explore the
rich physics associated with the coexistence of FQAH effect and the charge density wave (CDW)
order that spontaneously breaks the translation symmetry. We refer to a state with both properties
as “FQAH-crystal”. We show that the interplay between FQAH effect and CDW can lead to a
rich phase diagram including multiple topological phases and topological quantum phase transitions
at the same moiré filling. In particular, we demonstrate the possibility of direct quantum phase
transitions from a FQAH-crystal with Hall conductivity σH = −2/3 to a trivial CDW insulator
with σH = 0, and more interestingly, to a QAH-crystal with σH = −1.

I. INTRODUCTION

The recent advance in the fabrication and control
of two-dimensional (2D) van der Waals heterostruc-
tures has enabled the development of moiré superlat-
tices that feature tunable mini-bands. Topologically non-
trivial mini-bands in moiré materials provide an ideal
avenue to search for topological states of matter. As
an example, evidence of fractional quantum Hall ef-
fect in fractionally filled moiré band was observed in
twisted bilayer graphene under a magnetic field above
∼ 5T or higher1,2. More recently, thermodynamic and
transport measurements revealed the fractional quantum
anomalous Hall (FQAH) effect at zero magnetic field in
twisted TMD homobilayers3–6 and rhombohedral penta-
layer graphene/hBN superlattice7.

The discovery of FQAH effect points towards a fertile
ground for studying strong interaction effect in topolog-
ical moiré bands of 2D materials. Twisted TMD ho-
mobilayers feature spin-valley-locked moiré bands with
opposite Chern numbers in the two valleys8–10. At fi-
nite carrier density, Coulomb interaction drives spon-
taneous valley polarization, and FQAH effect is antici-
pated at fractional fillings of the valley-polarized Chern
band10–12. Interaction induced FQAH states in Chern
bands are also known as (zero-field) fractional Chern in-
sulators in the literature13–17. The highly tunable nature
of moiré systems, with abundant tuning knobs such as
twist angle, displacement field, electrostatic doping and
gate screening, offers a large parameter space to explore
FQAH states and proximate phases18–30.

In this work, we explore the rich physics of a state with
coexisting FQAH and CDW (a state that we refer to as
FQAH-crystal), and its proximate phases that occur at
the same moiré band filling under zero magnetic field.
Our study is motivated by the observed phase transition
at hole filling ν = −2/3 in twisted bilayer MoTe2 under
a displacement field from an FQAH state with quantized
Hall conductance σH = −2/3 (in the unit of e2/h) to an
insulating state5,6. We consider a scenario in which the

FQAH state spontaneously breaks the translational sym-
metry of the moiré lattice. We call this state a FQAH-
crystal, analogous to the notion of “Hall crystal” intro-
duced in Ref. 31. Our consideration of FQAH-crystal is
partly motivated by recent numerical finding of a soft-
ened magneto-roton gap in σH = −2/3 FQAH states20,

which suggests incipient CDW order with tripled
√
3×

√
3

moiré unit cells (as illustrated in Fig.1) at experimentally
relevant twist angles.
We show by field theory analysis that a variety of

strongly correlated phases can be found in the vicinity
of FQAH-crystal. These include a trivial CDW insulator
with σH = 0 and a σH = −1 QAH state with CDW or-
der, which we call QAH-crystal. While the QAH-crystal
phase has been proposed in moiré systems under the
name of topological charge density wave26,32,33, its con-
nection to FQAH physics34–36 and phase transitions have
received little attention before. All the phases considered
in this work possess the same type of CDW order, but are
distinguished by their different topological properties.
We further show that direct and (potentially) contin-

uous phase transitions between these topologically dis-
tinct phases are theoretically allowed. Interestingly, these
phase transitions can be described by (2+1)D quantum
electrodynamics (QED) with a Chern-Simons (CS) term
of the U(1) gauge field coupled to either fermionic or
bosonic charges. In our theory, the transition from the
FQAH-crystal with σH = −2/3 to the trivial CDW in-
sulator is described by a fermionic QED with two flavors
Dirac fermions at low energy coupled with a U(1) gauge
field with a CS term at level-1/2. On the other hand,
its transition to a QAH-crystal with σH = −1 is de-
scribed by either bosonic or fermionic QEDs. These two
descriptions are dual to each other based on the boson-
fermion duality web that was actively discussed in recent
years37–40.
We note that direct transitions between a standard

FQAH state (without any spontaneous symmetry break-
ing) and exotic CDW states, including with topological
order, were studied in Ref. 28, whereas our work starts
from a FQAH-crystal (with σH = −2/3 and CDW or-
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der), and obtains different proximate phases. In partic-
ular, we highlight the possibility of a QAH-crystal (with
σH = −1 and CDW order) as a proximate phase and a
direct phase transition between FQAH-crystal and QAH-
crystal at ν = −2/3.

