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Bose-Einstein condensates of ultracold atoms serve as low-entropy sources for a mul-
titude of quantum-science applications, ranging from quantum simulation and quan-
tum many-body physics to proof-of-principle experiments in quantum metrology and
quantum computing. For stability reasons, in the majority of cases the energetically
lowest-lying atomic spin state is used. Here we report the Bose-Einstein condensa-
tion of caesium atoms in the Zeeman-excited mf =2 state, realizing a non-ground-state
Bose-Einstein condensate with tunable interactions and tunable loss. We identify two
regions of magnetic field in which the two-body relaxation rate is low enough that
condensation is possible. We characterize the phase transition and quantify the loss
processes, finding unusually high three-body losses in one of the two regions. Our re-
sults open up new possibilities for the mixing of quantum-degenerate gases, for polaron
and impurity physics, and in particular for the study of impurity transport in strongly
correlated one-dimensional quantum wires.

Ultracold atomic gases have proven to be a fruitful
testbed for few- and many-body quantum physics, in
part due to their high degree of controllability [1]. A
very powerful tool for the ultracold-atom platform is the
ability to tune the interactions between the atoms via
Feshbach resonances [2]. One atomic element that has
been very successful in this regard is Cs [3, 4]. The
hyperfine ground state of Cs is enriched by an abun-
dance of broad and narrow Feshbach resonances, and
interaction tuning has been instrumental to a diverse se-
ries of seminal results on a wide range of topics. These
include Bose-Einstein condensation (BEC) [3], Efimov
physics [5, 6], ultracold molecules [7–9], strongly corre-
lated one-dimensional (1D) physics [10–12], long-range
tunneling dynamics [13] and density-induced tunneling
[14], scale invariance [15], matter-wave jets [16], and, re-
cently, cooling by dimensional reduction [17] and the 1D-
2D crossover [18]. These results have all been obtained by
making use of one particular hyperfine Zeeman sublevel
of Cs, the state (f=3,mf =3), which is the energetically
lowest-lying Zeeman state.

BEC of atoms in excited states offers additional pos-
sibilities. Such condensates have been produced with
excited Zeeman states, metastable electronic states and
atoms in higher bands of optical lattices. They have
been used to create spinor quantum gases [19], to observe
quantum droplet states [20] and to study unconventional
superfluidity in excited lattice orbitals [21]. Early at-
tempts to condense Cs in excited Zeeman sublevels were
hindered by uncontrolled losses [22–26]. Later experi-
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ments using the sublevel (3, 3) benefited from the absence
of inelastic two-body processes, but care was needed to
avoid detrimental three-body collisions [3, 5, 27].

Here we report the achievement of a tunable Cs BEC
in a state other than the absolute ground state, namely
in the Zeeman-excited state (f = 3,mf = 2). We iden-
tify one particular window around a magnetic field of
B ≈ 160 G in which two- and three-body processes are
sufficiently suppressed that pure condensates can reliably
be produced with 3×104 atoms. In a second window
around B ≈ 40 G partial condensation is possible. We
find surprisingly high three-body losses in this window,
most likely due the opening up of a new decay channel.
Our work is guided by state-of-the-art coupled-channel
calculations to determine the two-body scattering prop-
erties.

The attainment of BEC requires that the ratio of good
to bad collisions is sufficiently high while effective one-
body processes such as background-gas collisions and in-
elastic light scattering are negligible. Elastic collisions
are needed to drive the evaporation and thermalization
process, while two-body inelastic collisions and three-
body recombination reduce the cooling efficiency, pos-
sibly to the point that BEC cannot be reached. With
peak number densities in the range between 1×1011 and
1×1013 atoms/cm3 during the cooling process, this trans-
lates into concrete values for the s-wave scattering length
and into acceptable upper bounds for the two- and three-
body loss-rate coefficients.

We have carried out coupled-channel calculations
of the two-body scattering properties as a function of
magnetic field, as described in Ref. [28]. The calcula-
tions use the interaction potential of Ref. [29] and a
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Fig. 1. Two-body scattering properties of the Cs states
of interest from coupled-channel calculations. a, The
real parts of the scattering lengths a3,3 (grey), a3,2 (black),
and a2,2 (green) and b, the two-body loss-rate coefficients k2
for collisions of (3, 3) with (3, 2) (black) and (3, 2) with (3, 2)
(green) as a function of the magnetic field B. The regions of
interest for this work are indicated by the grey shadings.

