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Besides its original spin representation, the Ising model is known to have the Fortuin-Kasteleyn
(FK) bond and loop representations, of which the former was recently shown to exhibit two upper
critical dimensions (dc = 4, dp = 6). Using a lifted worm algorithm, we determine the critical
coupling as Kc = 0.077 708 91(4) for d = 7, which significantly improves over the previous results,
and then study critical geometric properties of the loop-Ising clusters on tori for spatial dimensions
d = 5 to 7. We show that, as the spin representation, the loop Ising model has only one upper
critical dimension at dc = 4. However, sophisticated finite-size scaling (FSS) behaviors, like two
length scales, two configuration sectors and two scaling windows, still exist as the interplay effect
of the Gaussian fixed point and complete-graph asymptotics. Moreover, using the Loop-Cluster
algorithm, we provide an intuitive understanding of the emergence of the percolation-like upper
critical dimension dp = 6 in the FK-Ising model. As a consequence, a unified physical picture is
established for the FSS behaviors in all the three representations of the Ising model above dc = 4.

I. INTRODUCTION

The Ising model is one of the most important models
in statistical physics and has wide applications in almost
every branch of modern physics [1, 2]. Given a lattice
G = (V,E) with the vertex set V and edge set E, the
partition function of the ferromagnetic Ising model with
zero field can be written as

Zspin =
∑

s∈{−1,1}V

eK
∑

ij∈E sisj , (1)

where si = ±1 represents spin orientation up or down
on vertex i, and the coupling strength K > 0 is pro-
portional to the inverse temperature. For the Ising
model, there is an upper critical dimension dc = 4, above
which the critical behavior is governed by the mean-
field theory. Two typical approaches of the mean-field
solution are the Gaussian fixed point (GFP) solution
and the complete graph (CG) solution. The GFP so-
lution is well established in the framework of renormal-
ization group (RG) theory, and gives the RG exponents
as (yt, yh) = (2, 1+d/2) [3]. The CG is a fully connected
and finite graph with all vertexes adjacent to each other.
It focuses on finite-size scaling (FSS) behavior and gives
effective RG exponents (y∗t , y

∗
h) = (d/2, 3d/4) [4].

Besides the spin representation, the Ising model
can be reformulated in geometric representations via
high-temperature expansion techniques, including the
Fortuin-Kasteleyn (FK) bond representation [5] and loop
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representation (also known as the random-current repre-
sentation) [6]. The FK representation of the Ising model
is the q = 2 case of the general q-state random cluster
model which is defined as follows. Given a graph (V,E),
each edge is either empty or occupied by a bond. Each
occupied bond has a statistical weight (relative to the
empty one) as v, and the fugacity of each connected com-
ponent (also called cluster) is q. The partition function
of the random cluster model then reads as

ZFK =
∑
A⊆E

qk(A)v|A|, (2)

where k(A) is the number of clusters and |A| is the num-
ber of bonds. For q = 2, the bond weight v = e2K − 1.
The partition function of the loop representation of the
Ising model is

ZLoop =
∑
A⊆E

(tanhK)|A|
1(A is even) . (3)

Thus, in the loop representation, the weight of an oc-
cupied bond is tanhK. The indicator function above
means that all vertices on (V,A) must have even de-
gree. These two graphical models can be mapped onto
each other through the Loop-Cluster(LC) joint model [7].
This means FK configurations can be generated by plac-
ing bonds with probability tanhK onto the empty edges
of loop configurations; and this process is called the LC
transformation.
Geometric representations of the Ising model offer sev-

eral advantages. Firstly, they provide a platform for de-
signing efficient Monte Carlo (MC) algorithms, such as
the worm algorithm based on the loop representation [8],
the Swendsen-Wang algorithm utilizing the FK repre-
sentation [9], and the LC algorithm derived from the
LC joint model [7]. These algorithms enhance compu-
tational efficiency and facilitate simulations of the Ising
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d Two length scales The vanishing special sector Two scaling windows

FK
representation

4 < d < 6 Giant cluster: C1 ∼ Ly∗
h ∼ R

y∗
h

1

Other clusters: s ∼ Ryh , n(s, L) ∼ s−(1+d/yh)

Vanishing rate: P ∼ Lyh−y∗
h

In the sector: s ∼ Ryh

Width: O(L−y∗
t )

O(L−yt )

d ≥ 6
Giant cluster: C1 ∼ Ly∗

h ∼ R
9/2
1

Other clusters: s ∼ R4, n(s, L) ∼ s−(1+d/y∗
h,p)

Vanishing rate: P ∼ Ly∗
h,p−y∗

h

In the sector: s ∼ R4

Width: O(L−y∗
t ){

O(L−y∗
t,p )

O(L−yt )

Loop
representation

d > 4
Giant clusters: n(s, L) ∼ L−ds−1

F1,2 ∼ Ly∗
t ∼ Ryt

1,2

Other clusters: n(s, L) ∼ s−(1+d/yt)

Vanishing rate: P ∼ Lyh−y∗
h

In the sector: F1,2 ∼ Lyt ∼ Ryt
1,2

Width: O(L−y∗
t )

O(L−yt )

Values of
RG exponents

(yt, yh) = (2, 1 + d/2), (y∗
t , y

∗
h) = (d/2, 3d/4), (y∗

t,p, y
∗
h,p) = (d/3, 2d/3)

TABLE I. Summaries of the two-length-scale behavior, two configuration sectors, and two scaling windows of the Ising model
in the FK representation and loop representation on high-d tori. The GFP exponents for the Ising model and percolation are
(yt, yh) = (2, 1 + d/2). The RG exponents for the CG Ising model are (y∗

t , y
∗
h) = (d/2, 3d/4) and for the CG percolation model

are (y∗
t,p, y

∗
h,p) = (d/3, 2d/3). On high-d tori (d ≥ 6), the thermodynamic fractal dimension of critical percolation clusters is

df = 4. We denote s and R for the size and radius of gyration for a generic cluster, C1, Fi for the size of the largest FK cluster
and for the ith-largest loop cluster, R1, R2 for the radius of gyration of the largest and second largest FK or loop clusters. The
Giant cluster(s) represents the largest FK cluster and loop clusters with size of order Ly∗

t for the FK and loop representations,
respectively. We denote n(s, L) the cluster-number density. For the both FK and loop representations, there is a special sector
in the configuration space, the proportion (denote as P ) of which vanishes asymptotically. For d ≥ 6, the FK Ising model
has a CG-Ising scaling window and a high-d percolation scaling window; the latter consists of a CG-percolation window and a
GFP-percolation window. These novel properties suggest that, the FK Ising model has two upper critical dimensions (4 and
6), while the loop Ising model has only one upper critical dimension 4.

