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Abstract

The local SL(2N,C) symmetry is shown to provide, when appropriately constrained,
a viable framework for a consistent unification of the known elementary forces, including
gravity. Such a covariant constraint implies that an actual gauge field multiplet in the
SL(2N,C) theory is ultimately determined by the associated tetrad fields which not only
specify the geometric features of spacetime but also govern which local internal symmetries
are permissible within it. As a consequence, upon the covariant removal of all ”redundant”
gauge field components, the entire theory only exhibits the effective SL(2, C) × SU(N)
symmetry, comprising SL(2, C) gauge gravity on one hand and SU(N) grand unified the-
ory on the other. Given that all states involved in the SL(2N,C) theories are additionally
classified according to their spin values, many potential SU(N) GUTs, including the con-
ventional SU(5) theory, appear to be irrelevant for standard spin 1/2 quarks and leptons.
Meanwhile, applying the SL(2N,C) symmetry to the model of composite quarks and lep-
tons with constituent chiral preons in its fundamental representations reveals, under certain
natural conditions, that among all accompanying SU(N)L × SU(N)R chiral symmetries
of preons and their composites only the SU(8)L × SU(8)R meets the anomaly matching
condition ensuring masslessness of these composites at large distances. This, in turn, iden-
tifies SL(16, C) with the effective SL(2, C) × SU(8) symmetry, accommodating all three
families of composite quarks and leptons, as the most likely candidate for hyperunification
of the existing elementary forces.
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1 Introduction

As is well known, there exists a certain similarity between gravity and three other ele-
mentary forces when considering gravity within a conventional gauge theory framework
[1, 2, 3]. Indeed, the spin-connection fields gauging the local SL(2, C) symmetry group of
gravity emerge much like photons and gluons in the Standard Model. It is, therefore, con-
ceivable that these spin-connections could be unified with the ordinary SM gauge bosons
in a certain non-compact symmetry group, thereby leading to the hyperunification of all
known elementary gauge forces. In the following, we refer to such theories as hyperunified
theories (HUTs), and specifically as the SL(2N,C) HUT when speaking about integration
of the SL(2, C) gauge gravity with the SU(N) grand unified theory, respectively. We also
designate SU(N) as the ”hyperflavor” symmetry and fields located in its representations
as the ”hyperflavored” fields.

In fact, there are many classes of models in the literature where unification of gravity
and other interactions goes through a unification of the local Lorentz and internal symme-
tries in the framework of some non-compact covering symmetry group [4, 5, 6, 7]. Their
difficulties are well known and, to varying degrees, they generally appear in the SL(2N,C)
HUT as well [8]. Firstly, the vector fields in the total gauge multiplet of this group are
always accompanied by the axial-vector fields which must be somehow excluded from the
theory as there is no direct indication whatsoever of their existence. Then, while vector
fields are proposed to mediate ordinary gauge interactions, tensor fields must provide the
minute gravity interactions to align with reality. The crucial point lies in the fact that,
whereas in pure gravity case, one can solely consider the action being linear in the curvature
(R) constructed from the tensor field, the unification with other interactions necessitates
the inclusion of quadratic curvature (R2) terms as well. Consequently, tensor fields in these
terms will induce interactions comparable to those of the gauge vector fields in the Stan-
dard Model. Moreover, the tensor fields, akin to the vector ones, exhibit now the internal
SU(N) symmetry features implying the existence of the multiplet of hyperflavored gravi-
tons rather than a single neutral one. Apart from that, such R+R2 Lagrangians for gravity
are generally known to contain ghosts and tachyons rendering them essentially unstable.
And lastly, but perhaps most importantly, a potential pitfall in hyperunified theories stems
from the Coleman-Mandula theorem [9] concerning the impossibility of merging spacetime
and internal symmetries. It is worth noting that this theorem initially surfaced precisely in
connection with one of the special cases of SL(2N,C), specifically the SL(6, C) symmetry
[10], used a long time ago as a possible relativistic version of the global SU(6) symmetry
model describing the spin-unitary spin symmetry classification of mesons and baryons [11].

In contrast, we aim to demonstrate here how, in the SL(2N,C) HUT framework, these
difficulties can be naturally be overcome in the way as yet unexplored. The key idea is that
the extended gauge multiplet in the SL(2N,C) theory – comprising generally the vector,
axial-vector and tensor field submultiplets – is suitably constrained by the associated tetrad
multiplets which are assumed to not only determine the geometric features of spacetime,
but also control which local internal symmetries and associated gauge field interactions
are permitted in it. Specifically, we propose that the actual gauge multiplet Iµ arises as
result of the tetrad filtering of some ”prototype” nondynamical multiplet Iµ which globally
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transforms similarly to Iµ, but, unlike it, does not itself gauge the corresponding fermion
system. These two multiplets are connected in a covariant way using the tetrads eσ and eσ

that, instead of being imposed by postulate, can be incorporated into the theory through
the Lagrange multiplier type term

C

(
Iµ −

1

4
eσIµe

σ

)2

(1)

where C is an arbitrary constant. This term, upon variation under the multiplet Iµ, yields
the filtering condition, Iµ = eσIµe

σ/4, mentioned above. Consequently, the gauge multiplet
Iµ retains only those components of the prototype multiplet Iµ which result from the tetrad
filtering. In other words, the prototype multiplet Iµ becomes partially dynamical to the
extent permitted by the tetrads.

Now, in the case of standard or strictly orthonormal tetrads, such filtering excludes
the tensor fields in the gauge multiplet Iµ, as we demonstrate below. However, when
the tetrad orthonormality condition is slightly broken, the appropriately weakened tensor
fields come into play. This occurs in a way that their interaction essentially decouples
from other elementary forces and effectively adheres to the Einstein-Cartan type gravity
action. The corresponding curvature-squared terms constructed from the filtered tensor
fields appear to be vanishingly small and can be disregarded compared to the standard
strength-squared terms for vector fields. As a result, the entire theory effectively exhibits
a local SL(2, C) × SU(N) symmetry rather than the unified SL(2N,C) symmetry, which
solely provides the structure of total multiplets for gauge and matter fields in the theory.
Consequently, this naturally leads to SL(2, C) gauge gravity on one hand and SU(N)
grand unified theory (GUT) on the other, thereby effectively bypassing the constraints of
the Coleman-Mandula theorem1.

The paper is organized as follows. In Section 2 we provide a standard presentation of
the SL(2, C) gauge gravity which is then discussed using the filtering approach. Section
3 introduces the filtered SL(2N,C) HUT which ultimately lead to the SL(2, C) gauge
gravity in conjunction with the SU(N) grand unified theory. Section 4 examines specific
HUT models with particular focus on the SL(16, C) theory giving rise to the SU(8) GUT
with all three families of composite quarks and leptons that is studied in some detail.
Finally, our summary is presented in Section 5.