basis set including partial-wave quantum numbers L
up to 4. For collisions involving excited-state atoms,
the scattering length is complex, a = α − iβ, and the
2-body loss-rate coefficient at limitingly low energy is
k2 = (4gπℏ/µ)β, where µ is the reduced mass and g is
1 (2) for distinguishable (indistinguishable) particles.
Figure 1 shows the real parts of the s-wave scattering
lengths amf1,mf2

for the three possible combinations
of atoms initially in mf = 3 and mf = 2, and the
corresponding rate coefficients k2 for two-body inelastic
loss (which cannot occur for two atoms with mf = 3).
As is well known, the Cs scattering lengths are strik-
ingly field-dependent, featuring overlapping broad and
narrow Feshbach resonances. The state (3, 3) features
a comparatively gentle zero crossing near 17 G, and
BEC in this state has been achieved in a narrow window
around 21 G [3]. The state (3, 2) exhibits a broad s-wave
resonance centred at 102 G and two gentle zero crossings
near 35 G and 148 G. Its magnetic-field dependence
is scarred by a multitude of narrow d-wave (L = 2)
and g-wave (L = 4) Feshbach resonances. In fact, the
zero crossing near 148 G is split in two by a narrow
d-wave resonance. The two-body loss-rate coefficient k2
is strictly zero for the state (3, 3). This is not so for
the state (3, 2), but even here spin-exchange collisions,
which conserve mf1 + mf2, are energetically forbidden
at low energies. The two-body loss rates in Fig. 1 are
due entirely to spin-relaxation collisions, driven by the
magnetic dipole-dipole interaction and second-order

spin-orbit coupling [28, 30], and there are windows near
40 G and 160 G where the values for (3,2)+(3,2) are
small or even negligible. It is these windows on which
we will concentrate in this work.

Results
BEC of Cs in the state (3,2). The procedure used to
achieve a condensate in the state (3, 2) makes use of some
of the tricks that have previously been used to create a
BEC in the ground state (3, 3) [4]. We start by loading
about 2.5×108 atoms into a six-beam magneto-optical
trap (MOT) within 4 s from a Zeeman-slowed atomic
beam. Subsequent Raman-sideband cooling in the pres-
ence of a near-detuned optical lattice for a duration of
6.9 ms brings the atoms to temperatures below 1 µK
and spin-polarizes them into the state (3, 3). The sam-
ple, now with about 5×107 atoms, is loaded into a large-
volume “reservoir” dipole trap by gradually switching off
the lattice light as a levitating magnetic quadrupole field
of 31.1 G/cm is turned on while the magnetic field B is
ramped to B = 160.3 G, at which a3,3 = 1500a0. The
stability of the magnetic field is approximately 30 mG.
The trap is generated by two horizontally propagating
laser beams at 1064.5 nm, intersecting at nearly a right
angle. The sample is held for 500 ms to allow plain evap-
oration at a trap depth of about 2.6(2) µK×kB. We now
have about 6.5×106 atoms. To transfer the atoms into
the state (3, 2) we use a radio-frequency sweep across a
range from 54.6 to 54.2 MHz with a duration of 1.45 ms.
The levitating field is increased during the sweep to 46.65
G/cm to levitate the atoms in the state (3, 2). The state-
transfer efficiency that we can obtain is about 75 %. We
attribute this to the motional excitation of the atoms as
they see changing forces, leading to some heating and
hence loss in the finite-depth optical trap. We now have
about 4.9×106 atoms at a temperature of around 1 µK
with a peak density of 8.2(1)×1010 atoms/cm3. We es-
timate the peak elastic collision rate to be 2.8 s−1, with
a2,2=274 a0 at B=160.3 G. The geometrically averaged
trap frequency is ν̄=8.1(5) Hz.

