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Multipoint vertex functions, and the four-point vertex in particular, are crucial ingredients in
many-body theory. Recent years have seen significant algorithmic progress toward numerically
computing their dependence on multiple frequency arguments. However, such computations remain
challenging and are prone to suffer from numerical artifacts, especially in the real-frequency domain.
Here, we derive estimators for multipoint vertices that are numerically more robust than those
previously available. We show that the two central steps for extracting vertices from correlators,
namely the subtraction of disconnected contributions and the amputation of external legs, can
be achieved accurately through repeated application of equations of motion, in a manner that is
symmetric with respect to all frequency arguments and involves only fully renormalized objects.
The symmetric estimators express the core part of the vertex and all asymptotic contributions
through separate expressions that can be computed independently, without subtracting the large-
frequency limits of various terms with different asymptotic behaviors. Our strategy is general and
applies equally to the Matsubara formalism, the real-frequency zero-temperature formalism, and
the Keldysh formalism. We demonstrate the advantages of the symmetric improved estimators by
computing the Keldysh four-point vertex of the single-impurity Anderson model using the numerical
renormalization group.

I. INTRODUCTION

Two-particle correlators and vertices play a crucial role
in many-body physics. They encode the effective interac-
tion between two particles, altered from their bare value
due to the many-body environment. Understanding and
calculating two-particle correlators is essential for study-
ing collective modes, instabilities, and response proper-
ties. The two-particle or four-point (4p) vertex is also
a key ingredient for extending methods based on quan-
tum impurity models, like dynamical mean-field theory
(DMFT) [1, 2], to treat nonlocal correlations [3]. Owing
to the dependence of the 4p vertex on multiple frequency,
spin, and orbital degrees of freedom, analytic treatments
are limited to only the simplest models [4, 5]. Thus, there
has been a longstanding interest in developing efficient
and accurate computational methods for evaluating these
quantities [6]. Indeed, recent years have brought signifi-
cant algorithmic progress toward numerically computing
the dependence of multipoint functions on their multiple
frequency arguments, using, e.g., quantum Monte Carlo
(QMC) [7–10] or the numerical renormalization group
(NRG) for solving quantum impurity models [11–13].

The present paper addresses the following question:
given a reliable numerical method for computing multi-
point correlators in the frequency domain, such as QMC
or NRG, how can it best be harnessed to extract the cor-

∗ These authors contributed equally.

responding vertex? This extraction involves subtracting
disconnected parts and amputating external legs. Naive
implementations of such subtractions and amputations
are prone to numerical artifacts. To minimize their ef-
fects, various improved estimators have been proposed.
Such estimators are expressions for the quantity of inter-
est (e.g. a self-energy or vertex) that are formally equiv-
alent to the original definition but more robust against
numerical artifacts [14–21]. Such artifacts are, e.g., sta-
tistical noise in QMC or discretization effects in NRG.

A fruitful approach for deriving improved estimators
is to utilize equations of motion (EOMs). In 1998, Bulla,
Hewson, and Pruschke [18] used EOMs to derive an im-
proved estimator for the self-energy of quantum impurity
models. This estimator is constructed from the usual 2p
propagator and an auxiliary 2p correlator involving a cer-
tain composite operator generated by the EOM. It is an
asymmetric improved estimator (aIE), since it was de-
rived via an EOM acting on only one of the two time
arguments of the propagator. The resulting aIE for the
self-energy has been widely used for NRG computations
ever since.

The EOM strategy of Ref. [18] was generalized to the
case of 4p vertices by Hafermann, Patton, andWerner [8].
They derived an aIE for the 4p vertex that contains an
additional, 4p auxiliary correlator, again involving a com-
posite operator. The terms are then combined in such a
manner that the disconnected parts cancel and one ex-
ternal leg is amputated. Their aIE is asymmetric in the
frequency arguments, since it was derived via EOMs act-
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2p self-energy Σ 4p vertex Γ
asymmetric, full Bulla et al. [18] Hafermann et al. [8]
symmetric, bare Kaufmann et al. [10]
symmetric, full Kugler [22] this work

TABLE I. Summary of different improved estimators for self-
energies and vertex functions derived using EOMs.

ing on only one of the four time arguments. For some ap-
plications, this is a serious limitation. An example is the
4p vertex in the real-frequency Keldysh formalism. The
Keldysh vertex of the Anderson impurity model (AIM)
was recently computed by three of the present authors
using NRG [12, 13]. There, the aIE of Ref. [8] was used,
but it was pointed out that this yields improvements for
only 4 of the 16 components of the Keldysh vertices. To
improve all 16, a symmetric improved estimator (sIE) is
needed.