2 SL(2, C) gravity

2.1 Standard framework

We first present the SL(2, C) gravity model, partially following the pioneering work [3].
Let there be a local frame at any spacetime point where the global SL(2, C) symmetry

1It is worth noting in this connection that, though the Lagrange multiplier term (1) formally breaks
gauge invariance of the entire hyperunified SL(2N,C) theory, the local SL(2, C)× SU(N) symmetry in it
remains unbroken.
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group acts. According to this symmetry, the basic fermions of the theory transform as

Ψ → ΩΨ, Ω = exp

{
i

4
θabγ

ab

}
(2)

where the matrix Ω satisfies a pseudounitarity condition, Ω−1 = γ0Ω
+γ0 (the transfor-

mation parameters θab are assumed to be constant for now). Furthermore, to ensure the
invariance of their kinetic terms, iΨγµ∂µΨ, one needs to replace γ-matrices in them with
a set of some tetrad matrices eµ which transform like

eµ → ΩeµΩ−1 (3)

Generally, the tetrad matrices eµ , as well as their conjugates eµ, contain the appropriate
tetrad fields eµa and eaµ, respectively,

eµ = eaµγa , eµ = eµaγ
a (4)

which transforms infinitesimally as

δeµc =
1

2
θab(e

µaηbc − eµbηac) (5)

They, as usual, satisfy the orthonormality conditions

eaµe
ν
a = δνµ, eaµe

µ
b = δab (6)

and determine the metric tensors in the theory

gµν =
1

4
Tr(eµeν) = eaµe

b
νηab , gµν =

1

4
Tr(eµeν) = eµae

ν
b η

ab (7)

Going now to the case when the SL(2, C) transformations (2) become local, θab ≡
θab(x), one have to introduce the spin-connection gauge field multiplet Iµ transforming as
usual

Iµ → ΩIµΩ
−1 −

1

ig
(∂µΩ)Ω

−1 (8)

thus providing the fermion field by covariant derivative

∂µΨ → DµΨ = ∂µΨ+ igIµΨ (9)

where g presents the gauge coupling constant extracted for later convenience. The Iµ
multiplet gauging the SL(2, C) has by definition the form

Iµ =
1

4
Tµ[ab]γ

ab (10)

where the flat spacetime tensor field components Tµ[ab] transform as

δT [ab]
µ =

1

2
θ[cd][(T

[ac]
µ ηbd − T [ad]

µ ηbc)− (T [bc]
µ ηad − T [bd]

µ ηac)]−
1

g
∂µθ

[ab] (11)
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The tensor field Tµ[ab] may in principle propagate, while the tetrad eµ is not considered
as a dynamical field. So, the invariant Lagrangian built from its strength

Iµν = ∂[µIν] + ig[Iµ, Iν ] =
1

4
T [ab]
µν γab

T [ab]
µν = ∂[νT

[ab]
µ] + gηcdT

[ac]
[µ T

[bd]
ν] (12)

can be written in a conventional form

eLG =
1

2κ
eµ[ae

ν
b] T

[ab]
µν , e ≡ [− detTr(eµeν)/4]−1/2 (13)

(where κ stands for the modified Newtonian constant 8π/M2
P l) once the commutator for

tetrads and some of standard relations for γ-matrices have been used2. This is, in fact,
the simplest pure gravity Lagrangian taken in the Palatini type formulation. Indeed, its
variation under the tensor field gives the constraint allowing to express it through the tetrad
and its derivative that reduces eLG to the standard Einstein Lagrangian. It is written with
the scalar factor e which, while irrelevant for SL(2, C) gauge invariance itself, provides an
extra invariance of the action under general four-coordinate transformations GL(4, R) as
well [3].

Meanwhile, in presence of fermions, the gauge invariant fermion matter coupling given
by the covariant derivative (9, 10) implies the extra tensor field interaction with the spin-
current density

eLint
M = −

1

2
gǫabcdTµ[ab]e

µ
cΨγdγ5Ψ (14)

This is a key feature of the Einstein-Cartan type gravity [2] which eventually results in,
apart from the standard GR, the tiny four-fermion (spin current-current) interaction in
the matter sector

κ
(
Ψγdγ

5Ψ
)
(Ψγdγ5Ψ) (15)

On the other hand, one could augment the linear curvature Lagrangian (13) with the
curvature squared terms, thereby rendering some tensor field components dynamical. It
is known that theories of this type are strongly constrained to a specific form to ensure
freedom from ghosts and tachyons [12]. Expressed in terms of tensor field strengths, the
acceptable quadratic curvature part in them appears as

eL(2) = Q(T µν
ab T

ab
µν + T µν

ab T
cd
ρσeµceνde

ρaeσb − 4T µν
ab T

ac
ρν eµce

ρb) (16)

2We give here some of them used throughout the paper

γab = i[γa, γb]/2, γaγb = γab/i+ ηab1̂, γcγ
[ab]γc = 0

[γab, γa′b′ ] = 2i(ηab′γba′

+ ηba′

γab′ − ηaa′

γbb′ − ηbb′γaa′

)

Tr(γabγa′b′) = 4(ηaa′

ηbb′ − ηab′ηba′

), T r(γabγcd) = 4(δacδ
b
d − δbcδ

a
d)

Tr(γabγa′b′γa′′b′′) = 4i[ηaa′

(ηa′′b′ηbb′′ − ηa′′bηb′b′′) + ηab′(ηa′′bηa′b′′ − ηa′a′′

ηbb′′)

+ηa′b(ηaa′′

ηb′b′′ − ηa′′b′ηab′′) + ηbb′(ηa′a′′

ηab′′ − ηa′b′′ηaa′′

)]

where 1̂ in the above is the 4× 4 unit matrix.
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Actually, such a theory contains, apart the graviton, some superheavy scalar excitation
S(0−) with a mass, m2

S ∼ M2
P/Q, that can hardly be observed unless the numerical

parameter Q in (16) is exceedingly large.

2.2 Tetrad filtering case

As previously mentioned, the SL(2, C) gauge gravity is implied as a part of the unified
set of all elementary forces assembled in the SL(2N,C) symmetry framework. This raises
a key issue of how to reconcile the exceptionally weak gravitational force related to the
tensor fields with the significant Standard Model forces associated with the vector field
submultiplet. The corresponding Lagrangian generally includes terms that are linear and
quadratic in the strength of the entire gauge field multiplet (each with independent coupling
constants). Interestingly, as is shown later, the linear terms pose no problem, as they only
generate gauge gravity, governed by its own coupling constant (related to the Planck mass,
as usual). However, the quadratic terms for the tensor fields share the same dimensionless
coupling constant as the vector field interactions, which is certainly unacceptable. We
propose that the tensor field quadratic terms might become negligible due to the minuscule
nature of the filtered tensor fields themselves, while the vector fields remain unaffected by
this filtering process. Whereas it would be particularly noteworthy to immediately consider
this scenario within the entire framework of SL(2N,C) theory, we nonetheless begin by
examining the pure tensor field case to elucidate the proposed tetrad filtering mechanism
in greater detail.

In this regard, we propose that the gauge field multiplet Iµ (10) stems from some
prototype nondynamical multiplet Iµ, which globally transforms akin to Iµ, but does not
gauge the matter fermions. They are connected in a covariant way through the tetrads
involved

Iµ =
1

4
eσIµe

σ, Iµ =
1

4
Tµ[ab]γ

ab (17)

when the Lagrange multiplier term (1) in the gauge gravity Lagrangian is varied under
the nondynamical Iµ multiplet. However, one can easily find that, as follows from the
γ-matrix algebra2, and, in particular, from the identity

γcγ
[ab]γc = 0 (18)

the gauge multiplet Iµ with the strictly orthonormal tetrads (6) automatically vanishes.
This means that the theory only possesses the global SL(2, C) symmetry in this limit and
gauge gravity is in fact absent.

The gauge multiplet Iµ may only appears if the tetrads are no longer orthonormal but
their orthonormality conditions (6) include some vanishingly small deviations

eaµe
µ
b = δab + εqab , eaµe

ν
a = δνµ + εpνµ (ε≪ 1) (19)

given by the infinitesimal tensors εqab and εpνµ (with the tiny constant parameter ε) ,
respectively. Indeed, now the gauge multiplet Iµ comes to

Iµ =
1

4
Tµ[ab]γ

ab =
ε

16
Tµ[ab]q

c
d(γcγ

abγd) (20)
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being solely determined by the tiny tensor εqab . Multiplying the both sides by γa
′b′ and

taking the traces in them one can readily find using the γ matrix algebra2 the relation
between the tensor fields themselves

Tµ[ab] =
ε

2
(Tµ[bc]q

c
a − Tµ[ac]q

c
b + Tµ[ab]q

c
c/2) = εTµ[ab] (21a)

Thus, the starting prototype, while nondynamical, tensor field multiplet Tµ[ab] is pre-
dominantly extinguished and only its minuscule portion emerges in the gauge multiplet
Tµ[ab]. Remarkably, the filtering process triggers an important suppression mechanism in
the SL(2, C) gauge gravity theory that allows it to be reformulated solely in terms of the
weakened tensor field multiplet εTµ[ab]. This multiplet is, in fact, the product of the proto-
type tensor field Tµ[ab] with the infinitesimal tensor εqab which describes the tiny deviation
in the modified orthonormality conditions (19) for tetrads.