Next, as the final step towards BEC in (3, 2), the
sample is loaded into a tighter “dimple” trap generated
by two orthogonally intersecting 1064.5-nm laser beams
with estimated 1/e2-waist sizes of 40 and 150 µm, respec-
tively, one propagating horizontally along the same axis
as one of the reservoir beams, and the other propagating
vertically. The loading process is completed after 1.5 s,
and we then carry out forced evaporative cooling for 6.0
s by lowering the power of both dimple-trap beams in an
approximately exponential manner. At the beginning of
the evaporation process, the scattering length is tuned
to a2,2=255 a0, by ramping the offset field to B=159.1
G. At this value, a minimum for the loss is found, sim-
ilar to the Efimov minimum for the state (3, 3) [5]; it is
crucial to utilize this minimum for optimal performance
of the cooling process. The phase transition to a BEC
occurs at a critical temperature of about 82(1) nK with
9.5×104 atoms after approximately 3 s of forced evap-
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Fig. 2. Formation of a BEC in (3,2) at 160 G and partial BEC at 40 G. a, Absorption images at 160 G (top
row), and the resulting horizontally integrated density profiles (bottom row), for different times during the evaporation ramp.
We indicate the corresponding temperatures in the absorption images. The images are taken after release from the trap and
subsequent 46 ms of TOF with nulled interactions. Each image is an average of five realizations. Bimodal fits to the normalized
density profiles give the temperatures as indicated. The final BEC contains about 3.0×104 atoms. b, Absorption image of the
partial BEC at 40 G (top), and, normalized vertical density profile (bottom) fitted with a bimodal distribution, after a TOF of
96 ms. The sample has an atom number of N = 7×103 with a BEC fraction of approximately 30 %. These measurements are
the averages of four repetitions. We attribute the slight asymmetry that can be observed in the integrated z-profile to spilling
of atoms into the vertically propagating dipole-trap beam.

oration. Absorption images and horizontally integrated
density profiles across the transition are shown in Fig. 2
a. The evolution via a characteristic bimodal distribu-
tion can clearly be seen. The images are taken after 46
ms of time-of-flight (TOF) with nulled interactions upon
release [3] by means of the zero crossing in a2,2 near 148
G, due to a Feshbach resonance near 102 G. At the end of
the evaporation ramp, we obtain an essentially pure BEC
with approximately 3.0×104 atoms. The condensate frac-
tion is above 90 %. At this point, the dimple trap has
trapping frequencies (νx, νy, νz) = (4.2(3), 6.5(2), 4.9(1))
Hz, with a trap depth of V = 8.0(2) nK×kB. The peak
density in the Thomas-Fermi (TF) regime is estimated to
be 3.6(1)×1012 atoms/cm3, and the TF radii are calcu-
lated to be (Rx, Ry, Rz)= (18.5(2), 15.5(1), 17.4(1)) µm.
The BEC is comparatively stable, with an atom-number
1/e-lifetime of around 30 s, most likely limited by slightly
imperfect vacuum conditions and residual trap-light scat-
tering. Overall, the BEC in (3, 2) performs nearly as well
as the BEC in (3, 3). The cycle time for creating the BEC
is 20 s.

We now turn to the window near 40 G. We have not
been able to create a BEC in this window by means of
the sequence outlined above, with the difference that the
magnetic offset field B is ramped to this window at the
beginning of the reservoir-trap stage; this is due to the
losses discussed below. However, we are partially suc-
cessful by implementing the lattice trick: The BEC in
state (3, 2), created by the sequence above, is adiabati-

cally loaded into a 3D optical lattice at 1064.5 nm with
a depth of 25 Er, where Er is the photon-recoil energy.
The lattice is the same as in some of our previous works;
see Ref. [11, 12]. By adjusting the confinement via the
dimple-trap beams we create a Mott insulator with pre-
dominant single-site occupancy. The lattice shields the
atoms from collisions as the bias field is ramped from
160 G to a value near 40 G in 0.5 ms. Atom loss and
sample heating are found to be negligible during the
ramp, but they immediately set in when the lattice is
unloaded and the atoms are released into the 3D dim-
ple trap. Nevertheless, further evaporative cooling yields
BECs of around 7.0×103 atoms with condensate fractions
of up to 30%, as seen in Fig. 2 b. The lattice trick can
be similarly implemented to transfer a BEC in the state
(3, 3) to the state (3, 2) at 40 G directly, but without
improving the BEC fraction.

Exploring the zero crossing around 148 G. With
a BEC in (3, 2) at hand we now explore the magnetic
tunability of the state (3, 2). We focus on the zero cross-
ing of a2,2 around B = 148 G, which is caused by the
broad resonance at 102 G. This zero crossing is of partic-
ular interest, not just because of its shallow nature, but
also because of the existence of a narrow resonance in
its close vicinity. This resonance is decayed, so does not
produce a pole in the scattering length [31]; instead, it
produces a sharp oscillation in the scattering length and
an asymmetric peak in the two-body loss rate centred at
Bres = 147.44 G, as shown in Fig. 3. It thus gives rise to
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Fig. 3. Exploring the vicinity of the zero crossing near
148 G with the BEC in (3,2). a, Number of atoms N
(circles) and b, the Gaussian cloud width σz (circles) of the
BEC after TOF for different values of the magnetic field B.
The experimental results in a, and b, are overlayed by the
calculated two-body loss-rate coefficient k2 (on a log scale)
and scattering length a2,2, respectively (green lines). Each
data point is the average of at least three measurements and
the error bars give the standard error.

two zero crossings. We have characterised this resonance
from coupled-channel calculations using the methods of
Ref. [32], and obtain amplitude ares = 5.8 × 106 a0 and
strength abg∆ = 54 G a0; see Supplementary Note S1
for further details. This setting provides an ideal play-
ground to quench a non-interacting system into a highly
interacting one in a fast but controlled manner.