A sIE was derived through repeated use of EOMs
by Kaufmann, Gunacker, Kowalski, Sangiovanni, and
Held [10], and found to be significantly less prone to nu-
merical artifacts than the aIE of Ref. [8]. Yet, their sIE
involves not only various full (interacting) multipoint cor-
relators, but also the bare (noninteracting) 2p propaga-
tor. It was noted before [13, 18, 22] that this is not ideal
for methods where bare and full correlators stem from
different numerical settings and would compromise the
accuracy of some intended cancellations. NRG is an ex-
ample of such a method: there, bare and full correlators
are typically computed without or with energy discretiza-
tion, respectively. Consequently, the sIE of Ref. [10] was
not used in the NRG computations of Refs. [12, 13]. The
occurrence of bare propagators is also unfavorable in sce-
narios where they qualitatively differ very strongly from
the full ones, as, e.g., in a Mott insulating state.

For the self-energy, one of us recently derived an im-
proved estimator that is (i) symmetric in all operators
and (ii) involves only fully renormalized correlators. The
combination of both properties sets Kugler’s sIE [22]
apart from previous results ((i) from Ref. [18] and (ii)
from Ref. [10]). The aforementioned literature on im-
proved estimators is summarized in Tab. I.

In the present paper, we generalize Kugler’s approach
to derive sIEs for multipoint vertices. For these, prop-
erties (i) and (ii) are particularly useful, since the di-
vision by full propagators is required for the amputa-
tion of external legs. We also show how the asymptotic
and core contributions to the vertex can be isolated and
computed separately via estimators of their own, all ex-
pressed through combinations of auxiliary correlators in-
volving composite operators. Asymptotic contributions
depend on only a subset of all frequency arguments and
remain finite if the complementary frequencies are sent
to infinity; the core contribution, by contrast, depends
on all frequency arguments but decays in all directions.
Separate estimators for asymptotic and core contribu-
tions are numerically advantageous, as they directly yield
the desired quantities, without the need for subtracting
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FIG. 1. MF and KF 4p vertices U−1[Γ↑↓ −Γbare;↑↓](ν, ν
′, ω =

0) of the AIM at weak interaction. Here, ν, ν′ are fermionic
frequencies, ω a bosonic transfer frequency, U is the interac-
tion strength and ∆ the hybridization strength, chosen the
same as in Fig. 14. [See Eq. (143) for a concrete definition of
Γ.] The three rows show the results obtained by direct am-
putation of the correlator, by using an asymmetric improved
estimator (aIE) [8, 12, 13], and by using the symmetric im-
proved estimator (sIE) derived in this work. The first, second,
and third columns show the MF vertex (which is purely real),
the real part of the causal (c = −−−−) component of the KF
vertex, and its imaginary part, respectively.

the large-frequency limits of various terms with different
asymptotic behaviors.

Our derivation utilizes the framework and notation for
multipoint correlators developed in Ref. [12]. There, as
here, the overall strategy of the derivation applies equally
(modulo some technical differences) in all three of the
commonly used many-body frameworks: the imaginary-
frequency Matsubara formalism (MF), the real-frequency
zero-temperature formalism (ZF), and the real-frequency
Keldysh formalism (KF). We illustrate the utility of our
sIE for vertices by NRG computations of the 4p vertex
of the AIM. We find dramatic improvements relative to
results obtained using direct amputation or an aIE. Typ-
ical examples of such improvements are shown in Fig. 1,
serving as a preview for results presented later on.

The rest of the paper is organized as follows. In Sec. II,
we set the scene by concisely recapitulating the derivation
of the symmetric self-energy estimator [22] in the MF. In
Sec. III, we formulate EOMs for multipoint correlators in
the MF, ZF, and KF. In Sec. IV, we use these EOMs to
derive sIEs for the self-energy, the 3p and the 4p vertices,
and discuss why the proposed estimators are expected to
be more robust against numerical artifacts. We present
numerical results for the Keldysh 4p vertex of the AIM
in Sec. V and conclude with an outlook in Sec. VI.
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II. SYMMETRIC SELF-ENERGY ESTIMATOR
IN THE MATSUBARA FORMALISM

To provide context, this section reviews the deriva-
tion of the symmetric self-energy estimator presented in
Ref. [22]. For concreteness, we do so in the MF, for a
very simple quantum impurity model, the AIM. We first
define 2p correlators (Sec. II A) and derive general EOMs
for them (Sec. II B). We then specialize to the AIM, de-
fine various auxiliary correlators (Sec. II C), and finally
derive a symmetric self-energy estimator (Sec. IID).