Analogously, the metric tensor will also include such a deviation which we define from
the similar equation

eaµeaν = gµν + rµν , e
µ
ae

aν = gµν + rµν (22)

Multiplying the basic equations (19) by the proper tetrads one can readily find relations
between the deviations

pνµe
a
ν = qab e

b
µ, (pp)νµe

a
ν = (qq)abe

b
µ, (p...p)νµe

a
ν = (q...q)abe

b
µ (23)

so that all deviations can be expressed in terms of the q parameter only. Such q-depending
deviation appears in the metric tensor in (22) as well provided that one requires general
covariance for the metric tensor gµν

gµνe
νb = ebµ, rµνe

νb = −ebµ + eaµeaνe
νb = εeaµq

b
a (24)

where we have also used the deviation equations (19). Multiplying then the both sides by
ebρ one finds

rµν(δ
ν
ρ + pνρ) = eaµq

b
aebρ (25)

which after multiplying by the conjugated factor δρσ − pρσ finally gives

rµν ≃ [εqba − ε2(qq)ba]e
a
µebν (26)

up to the second order terms in q. With the same accuracy the metric tensors acquires the
form

gµν ≃ eaµe
c
νηbc[δ

b
a − εqba + ε2(qq)ba], gµνg

νρ = δρµ +O(ε2) (27)

and, respectively,

ηab ≃ gµνe
µ
ae

ν
c [δ

c
b − εqcb + ε2(qq)cb], ηabη

bc = δca +O(ε2) (28)

The exact expressions for them can be symbolically written as

gµν = eaµe
c
νηbc

[
1

1 + εq

]b

a

, ηab = gµνe
µ
ae

ν
c

[
1

1 + εq

]c

b

(29)
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transparently showing their modification compared to the standard case (7).
In the following, we assume for simplicity that the above deviation tensors are traceless

(qaa = pµµ = 0) being arisen from some symmetric traceless tensors

qab = ηbcq
{ac}, pνµ = gµσp

{νσ} (30)

For such a choice, despite the nonzero deviations in (19) the tetrad matrix orthonormality
condition remains its form

1

4
eµe

µ = 1̂ + εqab γaγ
b/4 = 1̂ (31)

Interestingly, the modified orthonormality conditions (19) may be considered as those
that appear due to condensation of the tetrad which can be written in the form

eaµ = δaµh+ êaµ , δµa ê
a
µ = 0 (32a)

where
h = (1− êaµê

µ
a/4)

1/2 (33)

Such a form provides the vacuum expectation value for the tetrad field eµ

〈eµ〉 = γµ (34)

which represents an extremum of the action with êaµ and h being as the effective zero
mode and Higgs mode, respectively. This could be considered quite an ordinary example,
if tetrads were treated as the dynamical fields in the SL(2, C) gauge theory that is not
actually supposed. However, nothing prevents the above conditions from being seen as a
would-be spontaneous breakdown of the local frame SL(2, C) symmetry for tetrads, while
the theory is still left Poincare-invariant.

Although tetrads are not considered as dynamical fields in the theory, one can take,
nonetheless, that the above conditions cause a would-be spontaneous breakdown of the
local frame SL(2N,C) symmetry for tetrads.

The basic Lagrangian for the SL(2, C) gravity will now result in the appropriate analogs
of the gravity and matter field Lagrangians (13, 14), respectively. Indeed, the minimal
gravity Lagrangian (13) remains practically the same form

eLG =
1

2κ
eµ[ae

ν
b]T

[ab]
µν (35)

though the tensor field strength Tµν[ab] has been properly modified according to the rela-
tions (20, 21a) taken

T [ab]
µν = εT[ab]

µν , T
[ab]
µν = ∂[νT

[ab]
µ] + εgηcdT

[ac]
[µ T

[bd]
ν] (36)

Remarkably, once the tiny parameter ε is absorbed in the gravity constant κ, the tensor

field strength T
[ab]
µν acquires the modified gauge coupling constant εg for the new tensor

field T
[ab]
µ . Such a modification will also appear for the matter coupling

eLint
M = −

εg

2
ǫabcdTµ[ab]e

µ
cΨγdγ5Ψ (37)
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and for the possible quadratic tensor field strength terms

eLT = ε2QnL
(2)
n (38)

where, for generality, the latter is taken to contain all possible combinations of the tensor
field strength bilinears with tetrads, each with an arbitrary Qn constant.

In this context, the propagation of the tensor field T
[ab]
µ in the hyperunified SL(2N,C)

theory seems to be irrelevant. In fact, its kinetic term contained in (38), in sharp contrast to
the ordinary kinetic terms of the vector (and axial-vector) fields, scales as ε2 and therefore
can be neglected. As in the standard case considered above, the variation of the total

linear Lagrangian in (35, 37) under prototype tensor field T
[ab]
µ just leads to the constraint

equation rather than the normal equation of motion. Meanwhile, the variation of total
gravity Lagrangian with respect to the tetrad eµa leads immediately to the equation of
motion of the Einstein-Cartan type gravity.

In conclusion, it is worth noting, that one might believe that all the above modifications
are merely fictitious as a simple rescaling of the tensor field Tµ = T

′
µ/ε seemingly restores

the standard case albeit with slightly broken general covariance due to the deviations
in tetrads (19). However, this rescaling trick only works for pure gauge gravity with
local SL(2, C) symmetry and appears inappropriate in the framework of SL(2N,C) gauge
theory. In reality, the weakness of the filtered tensor field is exclusive to the tensor field
submultiplet and does not extend to the entire gauge multiplet of SL(2N,C) containing
also the vector and axial-vector fields. Consequently, it cannot be circumvented by mere
rescaling, as we show in more detail later in Section 3.4.

3 Toward SL(2N,C) hyperunification

3.1 Basics of SL(2N,C)

In general, the SL(2N,C) symmetry group encompasses, among its primary subgroups,
the aforementioned SL(2, C) symmetry, which covers the orthochronous Lorentz group,
and the internal U(N) symmetry group (including the hyperflavor SU(N) symmetry).
Indeed, the 8N2 − 2 generators of SL(2N,C) are formed from the tensor products of the
generators of SL(2, C) and generators of U(N) so that the basic transformation applied to
the fermions looks as follows

Ω = exp

{
i

2

[(
θk + iθk5γ5

)
λk +

1

2
θKabγ

abλK
]}

(K = 0, k) (39)

Here, among the λK matrices, λk (k = 1, ..., N2 − 1) represent the SU(N) Gell-Mann
matrices, while λ0 is the unit matrix 1̂ corresponding to the U(1) generator (all θ parameters
may be constant or, in general, depend on the spacetime coordinate). Hereafter, we use the
uppercase Latin letters (I, J,K) for the U(N) symmetry case, while the lowercase letters

8



(i, j, k) for the SU(N) symmetry one3.
For description of the fermion matter in the theory one needs again to introduce the

generalized tetrad multiplet

eµ = (eaKµ γa + eaKµ5 γaγ5)λ
K (40)

which transforms, as before, according to (3) where the transformation matrix is now given
by equation (39). Despite its somewhat cumbersome extension which generally appears
in the SL(2N,C) framework, it would be natural for tetrad flat space components in (40)
to essentially have the same form as in the pure gravity case. This implies that such
an extension might not include the axial-vector part that could be reached through the
gauge invariant constraints put on tetrads. In fact, one can introduce for that some special
nondynamical SL(2N,C) scalar multiplet in the theory

S = exp{i[(sk + ipkγ5)λ
k + tKabγ

abλK/2]} (41)

which transforms like as S → ΩS. With this scalar multiplet one can form a new tetrad
in terms of the gauge invariant construction, S−1eS. So, choosing appropriately the flat
space components in the S field one can turn the tetrad axial part to zero and establish
symmetry between Greek and Latin spacetime indices [10].