For the measurements we start with pure BEC in
(3, 2) at B=160.3 G with a calculated scattering length
a2,2 = 274 a0. We switch off the optical trap to initiate
TOF while keeping the levitating field on. Within 0.2 ms
B is ramped to the target value, where we allow the sam-
ple to expand for another 110 ms. All magnetic fields are
switched off and 6 ms later an absorption image is taken,
from which we determine the number of remaining atoms
N and the cloud width σz of the atomic sample along
the vertical direction z. The results are shown in Fig. 3.
Both data sets show sharp features due to Feshbach reso-
nances, on top of a varying background. Significant atom
loss happens for values of B below about 146 G and in
the vicinity of the resonances; the resonant loss peaks are
centred at 147.62(3) G and 154.13(1) G.

The d-wave resonance causes two zero crossings in the
calculated scattering length, at 145.5 and 148.6 G. The
BEC shows the highest stability when the value of a2,2 is
non-zero and positive, as expected from mean-field the-
ory. However, for negative values of a2,2 mean-field the-
ory predicts a collapsing BEC. In fact, below the zero

crossing at 145.5 G, as B is lowered and a2,2 becomes
more negative, we observe more loss and increased sam-
ple widths. The presence of the two zero crossings is re-
flected in two minima in the cloud widths at 144.9(1) G
and 148.1(1) G. These are at slightly lower fields than the
zero crossings, i.e. at slightly negative scattering lengths.
Evidently, slightly attractive interactions lead to reduced
widths in expansion. This we attribute to the fact that
the atom clouds contract for small attractive interactions,
but do not fully collapse. The increased loss close to
the resonances is caused by a combination of resonantly
enhanced two-body and resonantly enhanced three-body
losses. To sort out which of these dominates near the
resonances would need a separate investigation.

Fitting the two resonant loss features with simple
Gaussians gives resonance positions at 147.62(3) G
and 154.13(1) G. These values are in good agreement
with the predictions. Further, more narrow resonant
features, which do not appear in Fig. 3 because of the
finite resolution of the scan over B, are discussed in the
Supplementary Note S2.

Measurement of loss-coefficients. The usability of
a BEC in (3, 2) in future experiments is in part deter-
mined by the extent to which the BEC is compromised
by losses. We therefore investigate the loss dynamics of
ultracold non-condensed samples of atoms in (3, 2) for
different values of a2,2 in the regions around both 160
G and 40 G. Atoms in the state (3, 2) are exposed to
both two-body and three-body decay channels. Two lo-
cal minima in k2 are predicted around 40 G and 160 G,
as seen in Fig. 1. The value for the minimum at 160 G
is calculated to be nearly two orders of magnitude lower
than that for the minimum near 40 G. A distinct differ-
ence in the inelastic scattering behavior around 40 G and
160 G is clearly reflected by the fact that a pure BEC can
be achieved at 160 G, but not near 40 G. For three-body
recombination there are no precise predictions for these
regions. Our lifetime measurements as discussed in this
section provide an experimental estimate for both the
two- and three-body coefficients in these regions.