model. Secondly, geometric representations play a sig-
nificant role in conformal field theory [10] and stochas-
tic Loewner evolution [11, 12], enabling a deeper under-
standing of the spin Ising model. Notably, using the
random-current representation, it was proved that the
three-dimensional (3D) Ising model exhibits a continu-
ous phase transition [13].

Recently, based on theoretical intuition and numeri-
cal results, the authors in Refs. [14, 15] argued that the
FK Ising model has two upper critical dimensions dc =
4 and dp = 6, depending on which quantities to be con-
sidered. They further found, as long as d > 4, the FK
Ising model exhibits two-length-scale behavior, two con-
figuration sectors, and two scaling windows. The scaling
behaviors are simultaneously governed by the CG asymp-
totics and the GFP asymptotics for 4 < d < 6, but with
the GFP asymptotics replaced by the high-dimensional
(high-d) percolation behavior for d ≥ 6, as summarized
in Table I. This finding significantly enriches the under-
standing to the Ising model from a geometric perspective.
Thus, one natural question is whether one can observe
two upper critical dimensions in the loop Ising model,
and whether the loop Ising model exhibits similar rich
phenomena as the FK Ising model.

Before discussing the loop Ising model on tori, we first
review known results on the CG, since it is believed that
the scaling behaviors on high-d tori follow the CG asymp-
totics. In Ref. [16], it was numerically found that, in
contrast to the FK Ising model, the novel properties like

the two-length-scale behavior, two configuration sectors,
and two scaling windows cannot be explicitly observed
in the loop Ising model on the CG. The sizes of the
first- and second-largest loop clusters scale similarly as
F1, F2 ∼ V 1/2 at the critical point Kc = 1/V . The clus-
ter number density n(s, V ) was observed to behave as

n(s, V ) ≍ 1

2
V −1 s−1ñ(s/

√
V ), (4)

where the scaling function ñ(x → 0) = 1. It fol-
lows that the total number of loop clusters Nk =
V
∫
n(s, V )ds ≍ 1

4 lnV , which is confirmed numerically.
Further, they found loop configurations are asymptoti-
cally empty (bond density tends to 0 as V → ∞), and
after the LC transformation, many large loop clusters are
merged together to form the largest FK cluster. Com-
bining with the fact tanhKc ∼ 1/V , which is the critical
point of bond percolation on the CG, thus one can see
that other FK clusters are basically generated by placing
bonds onto an almost empty graph, which is a critical
percolation process. This explains perfectly the percola-
tion effects observed in the FK Ising model [17].
In this work, we employ the lifted worm algorithm [18]

to simulate the loop Ising model on high-d tori from d = 5
to 7. We find there are also two-length-scale behavior,
two configuration sectors, and two scaling windows for
the loop Ising model, while it only has one upper critical
dimension dc = 4. The main results are summarized in
Table I.
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In Ref. [15], it was observed that, for the 7D FK Ising
model, some quantities suffer unusually strong finite-size
corrections at the estimated critical point, and this may
be attributed to the insufficient precision of the estimate
of the critical point. Thus, we first simulate the 7D loop
Ising model and obtain a more precise estimate Kc =
0.077 708 91(4) through a systematic FSS analysis, which
improves over the previous best estimate 0.077 708 6(8)
by 20 times.

At criticality, we first study the sizes of the largest-
and second-largest loop clusters, F1 and F2. The finite-
size fractal dimensions (dl1, dl2) and the thermodynamic
fractal dimensions (df1, df2) are defined via F1 ∼ Ldl1 ∼
Rdf1

1 and F2 ∼ Ldl2 ∼ Rdf2
2 , where R1 and R2 are the

unwrapped radii of gyration for the two clusters. We
numerically find that dl1 = dl2 = d/2, following the CG
asymptotics V 1/2 by matching the volume V = Ld, and
df1 = df2 = 2 = yt, following the GFP asymptotics.
Thus, in contrast to the FK Ising model, the two largest
clusters in the loop Ising model exhibit the same scaling
behavior. For other loop clusters, our data suggest that
the scaling s ∼ R2 also holds. In addition, it follows
directly from the scaling of fractal dimensions thatR1,2 ∼
Ld/4, which means that loop clusters wind around the
torus extensively for d > 4. This is also different from
the FK Ising model, in which the extensive winding does
not happen until d > 6. Namely, in terms of winding, 6
is a special dimension for the FK Ising model but not for
the loop Ising model.

We then investigate the cluster-number density n(s, L)
of the loop Ising model, and our data suggest that for
d > 4, it should be written as

n(s, L) ∼ n0s
−(1+d/2)ñ0(s/L

2) + n1s
−1L−dñ1(s/L

d/2).
(5)

Here, ñ0(x) and ñ1(x) are the scaling functions, and
n0, n1 are two constants. Clearly, two length scales can
be observed from n(s, L). For loop clusters with size
s ≤ O(L2), n(s, L) ∼ s−τ with the Fisher exponent
τ = 1 + d/df and df = 2 from the GFP asymptotics,
while for large loop clusters with size s ≥ O(L2), n(s, L)
follows the CG behavior shown in Eq. (4). Since the
scaling s ∼ R2 holds for all loop clusters, the two length
scales can also be interpreted as whether the radius of
a cluster exceeds the system size L (spanning or not).
The number of spanning clusters Ns can be obtained as
Ns ∼ Ld

∫
L2 n(s, L)ds ∼ lnL.