The issue still lies in the fact that the tetrads in (40), along with a neutral component,
also include the SU(N) hyperflavored components, making it impossible to treat them as
standard vielbein fields that satisfy the orthonormality conditions (6). As one can see, a
strict limitation on the form of tetrads exists for these conditions to be upheld. Indeed, let
them generally have the covariant SL(2N,C) form

eµ = eaKµ γaλ
K , eaKµ eµK

′

b = ∆aKK ′

b , eaKµ eνK
′

a = ∆νKK ′

µ (42)

with some still unspecified constructions ∆aKK ′

b and ∆νKK ′

µ which for a pure gravity case
should satisfy the standard arrangement

∆a00
b = δab , ∆ν00

µ = δνµ (43)

Then multiplying the conditions (42) by the tetrad multiplets ebK
′′

σ and eσK
′′

a , respectively,
one come after simple calculations

eaKµ = ∆aK0
b eb0µ , eµK

′

a = ∆bK ′0
a eµ0b (44)

3Some useful relations for the λ matrices which will be used below are given here

[λk, λl] = 2ifklmλm, {λk, λl} = 2(δkl1̂ + dklmλm)

λkλlλk = −λl, λKλlλK = 0, T r(λkλl) = Nδkl

The connections with a standard choice of the SU(N) matrices are given by the links

λK =
√
2NTK , f ijk =

√
N/2F ijk, dijk =

√
N/2Dijk

9



that finally gives
∆aKK ′

b = ∆aK0
c ∆cK ′0

b (45)

and correspondingly
∆νKK ′

µ = ∆νK0
σ ∆σK ′0

µ (46)

As a result, for the constant and multiplicative form of these functions one unavoidably
comes to the only possible solution

eaKµ eµK
′

b = ∆aKK ′

b = δabδ
K0δK

′0 , eaKµ eνK
′

a = ∆νKK ′

µ = δνµδ
K0δK

′0 (47)

which essentially mirrors the pure gravity case. Consequently, the orthonormality condition
for tetrads is consistent with the SL(2N,C) symmetry only if they belong to its SL(2, C)
part rather than the entire group

eaKµ = eaµδ
K0 (48)

This may appear as result of the spontaneous violation SL(2N,C) in the tetrad sector, as
we will argue later.

Once the SL(2N,C) transformation (39) becomes local one also need, as ever, to in-
troduce the gauge field multiplet Iµ transforming as usual

Iµ → ΩIµΩ
−1 −

1

ig
(∂µΩ)Ω

−1 (49)

thus providing the fermion multiplet by covariant derivative

∂µΨ → DµΨ = ∂µΨ+ igIµΨ (50)

with universal gauge coupling constant g of the proposed hyperunification. The Iµ multiplet
includes in general the vector and axial-vector field submultiplets, and also the tensor field
submultiplet

Iµ = Vµ +Aµ + Tµ =
1

2

(
V k
µ + iAk

µγ5

)
λk +

1

4
TK
µ[ab]γ

abλK (K = 0, k) (51)

as follows from its decomposition to the flat spacetime component fields. Just the ten-
sor fields provide gravitational interaction in the SL(2N,C) HUTs that, aside from the
standard linear curvature Lagrangian for gravity (13), includes the conventional quadratic
strength terms for all gauge field submultiplets involved. This, as mentioned, poses the
crucial problem how one can selectively suppress tensor field interaction in these terms if
the tensor fields are members of the same gauge multiplet Iµ as vector and axial-vector
fields and, therefore, should interact with the same coupling constant g. Fortunately, the
filtering mechanism described above for the pure gravity case allows for a natural com-
bination of the strong internal symmetry forces related to the vector fields with the tiny
quadratic curvature gravity.
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3.2 Filtering with standard tetrads

We begin by considering the tetrad filtering condition applied directly to the general gauge
multiplet itself (51) that could make the nature of this condition clearer. Essentially, we
impose the covariant constraint of the form

Iµ = eσIµe
σ/4 (52)

using the ”neutral” tetrads (48) which are only permitted in the theory4. This yields

Iµ =
1

4
eaKσ eσK

′

b (γaλ
KIµγ

bλK
′

) (53)

which, upon employing the orthonormality conditions of the tetrad (47), results in the
equality

1

2

(
V k
µ + iAk

µγ5

)
λk +

1

4
TK
µ[ab]γ

abλK =
1

2

(
V k
µ − iAk

µγ5

)
λk

This implies that the reduced gauge multiplet (53) comprises solely the vector fields

Iµ = V k
µ λ

k/2 (54)

while the axial-vector and tensor field submultiplets vanish identically. Remarkably, by
imposing the covariant constraint (52) the starting SL(2N,C) symmetry group is effectively
reduced to the pure unitary SU(N) symmetry case. In a sense, the constraint acts as a
symmetry-breaking mechanism, but unlike typical scenarios, nothing remains of the original
SL(2N,C) gauge sector except its SU(N) part.

Now, as claimed, we propose that the gauge field multiplet Iµ (51) is ”originated” from
the prototype nondynamical multiplet Iµ as per the underlying filtering condition (1).
Their connection in the SL(2N,C) symmetry framework acquires the form

Iµ =
1

4
eσIµe

σ =
1

4
eaKσ eσK

′

b (γaλ
KIµγ

bλK
′

) (55)

utilizing the ”neutral” tetrads (48) permitted in the theory.
The point is, however, that again, as in the pure gravity case (19), the tensor field

submultiplet TK
µ[ab] completely disappear when filtered by tetrads satisfying the standard

orthonormality conditions (47). Indeed, using them one immediately comes to the filtering
relation

Iµ =
1

4
eσIµe

σ =
(
Vk
µ − iAk

µγ5

)
λk/2 (56)

showing that, while tensor field submultiplet is cancelled, the vector and axial-vector ones
practically remain in the gauge multiplet (51) except that the axial-vector fields change

4This constraint when properly reiterated converts to an infinite series of constraints

Iµ = e1...eσs
Iµe

σs ...eσ1/4s (s = 1, 2, ...)

which all lead to the same outcome though.
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the sign. In principle, one could use it to eliminate them from the theory as well. This
simply follows when one adds to the condition (55) the double filtering term as well

Iµ =
1

8
(eσIµe

σ + eρeσIµe
σeρ/4) = V l

µλ
l/2 (57)

Comparing this with (54) we can conclude that such filtering is equivalent to the case when
the constraint is applied directly to the gauge multiplet itself (52). However, in contrast,
the prototype multiplet Iµ appears to be free from any constraint. Remarkably, on one
hand, for the filtering case (57), one can covariantly transition from the original SL(2N,C)
group to the SU(N) symmetry gauged by the vector fields. However, on the other hand,
the tensor fields that could induce gravity also disappear from the theory.

3.3 Filtering with modified tetrads

For incorporation of tensor fields in the gauge sector, it is necessary, as in the pure gravity
scenario discussed in Section 2.2, to go to tetrads which are not strictly orthonormal. In
such a scenario, the tensor field multiplet will emerge within the filtered gauge multiplet
Iµ once the orthonormality conditions turns out to be slightly shifted

eaKµ eµK
′

b = (δab + εqab )δ
K0δK

′0 , eaKµ eνK
′

a = (δνµ + εpνµ)δ
K0δK

′0 (58)

being determined again by the tiny tensors εqab and εpνµ (ε≪ 1), respectively. Analogously,
the metric tensor deviation in the general SL(2N,C) follows from a similar equation

eaKµ eK
′

aν = (gµν + rµν)δ
K0δK

′0 (59)

that actually works for neutral components

ea0µ e
0
aν = gµν + rµν (60)

and finally gives for the metric tensor

gµν ≃ ea0µ e
0
bν [δ

b
a − εqba + ε2(qq)ba] (61)

being identical to that in the pure gravity case (27).
Actually, tetrads can again be regarded as those which are condensed, thus having the

form
eaKµ = (δaµh+ êa0µ )δK0, δµa ê

a0
µ = 0 (62)

where the effective Higgs mode h and zero-modes êa0µ are similar those given above in
conditions (32a-34). These conditions suggest now a spontaneous-like breakdown of the
local SL(2N,C) symmetry for tetrads even though they are not considered as dynamical
fields in the theory.