II. PHASES AT ν = −2/3

The most prominent state observed experimentally in
the homobilayer TMD moiré system is the σH = ±2/3
FQAH state at hole filling nh = 2/3, i.e., at hole density
of 2/3 per moiré unit cell. Since this state is shown to be
fully spin/valley polarized by magnetic circular dichro-
ism measurements, in the following we consider a spinless
electron system at charge density ν = −2/3.
Throughout the discussion below we postulate the

presence of a charge density wave (CDW) which triples
the unit cell (examples shown in Fig 1), such that the
holes are at integer filling with respect to the enlarged
moiré unit cell. We will show that under tripling of the
unit cell, it is natural to construct phases with Hall con-
ductivity σH = −2/3, −1, 0 in a unified formalism. Fur-
thermore, there can be direct and (potentially) continu-
ous quantum phase transitions between any of the two
states mentioned above, though a direct transition be-
tween the σH = −2/3 state and the trivial insulator with
σH = 0 requires certain discrete space-time symmetries.
For the purpose of constructing these phases and de-

scribing their properties, it is convenient to use the stan-
dard parton construction. One can formally write the
hole operator as c = Φf , where the bosonic parton Φ car-
ries the physical electric charge, and the charge-neutral
parton f is a fermion. The electric charge can actually
be assigned arbitrarily between Φ and f , which should
not change the final physics. The parton construction
formally enlarges the Hilbert space of the holes, which
can be remedied by coupling Φ and f both to an internal
dynamical U(1) gauge field a, with charge ±1 respec-
tively. The dynamical U(1) gauge field enforces a local
constraint which equates the local density of f to that of
Φ. The physical state of holes is obtained by enforcing
the relation of hole density to that of the partons, i.e.,
νh = νΦ = νf = 2/3 with respect to the original moiré
unit cell. Importantly, in the presence of a CDW order
that triples the unit cell, both the holes and partons are
at integer fillings with respect to the enlarged unit cell.

A. Phases tuned by fermionic parton f

In the following we will construct a series of states by
making Φ a bosonic fractional quantum Hall state with
Hall conductivity −1/2. Each state can also be equiva-
lently constructed employing the composite fermion pic-
ture through vortex attachment. As is well known in
the context of Landau level systems, composite fermions
experience a modified residual magnetic field, and promi-

T1T2

K

K′￼

FIG. 1. (Left) The moiré Brillouin zone formed when twist-
ing the original Brillouin zone (two large hexagons) of each
TMD layer. When charge density wave forms that triples the
unit cell, schematically shown on the right on the moiré su-
perlattices, the Brillouin zone is further folded to the center
smallest hexagon on the left.

<latexit sha1_base64="eknEPx4D6gn6O0d51VKlA2nsx88=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaT4Wha7cVmhL2hDmEwn7dDJJMxMCiH0T9y4UMStf+LOv3HaZqGtBwYO59zLPXOChDOlHefb2tjc2t7ZLe2V9w8Oj47tk9OOilNJaJvEPJa9ACvKmaBtzTSnvURSHAWcdoNJY+53p1QqFouWzhLqRXgkWMgI1kbybbvh57VsNoiwHhPMUcu3K07VWQCtE7cgFSjQ9O2vwTAmaUSFJhwr1XedRHs5lpoRTmflQapogskEj2jfUIEjqrx8kXyGLo0yRGEszRMaLdTfGzmOlMqiwEzOE6pVby7+5/VTHd57ORNJqqkgy0NhypGO0bwGNGSSEs0zQzCRzGRFZIwlJtqUVTYluKtfXiedWtW9rd48XVfqD0UdJTiHC7gCF+6gDo/QhDYQmMIzvMKblVsv1rv1sRzdsIqdM/gD6/MHAgiTRA==</latexit>

C2yT

FIG. 2. (Left) The zoomed in moiré Brillouin zone with the
symmetry C2yT shown that protects degeneracy of 2 generic
Dirac cones(black dots) aligned along vertical axis. The ar-
rows indicate the action of C2y which flips the horizontal axis.
When combined with time reversal, C2yT flips the vertical
axis of the Brillouin zone and hence protects the degeneracy
of Dirac cone as plotted. When charge density wave forms a
stripe pattern schematically shown on the right, the symme-
try is preserved and a direct transition from σH = −2/3 → 0
could be realized.

nent fractional quantum Hall states are formed at integer
filling of composite fermion Landau levels 41. As we show
later, in (moiré) lattice systems, the mean-field state of
composite fermions allows much richer possibilities, lead-
ing to a series of new states42.