The FK Ising model on tori above 4D was found to
have a special sector in the configuration space, in which
quantities exhibit the GFP behavior for 4 < d < 6 and
the high-d percolation behavior for d ≥ 6 [15, 17]. For
the loop Ising model, our data suggest that there also ex-
ists a special configuration sector which consists of loop
configurations with the size of the largest loop cluster
less than L2. This sector exhibits the GFP behavior,
and vanishes asymptotically with the rate L1−d/4 for all
d > 4. Moreover, we argue that, similar to the spin rep-
resentation, the Ising model in the loop representation

also has two scaling windows near the critical point; the
narrow one is the CG-Ising window with width O(L−d/2)
and the wide one is the GFP window with width O(L−2).
In the CG-Ising scaling windows, all quantities have the
same scaling behaviors as it at the critical point. While
in the GFP scaling window, the CG asymptotics of quan-
tities are absent. For example, the average value of the
first- and second-largest clusters F1 ∼ F2 ∼ R2

1,2 ∼ L2,
and the cluster number density n(s, L) only has the first
term in the RHS of Eq. (5).
From above, although there are also two-length-scale

behavior, two configuration sectors and two scaling win-
dows in the loop Ising model on high-d tori, unlike the
FK Ising model, dp = 6 is not a special dimension for the
loop Ising model. Specifically, the loop Ising model has
only one upper critical dimension dc = 4, same as the
spin Ising model. However, since the FK and loop Ising
models are connected via the LC joint model, one would
wonder why the FK Ising model has two upper critical
dimensions dc = 4 and dp = 6, and especially, why there
emerges percolation behavior above 6D. From the LC
algorithm, an FK bond configuration can be generated
by placing bonds with probability tanhK on the empty
edges of a loop configuration. Our data show that, af-
ter placing bonds, the loop clusters with sizes larger than
O(L2) are merged together and form the largest FK clus-
ter. This explains why in the FK Ising model, the largest
cluster is much larger than other clusters. For dimensions
d > 6, after large loop clusters are connected after plac-
ing bonds, other loop clusters are relatively small, and
thus the bond placing process is like a percolation pro-
cess and generates a large amount of FK clusters with no
loop clusters involved in, which explains why above 6D
the FK clusters, except the largest one, exhibit high-d
percolation behavior.
The remainder of this paper is organized as follows. In

Sec. II, the simulation details and sampled quantities are
described. Section III presents our numerical results.
Finally, we sum up these results and provide a unified
understanding to the scaling behaviors of the high-d Ising
model in three representations in Sec. IV.

II. SIMULATION AND OBSERVABLE

A. Algorithm

In this section, we introduce the algorithms used in this
work. We first employ the lifted worm algorithm [18] to
generate the loop configurations. Given a loop config-
uration, we use the LC algorithm [7] to generate a FK
bond configuration, i.e., independently place bonds on
the empty edges with probability tanhK.
The worm algorithm is a type of Metropolis algorithm,

which can efficiently update loop configurations via local
moves. Given a loop configuration, a worm is located at
a uniformly chosen vertex. Then, the worm tail is fixed
at the vertex and the worm head performs a random walk
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on the lattice. At each step, the worm head proposes to
walk through a uniformly chosen adjacent edge. If the
edge is empty (not occupied by a bond), the proposal is
accepted with probability tanhK, and the edge becomes
occupied after the worm head walks past. If the edge
is occupied, the proposal is accepted with probability 1
and the edge becomes unoccupied after the worm head
walks through. It can be seen that if the head and tail
are not on the same vertex, the bond configuration is not
a loop configuration since the worm head and tail have
odd degrees. Once the worm head hits the tail, a loop
configuration is obtained.

In Ref. [18], the authors proposed a lifted worm al-
gorithm which is an irreversible Markov process. The
idea of the lifted worm algorithm is to introduce an aux-
iliary variable λ ∈ {+,−}. When λ = +(−), only the
proposal of adding (removing) a bond is allowed. The
parameter λ flips whenever the proposal is rejected. It
was shown in Ref. [18] that the lifted worm algorithm
is generally more efficient than the standard worm algo-
rithm, especially in high dimensions and on the complete
graph. According to Ref. [18], as the spatial dimension
increases, the improving factor of the irreversible algo-
rithm over the standard worm algorithm increases. The
integrated correlation time of the lifted worm algorithm
(in unit of sweep) is already smaller than one sweep, and
exhibits critical speeding-up on the complete graph–i.e.,
τint ∼ 1/

√
V with V the total number of vertices.

B. Sample quantities

We simulate the Ising model on high-d tori with d =
5, 6, 7. The critical points Kc, the largest system volume
Vmax, and the number of independent samples Nsam are
summarized in Table II. For each system, the following
observables are sampled:

(a) The indicator Pm = 1 when the worm head hits
the worm tail, i.e., a loop configuration is obtained,
otherwise Pm = 0;

(b) The sizes of the first- and second-largest loop clus-
ters denoted as F1 and F2;

(c) The number of loop clusters N (s) with size s, de-
fined as the number of loop clusters with size in

d Kc Vmax Nsam

5 0.113 915 0(4) [19] 325 ≈ 107 6× 105

6 0.092 298 2(3) [20] 206 ≈ 108 3× 105

7 0.077 708 91(4)
(this work)

187 ≈ 109 3× 105

TABLE II. The critical points Kc and the largest simulated
system volume Vmax for d = 5, 6, 7. For each system, no less
than Nsam independent samples are generated.