A. Definition of 2p correlators

We begin by introducing some notation. We write

[O1,O2]ζ = O1O2 − ζO2O1, (1)

with ζ = 1 for commutators or ζ = −1 for anticommuta-
tors of two operators. Given a Hamiltonian H, thermal
expectation values at temperature 1/β are defined as

⟨Om⟩ =
Tr

(
Ome−βH

)
Tr e−βH

(2)

and Heisenberg time evolution in imaginary time as

Om(m) = eiHzmOme−iHzm . (3)

Here, (m)= (zm)= (−iτm), with τm real, is a shorthand
for the MF imaginary time argument (this notation en-
sures consistency with ZF and KF formulas later, where
zm = tm). A MF 2p correlator of operators O1 and O2

at times (1, 2) = (−iτ1,−iτ2) = −iτ is defined as

G[O1,O2](1, 2) = −i
〈
T
[
O1,O2

]
(1, 2)

〉
. (4)

Here, T denotes τ ordering,

T
[
O1,O2

]
(1, 2) = θ(τ1−τ2)

〈
O1(1)O2(2)

〉
+ ζ21θ(τ2−τ1)

〈
O2(2)O1(1)

〉
, (5)

and ζ21 = ζ12 is the sign arising when permuting O1 past
O2: ζ21 = −1 if both are fermionic, ζ21 = +1 otherwise.
The corresponding transformation to the Matsubara

frequency domain is

G[O1,O2](iω) = −i
∫ β

0

d2τ eiω·τG[O1,O2](−iτ ) (6a)

= βδω12,0G[O1,O2](iω), (6b)

with ω12 = ω1+ω2. Here, time-translational invariance
was exploited to factor out a Kronecker delta expressing
energy conservation, ω12 = 0. We take this constraint to
be implicitly understood for the frequency arguments of
G[O1,O2](iω) and thus omit the second one, writing

G[O1,O2](iω,−iω) = G[O1,O2](iω). (7)

For brevity, we will often omit the operator arguments
[O1,O2] when they can be inferred from the context.
By analogy, an equilibrium expectation value may be

viewed as a (constant) 1p function, G[O1](1) =
〈
O1

〉
. Its

Matsubara transform,

G[O1](iω) =

∫ β

0

dτ eiωτG[O1](−iτ) = βδω,0G[O1], (8)

is nonzero only for zero frequency, with G[O1] =
〈
O1

〉
being independent of frequency.

B. General EOMs for 2p correlators

Next, we recall the derivation of EOMs for 2p correla-
tors. We write derivatives as ∂m = ∂/∂zm = ∂/∂(−iτm),
and δ(1, 2) = δ(z1− z2) = iδ(τ1− τ2) for delta functions,
such that ∂1θ(τ1 − τ2) = −∂2θ(τ1 − τ2) = δ(1, 2).
The derivatives of a time-ordered product read

∂1T
[
O1,O2

]
(1, 2) = T

[
∂1O1,O2

]
(1, 2)

+ δ(1, 2)
[
O1,O2

]
ζ21
(2), (9a)

∂2T
[
O1,O2

]
(1, 2) = T

[
O1, ∂2O2

]
(1, 2)

+ δ(2, 1) ζ21
[
O2,O1

]
ζ21
(1). (9b)

Here, δ(1, 2) arises from differentiating the time ordering
step functions. For the last term of Eq. (9b), we used
T
[
O1(1)O2(2)

]
= ζ21T

[
O2(2)O1(1)

]
to move O2(2) to

the left of O1(1) within T [·] before differentiating the
step functions. As a result, the (anti)commutator ob-
tained from ∂2 is “flipped” relative to that from ∂1 and
multiplied by an extra ζ21 . A similar feature will occur
later on in our discussion of multipoint EOMs.

Using the EOM for Heisenberg operators (m = 1, 2),

i∂mOm(m) = [Om(m), H], (10)

we obtain the following EOMs for 2p correlators:

i∂1G[O1,O2](1, 2) = G
[[
O1, H

]
,O2

]
(1, 2) (11a)

+ δ(1, 2)G
[[
O1,O2

]
ζ21

]
(2),

i∂2G[O1,O2](1, 2) = G
[
O1,

[
O2, H

]]
(1, 2) (11b)

+ δ(2, 1) ζ21G
[[
O2,O1

]
ζ21

]
(1).

Their Matsubara Fourier transforms read

iωG[O1,O2](iω) = G
[[
O1, H

]
,O2

]
(iω) (12a)

+
〈[
O1,O2

]
ζ21

〉
,

−iωG[O1,O2](iω) = G
[
O1,

[
O2, H

]]
(iω) (12b)

+ ζ21
〈[
O2,O1

]
ζ21

〉
.