The form (62) remains, in fact, the original pure gravity case form for neutral tetrad
component, while the SU(N) flavored tetrad components are absent in the theory.

Note that a right choice of tetrad components is of primary importance since, as in the
above pure gravity case, just the tetrad-filtered gauge multiplet is proposed to operate in the
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extended SL(2N,C) theory. As a consequence of the modified orthonormality conditions
for the tetrads taken above (58), one has, after using the identity

qab γaγ
b = qabγaγb = qabηab = 0 (63)

for the symmetrical and traceless tensor qab (30), a unique form for the filtered gauge
multiplet Iµ

Iµ =
(
Vk
µ − iAk

µγ5

)
λk/2 +

ε

4
T

K
µ[ab]γ

abλK (64a)

It is noteworthy that, in contrast to the standard tetrad case (56), it also contains the
tensor field submultiplet which is given by an expression

T
K
µ[ab] = (T K

µ[bc]q
c
a − T K

µ[ac]q
c
b)/2 (65a)

This actually extends the pure gravity case (21a) in a sense that the hyperflavored tensor
field components Tk

µ[ab] also come into play. However, as we see later they appear insignif-

icant only contributing into the tiny four-fermion (spin current-current) interaction in the
fermion matter sector.

As one can readily confirm, the vector and axial-vector submultiplets in the gauge
multiplet (51) remain unaffected during the filtering process (unless the special constraint
(52) excluding the axial-vector field in the theory is applied). Meanwhile, the tensor
field components appear again, as in the pure gravity case, to be completely controlled
by the tetrad orthonormality deviations εqab and, therefore, are significantly weakened.
The product of the deviation tensor qab with the prototype tensor fields T K

µ[ab] defines the

new tensor field multiplet TK
µ[ab] (65a), through which and tiny parameter ε the theory is

ultimately expressed. The hyperunification of the basic elementary forces in this theory
does not preclude the tensor field submultiplet from having the vanishingly small quadratic
strength terms being scaled as ε2 and, as a consequence, can be neglected. Therefore, as
we confirm below, the final theory tends to the conventional Einstein-Cartan type theory
for gravity coupled with the gauge SU(N) theories for other interactions.

3.4 Gravity inducing tensor fields

Let us now construct the field strength for the gauge multiplet Iµ in the SL(2N,C) hype-
runified theory

Iµν = ∂[µIν] + ig[Iµ, Iν ] = (V +A)µν + Tµν (66)

which includes the terms corresponding the vector, axial-vector and tensor field submul-
tiplets, respectively. Expressed through the prototype Iµ multiplet components according
to the taken filtered form (64a), this strength tensor comes to

Iµν =
1

2
∂[µ

(
Vk − iAkγ5

)
ν]
λk −

1

2
f ijkg

(
V i − iAiγ5

)
µ
(Vj − iAjγ5)νλ

k

+
ε

4

(
∂[µT

[ab]K
ν] γabλ

K + i
εg

4
T

[ab]K
µ T

[a′b′]K ′

ν [λKγab, λ
K ′

γa′b′ ]
)

(67)
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Similarly, the gauge invariant fermion matter couplings, when given in terms of the Iµ
submultiplets, take the form

eLM = −
g

2
Ψ

{
eµ,

[
1

2

(
Vk
µ − iAk

µγ5

)
λk +

ε

16
T

K
µ[ab]γ

abλK
]}

Ψ (68)

As one can readily observe, the vector and axial-vector fields interact everywhere in
(67) and (68) with the universal gauge coupling constant g of SL(2N,C). In contrast,
all tensor field terms incorporate the aforementioned tiny parameter ε. Consequently, the
total Lagrangian will contain the conventional quadratic strength terms for the vector and
axial-vector fields, while in the first order in the parameter ε only the linear strength terms
of the tensor fields emerge, alongside the fermion matter couplings. The quadratic strength
terms of the tensor field multiplet, which would provide its propagation and an ordinary
gauge interaction, scale as ε2 and are therefore negligible in this regime.

Leaving aside for the moment vector and axial-vector fields, we now focus on the hy-
perunified gravity Lagrangian taken in the Palatini type form

eLG ∼ Tr{[eµ, eν ]Iµν} (69)

In the SL(2N,C) case the strength tensor Iµν , apart from tensor submultiplet, comprises
the vector and axial-vector submultiplets as well. However, due to the neutral tetrad chosen
(48) and their commutator given by

[eµ, eν ] = −2ieµ0a eν0b γ
ab (70)

one can easily confirm that the they do not contribute to the gravity Lagrangian (69).
Eventually, for the tensor field strength in (67) one has, after taking the necessary

traces of products involving γ and λ matrices, the following gravity Lagrangian

eLG =
1

2κ

(
∂[µT

[ab]0
ν] + εgηcdT

[ac]K
[µ T

[bd]K
ν]

)
eµ0a e

ν0
b (71)

The gravity constant κ is assumed to absorb here one power of the tiny parameter ε (along
with the factor N associated with the internal U(N) symmetry). Consequently, the new

tensor fields T
[ab]K
µ appears in the Lagrangian eLG with the effective coupling constant

εg rather than g, as the vector and axial-vector fields do in their own quadratic strength
Lagrangians. In a similar way, one has for the fermion matter Lagrangian of the tensor
submultiplet in (68)

eL
(T )
M = −

εg

2
ǫabcdTK

µ[ab]Ψe
µ0
c γdλ

Kγ5Ψ (72)

where couplings of the tensor fields with the neutral and flavored spin density currents also
appear with the same effective coupling constant εg.

Notably, in the Lagrangian (71), there are only kinetic terms for the neutral tensor field

component T
[ab]0
µ , while the interaction terms contain the entire U(N) multiplet T

[ab]K
[µ .

This implies that only the neutral tensor field truly gauges gravity, while the SU(N)

flavored ones T
[ab]k
µ are simply given by the corresponding spin currents ǫabcdΨe0µcγdλ

kγ5Ψ.
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When they both, T
[ab]0
[µ and T

[ab]k
µ , are independently eliminated from the entire tensor field

Lagrangian eLG+eL
(T )
M , one arrives at the Einstein-Cartan type gravity containing, besides

the usual GR, the tiny 4-fermion spin density interaction

εκ
(
Ψγcγ

5λKΨ
)
(Ψγcγ5λKΨ) (73)

which in contrast to the standard case [2] includes the flavored four-fermion interaction
terms as well, albeit further weakened by the small parameter ε.

We have already mentioned in Section 2.2 that the weakness of the tensor field induced
gravity may look fictitious since it might be circumvented by a simple rescaling of the field
itself. However, as follows, this rescaling trick only works for pure gauge gravity with local
SL(2, C) symmetry. In the framework of SL(2N,C) gauge theory, where the tensor field is
proposed to be unified with ordinary vector and axial-vector fields which interact with the
O(1) coupling constants, rescaling is not an option. The point is that the weakness of the
filtered tensor field is exclusive to the tensor field submultiplet and does not extend to the
entire gauge multiplet Iµ (64a) of SL(2N,C). As a result, it cannot be overcome by mere
rescaling. Indeed, rescaling of only the tensor field submultiplet Tµ = T

′
µ/ε inside Iµ is not

permitted by the SL(2N,C) gauge invariance in the theory, nor by the filtering condition
(1) itself. Conversely, rescaling of the entire multiplet Iµ = I ′µ/ε, while ”normalizing” the
tensor field part in total Lagrangian, will ”denormalize” the vector and axial-vector field
terms,

L(V,A,εT) = L′(V ′/ε,A′/ε,T′) (74)

This necessitates a new rescaling of the entire multiplet I ′µ = εI ′′µ which bring us back to
the initial point with the tiny filtered tensor field. Thus, both cases render the rescaling
scenarios untenable.