[s, s + ∆s) with an appropriately chosen interval
size ∆s;

(d) For a loop cluster F , its unwrapped radius of gyra-
tion R(F ) is defined as

R(F ) =

√∑
u∈F

(xu − x̄)2

|F |
,

where x̄ =
∑

u∈F xu/|F |. Here xu ∈ Zd is defined
algorithmically as follows. First, choose the vertex,
say, o, in F with the smallest vertex label according
to some fixed but arbitrary labeling. Set xo = 0.
Start from the vertex o, and search through the
cluster F using breadth-first growth. Iteratively
set xv = xu + ei(−ei) if the vertex v is traversed
from u along (against) the ith direction, where ei is
the unit vector in the ith direction. The radii of the
largest and the second-largest clusters are denoted
as R1 and R2;

(e) The largest unwrapped extension for each cluster in
the first coordinate direction U = maxu,v∈F (xu −
xv)1;

(f) The average radius of gyration for loop clusters
with size in [s, s+∆s)

R(s) =

∑
F :|F |∈[s+∆s) R(F )

N (s)
;

(g) The number of spanning loop clusters Ns. A loop
cluster F is spanning if U(F ) ≥ L. We also sample
N1 and N2, which are the number of loop clusters
with size larger than L2 and 2L2, respectively.

(h) The total mass of large loop clusters SL2 =∑
F :|F |≥L2 |F |;

(i) The indicator P = 1 when F1 ≤ L2 is satisfied,
otherwise P = 0.

From these observables, we can measure the following
ensemble averages ⟨·⟩:

(a) The returning probability Pm = ⟨Pm⟩;

(b) The mean sizes of the largest and the second-largest
loop clusters F1 = ⟨F1⟩, F2 = ⟨F2⟩;

(c) The radius of gyration R(s) = ⟨R(s)⟩ with given
cluster size s. The mean radius of gyration of the
largest and the second-largest loop clusters R1 =
⟨R1⟩, R2 = ⟨R2⟩;

(d) The mean number of spanning loop clusters Ns =
⟨Ns⟩, and Nm = ⟨Nm⟩ with m ∈ {1, 2};

(e) The cluster-number density n(s, L) = 1
Ld∆s

⟨N (s)⟩;

(f) The probability of the configurations satisfying
F1 ≤ L2 denoted as P = ⟨P⟩.
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In addition to sample quantities in the loop configura-
tions, we also sample the FK clusters. Denote SC1

the
total size of large loops (with size ≥ L2) that enters the
largest FK cluster C1, i.e., SC1

=
∑

F :F⊂C1,|F |≥L2 |F |.
We are interested in nf :=

⟨SC1
⟩

⟨SL2 ⟩ , which is the fraction of

vertices in the large loop clusters merged into the largest
FK cluster, after the LC transformation.

III. RESULTS

A. Estimate of the critical point for d = 7

We first estimate the critical point Kc for the 7D Ising
model by studying the FSS behavior of the returning
probability Pm, which is expected to suffer from weaker
finite-size corrections. For the worm algorithm, Pm is
identical to the reciprocal of the susceptibility, i.e., Pm =
1/χ [21]. Since χ ∼ Ld/2 [22, 23] above 4D, it follows that
Pm ∼ L−d/2.

In Fig. 1, we plot the rescaled returning probability
PmL7/2 versus the coupling strength K with various sys-
tem sizes. We find data from each studied system in-
tersects around K = 0.077 708 9, which slightly deviates
from the previous estimate Kc = 0.077 708 6. The inset
zooms into this region and clearly shows this deviation.

To systematically estimate the critical point Kc, we
perform least-squares fits of the MC data for the return-
ing probability Pm via the ansatz

PmL7/2 =

m∑
k=0

qk [(Kc −K)Lyt ]
k
+ b1L

y1

+ b2L
y2 + c1(Kc −K)Lyt+y1 , (6)

0.60

0.70

0.80

0.90

0.0777006 0.0777046 0.0777086 0.0777126 0.0777166

P
m

 L
7/

2

K

L = 8
L = 10
L = 12
L = 14
L = 16
L = 18

0.71

0.73

0.75

0.77

0.0777086 0.0777089

FIG. 1. Plot of the rescaled returning probability PmL7/2

of the 7D Ising model near the critical point and for various
system sizes. The solid vertical line indicates the central value
of the new estimate of Kc = 0.077 708 91(4), while the dashed
vertical line is the central value of the previous estimate of
Kc = 0.077 708 6(8). The inset clearly shows that our new
estimate has higher precision.

Lmin yt Kc q0 q1 q2 χ2/DF
10 3.51(1) 0.077 708 906(5) 0.712 1(3) 6.6(2) 16(3) 19/15
12 3.51(3) 0.077 708 907(7) 0.711 8(5) 6.6(5) 18(5) 17/11
14 3.51(7) 0.077 708 92(1) 0.710(1) 6(1) 17(8) 11/7
10 7/2 0.077 708 906(4) 0.712 1(3) 6.74(2) 17(2) 19/16
12 7/2 0.077 708 907(7) 0.711 8(5) 6.73(4) 19(3) 17/12
14 7/2 0.077 708 92(1) 0.710(1) 6.73(6) 18(3) 11/8

TABLE III. Fitting results for the returning probability Pm

using the ansatz Eq. (6) with m = 2, and b1, b2, c1 = 0.

wherem is the highest order we keep in the fitting ansatz,
yt is the thermal scaling exponent, and y2 < y1 < 0 are
finite-size correction exponents. The last term accounts
for the crossing effect between the corrections and scaling
variables.
As a precaution against correction-to-scaling terms

that we missed including in the fitting ansatz, we impose
a lower cutoff L ≥ Lmin on the data points admitted in
the fit and systematically study the effect on the residu-
als χ2 value by increasing Lmin. In general, the preferred
fit for any given ansatz corresponds to the smallest Lmin

for which the goodness of the fit is reasonable and for
which subsequent increases in Lmin do not cause the χ2

value to drop by vastly more than one unit per degree
of freedom. In practice, by “reasonable” we mean that
χ2/DF ≈ 1, where DF is the number of degrees of free-
dom. The systematic error is estimated by comparing
estimates from various sensible fitting ansatz.