— σH = −2/3 State:

The σH = −2/3 state at filling ν = −2/3 is the most
prominent state observed experimentally in the homobi-
layer TMD moiré system. This state can be constructed
naturally using the parton formalism, where Φ and f
each forms its own “mean field state”. With the as-
sumption of the existence of a background charge density
wave that triples the unit cell, the original Chern band
in the moiré Brillouin zone (BZ) would split into three
bands in the folded moiré BZ, and the fermionic parton
f would fill two out of the three bands due to its 2/3
filling. One natural way to construct the 2/3 state, is for
the bosonic parton Φ to form a ν = −1/2 Laughlin state,
and at the mean field level the fermionic parton f fills two
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low energy bands in the folded BZ with Chern numbers
+1,+1. As we mentioned previously, the σH = −2/3
state constructed here has FQAH effect as well as spon-
taneous translation symmetry breaking, which we refer
to as FQAH-crystal. Later, we will demonstrate with
a composite fermion construction that, the existence of
the σH = −2/3 state itself does not have to break the
translation symmetry. However, all of the nearby states
within our formalism must break the translation symme-
try. This observation motivates us to focus on the sce-
nario where the translation symmetry is already broken
in the σH = −2/3 state.

Here we would like to demonstrate that the parton
construction given above is a natural state for holes at
filling 2/3 of the moiré unit cell. We note that the flux ϕΦ
per moiré unit cell felt by the parton Φ is not necessarily
equal to the physical flux seen by holes ϕh, due to the
internal gauge field a coupled to both Φ and f . In the
continuum, the total fluxes seen by the hole and the par-
tons should in general obey the relation ϕh = ϕΦ+ϕf . In
twisted semiconductor bilayers8,9,43 and other continuum
systems44 where holes fill a valley polarized Chern band,
despite being at zero magnetic field, the holes experience
an effective flux ϕh = −1 per moiré unit cell produced by
the periodic skyrmion spin (or layer pseudospin) texture
in real space45, and we could further set ϕΦ = −4/3 to
allow Φ to form a Laughlin ν = −1/2 state. This leaves
ϕf = 1/3 and νf = 2/3. The fermionic partons hence are
naturally allowed to fill two Landau levels, equivalent to
filling two bands with Chern number +1. In fact, with
the CDW order that triples the unit cell that we postu-
late, the f feel ϕ̃f = 1 with a filling ν̃f = 2 per enlarged
unit cell, hence f could naturally form an insulator with
total Chern number C = 2.

In terms of the Chern-Simons theory, this state corre-
sponds to the following Lagrangian

L = − 2

4π
b ∧ db+ 1

2π
b ∧ da− 1

4π
a ∧ (a1 + a2)

+
∑
i=1,2

1

4π
ai ∧ dai. (1)

The gauge field b is the “dual” of the current of the
bosonic parton Φ; a1 and a2 are the dual of the fermionic
parton f that fills the two Chern bands with Chern num-
ber (+1,+1); a is the gauge field that couples to both Φ
and f . The CS Lagrangian Eq. 1 can also be written in
a more compact form using the K−matrix46:

L =
1

4π
K2/3,IJa

I ∧ daJ , (2)

where

K2/3 =

−2 0 0 1
0 1 0 −1
0 0 1 −1
1 −1 −1 0

 , (3)

and aI = (b, a1, a2, a). We will hereafter abbreviate a∧db
as adb without loss of clarity. The topological ground

state degeneracy is given by the determinant of K2/3,
which in this case is 3. To derive the Hall conductivity
of this state, we need to couple aI to the external elec-
tromagnetic field A, through a “charge vector”46. In the
current construction, the charge vector is v = (1, 0, 0, 0),
meaning that only the bosonic parton Φ carries electric
charge +1. By integrating out all the dynamical gauge
field aI , one can show that the total Hall conductivity of
the state is σH = −2/3, i.e. σH = vK−1vT = −2/3.

An alternative picture is that, the 2/3 state can be
viewed as holes at filling 1, forming a ν = −1 integer
quantum hall state, together with electrons at filling 1/3,
forming a ν = 1/3 Laughlin state. The K−matrix for
this construction is

K ′
2/3 =

(
−1 0
0 3

)
(4)

with the charge vector v = (1,−1). The first diago-
nal element of K ′

2/3 describes the ν = −1 quantum hall

state and the second diagonal element describes ν = 1/3
Laughlin state. The K−matrix in Eq. 3 is related to the
K ′−matrix in Eq. 4 (up to 2 extra fields that describe a
trivial, neutral sector) by a similarity transformation in
SL(4, Z):

WTK2/3W =

−1 0 0 0
0 3 0 0
0 0 0 −1
0 0 −1 0

 ,

W =

−1 1 1 0
−1 2 0 0
0 −1 0 0
−2 2 1 −1

 . (5)