3.5 Hyperflavor mediating vector fields

Turn now to the vector and axial-vector fields which are the basic spin-1 carriers of the
hyperflavor SU(N) symmetry in the SL(2N,C) theory. Their own sector stemming from
the common strength tensor (67) looks as

eL(V A) = −
1

4
[∂[µV

k
ν] − gf ijk(V i

µV
j
ν +Ai

µA
j
ν)]

2 −
1

4
[∂[µA

k
ν]]

2 (75)

where, as one can see, the vector fields acquire a conventional gauge theory form, while
the axial-vector field couplings break this gauge invariance. At the same time, as follows
from the matter sector of the theory (68), the vector fields interact with ordinary matter
fermions

eL
(V )
M = −

g

2
V i
µΨe

µ0
a γ

aλiΨ (76)

while axial-vector fields do not, thus being sterile to them.
Generally, one could try to adapt the axial-vector fields to reality though there is no

sign of they actually existing. The traditional way would be to make these axial-vector
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fields superheavy through some enormously extended Higgs sector remaining, at the same
time, vector fields gauging the Standard Model massless or enough light. This seems to
be quite difficult since the axial-vector fields want to follow the same pattern of the mass
formation as the vector fields do. Anyway, despite the gauge SL(2N,C) invariance in
the theory, the very presence of the axial-vector fields breaks the gauge SU(N) invariance
related to the vector fields, thus only leaving the global SU(N) symmetry in the theory.

In this connection, a rather interesting way could be if these axial-vector fields were
condensed at some Planck order scale M, thus providing a true vacuum in the theory,〈
Ai

µ

〉
= n

i
µM, whose direction is given by the unit Lorentz vector niµ. Remarkably, in this

vacuum, as is directly seen, gauge invariance for the vector fields is completely restored,
though a tiny spontaneous breaking of the Lorentz invariance at the scale M may appear.
More details about such a possibility can be found in the recent paper [8].

A more radical approach, as mentioned earlier, would be to impose the specific filtering
condition (57) which essentially corresponds to an existence the constraint in the theory
being applied directly to the gauge multiplet itself (52). This filtering condition automati-
cally excludes the axial-vector and tensor fields from the gauge multiplet Iµ when one uses
the standard tetrads. However, for the modified tetrads, that satisfy the slightly shifted
orthonormality conditions (58), one ultimately obtains, in contrast to (57), the total gauge
multiplet Iµ having the form

Iµ = V l
µλ

l/2 +
ε

8
T

K
µ[ab]γ

abλK +O(ε2) (77)

This multiplet, in addition to the flavor-mediating vector gauge fields of the local SU(N)
symmetry, incorporates the appropriately damped tensor fields that underlie the gravity
sector in the hyperunified theory (terms of order ε2 are disregarded for simplicity).

3.6 Symmetry breaking scenario

It is clear that hyperunification of all elementary forces supposes that, while gravity may
have an unique linear tensor field strength Lagrangian LG of the type given in (71), the
quadratic strength terms of other components of gauge multiplet Iµ are naturally unified
in their common SL(2N,C) invariant Lagrangian. The tiny quadratic terms for the tensor
fields containing the O(ε2) and higher order terms appear unessential compared to the
strength bilinears for vector fields. So, hyperunification definitely rules out the quadratic
curvature terms for tensor fields in the filtered SL(2N,C) gauge theory. The only place
where tensor field submultiplet manifests itself is the SL(2, C) gravity gauged by its tiny
neutral component εT0

µ[ab]. Accordingly, one eventually has for a gauge sector of the unified
Lagrangian

eLU = eLG −
1

4
V k
µνV

µνk (78)

containing, apart from the Einstein-Cartan type theory, the standard SU(N) invariant
vector field part (provided that the axial-vector fields are properly filtered out of the theory
in the way described above).

A conventional breaking scenario of the SL(2N,C) invariance in the theory would
depend in general on the proper set of scalar fields which could break this invariance first
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to the intermediate SU(N)×SL(2, C) symmetry and then to the Standard Model. In our
case, however, one does not need to cause the first stage of symmetry breaking since, as is
readily seen in (77), all the gauge submultiplets related to the ”nondiagonal” generators of
SL(2N,C) are properly weakened (tensor fields) or completely filtered out of the theory
(axial-vector fields).

As to the internal SU(N) symmetry violation down to the Standard Model one actually
need to have the adjoint scalar multiplets of the type

Φ = (φK + iφK5 γ5 + φKabγ
ab/2)λK (79)

which transform under SL(2N,C) as

Φ → ΩΦΩ−1 (80)

It generally contains, apart the scalar components, the pseudoscalar and tensor components
as well. However, as in the above gauge multiplet case, one can use again the tetrad
projection mechanism to filter away these ”superfluous” components, just like as it was
done in (57)

Φ =
1

8
(eσΦe

σ + eρeσΦe
σeρ/4)

where Φ is some prototype scalar field multiplet. As a result, with tetrads satisfying the
orthonormality conditions (58) there is only left the pure scalar components in the SU(N)
symmetry breaking multiplet Φ

Φ = φkλk (k = 1, ..., N2 − 1)

providing (with other similar scalar multiplets) the breaking of the SU(N) GUT down to
the Standard Model. The final symmetry breaking to SU(3)c×U(1)em is provided by extra
scalar multiplets whose assignment depends on which multiplets are chosen for quarks and
leptons.

3.7 Final remarks

We have observed that the filtered tensor field only manifests when the orthonormality
conditions for tetrads are appropriately shifted, as argued earlier in (58). This, in turn,
leads to a slight modification of the metric tensor (61), indicating a tiny departure from
general covariance, albeit in a controllable manner determined by the minute parameter ε.

Nevertheless, it is conceivable to manage the filtering mechanism in a way that preserves
general covariance. This could only be achieved if there exist two types of tetrads satisfying
the orthonormality conditions

eaKµ eµK
′

b = δabδ
K0δK

′0, EaK
µ EµK ′

b = (δab + εqab )δ
K0δK

′0 (81)

where the primary tetrad e adheres to the standard orthonormality condition, while the
auxiliary tetrad E exhibits a slight non-orthonormality deviation εqab . One can additionally
require the entire Lagrangian to remain invariant under the reflection transformation

e→ e , E → −E (82)
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This ensures that the tetrad E, in contrast to the primary tetrad e solely parametrizes the
spacetime background and does not participate in the matter fermion terms. Consequently,
while the tetrad E essentially determines the filtering condition Iµ = EσIµE

σ/4, a van-
ishingly small violation of general covariance, caused by its approximate orthonormality
condition in (81), appears beyond the scope of the Einstein-Cartan gravity emerged.

In this context, there are indeed numerous instances in physics where the consideration
of a manifold equipped with two distinct vielbein fields becomes necessary. This notably
occurs in bimetric theories, where two disparate metrics are defined on the same spacetime
manifold, including the case when one of the metrics is nondynamical [13]. Importantly,
this concept extends to certain formulations of bigravity theory, which could potentially
serve as a base for the massive gravity [14, 15].

Nevertheless, despite the possibility of employing two metrics within the framework of
the SL(2N,C) gauge theory, the case with the single metric, even if general covariance is
slightly broken, appears to be more economically viable. Consequently, we have proceeded
with this version in our hyperunified model.

4 From hyperunification to GUTs

4.1 SU(5) and its direct extensions

Let us now consider more closely how the SL(2N,C) type model can be applied to some
known GUTs starting with a conventional SU(5) [16] which would stem from the SL(10, C)
HUT. In this case some of its low-dimensional multiplets of the chiral (lefthanded for
certainty) fermions can be given in terms of the SU(5)× SL(2, C) components as

Ψia
L , 10 = (5, 2) (83)

ΨL[ai, jb] = ΨL[ij]{ab} +ΨL{ij}[ab], 45 = (10, 3) + (15, 1) (84)

where we have used that a common antisymmetry on two or more joint SL(10, C) indices
(ia, jb, kc) means antisymmetry in the internal indices (i, j, k = 1, ..., 5) and symmetry
in the chiral spinor ones (a, b, c = 1, 2), and vice versa (dimension of representations are
also indicated). One can see that, while the SU(5) antiquintet can easily be constructed
(83), its decuplet is not contained in the pure antisymmetric SL(10, C) representations
(84). Moreover, the tensor (84) corresponds in fact to the collection of vector and scalar
multiplets rather than the fermion ones.