Firstly, we try to fit by setting m = 2 and leav-
ing all other parameters free, but it gives unstable re-
sults. Then, by fixing b1, b2, c1 = 0, the fitting shows
that χ2/DF ≈ 1 when Lmin = 10 and gives Kc =
0.077 708 906(5) and yt = 3.51(1), consistent with the
expected value 7/2. This implies that finite-size correc-
tions for Pm are indeed quite weak. Including higher
order terms to Eq. (6) gives that the coefficients qk are

0.70

0.80

0.90

-0.010 0.000 0.010 0.020 0.030

P
m

 L
7/

2

(Kc - K)L7/2

L = 8
L = 10
L = 12
L = 14
L = 16
L = 18

 8  10  12  14  16  18

0.70

0.71

0.72

P
m

 L
7/

2

L

FIG. 2. Plot of PmL7/2 versus (Kc − K)L7/2 to show the
scaling function. The black curve corresponds to our preferred
fit of the Pm data to the ansatz Eq. (6). The inset shows, at

the estimated Kc, the data of PmL7/2 converge to a constant,
which supports the accurancy of our estimate of Kc.
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consistent with zero when k ≥ 3. Thus, in the following,
we fix yt = 7/2 and m = 2.

We then perform the fits by leaving b1, b2, y1, y2
free, and again it fails to produce stable fits. Fix-
ing y1 = −1, y2 = −2 or y1 = −2, y2 = −3 pro-
duce consistent estimates of Kc = 0.077 708 94(3) and
Kc = 0.077 708 94(2), respectively. In all scenarios above,
including the crossing-effect term to the ansatz shows
that c1 is consistent with zero, and its effect on the es-
timates of other parameters is negligible. Fitting results
without any correction terms are shown in Table III. By
comparing estimates from various ansatz, we conclude
that Kc = 0.077 708 91(4). Figure 2 shows the data of
PmL7/2 versus the scaling variable (K−Kc)L

7/2, and all
data collapse nicely onto the curve which corresponds to
our preferred fitting to the ansatz Eq. (6). Furthermore,
the inset displays PmL7/2 versus L at our estimated Kc,
which converges to a constant as L increases. This is
consistent with the expected scaling Pm ∼ L−7/2 at the
critical point.

B. The fractal dimensions of loop clusters

In this section, we study the fractal dimensions of
loop clusters for d = 5, 6, 7. Inspired by the FK
Ising model [15], we consider the finite-size fractal di-
mensions (dl1, dl2) and the thermodynamic fractal di-
mensions (df1, df2) for the largest and the second-largest

loop clusters, which are defined as F1 ∼ Ldl1 ∼ Rdf1
1 and

F2 ∼ Ldl2 ∼ Rdf2
2 with the loop cluster sizes F1, F2 and

their unwrapped radii R1, R2.
For the finite-size fractal dimensions, we first recall

that the authors in Ref. [16] found, on the CG, both
the first- and second-largest loop clusters have the same
scaling behavior F1, F2 ∼ V 1/2. By matching V = Ld,
we expect F1, F2 ∼ Ld/2 on high-d tori. In Fig. 3(a), we
plot loop clusters F1 and F2 versus the system volume
Ld. In the log-log scale, both the data of F1 and F2 from
various spatial dimensions collapse onto lines with slope
1/2, which indicates dl1 = dl2 = d/2, following the CG
asymptotic.

As for the thermodynamic fractal dimensions, we con-
sider the unwrapped radii of the largest and the second-
largest clusters R1 and R2. In Fig. 3(b), we plot the
loop clusters F1 and F2 versus their radii in the log-log
scale. Data from various dimensions collapse well onto a
straight line with slope 2, which implies df1 = df2 = 2.
We note that these two exponents are equal to the GFP
exponent yt = 2, which can be understood as follows. In
high dimensions, one can expect that large loop clusters
are mostly self-avoiding polygons (or unicycles), as on the
complete graph [16]. For self-avoiding polygons, which is
in the same universality as the self-avoiding walk, it is
known that for d > 4, the size scales as the square of the
radius of gyration [24]. Thus, the same scaling behavior
is expected for the loops in the loop Ising model.

Since F1, F2 ∼ Ld/2, F1 ∼ R2
1 and F2 ∼ R2

2, we expect
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FIG. 3. The log-log plot of the largest loop cluster F1 and
second-largest loop cluster F2 versus (a) system volume Ld

and (b) their radii R1,2 for d = 5 (blue), d = 6 (green) and
d = 7 (red). It implies the finite-size fractal dimensions dl1 =
dl2 = d/2 and thermodynamic fractal dimensions df1 = df2 =
2.
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FIG. 4. The log-log plot of the radii of the largest and the
second-largest clusters R1 and R2 versus Ld for d = 5 (blue),
d = 6 (green) and d = 7 (red). It implies the scaling behavior

R1, R2 ∼ Ld/4.

R1 ∼ R2 ∼ Ld/4, which is larger than the system size L
for d > dc = 4. In Fig. 4, the plot of cluster sizes F1,
F2 versus their radii R1, R2 collapses well onto straight
lines with slope consistent with 1/4. This scaling be-
havior indicates that large loop clusters wind around the
boundary many times for d > 4. This is different from
the observation in the FK Ising model, in which R1 ∼ L
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for d ≤ 6 and R1 ∼ Ld/6 for d > 6 [15].
We also investigate the thermodynamic fractal dimen-

sions for all loop clusters and plot their sizes s versus
their radii R in Fig. 5. It can be seen that the scaling
s ∼ R2 holds for both small and large loop clusters, with
a crossover happening in between. We argue that the
fractal dimension of all clusters is df = 2, and the scaling
behavior of these medium-size clusters in the crossover
region are due to the boundary effect. Namely, this re-
gion is the crossover between the CG asymptotics for
large clusters and the GFP asymptotics for small clus-
ters, and loops of size O(L2) or smaller start to merge
together and form large loop clusters. Nevertheless, the
power-law dependence of loop-cluster size s on gyration
radius R still satisfies s ∼ R2.

Therefore, for d > 4, the finite-size fractal dimensions
of the first- and the second-largest loop cluster are con-
sistent with d/2, following the CG asymptotics, and the
thermodynamic fractal dimensions of all loop clusters are
consistent with 2, following the GFP asymptotics. From
the perspective of fractal dimensions, dp = 6 is not a
special dimension for the loop Ising model.