The third picture of constructing the 2/3 state is
through the composite fermion (CF) and flux attach-
ment. As we mentioned before, when the holes fill a
valley polarized Chern band, the physics is topologically
equivalent to integer quantum Hall state where a hole
sees a ϕh = −1 magnetic flux quantum through each
moiré unit cell. Then a composite fermion is constructed
by binding the hole with 2-flux quanta of a gauge field
a, i.e. the composite fermions will see total gauge flux
ϕcf = ϕh+2ρcf . When the hole density is 2/3 per moiré
unit cell, the density of ϕcf would be 1/3 flux quan-
tum per moiré unit cell. Hence the composite fermions
would naturally fill two Landau Levels of ϕcf , and form
an integer quantum Hall state with composite fermion
Hall conductivity σcf = 2. When inserting an extra flux
density δϕcf into the system, composite fermion density
δρcf = σcfδϕcf will be accumulated; and the total Hall
conductivity is the ratio between the extra density of
composite fermions and the density of extra magnetic
flux: σH = δρcf/δϕh = σcf/(1 − 2σcf ) = −2/3. This
composite fermion construction for the 2/3 state does
not break translation. The composite fermion picture
for understanding the observed FQAH states in twisted
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bilayer MoTe2 is strongly supported by recent numerical
studies23,24,27.
To formally implement this flux attachment47, we in-

troduce a noncompact gauge field b whose charge is the
flux of a. We will demonstrate that a U(1)−2 CS term for
b attaches 2 units of fluxes of a to the composite fermion,
which also carries charge under gauge field combination
a + A. The Lagrangian of all the field mentioned above
reads:

L = − 2

4π
bdb+

1

2π
bda+ LCF [ψ, a+A], (6)

where the mutual CS term between b, a implies that the
flux of a is charged under b, and the last term of Eq. 6
is the CF Lagrangian capturing the physics that the CF
(ψ) is coupled to a+A.
The equations of motion with respect to b and a lead

to the following relations:

δL
δb0

= 0 → da

2π
=

2db

2π
,

δL
δa0

= 0 → ρcf =
db

2π
. (7)

Combining the equations we obtain the relation 2ρcf =
da
2π , which corresponds to the picture of flux attachment:
each CF is bound with two flux quanta of gauge field a.
When the CF fermion ψ fills Chern bands with total

Chern number Ccf (an integer), we need to introduce
|Ccf | copies of gauge fields ai, which are dual to the cur-
rent of the CFs:

LCF [ψ, a+A] = sgn(Ccf )

Ccf∑
i=1

(
1

4π
aidai +

1

2π
aid(a+A)

)
,

(8)

where each self-CS term of ai describes the CF filling a
complete Landau Level (or equivalently Chern band with
Chern number 1). The flux current of ai, which is the
dual of the CF current, couple to a+A.
For Ccf = 2, after combining Eq. 6 and Eq. 8 we

eventually arrive at exactly the same K−matrix as that
in Eq. 3, albeit the charge vector now is (0, 1, 1, 0),
which corresponds to shifting the electric charge from
the bosonic parton Φ to the fermionic parton f , and it
still leads to σH = −2/3. The charge vector could be
transformed to (1, 0, 0, 0), by relabeling a→ a−A. Then
the two formalisms based on parton and CF yield exactly
identical K−matrices and Hall conductivity.

— σH = 0 and σH = −1 states:
To construct a trivial insulator phase with σH = 0, we

can still fix the bosonic parton at a ν = −1/2 Laugh-
lin state, and let the fermionic parton f fill two bands
with Chern numbers +1,−1 respectively. The K ma-
trix of this state is similar to Eq. 3, with the diagonal

component K33 changed to −1. This change will lead to
the Hall conductivity σH = 0, without any topological
degeneracy.

An integer QAH state with σH = −1 and coexisting
CDW order (referred to as the QAH-crystal state) can
be constructed by removing the row and column of the
K matrix that involves the second band of the fermionic
parton, meaning that the fermionic parton f now fills
bands with total Chern numbers +1.

In the composite fermion picture, when the CF forms
a ν = +1 quantum hall state, inserting a +1 ϕh-flux
quantum is accompanied by −2 units of fluxes of a, and
accumulating −1 charge of CF since there is a total −1
unit of extra flux ϕcf , i.e. the CFs form a ν = −1 state
with respect to ϕh. This state eventually corresponds to
the σH = −1 state. The K−matrix can be similarly de-
duced and is equivalent to that deduced from the parton
construction.

The trivial insulator with σH = 0 corresponds to the
CF forming a trivial insulator, which leads to trivial
electromagnetic response. The K−matrices of the three
states constructed in this subsection are summarized in
table I.