These two general EOMs, obtained by differentiating
G(1, 2) using ∂1 or ∂2, will be used repeatedly below.
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C. Full, bare, and auxiliary correlators of the AIM

For concreteness, we frame the following discussion
within the context of an SU(2)-symmetric AIM. Its
Hamiltonian has the form H = H0 +Hint, with

H0 =
∑
σ

εdd
†
σdσ +

∑
σb

εbc
†
bσcbσ +

∑
σb

(Vbd
†
σcbσ +H.c.),

Hint = Un↑n↓, nσ = d†σdσ , (13)

with σ ∈ {↑, ↓}. H describes a two-flavor impurity with
impurity operators dσ, d

†
σ with an energy εd experiencing

a local, flavor-off-diagonal interaction U , and hybridiz-

ing with a two-flavor bath with bath operators cbσ, c
†
bσ

(b = 1, . . . , Nbath) and energies εb. We focus on the con-
ventional AIM where these single-particle operators are
all fermionic (ζ = −1) and the flavor corresponds to the
spin, but we keep track of the sign factor ζ for generality.
We denote the 2p correlator of d and d† by

g(1, 2) = G[d, d†](1, 2), g(iω) = G[d, d†](iω) (14)

and call it the “propagator”, in distinction to other
2p correlators encountered below. It is flavor-diagonal,
hence we omit flavor indices. The full propagator g(iω),
its bare (U = 0) version g0(iω), and the self-energy Σ(iω)
satisfy the Dyson equation

g − g0 = g0Σg = gΣg0. (15)

The bare propagator can be obtained by setting up the

EOMs for g0 and G[d, c†b] and eliminating the latter (“in-
tegrating out the bath”). As shown below, one finds

g0(iω) =
1

iω − εd −∆(iω)
, ∆(iω) =

∑
b

|Vb|2

iω − εb
.

(16)
The hybridization function ∆(iω) fully characterizes the
impurity-bath coupling.

Next, we consider the EOMs for the full g. When set-
ting them up using Eq. (12), the equal-time commuta-
tors [dσ, Hint] and [d†σ, Hint] yield “composite operators”
which we denote as follows, for short:

qσ =
[
dσ, Hint

]
, q†σ =

[
Hint, d

†
σ

]
, (17a)

qσσ′ =
[
qσ, d

†
σ′

]
ζ
=

[[
dσ, Hint

]
, d†σ′

]
ζ

(17b)

=
[
dσ, q

†
σ′

]
ζ
=

[
dσ,

[
Hint, d

†
σ′

]]
ζ
. (17c)

Here, Eq. (17c) equals (17b) due to the identity[[
O1,O2

]
,O3

]
ζ
=

[
O1,

[
O2,O3

]]
ζ
+
[[
O1,O3

]
ζ
,O2

]
.

The composite operator qσσ′ carries the composite index
σσ′ but has just a single time argument. For the AIM
[Eq. (13)], the composite operators take the form

q(†)σ = Ud(†)σ n−σ, (18a)

FIG. 2. Diagrammatic representations of the bare and full
propagators g0 and g, the self-energy Σ, the bare vertex U for
a quartic interaction, and the auxiliary correlators of Eqs. (19)
(and Eqs. (98) in Sec. IVA). A grey circle with ℓ lines at-
tached represents an ℓp correlator of ℓ elementary d and d†

operators. Long legs represent g’s that can be amputated,
and short legs indicate completed amputations. An ℓp vertex
is obtained from a grey circle with ℓ long legs by subtracting
all disconnected parts and amputating all ℓ legs (see Fig. 6).

qσσ′ = U
(
δσ,σ′n−σ + ζδσ,−σ′d†−σdσ

)
. (18b)

When discussing multipoint correlators later on, we will
encounter further composite operators, defined via mul-
tiple equal-time commutators and labeled by longer com-
posite indices. All correlators involving at least one com-
posite operator will be called “auxiliary correlators”.
Below, we need the propagator g, three auxiliary 2p

correlators and one auxiliary 1p correlator, defined as
follows and depicted diagrammatically in Fig. 2:

G(·,·)(iω) = G[dσ, d
†
σ](iω) = g(iω), (19a)

G(1,·)(iω) = G[qσ, d
†
σ](iω), (19b)

G(·,2)(iω) = G[dσ, q
†
σ](iω), (19c)

G(1,2)(iω) = G[qσ, q
†
σ](iω), (19d)

G(12) = G[qσσ] =
〈
qσσ

〉
= U ⟨n−σ⟩ = ΣH . (19e)

The shorthand notation on the left distinguishes them
using superscripts, with a single argument, 12, for the
1p correlator and two comma-separated arguments for
2p correlators. For the latter, ‘·’ serves as placeholder
for d or d†, while 1 or 2 signal their replacement by q or
q†, respectively. The auxiliary correlators G(1,·), G(·,2),
and G(1,2) are called FL, FR, and I in Ref. [22]. For
correlators diagonal in σ, as here, G(1,·)=G(·,2) [22]; they
are denoted F in Refs. [8, 18]. They are 2p correlators of
single-particle and composite operators, but involve four
single-particle operators since q∼dd†d. The 1p auxiliary
correlator G(12) equals the Hartree self-energy ΣH; its
diagrammatic representation in Fig. 2 reflects this fact.