C. The cluster-number density

In this section, we study the cluster-number density
n(s, L). In Fig. 6, we plot n(s, L) versus cluster size s
in log-log scale and find it exhibits two scaling behaviors
for each studied spatial dimension, which is similar to
the bridge-free configurations of the high-d percolation
model [25]. For small s, n(s, L) shows a power-law decay
with exponents consistent with−7/2 at 5D,−4 at 6D and
−9/2 at 7D. We note that these power-law exponents are
consistent with 1+d/2 for d = 5, 6 and 7. For large s, at
each dimension, the data of n(s, L) fails to collapse for
various systems. For a given dimension and system size,
n(s, L) still exhibits the power-law behavior but with a
constant exponent −1.

101
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104

105

 1  2  4  8  16  32  64

slope 2

s

R(s)

V = 245

V = 325

V = 166

V = 206

V = 107

V = 127

FIG. 5. The log-log plot of the cluster size s versus its radii
R(s) for all loop clusters and d ≥ 5. It implies that the scaling
behavior s ∼ R2 holds for small and large loop clusters, with
a crossover in between.

How to understand the two scaling behaviors of the
cluster number density n(s, L)? Generally, for n(s, L), it
is believed that it follows

n(s, L) = n0s
−τ ñ(s/Ldf ) [ñ(x → 0) = 1] , (7)

where n0 is a positive constant, τ is the Fisher exponent,
ñ(·) is the scaling function, and df is the fractal dimen-
sion of the largest cluster. Usually, the Fisher exponent
obeys the hyperscaling relation

τ = 1 + d/df . (8)

Equation (7) has been observed for the loop Ising model
in two and three dimensions [26, 27]. For d > 4, we find
that if df = 2, taking the GFP prediction, then it follows
that τ = 1 + d/2, consistent with the small s behavior
in Fig. 6. The power-law exponent governing the scaling
of n(s, L) for large s is −1, which is consistent with the
CG case [16]. Thus, we conjecture the scaling behavior
n(s, L) follows Eq. (5). Namely, the scaling behavior of
n(s, L) is simultaneously governed by the GFP prediction
and the CG asymptotics; the former controls the power-
law decay of small loop clusters while the latter controls
the power-law decay of large loop clusters. It follows from
Eq. (5) that the crossover happens at s = O(L2). Thus,
although n(s, L) exhibits the two-length-scale behavior,
it suggests for the loop Ising model only dc = 4 is the
upper critical dimension.

To verify Eq. (5), we plot n(s, L)s1+d/2 versus s/L2,
as shown in the inset of Fig. 6. It follows from Eq. (5)
that

s1+d/2n(s, L) ∼ n0ñ0

( s

L2

)
+ n1

( s

L2

)d/2

ñ1

( s

Ld/2

)
,

Thus, s1+d/2n(s, L) equals the constant n0 if s < O(L2)
and increases as a power-law with exponent d/2 if s >
O(L2). This is consistent with the data shown in the inset
of Fig. 6. To clearly show that the large loop clusters
follow the CG asymptotics, in Fig. 7 we plot the data
of n(s, L)V s′ versus s′/V 1/2 for each dimension and also
for the CG to compare with. Here s′ = s/α with α
depending on d so that the data of each dimension can
collapse together. As Fig. 7 shows, the data of n(s, L) on

high-d tori collapse nicely onto the CG data when s′/
√
V

is large. The discrepancy in the small s′/
√
V part is due

to the existence of the Gaussian length scale, in which
typical large loops have size of order L2. We expect such
a discrepancy vanishes with the rate L2−d/2, decaying
faster for larger d as shown in the figure. This can also
be seen from the Gaussian Fisher exponent τ = 1+ d/2.
As d → ∞, τ tends to infinity, such that the Gaussian
part vanishes to zero and the system completely follow
the CG asymptotics.

To further confirm our conjecture, we study Nm, the
number of loop clusters with size s > mL2. Since the
large loop clusters follow the CG asymptotics, it follows
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FIG. 6. The log-log plots of the cluster number density n(s, L) for (a) d = 5, (b) d = 6 and (c) d = 7. The inset in each

subfigure displays the plot of n(s, L)s1+d/2 versus s/L2 for each studied dimension. It indicates that there are two length scales
in n(s, L). The scale corresponding to small loop clusters (s < O(L2)) follows the GFP asymptotics.
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FIG. 7. The log-log plot of rescaled cluster number density
n(s, L)V s′ versus s′/V 1/2, where s′ = s/α is rescaled clus-
ter size with α = 1.2, 1.1, 1.05, 1 for d = 5, 6, 7 and the CG,
respectively. The good data collapse indicates n(s, V ) obeys
the CG asymptotics for large loop clusters.

that Nm can be calculated as

Ld

∫ Ld/2

mL2

n(s, L)ds ∼
∫ Ld/2

mL2

s−1ñ(s/Ld/2)ds ∼ lnL.

In simulations, we sample N1 and N2, and the data are
plotted In Fig. 8. Clearly, it strongly suggests that both
N1 and N2 scale as lnL for each studied dimension.
Finally, we study the number of spanning clusters Ns

for d ≥ 5. Recall that a cluster is called spanning if its
unwrapped extension U ≥ L. It can be expected that the
unwrapped extension and the unwrapped radius exhibit
the same scaling behavior. From Fig. 5, we know that a
loop cluster is spanning if its size is larger than O(L2).
Thus, it follows from n(s, L) that Ns ∼ lnL, the same
scaling as N1 and N2. In Fig. 9, the data of Ns is plotted
versus L in the semi-log scale and clearly, it suggests
that Ns ∼ lnL. Recall that for the FK Ising model,
the number of spanning clusters is of constant order for
d < 6 and diverges as Ld−6 for d > 6. But for the loop
Ising model, Ns diverges logarithmically for d > 4, again
implying that 6 is not a special dimension for the loop
Ising model.