We first focus on the region around 160 G. On the
way to condensation we stop the evaporation process and
create non-condensed samples in the state (3, 2) in the
crossed dimple trap at a depth of approximately 3.1 µK.
At this stage the samples have a temperature of 500 nK.
For loss measurements away from the ”sweet spot” with
B=159.1 G and a2,2=274 a0 discussed above, we further
use ”tilt” cooling [33] to decrease the temperature of the
sample to around 150 nK without significantly affecting
the trap curvature. Tilting the trap back gives such a
deep trap that evaporative losses are minimized during
the loss measurements, increasing our sensitivity for a
potential measurement of k2. With trapping frequencies
of (νx, νy, νz)=(111.0(19), 118.1(38), 40.3(6)) Hz, we get
an initial peak density of the cloud in the range of 1.2−
1.6×1013 cm−3 for typically 5×104 atoms. We ensure
that the sample remains above the BEC phase-transition
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temperature in order to simplify the modelling of our
measurements. In the experiment, we hold the sample for
a variable hold time t and then determine atom number
and temperature. The results are presented in Fig. 4 a)
and b) for hold times up to 2 s and for 4 different values of
B from 151.1 to 177.7 G. Particle loss and sample heating
are evident. For comparison, we add a data set that is
taken at the sweet spot (B=159.1 G and a2,2=274 a0)
without using the tilt method, but just by stopping the
evaporation sequence shortly before condensation. Here,
some loss can be seen, but no heating. The loss is most
likely evaporative loss, and possible heating is balanced
by plain evaporative cooling, given the rather shallow
trap. For the other data sets, there is an obvious trend
that larger values of a2,2 result in faster loss and more
rapid temperature increase. However, we find fast loss
also for lower values of a2,2 away from the sweet spot, as
can be seen from the data set with 88 a0.

To model the loss, we assume that the samples remain
in thermal equilibrium throughout the whole process.
The number N of remaining atoms evolves according to
the rate of change of the density, ṅ(r, t)=−∑

i kin(r, t)
i,

where i= 1, 2, and 3 denote the one-, two-, and three-
body loss processes, respectively, with ki the coefficient
of the collision rate for i-body loss. The rate of change
for the atom number is obtained by integrating ṅ(r, t),

Ṅ(t) =
∫
ṅ(r, t)d3r. As is well known [27], the atom

loss from the trap induces heating via two dominant pro-
cesses. These are known as anti-evaporation and recom-
bination heating. Following Ref. [27] we incorporate the
latter by an additional temperature parameter Th in the
three-body heating term of the rate equation. To obtain
the loss-rate coefficients the data points are then fitted
by the numerical solution of the resulting coupled rate
equations (Eq. 1 and Eq. 2 of the Methods). The fits
are shown along with the experimental data in Fig. 4,
and the loss-rate coefficients obtained are summarized in
Table I. The model fits the data reasonably well, with
the two-body loss rate being negligible and the loss thus
dominated by three-body recombination. The one-body
loss rate coefficient k1 is ∼ 0.05 s−1 for all the data sets.
In cases where the fitted values of k2 are close to zero, we
fix them to the corresponding theoretical value to avoid
overfitting. Note that the value for k1 is significantly
larger than we obtain for a pure BEC, where we use a
much lower laser power for the dipole trap. We attribute
the need for a higher value of k1 here to increased losses
due to inelastic light scattering. Otherwise, the values
obtained for k3 for a given value of a2,2 are similar to the
ones from previous work using the sublevel (3, 3) [5, 27].

We now turn to the region around 40 G. The measure-
ments here have a surprise for us. This region is again
reached using the lattice trick. The trap depth is ap-
proximately 800 nK, with an initial temperature of the
samples between 80 and 90 nK and with peak densities of
around 1.5× 1012 cm−3. Note that this time the density
is a factor 10 lower than in the previous measurements.
Figure 4 c and d show the resulting loss and heating,

together with fits similar to those above. First of all,
no sweet spot can be identified. For the plot, the val-
ues for B were chosen such that the values for a2,2 are
the same as for the measurements in the region around
160 G. Evidently, accounting for the lower density, the
loss and heating observed is significantly greater than
in the region around 160 G. The decay curves lie closer
together, i.e., the loss does not depend so much on the
value of a2,2. All this is reflected by the fit results. When
testing the fits, we find that both two- and three-body
loss are significant. However, leaving all parameters, i.e.
k1, k2, k3 and Th, as free parameters makes our model
prone to overfitting. We fix k1=0.068 s−1 and we omit
the contribution of Th from the fits as it appears to be
negligible. Then, letting k2 and k3 vary freely, we find
values for k2 of about 5×10−13 cm3 s−1 and for k3 be-
tween about 0.5×10−24 cm6 s−1 and 3.2×10−24 cm6 s−1.
The specific values are added to Table I. The values for k2
agree reasonably well with the theoretical values, but the
values for k3 are nearly two orders of magnitude larger
than we obtained from the measurements in the region
around 160 G or from measurements involving the state
(3, 3) [5, 27], at given values for the relevant scattering
length away from the sweet spots (which are at 160 G for
(3, 2) and at 21 G for (3, 3)).