– Translation breaking enforced by filling: Im-
portantly, when the translation symmetry of the moiré
superlattice is preserved, it is not possible (at least within
CF mean-field theory) to have a direct transition from a
state that fills a CF band with Chern number Ccf = 2
and correspondingly Hall conductivity σH = −2/3, to
states with Ccf = 1, 0 and σH = −1, 0. Since the ef-
fective field seen by the CFs is ϕcf = 1/3 flux quanta
through each moiré plaquette, the CFs obey the mag-
netic translation symmetry: T1T2 = T−1

1 T−1
2 ei2π/3 for

the two elementary translations T1,2 that enclose a moiré
unit cell. The mean-field spectrum of the CFs will be 3
fold degenerate as the magnetic translation admits rep-
resentations with minimal dimensions of 3.48

Therefore the translation symmetry guarantees that
the change of the Chern number ∆Ccf across a transi-
tion must have ∆Ccf equal to multiples of 3, as it is
given by the number of gapless Dirac cones in the spec-
trum. Hence if the transitions σH = −2/3 → −1 and
σH = −2/3 → 0 are described by changing the band
Chern number of the composite fermions, they can only
occur when the translation symmetry of the moire lat-
tice is broken, i.e. they can only occur when there is a
background charge density wave order. In particular, the
simplest scenario of CDW is to triple the unit cell, ren-
dering the magnetic translation trivial and permitting a
direct transition with ∆Ccf = −1,−2 etc. In the next
section, we shall demonstrate explicitly direct transition
from σH = −2/3 FQAH-crystal to either σH = 0 CDW
or σH = −1 QAH-crytsal.
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Phase CF Parton f (Φ in Laughlin − 1
2
state) Electron+holes(ν = −1 IQH) K matrix

σH = − 2
3

Ccf = 2 Cf = 2 Electron in 1
3
Laughlin


−2 0 0 1
0 1 0 −1
0 0 1 −1
1 −1 −1 0

 ≃


−1 0 0 0
0 3 0 0
0 0 0 −1
0 0 −1 0


σH = 0 Ccf = 0 Cf = 0 Electron in ν = 1 IQH


−2 0 0 1
0 1 0 −1
0 0 −1 −1
1 −1 −1 0

 ≃


−1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0


σH = −1 Ccf = 1 Cf = 1 Electron in trivial insulator

−2 0 1
0 1 −1
1 −1 0

 ≃

−1 0 0
0 0 1
0 1 0


TABLE I. Summary of the 3 formalisms that describes the three states with σH = −2/3,−1, 0 respectively. When the composite

fermions (CF) fill Chern bands with total Chern number Ccf , the physical Hall conductivity is σH =
Ccf

1−2Ccf
.

B. Phases tuned by bosonic parton Φ

In all the three states constructed in the last subsec-
tion, the bosonic parton Φ always form a ν = −1/2
bosonic Laughlin state. Starting with the FQAH-crystal
state with σH = −2/3, two more states can be con-
structed by changing the physics of the bosonic parton Φ.
These states/phases are summarized in the global phase
diagram Fig. 3.

One such state is an insulator without any Hall con-
ductivity, but it has a neutral topological order and neu-
tral chiral edge states, leading to quantized thermal Hall
effect. This quantum thermal Hall insulator can be ob-
tained from the FQAH-crystal, by driving the bosonic
parton Φ into a trivial insulator. When Φ is in a trivial
insulator, there is no nontrivial response to the exter-
nal electromagnetic field as Φ is the parton that carries
the electric charge. However, this state must still have
a nontrivial topological order, as the K matrix of this
state corresponds to Eq. 3 after removing the compo-
nents that involve gauge field b. The determinant of the
remaining 3 × 3 K matrix is 2, and it is equivalent to a
simple semion topological order. The semion topological
order can also be revealed by integrating out a1 and a2,
which yields a level-2 CS term for the gauge field a. This
semion topological order with zero Hall conductivity is
one of the states discussed in Ref. 28.

The other state is an QAH-crystal state with Hall con-
ductivity σH = +2. This state can be constructed from
FQAH-crystal by driving the bosonic parton Φ into a
“superfluid” state. In the condensate of Φ, the hole op-
erator c is identified with f , and since f fills two bands
with Chern number +1, this leads to a QAH-crystal state
with Hall conductivity σH = 2. An QAH state without
topological order is possible as we assumed a background
CDW that triples the unit cell.

FIG. 3. A schematic global phase diagram in terms of the
parton construction, tuned by both physics of bosonic par-
ton Φ (vertical direction) and fermionic parton f (horizontal
directions) starting from the FQAH-crystal. We discuss in-
teresting critical theories among the phases shown in Sec. III.