D. Probability distribution of the largest loop
cluster

In this section, we study the probability density func-
tion of the largest loop cluster size F1 on high-d tori,
which is denoted as fF1

(s), and compare it with the CG
case. Since F1 ∼ Ld/2, we define X1 = F1/(aL

d/2) with
a non-universal constant a for each studied dimension d
and its probability density function as fX1

(x). It follows
that

fF1(s)ds = fX1(x)dx ,

where dx = a−1L−d/2ds and thus fX1
(x) = aLd/2fF1

(s).
Figure 10(a) plots fX1

(x), and it shows that when x ≳
0.2, data from various spatial dimensions collapse well
onto the CG data. Here the parameter a is chosen to be
1, 0.90, 0.85 and 0.8, respectively for d = 5, 6, 7 and the
CG.
However, as Fig. 10(a) shows, when x is small, the data

cannot collapse well and deviates from the CG data. But
it seems as d increases, the deviation becomes smaller.
This is similar to the observation in the FK Ising model
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FIG. 8. The semi-log plot of (a) N1 and (b) N2 versus system
size L for d ≥ 5, where the cluster number Nm(m = 1, 2) are
the number of clusters that satisfies s ≥ mL2. The straight
lines indicate both N1 and N2 diverge logarithmically.
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FIG. 10. Plots of probability density functions of the largest
loop cluster F1. In subfigure (a), the variable is defined

as X1 = F1/(aL
d/2), where the constant a is chosen to be

1, 0.90, 0.85, 0.8 for d = 5 (blue), 6 (green), 7 (red) and
CG (orange), respectively. In subfigure (b), the variable
Y1 = F1/(bL

2) with b =1, 1.52 and 2.12 and θ = 1/20, 1/12,
3/28 for d = 5, 6 and 7, respectively. It illustrates there is
also a special vanishing sector in the configuration space and
the probability distribution of the largest loop cluster obeys
the CG asymptotics for V → ∞.

on high-d tori and CG [15, 17], which is due to the exis-
tence of a special sector in the configuration space. Thus,
we conjecture that there is also a special sector in the
loop Ising model on high-d tori. From the behavior of
n(s, L) in Eq. (5), we know small loop clusters with size
≤ O(L2) obey the GFP asymptotics. Thus, we conjec-

ture that the average size of loop clusters in the special
sector is O(L2). We define Y1 = F1/(bL

2) with some
d-dependent constant b. Similarly, we have

fF1
(s)ds = fY1

(y)dy ,

where dy = b−1L−2ds and thus fY1(y) = bL2fF1(s). We
then plot fY1(y) versus y, but the data show that it de-
cays as a power-law as the system size increases. This im-
plies that this special sector vanishes to 0 as L → ∞. To
find the power-law exponent, we assume that the prob-
ability P(F1 ≤ bL2) on high-d tori has the same scaling
as P(F1 ≤ V 2/d) on the CG; the latter can be calculated
explicitly as ∫ V

2
d

1

fF1
(s)ds ∼ V

1
d−

1
4 . (9)

where on the CG it was obtained in Ref. [16] that

fF1
(s) ∼ V − 1

4 s−
1
2 f̃F1

(s/V 1/2) with f̃F1
(·) the scaling

function. Thus, we conjecture the special sector in the
loop Ising model vanishes with the rate V 1/d−1/4.
In Fig. 10(b), we plot V 1/d−1/4fY1(y) versus y. Indeed,

the data from various spatial dimensions collapse well for
small y. To verify our conjecture, we numerically study
the probability P = P(F1 ≤ L2) for d = 5, 6, 7. In
Fig. 11, the data are plotted versus the system volume
V in the log-log scale, and the slopes are consistent with
−1/20, −1/12 and −3/28 for d = 5, 6 and 7 respectively,
which supports the conjecture P ∼ V 1/d−1/4. In addi-
tion, one notes as d → ∞, the vanishing rate P ∼ V −1/4,
consistent with the observation on the probability of the
empty graph in the CG loop Ising model [16].
As shown in Table I, the vanishing sector in the FK

Ising model decays as L1−d/4 for 4 < d < 6 but as L−d/12

for d > 6. For the loop Ising model, our data show that
the vanishing rate is L1−d/4 for all d > 4. Note that
the exponents 1− d/4 = yh − y∗h and −d/12 = y∗h,p − y∗h
with the GFP exponent yh = 1+d/2, CG-Ising exponent
y∗h = 3d/4, and CG-percolation exponent y∗h,p = 2d/3.
Again, it suggests that 6 is a special dimension for the
FK Ising model but not for the loop Ising model.

E. Transformation from the loop representation to
the FK representation

In this section, the connections between the loop rep-
resentation and the FK representation in high dimen-
sions are demonstrated. In the FK representation, the
largest and second-largest clusters scale as C1 ∼ L3d/4

and C2 ∼ L1+d/2(lnL)−1 [15]; both are much larger than
the sizes of the two largest loop clusters in the loop Ising
model which are F1, F2 ∼ Ld/2. Since a typical FK bond
configuration can be generated by placing bonds with
probability tanhK onto a loop configuration, it is inter-
esting to study how loop clusters are merged into FK
clusters. Inspired by the two-length-scale behavior ob-
served in n(s, V ), we conjecture that loop clusters with
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FIG. 11. Log-log plot of the probability of P = P(F1 ≤ L2)
versus the system volume V for d = 5, 6, 7. It implies that

the special sector of the loop Ising model vanishes as V
1
d
− 1

4 .

size s ≥ L2 are merged into the largest FK cluster after
those extra bonds are placed. To check this numerically,
we sample nf , which is the percentage of loop clusters
merged into the largest FK cluster, conditioned on that
loop clusters have size larger than L2. In Fig. 12(a), we
plot nf versus V for d ≥ 5 with semi-log plot, which
shows that nf increases as V . To confirm nf converges
to 1, we plot 1 − nf versus V in the log-log scale in
Fig. 12(b), which clearly shows that 1 − nf decays as a
power-law and thus indeed nf converges to 1. It suggests
that all loop clusters with size ≥ L2 are merged together
to form the largest FK cluster asymptotically. We note
that, the power-law exponents in Fig. 12(b) are consis-
tent with −0.31, −0.29, and −0.26, for d = 5, 6, and 7,
respectively. As d → ∞, we expect it converges to the
observed value −0.225 on the CG [16].
In what follows, we term the largest FK cluster and the

loop clusters with size of order Ld/2 as giant clusters, and
the FK clusters with size of order L1+d/2 and the loop
clusters with size of order L2 as medium-size clusters.
All other clusters are called small-size clusters. We next
discuss the connection between medium-size clusters in
the loop and FK representations. The Fisher exponent
governing the cluster-size distribution of the medium-size
clusters is τ = 1 + d/2 for the loop Ising model with
d > 4, and for the FK Ising model τ = 1 + d