Such high values for k3 are a surprise, and we can only
speculate about the origin of such high three-body loss.
A simple calculation (given in Supplementary Note S3)
shows that there is a possible three-body recombination
process that flips the spin of one atom to (3, 1) while
forming a molecule in the least-bound state of the chan-
nel (3, 3) + (3, 2). This process becomes energetically
resonant near B=45 G due to the second-order Zeeman
effect. Three-body recombination processes assisted
by spin exchange are believed to be important for 7Li
[34, 35] and 39K [36, 37], but not for 87Rb [38, 39] and
85Rb [40]. We note that this process does not seem
to play a role in the window near 160 G. To discuss
the likelihood of this explanation further, we consider
the energy mismatch between three free particles and
the products of the three-body recombination. In ref.
[34], the presence of an additional spin channel, with
an energy mismatch of approximately 0.25 EvdW was
proposed as the cause of a discrepancy of about two
orders of magnitudes in the measured k3. Here EvdW is
the typical energy scale for the van der Waals interaction
between the two atoms [41]. The energy mismatch in
our case is significantly smaller, in the range of 0 to 0.05
EvdW.

Discussion
In summary, for the first time, a BEC of Cs has been
obtained in a spin state other than the absolute ground
state (3, 3). We have identified two windows where this
is possible: In a region around 160 G, two-body losses
are negligible and three-body losses are sufficiently sup-
pressed. Here, a pure BEC with 3.0×104 atoms in (3, 2)
can be formed.
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a b

dc

Fig. 4. Atom-loss and temperature measurements for non-condensed samples in state (3,2). a, (and c,) Normalized
number of remaining atoms N and b, (and d,) temperature T for varying hold time t in the region around 160 G (40 G). For
a, and b, the scattering length a2,2 is set to 88 a0 (circles), 274 a0 (squares), 379 a0 (diamonds), 452 a0 (triangles), and 517 a0

(crosses) for B = 151.1 G, 160.3 G, 167.0 G, 172.4 G, and 177.7 G, respectively. The inset in b) shows the measured temperature
for the sweet spot with a2,2 =274 a0. For c, and d, a2,2 is set to 89 a0 (circles), 247 a0 (squares), 377 a0 (diamonds), 449 a0

(triangles), and 517 a0 (crosses) for B = 37.1 G, 40.7 G, 43.7 G, 45.4 G and 47.0 G, respectively. Each data point is equal to
the mean of three to five repeats, and the error bars reflect the standard error. The solid lines are fits to the data as discussed
in the main text. The loss-rate coefficients obtained from the fits are given in Tab. I.

Experiment Theory

B (G) a2,2 (a0) k1 (s−1) k2 (10−14 cm3 s−1) k3 (10−26 cm6 s−1) k2 (10−14 cm3 s−1)

37.1 89 - 18.2(49) 323.2(108) 73.2

40.7 247 - 35.5(25) 179.9(47) 59.2

43.7 377 - 88.7(30) 52.9(55) 47.0

45.4 449 - 49.5(27) 135.2(53) 51.8

47.0 517 - 39.4(26) 156.5(44) 51.6

151.1 88 0.040(11) 2.1(12) 4.56(22) 1.2

167.0 379 0.057(12) 1.2 (fixed) 0.50(10) 1.2

172.4 452 0.062(1) 1.8 (fixed) 1.11(2) 1.8

177.7 517 0.054(4) 2.3 (fixed) 1.86(5) 2.3

Tab. I. Experimentally determined and theoretically predicted values of loss-rate coefficients in the windows
around 40 G and 160 G. The errors in the experimental values are determined from the fit.

The situation is different in a region around 40 G. We
have not been able to achieve BEC by direct evaporation
in this region. However, creating a BEC first near 160 G
and then transferring it in a lattice to 40 G allows us to
produce BECs at that field value. Losses are strong, re-
ducing the purity of the BEC and limiting its lifetime to
around 0.5 s. Interestingly, three-body rather than two-
body losses are the limiting factor. We have not been able

to find a sweet spot where three-body recombination is
sufficiently suppressed. In fact, the three-body loss-rate
coefficient is close to two orders of magnitude larger than
we had expected; the high value may be the result spin-
flip-aided three-body recombination. This process merits
further investigation. One signature would be the direct
detection of atoms in (3, 1) produced in the recombina-
tion process. We note that the losses in this region set



7

in only when the atoms are released from the lattice into
the 3D trap. The losses are nearly fully suppressed when
the atoms are kept in, e. g., 1D tubes, as has been done
previously in various experiments in our group [10, 42].