D. Self-energy estimators for the AIM

Finally, we are ready to derive estimators for Σ, ex-
ploiting various EOMs. These are obtained using the
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general EOMs, Eq. (12), and the commutators[
dσ, H

]
= εddσ + Vbcbσ + qσ,

[
cbσ, H

]
= εbcbσ + V ∗

b dσ.
(20)

We henceforth omit flavor subscripts σ and frequency
arguments (iω). Setting up the first general EOM,

Eq. (12a), for G(·,·) and G[cb, d
†], we find

(iω − εd)G(·,·) =
∑
bVbG[cb, d

†] +G(1,·) + 1, (21a)

(iω − εb)G[cb, d
†] = V ∗

b G
(·,·). (21b)

By using Eq. (21b) to eliminate G[cb, d
†] from Eq. (21a),

we obtain an EOM involving only impurity correlators,(
iω − εd −∆(iω)

)
G(·,·) = G(1,·) + 1, (22a)

G(·,·)(iω − εd −∆(iω)
)
= G(·,2) + 1. (22b)

The second equation can be found analogously to the
first, starting from the second general EOM, (12b). The
bare g0 = G(·,·)|U=0 follows by setting G(1,·) = G(·,2) = 0
in Eq. (22), yielding Eq. (16). Hence, the factors mul-
tiplying G(·,·) on the left of Eq. (22) equal (g0(iω))−1,
implying

g = G(·,·) = g0 (G(1,·) + 1) = (G(·,2) + 1)g0. (23)

One may also derive Eq. (23) by writing Eq. (21) in the
matrix form
iω−εd −V1 −V2 · · ·
−V ∗

1 iω−ε1 0 · · ·
−V ∗

2 0 iω−ε2 · · ·
...

...
...

. . .




G(·,·)

G[c1, d
†]

G[c2, d
†]

...

 =


G(1,·)+1

0
0
...

.
(24)

The matrix on the left is the inverse bare propagator
iω −H0. By inverting it using the block-matrix identity(

A B
C D

)−1

=

(
(A−BD−1C)−1 · · ·

· · · · · ·

)
(25)

and solving for the first element G(·,·), we find

G(·,·) =
(
iω − εd −

∑
b

Vb
1

iω − εb
V ∗
b

)−1
(G(1,·) + 1)

=
(
iω − εd −∆(iω)

)−1
(G(1,·) + 1), (26)

which equals Eq. (23). Equating Eq. (23) to the Dyson
equation (15) and solving for Σ, we find the aIE for the
self-energy first proposed in Ref. [18]:

Σ = G(1,·)g−1 = g−1G(·,2). (27)

This result corresponds to the Schwinger–Dyson equation
for the self-energy.

Next, we follow Ref. [22] to obtain a sIE for Σ. We use
the second general EOM, Eq. (12b), to obtain two more
EOMs involving G(1,·):

G(1,·) (iω − εd) =
∑
bG[q, c

†
b]V

∗
b +G(1,2) +G(12),

(28a)

(e)

FIG. 3. Diagrammatic derivation of asymmetric and symmet-
ric self-energy estimators. (a) Inversion of the Dyson equa-
tion yields g−1 = (g0)−1−Σ. (b) EOMs for g; by comparing
their forms to the equations for g shown in (a), one iden-
tifies (c) aIEs for Σ, involving g-amputated auxiliary corre-

lators, G(1,·)g−1 or g−1G(·,2). (d) G(1,·) and G(·,2) satisfy

EOMs themselves, involving the auxiliary correlators G(1,2)

and G(12). (e) Performing the g-amputation for G(1,·)g−1

in (c) by using (a) for g−1, one obtains terms containing

G(1,·)(g0)−1; these are known from the EOMs from (d). The
last line gives the desired sIE for Σ. Its first and third terms
both contain one-particle-reducible contributions. In their
difference, however, such contributions cancel, ensuring that
Σ is one-particle irreducible (see Fig. 4 for an example at or-
der O(U2)).

G[q, c†b] (iω − εb) = G(1,·)Vb. (28b)

The G(12) term, which is independent of ω, comes
from the last term of Eq. (12b), involving an equal-
time (anti)commutator that yields an expectation value,

⟨[d†σ, qσ]ζ⟩ = ⟨qσσ⟩. We eliminate G[q, c†b] to obtain

G(1,·) = (G(1,2) +G(12))g0. (29a)

In a similar manner, we obtain

G(·,2) = g0(G(1,2) +G(12)). (29b)
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FIG. 4. Expansion of the symmetric self-energy estimator to
second order in the interaction U . The one-particle-reducible
contributions to the diagrams on the right of the first line
cancel, guaranteeing the one-particle irreducibility of Σ.

Substituting g−1 = (g0)−1 − Σ in Eq. (27), we find

Σ = G(1,·)[(g0)−1 − Σ]

= G(1,2) +G(12) −G(1,·)Σ

= G(1,2) +ΣH −G(1,·)g−1G(·,2). (30)

For the second equality, we used Eq. (29a) to eliminate
G(1,·)(g0)−1. For the third, we replaced Σ by its aIE (27)
and used G(12) = ΣH [Eq. (19e)]. Equation (30) is the
sIE of Ref. [22]. It has the desirable properties of being
(i) symmetric w.r.t. both frequency arguments and (ii)
expressed purely through full correlators.