III. QUANTUM PHASE TRANSITIONS

So far, we have constructed five different states cen-
tered around the “2/3” state, in a phase diagram tuned
by mean field physics of the bosonic parton Φ and the
fermionic parton f . These states can also be equally
well constructed through other formalisms, including the
composite fermions and flux attachment. In this sec-
tion, we discuss the quantum phase transitions between
these states. Here we stress that the FQAH state we
start with is in fact a FQAH-crystal, while the starting
point of Ref. 28 was a FQAH state without spontaneous
translation symmetry breaking. Hence different proxi-
mate phases and phase transitions are obtained in these
two papers. For example, in our current case the most
natural σH = 0 insulator state next to the σH = −2/3
state is a trivial insulator with CDW, while in Ref. 28
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the σH = 0 state has a topological order that would lead
to nontrivial thermal Hall signal.

A. σH = −2/3 → 0 transition

To drive a transition between the FQAH-crystal state
with σH = −2/3 and a trivial CDW insulator with
σH = 0, we can keep the bosonic parton Φ in the
ν = −1/2 state unchanged, and only change the total
Chern number of the fermionic parton bands from C = 2
to C = 0, which can be realized by changing one of the
occupied bands from C = +1 to C = −1. If there is a di-
rect transition between these two states, it must involve
two Dirac fermions at low energy. The complete critical
theory reads:

L1−2 =
∑
i=1,2

ψ̄iγ · (i∂ − a)ψi +mψ̄ψ +
1

2π
ad(α− b)

+
1

4π
αdα− 2

4π
bdb+

1

2π
Adb, (9)

where α, b are the dual fields associated with the filled
C = 1 band of f (hence the U(1)1 for α) and the boson
Φ currents, respectively. Two Dirac fermions must exist
at low energy at the transition for one f -band to change
from C = 1 (m > 0) to C = −1 (m < 0).

The theory Eq. 9 can be simplified at the cost of losing
the proper quantization of the CS terms. Integrating out
α generates −1/(4π)ada.and integrating out b generates
1/(8π)(A−a)d(A−a). The simplified theory then reads:

L2;− 1
2

=
∑
i=1,2

ψ̄iγ · (i∂ − a)ψi +mψ̄ψ − 1

8π
ada

− 1

4π
adA+

1

8π
AdA.

We use the notation LNf ;k to label the QED Lagrangian
with Nf flavors of Dirac fermions and a Chern-Simons
term at level k.
The degeneracy of the two Dirac fermions can be guar-

anteed by extra discrete space-time symmetries. In the
absence of displacement field, the entire homobilayer
twisted TMD moiré system has a C2y symmetry, a two-
fold rotation along the vertical axis in Fig. 1, as well
as a time-reversal symmetry T . Both symmetries ex-
change the two valleys. Hence, each valley of the system
holds a composite symmetry of C2yT . This composite
symmetry sends (kx, ky) → (kx,−ky). The degeneracy
of the two Dirac fermions that is needed for a direct
“σH = −2/3 → σH = 0” transition in our set-up depends
on the type of CDW order. For example, if the CDW
is a stripe order along the y direction with modulation
along the x direction as shown in Fig. 2, the two Dirac
points could still be located at (kx,−ky) and (kx,−ky)
points of the BZ, and their degeneracy is still protected
by the C2yT symmetry. In contrast, if there is a

√
3×

√
3

CDW order with C3 symmetry shown in fig 1, there is no
scenario where C3, C2yT together protect two and only

two degenerate Dirac cones. Here we note that an out-
of-plane displacement field in principle breaks the C2y

symmetry as it exchanges the two layers, hence under a
displacement field the transition may split into two.
Although the microscopic symmetry C2y of the system

may be broken by a displacement field, extra effective
symmetries may still exist in the physics of the moire
minibands. For example, there is an extra discrete sym-
metry of the Hamiltonian that describes one valley of
the system8, which is a composite of Rx : y → −y, and a
“time-reversal” that acts on this one-valley Hamiltonian.
This symmetry still exists with the presence of the dis-
placement field. If this symmetry is a good approximate
symmetry of the moire miniband, it can also protect the
degeneracy of two Dirac points and a direct transition of
changing Chern number by 2, as was observed in model
studies in Ref. 8 and 20.
An alternative description for the same transition from

the σH = −2/3 state to the σH = 0 state can be con-
structed using the “electron-hole picture”: The σH =
−2/3 state can be viewed as a composition of holes at
the ν = −1 IQH state, and electrons in the Laughlin
ν = 1/3 state. To drive a transition to the σH = 0 state
we need a transition of the electrons from the ν = 1/3
state to the ν = 1 IQH state. The critical theory reads:

L1−2;eh =
∑
i=1,2

ψ̄γ · (i∂ − a)ψ +mψ̄ψ − 1

2π
adβ

+
2

4π
βdβ +

1

2π
Adβ +

1

4π
AdA, (10)