Note in this connection, that all GUTs where fermions are assigned to the pure anti-
symmetric representations seem to be also irrelevant since the spin magnitude of appearing
states are not in conformity with what we have in reality. The most known example of
this kind is the SU(11) GUT [17] with all three quark-lepton families collected in its one-,
two-, three-, and four-index antisymmetric representations. No doubt this GUT should
also be excluded in the framework of the considered SL(2N,C) theories. Actually, for the
right 1/2 spin value of ordinary quarks and leptons these theories should include more
complicated fermion multiplets having in general the upper and lower indices rather than
the pure asymmetric ones. The point is, however, that such multiplets appear enormously
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large and contain in general lots of exotic states which never been detected. This could
motivate to seek a possible solution in the composite nature of quarks and leptons for
whose constituents – preons – the SL(2N,C) unification might look much simpler.

4.2 SU(8) with composite quarks and leptons

Following the recent discussion [18], we introduce N lefthanded and N righthanded preons
being the fundamental multiplets Pα

Lia and Pα′

Ria of the vectorlike ”metaflavor” SL(2N,C)
HUT symmetry (i = 1, ..., N ; a = 1, 2) times some local left-right ”metacolor” SO(n)L ×
SO(n)R symmetry (α = 1, ..., n; α′ = 1, ..., n) binding preons inside quarks and leptons5.
Both of these symmetries are obviously anomaly-free and the numbers of metaflavors (N)
and metacolors (n) are not yet determined. The metaflavor symmetry describes preons at
small distances as well as their composites at large ones. They are produced individually
from the lefthanded and righthanded preons due to confining forces of the above meta-
color symmetry. Some of these composites, including the observed quarks and leptons,
are expected to be much lighter than their composition scale. For that, the accompanying
chiral symmetry SU(N)L × SU(N)R of the preons should be preserved at large distances
in a way that – when it is considered as the would-be local symmetry group with some
spectator gauge fields and fermions – the corresponding triangle anomaly matching con-
ditions [19] are satisfied. Namely, the SU(N)3L and SU(N)3R anomalies related to N
lefthanded and N righthanded preons have to individually match those for lefthanded and
righthanded composite fermions being produced by the SO(n)L and SO(n)R metacolor
forces, respectively.

Moreover, as is turned out, just this condition, when being properly strengthened,
can determine the particular metaflavor symmetry SL(2N,C) in the theory. Indeed, we
first assume that all composites, both lefthanded and righthanded, have just the three-
preon configuration (n = 3), thus fixing the metacolor symmetry to SO(3)L × SO(3)R.
And second and most importantly, they belong to a single representation of their chiral
symmetries SU(N)L and SU(N)R, respectively, rather than to some set of representations.
Then it turns out that among all their third-rank representations the anomaly matching
condition holds individually only for multiplets of the type ψk

[i j]L and ψk
[i j]R (i, j, k =

1, 2, ..., N), that gives the unique solution to the number of preons N , both lefthanded and
righthanded,

N2/2− 7N/2 − 1 = 3, N = 8 (85)

This means that among all possible chiral symmetries only the SU(8)L×SU(8)R symmetry
can in principle provide masslessness of lefthanded and righthanded fermion composites at
large distances. This in turn identifies – among all metaflavor SL(2N,C) symmetries –
just SL(16, C) as the most likely candidate for hyperunification. Note that, in contrast to
the above global chiral symmetry, in the local SL(16, C) metaflavor theory, being as yet
vectorlike, all metaflavor triangle anomalies are automatically cancelled out.

5By tradition, we call them the ”metaflavor” and ”metacolor” symmetry, while still referring to the
SU(N) subgroup of SL(2N,C) as the hyperflavor symmetry.
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Turning now from the chiral symmetry multiplets ψk
[i j]L,R to the corresponding SL(16, C)

composite multiplets Ψkc
[ia, jb]L,R one can write them in terms of the SU(8)×SL(2, C) com-

ponents as the collection

Ψkc
[ia, jb] = Ψkc

[ij]{ab} +Ψkc
{ij}[ab], 1904 = (216, 2) + (216 + 8, 4) + (280 + 8, 2) (86)

which contains some spin 1/2 and 3/2 lefthanded and righthanded composite fermion
submultiplets. Meanwhile, as one can easily confirm, among all submultiplets in (86) only
the (216, 2)L,R ones satisfy individually the anomaly matching condition for the chiral
SU(8)L and SU(8)R symmetries, respectively. As a result, all the other submultiplets
there have then to acquire superheavy masses. This actually means that only the SU(8)×
SL(2, C) subgroup of the SL(16, C) HUT symmetry survives at large distances where
the composite fermions emerge. Surprisingly enough, this is consistent with what we had
above, albeit from a different perspective. Namely, the filtered SL(2N,C) gauge theory, in
which only neutral tensor field and vector field multiplet remain, turns out to be effectively
reduced to the SU(N)× SL(2, C) invariant theory. Now, in the composite model, for the
particular case of metaflavored symmetry SL(16, C), this independently follows from the
preservation of the accompanying chiral symmetry SU(8)L × SU(8)R at large distances,
thus leading to the theory with the residual metaflavor symmetry SU(8) × SL(2, C).

Remarkably, the above (216, 2)L,R submultiplets being decomposed into the standard
SU(5) GUT and family symmetry SU(3)F looks as

(216, 2)L,R = [(5 + 10, 3) + (45, 1) + (5, 8 + 1) + (24, 3) + (1, 3) + (1, 6)]L,R (87)

where the first term in the squared brackets, when taken for lefthanded states in 216L,
describes all three quark-lepton families being the family symmetry triplets. However,
there are also the similar righthanded states in 216R in our still vectorlike SL(16, C) theory.
This means that, while preons are left massless being protected by their own metacolors,
the composites (87) being metacolor singlets could in principle pair up and acquire the
heavy Dirac masses.

To avoid this for the submultiplet of physical quarks and leptons in (87), (5 + 10,
3)L, one may propose, following the scenario developed in [18], some spontaneous break-
ing of the basic L-R symmetry in the theory. This is assumed to follow from the sec-
tor of righthanded preons that reduces the chiral symmetry of their composites down to
[SU(5) × SU(3)]R. Actually, such a breaking may readily appear due to a possible con-
densation of massive composite scalars which unavoidably appear in the theory together
with composite fermions. This means that, though the massless righthanded preons still
possess the SU(8)R symmetry, the masslessness of their composites at large distances is
now solely controlled by its remained [SU(5) × SU(3)]R part. Thus, while nothing really
happens with the lefthanded preon composites still completing the total multiplet (216, 2)L
in (87), the righthanded preon composites with their residual chiral symmetry no longer
include all submultiplets given in (216, 2)R. Very remarkably, the corresponding anomaly
matching condition ”organizes” their composite spectrum in such a way that the submul-
tiplet (5 + 10, 3)R is absent among the righthanded preon composites. As a result, all
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the lefthanded submultiplets in (216, 2)L, except the (5 + 10, 3)L, will then pair up, thus
becoming heavy and decoupling from laboratory physics [18].

Accordingly, once the L-R symmetry is violated in the theory, the vectorlike metaflavor
symmetry SU(8)×SL(2, C), while still working for preons, will also break down to its sub-
group [SU(5)×SU(3)F ]×SL(2, C) for their large-distance composites. So, one eventually
comes to the conventional SU(5) GUT [16] together with the extra local SU(3)F family
symmetry [20] describing just three standard families of composite quarks and leptons.
Both types of the triangle anomalies, SU(5)3 and SU(3)3F , emerging at this stage are
properly cancelled out in the theory.