Figure 3 diagrammatically summarizes the derivation
of the sIE (30) for the self-energy. It rests on two key
insights. First, the external g legs of any G(···) (e.g.
G(1,·) or G(·,2) in Fig. 3) can be amputated through mul-
tiplication by g−1 = (g0)−1 − Σ; this yields terms of
the form G(···)(g0)−1 or (g0)−1G(···). Second, each such
product corresponds to the left side of an EOM; the
right side of that EOM contains other auxiliary corre-
lators and frequency-indepedent constants arising from
(anti)commutators, thus (g0)−1 can be eliminated alto-
gether. Moreover, this can be done in a fashion symmet-
ric w.r.t. frequency arguments by combining EOMs de-
rived using either ∂1 or ∂2. The resulting symmetric self-
energy estimator [Fig. 3(e)] is one-particle irreducible, as
illustrated at order O(U2) in Fig. 4.
In the following sections, our goal is to use a similar

strategy to derive similar sIEs for general ℓp functions,
for arbitrary flavor indices and in any of the MF, ZF,
and KF. For the above discussion in the MF, we worked
directly in the frequency domain. In the KF, one cannot
use the same strategy as the bare propagator is matrix-
valued and not simply given by iω−εd−∆ as in Eq. (22).
A more fundamental reason is that, in the KF, the EOM
does not fully determine the correlator. For example, the
k = (1, 1) and (2, 2) components of the bare KF propaga-
tor obey the same EOM [see Eq. (70)], while the former
is zero and the latter is not. In the KF, the bound-
ary condition of the correlators [see Eq. (A2) in App. A]
needs to be explicitly used, whereas in the MF it was im-
plicitly imposed through the structure of Matsubara fre-
quencies. We will henceforth work in the time domain,
where this boundary condition is formulated. To that
end, we need a general, compact notation of multipoint
correlators, which we introduce next.

(b) ZF
∞−∞

(a) MF

−iβ

0
(c) KF

∞−∞

FIG. 5. Time contour for each many-body formalism consid-
ered.

III. EOMS FOR MULTIPOINT CORRELATORS

In this section, we generalize the discussion of the pre-
vious section from 2p to ℓp correlators. We define them
in Sec. IIIA and derive their general EOMs in Sec. III B.
We then write the Hamiltonian as the sum of noninter-
acting and interacting parts and derive EOMs for full (in-
teracting) ℓp correlators involving bare (noninteracting)
propagators and auxiliary ℓp correlators in Sec. III C. We
discuss how the noninteracting bath degrees of freedom
can be integrated out if needed in Sec. IIID. In Sec. III E,
we adopt specific formalisms (MF, ZF, KF) and derive
EOMs in the frequency domain. In Sec. III F, we show
that the obtained EOMs also hold for the connected part
of the correlator. Finally, in Sec. IIIG, we derive an EOM
that involves full propagators instead of the bare ones.

A. Definition of ℓp functions

In the MF, ZF, and KF, ℓp correlators of the list of
operators [O] = [O1, ···,Oℓ] are defined as

GM[O](−iτ ) = (−i)ℓ−1
〈
T [O](−iτ )

〉
, (31a)

GZ[O](t) = (−i)ℓ−1
〈
T [O](t)

〉
, (31b)

GcK[O](t) = (−i)ℓ−1
〈
T [O](tc)

〉
, (31c)

respectively. Here, (−iτ ) = (−iτ1, ···,−iτℓ), and anal-
ogously for c, t and tc; ⟨A⟩ denotes thermal averag-
ing w.r.t. the full Hamiltonian H according to Eq. (2);
O(z) = eiHzOe−iHz as in Eq. (3), and T denotes time
ordering along one of the contours

MF : − iτm ∈ CM = [0,−iβ], (32a)

ZF : tm ∈ C−, (32b)

KF : tcmm ∈ C− ⊕ C+, (32c)

shown in Fig. 5. Here, C− = [−∞,∞] and C+ = [∞,−∞]
are the forward and backward branches of the Keldysh
contour. In the KF, each contour variable is specified by
a real-valued time argument and a contour index, i.e.,
z = tc with c = − (c = +) for the forward (backward)
branch, and contour variables follow time ordering (anti-
time ordering) on the forward (backward) branch. In this
work, we focus only on systems in the ground state (ZF)
or thermal equilibrium (MF, KF), and do not consider
the nonequilibrium KF. We generically denote ℓp correla-
tors by Gℓp, but suppress the superscript if the number of
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FIG. 6. Diagrammatic representations of (a) the ℓp correlator
Gℓp and (b) the ℓp vertex Γℓp, identified as the connected part
of an ℓp correlator after amputation of external legs.

arguments is clear from the context. For a diagrammatic
depiction, see Fig. 6(a).