More than 20 years after the first attainment of a
Cs BEC in (3, 3) [3], BEC in (3, 2) is not merely an
academic achievement. While Cs spinor BECs remain
out of reach, BEC in (3, 2) opens up new possibilities
for impurity and polaron physics. Specifically, for
experiments in the context of strong bulk-bulk and
impurity-bulk correlations in 1D [12], the strengths of
the bulk-bulk and the impurity-bulk interactions can be
interchanged, potentially allowing the impurity to serve
as a matter-wave probe of the pinning transition [11]
through the phase transition point. Precision tests of
the underlying quantum field theory, the sine-Gordon
model [43], are thus possible. Further uses of (3, 3)
as a strongly interacting probe (instead of (3, 2)) will
enhance experiments on topological phase transitions
[44]. In addition, being able to condense Cs in (3, 2)
opens new possibilities in quantum-gas mixture se-
tups, e.g., for the production of ultracold and possibly
quantum-degenerate samples of heteronuclear molecules
such as KCs [45] and RbCs [46, 47].

Methods
Fitting of loss measurements. For our fitting proce-
dure we use a coupled fit of the atom number and the
temperature evolution [27, 47]

Ṅ(t) = −k1N(t)− k2β
N(t)2

23/2T (t)(3/2)
− k3β

2 N(t)3

33/2T (t)3
,

(1)

Ṫ (t) = k2β
N(t)

27/2T (t)(1/2)
+ k3β

2N(t)2(T (t) + Th)

35/2T (t)3
, (2)

where β = (mω̄2/2πkB)
3/2 with the mass m of the Cs

atom, and ω̄=2π × ν̄ is the geometrically averaged trap
frequency. Applying the standard approach of the least-
square fit method we minimize the function

χ2 =
∑
i

(
rN(i)

σN(i)

)2

+
∑
i

(
rT(i)

σT(i)

)2

. (3)

Here rN = (Nexp − Nmod) (rT = (Texp − Tmod)) are the
residual of the number of atoms (temperature), Nexp

(Texp) is the measured atom number (temperature),
and Nmod (Tmod) are the corresponding values obtained

from Eq. 1 (Eq. 2). The weighted error of the atom loss
(temperature) measurements is σN(i) (σT(i)). For the
region near 160 G we use k1, k3 and Th in Eqs. 1 and
2 as free parameters. Additionally using k2 as a free
parameter yields non-zero values of k2 only for the data
set at 151.1 G. We hence leave k2 as a free parameter for
this particular data set and set it to the corresponding
theoretical values for the others. In the region near 40
G, we leave k3 and k2 as free parameters and restrict
k1 = 0.068 s−1 and Th = 0 µK to avoid overfitting.
Note that for all of these fits the correlation coefficients
between the loss coefficients are above 0.9. The fitting
parameters listed in Tab. I include the standard error,
which is derived from the diagonal elements of the
variance-covariance matrix.
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[45] M. Gröbner, P. Weinmann, E. Kirilov, H.-C. Nägerl, P. S.
Julienne, C. R. Le Sueur, and J. M. Hutson, Observa-
tion of interspecies Feshbach resonances in an ultracold
39K−133Cs mixture and refinement of interaction poten-
tials, Phys. Rev. A 95, 022715 (2017).
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Supplementary Materials of
“Bose-Einstein condensation of non-ground state caesium atoms”

S1. SUPPLEMENTARY NOTE 1: CALCULATED RESONANCE PARAMETERS

We locate and characterise resonances in our coupled-channel calculations using the methods of Ref. [32]. We use
the regularised scattering length procedure, which is suitable for the weak background inelasticity that is present for
the resonances here. Characterising the d-wave resonance in Fig. 3 near 147.5 G is complicated by the significant
variation of the background scattering length abg across its width. We therefore subtract off a field-dependent
reference aref(B) = (B − 147.5 G) × 25 a0 G−1 before fitting to obtain the parameters given in the main text.
The field-variation of the background means it is not possible to define the resonance width ∆ as usual, but the
strength abg∆ is nonetheless well defined. The g-wave resonance shown in Fig. 3 is narrower and simpler to fit, giving
parameters Bres = 154.18 G, ∆ = 20 mG, abg = 160 a0, and ares = 3.2× 106 a0.
The resonances described in Supplementary Note S2 are harder to assign and characterise. The coupled-channel

calculations described in the main text use the interaction potential of Berninger et al. [29] with a basis set limited
by Lmax = 4. This is appropriate because the potential was fitted to experimental results using this basis set, so
that the potential itself accounts (in an averaged way) for the absence of basis functions with L > 4. However, these
calculations show only the two resonances discussed above in the region of interest. We therefore carry out further
calculations with Lmax = 6 and 8. These calculations reveal several additional narrow resonances in this region,
due to i-wave (L = 6) states; their parameters are listed in Supplementary Table S1. In each case there is at least
one i-wave resonance within 3 G of the observed loss feature, but there is no clear mapping between the individual
calculated resonances and experimental loss peaks. Specific assignments of the loss peaks would require refitting the
entire interaction potential, using a more accurate form for the shorter-range part of the interaction potential than in
Ref. [29]. This is outside of the scope of the present work.