1+d/2 for

4 < d < 6 and τ = 5/2 for d ≥ 6 [14, 15]. Denote NLoop

and NFK the number of medium-size loop and FK clus-
ters, respectively. It can be shown that both NLoop and
NFK are O(1) for 4 < d < 6. Thus, we conjecture that
on average each medium-size FK cluster contains O(1)
number of medium-size loop clusters. In other words,
the medium-size FK clusters are mainly generated from
the medium-size loop clusters, and thus both of them
exhibit the GFP behavior. However, for d > 6, NLoop

is still O(1) but NFK diverges as L(d−6)/4. So on aver-
age, the medium-size FK clusters contain no medium-size
loop clusters. Namely, for d > 6 almost all medium-size
FK clusters are generated by the percolation-like process,
and thus exhibit high-d percolation behavior. We expect

this argument can also be used to explain the connec-
tion between smaller FK and loop clusters (smaller than
medium-size clusters). Thus, we argue that for d > 6, all
FK clusters except the largest cluster exhibit the same
behavior as high-d percolation clusters, like the thermo-
dynamic fractal dimension df = 4 and the number of
spanning clusters Ns ∼ Ld−6.
As Fig. 6 shows, the loop Ising model has two length

scales; giant loop clusters follow the CG asymptotics but
other clusters follow the GFP asymptotics. After the
LC transformation, as shown in Fig. 12, all giant loops
are merged together to form the largest FK cluster, and
other loop clusters are transformed into other FK clus-
ters. Thus, it is natural to expect there are two length
scales in the FK Ising model [15].
We finally discuss the special configuration sectors. For

the loop Ising model with d > 4, our data suggest that
the special sector, consisting of loop configurations in
which the largest loop cluster has size O(L2), accounts
for a proportion ∼ L1−d/4 of the whole configuration
space. By our conjecture, these medium-size loop clus-
ters (size of order L2) will become the medium-size FK
clusters (size of order L1+d/2), after the LC transforma-
tion. Since for 4 < d < 6, all medium-size FK clusters
are generated by medium-size loop clusters, it is natural
to expect there exists a special configuration sector in
the FK Ising model, which also vanishes with the rate
L1−d/4. This was numerically confirmed in Ref. [15], and
in the special sector, all FK clusters were found to ex-
hibit the GFP behavior. However, the scenario is more
complicated for d > 6. On the CG (the d → ∞ case),
it was found that [16] the FK Ising model has a special
configuration sector in which FK clusters exhibit the CG
percolation clusters behavior, and this sector corresponds
to the sector of loop configurations with the largest loop
size of order V 1/3; both sectors asymptotically account
for V −1/12 of their own whole configuration space. As-
sume the CG results hold also on high dimensional torus.
Then, since L1−d/4 ≪ L−d/12 when d > 6, it follows that
loop configurations with the largest loop cluster of order
L2 are not enough to generate the special sector in the
FK Ising model for d > 6. Thus for d > 6, one can expect
that the loop configurations with the largest loop clus-
ter of order Ld/3 correspond to the special configuration
sector in the FK Ising model.

IV. DISCUSSION

In this work, we perform a large-scale Monte Carlo sim-
ulation of the Ising model in the loop representation on
high-dimensional tori for d = 5, 6, 7. Our data suggest
that the finite-size scaling (FSS) behaviors of the loop
Ising model are simultaneously governed by the Gaussian
fixed point (GFP) asymptotics and the complete-graph
(CG) asymptotics. Moreover, although the loop Ising
model exhibits two length scales, two configuration sec-
tors and two scaling windows, as the Fortuin-Kasteleyn
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FIG. 12. (a) Plot of nf , the percentage of large loop clusters
(with size ≥ L2) in the largest FK cluster, as the system
size V increases. (b) Log-log plot of 1 − nf versus V . It
implies that, as V → ∞, 1 − nf decays as a power-law with
slopes approximately consistent with -0.31, -0.29 and -0.26,
respectively. This suggests almost all the large loop clusters
are merged into the largest FK cluster.

(FK) Ising model, we find that there is only one upper
critical dimension dc = 4 for the loop Ising model, rather
than two upper critical dimensions dc = 4, dp = 6 as ob-
served in the FK Ising model. The rich FSS behavior
in the loop Ising model, together with the Loop-Cluster
transformation, provides an explanation to the existence
of two upper critical dimensions in the FK Ising model.

It is worth noting that, for the Ising model in the three
representations, the spin representation, the FK repre-

sentation, and the loop representation, there is a com-
mon upper critical dimension dc = 4. Above dc, scal-
ing behaviors are simultaneously governed by the CG
and GFP asymptotics, which provides a unified picture
for the high-dimensional Ising model. In the spin rep-
resentation, the GFP asymptotics account for the FSS
of distance-dependent observables including the short-
distance behavior of the two-point correlation function
and the nonzero Fourier modes of the susceptibility, etc.
On the other hand, the CG asymptotics acts as the
“background”, contributing to the leading FSS behav-
ior of the conventional macroscopic observables, such as
the magnetization, energy, susceptibility, and the specific
heat, etc. In the loop representation, the GFP and the
CG asymptotics respectively describe the FSS behavior
of loop clusters with radii less than and exceeding the sys-
tem size L. For the FK representation, the largest cluster
follows the CG asymptotics for all d > 4, but other clus-
ters follow the GFP-Ising asymptotics for 4 < d < 6 but
follow GFP-percolation behavior for d ≥ 6.
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Rev. Lett. 125, 200603 (2020).

[8] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87,
160601 (2001).

[9] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86
(1987).

[10] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal
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