To analyze the boundary conditions of the correlators,
one must attach a vertical branch to the ZF and KF
contours. The only step where the boundary condition
affects the results is when deducing the EOM in integral
form from its differential form via integration by parts
[Eq. (52)]. This derivation is carried out in App. A.

As in the 2p case, Fourier-transformed ℓp correlators
are defined by factoring out a delta function arising from
time-translational invariance. For the MF, ZF, and KF,
we have

GM(iω) = i(−i)ℓ
∫ β

0

dℓτ eiω·τGM(−iτ ) = βδω1···ℓ,0GM(iω),

GZ(ω) =

∫
dℓt eiω·tGZ(t) = 2πδ(ω1···ℓ)GZ(ω), (33)

GcK(ω) =

∫
dℓt eiω·tGcK(t) = 2πδ(ω1···ℓ)G

c
K(ω),

respectively, where ω1···ℓ = ω1 + ···+ωℓ. We omitted the
operator arguments [O] for brevity. Combining the MF
prefactors in Eqs. (31) and (33) yields i(−i)ℓ(−i)ℓ−1 =
(−1)ℓ−1, matching the choice in Ref. [12]. The analytic
properties of correlators G in the frequency domain, such
as the position of the poles in the complex plane, are
determined by the causal structure of the corresponding
correlators G in the time domain (see, e.g., Ref. [12]).

B. General EOMs for ℓp correlators

In this subsection, we derive general EOMs for ℓp cor-
relators in the time domain, employing a unified notation
equally applicable to the MF, ZF, and KF.

We begin by introducing the contour variable z = −iτ
for MF, z = t for ZF, and z = tc for KF. Corresponding
definitions for ∂z,

∫
dz, δ(z, z′) and θ(z, z′) are given in

Table II. We further write (m) = (zm), ∂m = ∂zm , and∫
m

=
∫
dzm, for short. In all three formalisms, we have∫

m

f(m)δ(m,n) = f(n),
∂m

∂n

}
θ(m,n) = ±δ(m,n). (34)

In this unified notation, Eqs. (31) are expressed as [23]

G[O](z) = (−i)ℓ−1
〈
T [O](z)

〉
. (35)

Here, T [O](z) = T
∏ℓ
m=1Om(m) denotes contour order-

ing: it reorders the product such that “larger” times sit

z ∂z

∫
dz δ(z, z′) θ(z, z′)

MF −iτ ∂
∂(−iτ)

−i
∫ β

0

dτ iδ(τ−τ ′) θ(τ−τ ′)

ZF t ∂
∂t

∫ ∞

−∞
dt δ(t−t′) θ(t−t′)

KF tc ∂
∂t

∑
c

∫ ∞

−∞
dtZcc Zcc′δ(t−t′) θcc′(t−t′)

TABLE II. Definition of contour variables, differentiation, in-
tegration, delta functions and step functions, in the Matsub-
ara, zero-temperature and Keldysh formalisms. In the KF,

the matrix Z has elements Zcc′ = δcc′(−1)δc,+ =
(
1 0
0 −1

)
,

and the contour-ordering step function θcc′(t−t′) by defini-
tion equals θ(t− t′), 0, 1, or θ(t′− t) for cc′ = −−,−+,+− or
++, respectively. These definitions readily lead to Eq. (34).

to the left (if θ(m,n) = 1 (or 0), it puts Om(m) to the
left (or right) of On(n)), and yields an overall sign of +1
(−1) if this reordering involves an even (odd) number of
exchanges of fermionic operators. To track such signs, we
write ζnm = ζmn or ζi1···inm = ζi1m ··· ζinm for the sign arising
when moving Om past On or Oi1 ··· Oin , respectively.
Below, we set up EOMs for i∂mGℓp, generalizing the

procedure of Sec. II B. Just as there, the EOMs for
i∂mGℓp contain further correlators of two types: auxiliary
ℓp correlators that differ from Gℓp through the replace-
ment of Om by i∂mOm = [Om, H], and (ℓ−1)p correlators
that differ from Gℓp through the removal of Om from the
argument list and the replacement of another operator,
say On(̸=m), by the (anti)commutator [Om,On]ζnm . To
describe such objects, we introduce some shorthands: we
define two lists derived from (·) = (z) = (z1, ···, zℓ),

( /m) = (z /m) = (···,��zm, ···) = (···, zm−1, zm+1, ···),
(m′, /m) = (z′m) = (z′m, z

/m) = (···, zm−1, z
′
m, zm+1, ···),

(36)

obtained from the list (z) by removing slot m entirely, or
by replacing zm by z′m in slot m. For example, if ℓ = 4,
then (/2) = (z1, z3, z4) and (3′, /3) = (z1, z2, z

′
3, z4). (Note

that m′ is a shorthand for z′m, not zm′ .) Likewise, we
define two lists derived from [O] = [O1, ···,Oℓ],

[O′m,O /m] = [···,Om−1,O′m,Om+1, ···], (37)

[O /mn] = [···,��Om, ···,On−1, [Om,On]ζnm ,O
n+1, ···].