The further symmetry violation is related, as was mentioned above, to the adjoint
scalar field multiplet Φ (79) which in the present context breaks the SU(5) to the Standard
Model. As to the final breaking of the SM and accompanied family symmetry SU(3)F , it
appears through the extra multiplets H [ia,jb,kc,ld], and χ[ia,jb] and χ{ia,jb} of SL(16, C),
respectively. These multiplets contain, among others, the true scalar components which
develop the corresponding VEVs and give masses to the weak bosons, as well as the flavor
bosons of the SU(3)F . They also generate masses to quarks and leptons located in the
lefthanded fermion multiplet (86, 87) through the SL(16, C) invariant Yukawa couplings

1

M

[
Ψic

[ja, kb]LCΨld
[me, nf ]L

]
H{[ja,kb],[me,nf ]}(auχ[ic,ld] + buχ{ic,ld})

1

M

[
Ψic

[ja, kb]LCΨld
[ic, me]L

]
H{[ja,kb],[me,nf ]}(adχ[ld,nf ] + bdχ{ld,nf}) (88)

with different index contraction for the up quarks, and down quarks and leptons, respec-
tively (i, j, k, l,m, n = 1, ..., 8; a, b, c,d,e,f = 1, 2). The mass M stands for some effective
scale in the theory that in the composite model of quarks and leptons can be related to
their compositeness scale, while au,d and bu,d are some dimensionless constants of the order
of 1. Actually, these couplings contain two types of scalar multiplets with the following
SU(8)×SL(2, C) components – theH multiplet H{[ja,kb],[me,nf ]} containing the true scalar
components

H [jkmn]{[ab],[ef ]}(70, 1) (89)

and symmetric and antisymmetric χ multiplets, χ{ic,ld} and χ[ic,ld], whose scalar compo-
nents look as

χ[il][cd](28, 1), χ[cd]{il}(36, 1) (90)

Decomposing them into the components of the final SU(5)× SU(3)F symmetry one finds
the full set of scalars

70 = (5, 1) + (5, 1) + (10, 3) + (10, 3)

28 = (5, 3) + (10, 1) + (1, 3)

36 = (5, 3) + (15, 1) + (1, 6) (91)

containing the SU(5) quintets (5, 1) and (5, 1) to break the Standard Model at the elec-
troweak scale MSM and the the SU(3)F triplet and sextet, (1, 3) and (1, 6), to properly
break the family symmetry at some large scale MF . One may refer to the scalars (89) and
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(90) as the ”vertical” and ”horizontal” ones, respectively, which are actually the simplest
choice to form the above Yukawa couplings. Working in pairs in them, they presumably
determine masses and mixings of all quarks and leptons. And the last but not the least,
they may be indeed composed, in the model considered, from the same preons as quarks
and leptons [18].

5 Conclusion

We have investigated the potential of the local SL(2N,C) symmetry to unify all funda-
mental forces, including gravity. The key idea is that this symmetry can be ”trimmed
down” in a controllable covariant way by the accompanied tetrad fields. These tetrads are
assumed not only determine the spacetime geometry but also function as a kind of dis-
cerning filter, dictating which local symmetries can operate within spacetime and how the
related elementary forces interact via gauge fields. As a result of this filtering, the theory
ends up with a simpler and more effective symmetry, SL(2, C) × SU(N), that translates
to two separate but interacting parts: the local SL(2, C) symmetry describes gravity as a
gauge force, while the local SU(N) symmetry represents a grand unified theory for other
forces.

For the gravitational part, its unification with other interactions necessitates the in-
clusion of quadratic curvature terms in the gravitational sector. However, this would be
experimentally unacceptable since the coupling constant in these terms may typically be
comparable to that of vector fields. Fortunately, despite both vector and tensor fields are
located in the same SL(2N,C) gauge multiplet, the tensor field submultiplet appears natu-
rally suppressed through the tetrad filtering that enables the neglect of quadratic curvature
terms. An essential problem related to this type of HUT models is also a possible presence
of ghosts being related to the tensor rather than vector submultiplet of the SL(2N,C)
gauge multiplet. But, again, as the quadratic strength terms of tensor fields appears to be
significantly diminished in the theory this problem is proving to be quite surmountable.
As a result, one eventually comes to the conventional Einstein-Cartan type gravity with
an extra four-fermion (spin current-current) interaction (73) properly suppressed in the
theory.

For the grand unification, in turn, since all states involved in SL(2N,C) theories are
additionally classified by spin magnitude, the SU(N) GUTs with purely antisymmetric
matter multiplets, including the usual SU(5) theory, turn out to be irrelevant for the
standard 1/2-spin quarks and leptons. Meanwhile, the SU(8) grand unification with the
certain mixed representation for all three families of composite quarks and leptons, arising
from the SL(16, C) theory, appears to be particularly interesting and was studied in some
detail. Indeed, starting from N lefthanded and N righthanded preons being fundamental
multiplets of the ”metaflavor” SL(2N,C) symmetry one can show, under some natural
conditions, that among all possible chiral symmetries only the SU(8)L × SU(8)R sym-
metry meets the anomaly matching condition and can in principle ensure masslessness of
lefthanded and righthanded fermion composites at large distances. This, in turn, identifies
– among all metaflavor SL(2N,C) symmetries – just the SL(16, C) one as the most likely
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candidate for hyperunification of all elementary forces.
At the same time, it is important to clarify that SL(2N,C) hyperunification does not

imply a single universal coupling constant for gravity and other interactions, as is usually
assumed in unified theories. Instead, it suggests that all these forces are provided by
vector and tensor fields being the members of the same SL(2N,C) gauge multiplet. A
universal constant is indeed necessary for the standard quadratic strength terms of vector
and tensor fields. However, the pure gravitational interaction has a fundamentally different
coupling, linear in the tensor field strength (71). This unique coupling arises solely due to
the presence of tetrads, which are essential ingredients for an SL(2N,C) invariant theory.
It comes with its own independent coupling constant (1/2κ), conventionally related to the
Planck mass. Significantly, the vector (and axial-vector) fields cannot have these linear
strength terms alongside the standard quadratic ones.

Finally, we should emphasize the special role of tetrads and their orthogonality condi-
tion (58) within the entire SL(2N,C) theory framework. The key point is that, irrespective
of the filtering process, tetrads should be truly neutral, devoid of any SU(N) hyperflavored
components. Otherwise, they cannot be treated as standard vielbein fields satisfying the
invertibility conditions. Remarkably, only such tetrads perform the filtering process that
significantly weakens the tensor field submultiplet, while leaving the vector and axial-vector
fields unaffected. The axial-vector fields may pose some problem in the theory, which, as
argued earlier, could be resolved through their condensation [8] or a double filtering mech-
anism that completely expels them from the theory. However, there exists an essentially
different approach that could generically solve this problem just for the tetrads considered.
Notably, unlike the vector and tensor fields, axial-vector fields have no direct coupling with
fermion matter, as was demonstrated above. This suggests a new scenario for hyperunifica-
tion, wherein all gauge fields of the SL(2N,C) symmetry appear as the composite bosons
formed by fermion pairs, rather than being elementary fields. This approach, well-known
for decades as a viable alternative to conventional quantum electrodynamics [21], gravity
[22], and Yang-Mills theories [23, 24, 25], has never been applied to noncompact unified
symmetries. In such a scenario, where only the global SL(2N,C) symmetry is initially
postulated for the pure fermionic Lagrangian with appropriately filtered fermion currents,
one could expect that only composite vector and tensor fields emerge in an effective gauge
theory, while axial-vector fields are never formed.

Another avenue for further study concerns the phenomenological aspects of the theory.
The spontaneous breaking of the SL(2N,C) HUT through the filtered SL(2, C)× SU(N)
symmetry down to the Standard Model and below will lead to many new processes caused
by generalization of both gravity and SM sectors due to new particles and new couplings,
as partially discussed above.

We may return to these important issues elsewhere.
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