The last term + 1
4πAdA accounts for the hole ν = −1

state that stays unchanged throughout the transition.
The rest of the Lagrangian describes the transition of
the electrons from the ν = 1/3 state to a ν = 1 IQH
state. When the 2 Dirac cones are gapped out by a mass,
integrating out the ψ’s give

Lm =
−sgn(m)

4π
ada− 1

2π
adβ +

2

4π
βdβ

+
1

2π
Adβ +

1

4π
AdA. (11)

It is straightforward to verify that form > 0 (m < 0), the
theory describes states with Hall responses σH = −2/3
(σH = 0) respectively. Starting with Eq. 10, the theory
simplifies again to L2;− 1

2
after integrating out β.

B. σH = −2/3 → −1 transition

From the parton picture, this transition involves
changing a fermion f ’s state from integer quantum Hall
state with ν = +1 to ν = 0. This transition can be de-
scribed by QED with one Dirac fermion in the infrared,
the critical theory reads:

L1−3 = ψ̄γ · (i∂ − a)ψ +mψ̄ψ − 1

8π
ada+

1

2π
ad(α− b)
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+
1

4π
αdα− 2

4π
bdb+

1

2π
Adb, (12)

We have added − 1
8πada to properly regularize a sin-

gle Dirac cone, which arises from another massive Dirac
fermion which must exist in the same band as ψ. Here,
the single Dirac fermion is written in the convention that,
by changing the sign of m, ψ would generate a level ±1/2
CS term for a. Integrating out b, α, we obtain a simpli-
fied theory (again at the cost of not properly quantizing
the CS term)

L1;−1 = ψ̄γ · (i∂ − a)ψ +mψ̄ψ − 1

4π
ada

+
1

8π
AdA− 1

4π
adA.

Similarly, when the Dirac cone is gapped out by a pos-
itive mass term mψ̄ψ, integrating out the ψ’s give

Lm>0 = − 3

8π
ada+

1

8π
AdA− 1

4π
adA, (13)

which generates Hall conductivity σH = −2/3. While
m < 0 one has

Lm<0 = − 1

8π
ada+

1

8π
AdA− 1

4π
adA, (14)

and integrates out a leaves 1
4πAdA, describing a state

with σH = −1.
From standard boson-fermion duality37,38 , the critical

theory L1;−1 is dual to

L1;−1 ↔ |(∂ − iβ)ϕ|2 + 1

4π
βdβ +

1

2π
adβ − 1

8π
ada

+
1

8π
AdA− 1

4π
adA.

Here β is another gauge field that couples to the dual
bosonic field ϕ. One could verify that the massive and
condensed phase of ϕ corresponds to Lm>(<)0 respec-
tively, yielding σH = −2/3,−1. One can also directly
perform the duality transformation from Eq. 12.

Integrating a in the dual bosonic theory leaves

L1;−1 ↔ |(∂ − iβ)ϕ|2 + 3

4π
βdβ − 1

2π
βdA+

1

4π
AdA.

(15)

This Chern-Simons-matter theory with ϕ coupled to a
U(1) gauge field with a CS term with level-3 is the stan-
dard theory that describes a transition between a trivial
insulator and a fractional quantum Hall state with three-
fold topological degeneracy49. Combined with the last
term 1

4πAdA which corresponds to an extra ν = −1 IQH
layer, the theory describes a transition between states
with σH = −2/3 and σH = −1. This FQAH-crystal to
QAH-crystal transition also admits another description
in terms of bosonic partons, which is a modified version of
the FQAH to QAH+CDW transition discussed in Ref.28
driven by the condensation of 3 ‘vortex’ fields coupled to
a U(1)3 Chern-Simons term. It is worth noting that this
modified vortex condensation theory takes the same form
as Eq. 15.50

C. σH = −2/3 → +2 transition

Another potentially direct transition is between state
1 and 5, i.e. a transition from a FQAH-crystal state with
σH = −2/3 to an QAH-crystal state with σH = +2. In
the parton construction, this requires changing the state
of Φ from a ν = −1/2 Laughlin state to a “superfluid”
state. This transition of Φ was discussed in Ref. 47 and
51, and it is described by a QED with two flavors of Dirac
fermions and a CS term at level −1. In our notation, the
critical theory of Φ is described by a Lagrangian L2;−1,
and the Dirac fermions are charges of the gauge field b, i.e.
the dual of the current of Φ. To describe the transition
between states 1 and 5, we need to couple b to several
other gauge fields a, ai as in Eq. (1). After integrating
out the a and ai, we arrive at the critical theory between
state 1 and 5:

L1−5 = L̃2;−1/2 =∑
i=1,2

χ̄iγ · (i∂ − b)χi +mχ̄χ− 1

8π
bdb+

1

2π
Adb.(16)

We note that here the Dirac fermion χi is different from
the fermions in the previous sections, as it is charged
under b(hence the critical theory L̃2,−1/2 is different from
L2;−1/2 in Eq. (10) with different charge assignment).
The degeneracy of two Dirac cones is again protected by
C2yT in a stripe order.
Integrating out the fermion χi, we obtain the following

action

Lm = − sgn(m)

4π
bdb− 1

8π
bdb+

1

2π
Adb. (17)

It is straightforward to verify that, for m > 0 (m < 0),
the final Hall conductivity is σH = −2/3 (σH = +2).