Bres (G) ∆ (mG) abg (a0) ares (a0)

134.28 −0.0076 −402 2.5× 104

136.96 −0.12 −293 3.3× 104

141.10 −0.47 −147 1.7× 106

144.99 −4.1 −21.3 107

147.73 −2.9 −154 5.9× 106

SUPPLEMENTARY TABLE S1. Parameters of i-wave Feshbach resonances between 130 and 150 G, from coupled-channel
calculations with Lmax=8.
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SUPPLEMENTARY FIG. S1. Search for additional Feshbach resonances. Loss spectroscopy performed with a non-
condensed cloud in the dipole trap between 138 G and 145 G. For this measurement the sample is held in the trap for 2 s before
imaging via the standard TOF technique. Each data point is an average of up to five repetitions.

S2. SUPPLEMENTARY NOTE 2: RESONANCES IN THE RANGE OF B=138 TO 145 G

We carry out an atomic loss spectroscopy measurement in the magnetic field region between 138 and 145 G by
holding a non-condensed sample of atoms in (3, 2) in the dipole trap for 2 s and recording the number of remaining
atoms N as B is varied. The results are plotted in Supplementary Fig. S1. We find three loss features within this
region, at 139.80(1), 144.48(1) and 144.65(1) G.

S3. SUPPLEMENTARY NOTE 3: THREE-BODY RECOMBINATION PROCESSES ASSISTED BY
SPIN EXCHANGE

As a possible collision process accounting for the large three-body loss measured in the magnetic field region around
40 G, we consider three-body recombination assisted by a spin-exchange process. We begin with three atoms in the
(3, 2) state, each with energy E2, undergoing a spin-exchange collision that produces one atom in each of the states
(3, 3), (3, 2) and (3, 1), with corresponding energy Emf

. Between 40 and 50 G, the Zeeman energy, mostly dominated
by the quadratic Zeeman shift, results in an excess energy of approximately 50 to 100 kHz for this spin-exchange
process. This is of the same order of magnitude as the binding energy Eb,mf1,mf2

of a weakly bound dimer in the
channel (3, 3) + (3, 2) in this region of field. In Supplementary Fig. S2 we show the energy difference between the
excess Zeeman energy and the binding energy of weakly bound dimers in the spin channels (3, 3)+(3, 2), (3, 3)+(3, 1),
and (3, 2) + (3, 1), respectively. The binding energies of the dimers are calculated using

Eb,mf1,mf2
= −ℏ2/(2µ(amf1,mf2

− ā)2), (S1)

where µ is the reduced mass of the atom pair and ā ≈ 96.56a0 is the mean scattering length of Cs. From Supplementary
Fig. S2 we see that at 45 G the formation of a molecule in the (3, 3) + (3, 2) channel becomes energetically resonant.
This suggests that three-body recombination via a spin-exchange collision is the likely cause of the large values of k3
that we measure in this region. Interestingly we further find from Supplementary Fig. S2 that molecular channels
(3, 2) + (3, 1) and (3, 3) + (3, 1) also have resonant features above 55 G.
This process differs from a typical three-body recombination collision, where the molecular binding energy is carried

away by the collision products. Here most of the binding energy is absorbed by the excess Zeeman energy, so the
products do not gain significant kinetic energy.
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SUPPLEMENTARY FIG. S2. Energies of possible decay channels for spin-exchange-assisted three-body recom-
bination around 40 G. Excess Zeeman energy required for the spin-exchange process (3, 2) + (3, 2) → (3, 3) + (3, 1) (black).
Energy difference between the excess Zeeman energy and the binding energy of a weakly bound dimer in (3, 3) + (3, 2) (blue),
(3, 3) + (3, 1) (green) and (3, 2) + (3, 1) (yellow). In the legend the Zeeman shift and the binding energies are labeled as Emf

and Eb,mf1,mf2 , respectively. The dashed line shows zero energy separation.
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