D. Transitions involving quantum thermal Hall
insulator

Ref. 28 proposed a proximate insulating phase of the
σH = −2/3 FQAH state to be one with vanishing Hall
response and a neutral topological order (TO) described
by the U(1)2 CS terms. In the current framework, this
state could be obtained by putting the bosonic parton
Φ in a Mott insulator state. Formally, this amounts to
eliminating the dual b of the boson current, i.e. setting
b = 0, in the construction of the 2/3 state in Eq. (1).
Physically, it means that the bosonic sectors are trivially
gapped in the low energy. Integrating out a then sets
a1 = a2, and one gets a U(1)2 CS coupling of an inter-
nal gauge field, describing the neutral TO, signified by a
quantized thermal hall response nevertheless.
The transition from quantum thermal Hall insulator to

σH = −2/3 FQAH-crystal or σH = +2 QAH-crystal, can
hence be obtained by tuning the Φ out of the Mott phase
to a Laughlin −1/2 state (for state 1), or a superfluid
(for state 5), respectively.
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The Mott to Laughlin −1/2 transition is realized by
condensing the “vortices” of the bosonic partonsin the
Laughlin −1/2 state28. The critical theory describing
the transition from state 1 to state 4 hence reads

L1−4 = |(∂ − ib)Φv|2 −
2

4π
bdb+

1

2π
Adb

1

2π
ad(b− a1 − a2) +

∑
i=1,2

1

4π
aidai. (18)

The first term describes the condensation of the vortices
Φv, which is indicated by its coupling to b, whose flux
equals the boson density. As Φv condenses, the field b
acquires a gap and could be ignored. Hence, one arrives
at the quantum thermal Hall insulator with σH = 0. An
insulator phase of Φv just leaves the Lagrangian for the
2/3 state Eq. (1). A similar transition was discussed in
ref 28, albeit with 3 vortex fields enforced by fractional
filling 2/3.

The transition from quantum thermal Hall insulator
to QAH-crystal with σH = +2 is given by the standard
boson Mott-superfluid transition,

L4−5 = |(∂ − ia− iA)Φ|2 − 1

2π
ad(a1 + a2) +

∑
i=1,2

1

4π
aidai.

(19)

When Φ is gapped, the remaining last 2 terms describes
the neutral topological order. The condensation of Φ
sets a = −A, and the CS terms of ai’s then give a Hall
conductivity σH = 2.

IV. SUMMARY

In this work we discussed the phase diagram centered
around a FQAH-crystal state with σH = −2/3 state
at filling −2/3, motivated by recent experiments.Various
phases and phase transitions can be obtained by tuning
the physics of the bosonic and fermionic partons, includ-
ing a direct transition between the σH = −2/3 state and
a trivial insulating state with σH = 0 observed in recent

experiments. Interestingly, we also find a direct transi-
tion between the σH = −2/3 FQAH state and a σH = −1
QAH state.
Our formalism and conclusions can easily be general-

ized to other FQAH states. For example, if the bosonic
parton Φ forms a ν = −1/p Laughlin state (with even in-
teger p), and the fermionic parton (or composite fermion)
f fills Chern bands with total Chern number Ccf , we
would end up with an FQAH state with Hall conductiv-
ity

σH =
Ccf

1− pCcf
. (20)

In particular, when p = −2, Ccf = 1, i.e. the compos-
ite fermions fill a Chern band with Ccf = 1, one con-
structs a Laughlin state with σH = 1/3. When the CFs
go through a transition from Ccf = 1 → 0, the elec-
tronic state transitions from σH = 1/3 → 0. The critical
theory is similar to that of σH = −2/3 → −1 with the
Lagrangian L1;−1 in Eq. (13), with an only difference of
an integer quantum hall layer described by −1/(4π)AdA.
The critical theory for the transition hence reads

L1/3→0 = L1;−1 −
1

4π
AdA. (21)

More states and phase transitions can be constructed
by changing the “mean field states” of Φ and f . This gen-
eral construction will be useful to understand the growing
number of FQAH states7 observed in this rapidly devel-
oping field.
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