The superscript on O /mn indicates that Om has been
removed and slot n “altered” by replacing On by the
(anti)commutator [Om,On]ζnm . A related list, derived
from ω = (ω1, ···, ωℓ), is defined as

(ω /mn) = (···,��ωm, ···, ωn−1, ωmn, ωn+1, ···), (38)

with ωm removed and slot n altered by replacing ωn
by ωmn = ωm+ ωn. (ω /mn) appears in Fourier trans-
forms involving δ(m,n), e.g.,

∫
m
ei(ωmzm+ωnzn)δ(m,n) =

eiωmnzn .
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A trivial identity is T [O](z) = T [Om,O /m](m, /m), use-
ful when evaluating the action of ∂m, where Om plays a
special role. In the following, we omit arguments such as
(z) and [O] when they can be inferred from context.
The action of ∂m on a contour-ordered product

T [O](z) of ℓ operators can be compactly expressed as

∂mT [O] = T
[
∂mOm,O /m

]
+
∑
n

/m
δ(m,n)T

[
O /mn

]
( /m),

∑
n

/m
· =

m−1∑
n=1

ζn···m−1
m ·+

m+1∑
n=m+1

·+
ℓ∑

n=m+2

ζm+1···n−1
m · .

(39)

Here, the signs in
∑ /m
n arise from permuting Om left-

ward if n < m (first term) or rightward if n > m+1
(third term) to sit next to On as either θ(m,n)OmOn
or θ(n,m)ζmn OnOm, as required by contour time order-
ing. The action of ∂m on these step functions then yields
δ(m,n) times [Om,On]ζnm in the altered slot n, as en-

coded in T [O /mn].
Finally, general EOMs for the ℓp correlator of Eq. (35)

follow using Eqs. (39) and the operator EOM (10):

i∂mG[O] = G
[
[Om, H],O /m

]
+
∑
n

/m
δ(m,n)G[O /mn]( /m).

(40)

These generalize the 2p equations (11) to arbitrarily ℓ,
expressing i∂mG

ℓp through Gℓp and G(ℓ−1)p functions.

C. Single-particle differentiated EOMs

We henceforth focus on “single-particle differentiated”
EOMs, i.e., EOMs in which the operator Om being
time-differentiated in i∂mO

m is a single-particle opera-
tor. More general EOMs, involving time derivatives of
composite operators, are not needed in this work.

We consider a Hamiltonian of the form

H = H0 +Hint = H0
aa′ψ

†
aψa′ +Hint, (41)

with summation over repeated indices implied. Here, ψa,
ψ†
a (a = 1, ···, Ntot) are single-particle operators, such as

the dσ, d
†
σ and cσb, c

†
σb of Sec. II C. We will call a an “or-

bital” index, though it may include spin. In this section,
we do not assume a specific form of interaction. Later in
Sec. IV, we apply the EOM to a quartic interaction. The
single-particle operators may be either bosonic (ζ = 1)
or fermionic (ζ = −1), but they should all have the same
type, so that

[ψa, ψ
†
a′ ]ζ = 1aa′ , [ψ†

a, ψa′ ]ζ = −ζ1aa′ . (42)

However, the correlators considered below can be of
mixed type, i.e., involve both single-particle operators
and composite ones, such as na = ψ†

aψa.

For the bare propagator, defined for Hint = 0, we write

g0aa′(m,m
′) = g0[ψa, ψ

†
a′ ](zm, z

′
m). (43)

Using the general EOM (40) and the equal-time relations

[ψa, H
0] = H0

aa′ψa′ , [ψa, ψ
†
a′ ]ζ = 1aa′ , (44)

one finds two bare-propagator EOMs,

(i∂m1−H0)aāg
0
āa′(m,m

′) = δ(m,m′)1aa′ , (45a)

g0aā(m,m
′)(i
←−
∂′m1+H0)āa′ = −δ(m,m′)1aa′ . (45b)

←−
∂′m denotes a derivative w.r.t. z′m, acting to the left. Ac-
cording to Eqs. (45), g0 serves as inverse for the “bare

time evolution” expressions (i∂m1 − H0) and (i
←−
∂′m1 +

H0). Below, this will be exploited to remove such ex-
pressions from EOMs for general correlators.

Now, consider ℓp correlators involving at least one

single-particle operator, say Om = ψ
(†)
a . Corresponding

single-particle differentiated EOMs follow via Eq. (40):

(i∂m1−H0)aa′G[ψa′ ,O
/m] = Fm[ψa,O /m], (46a)

G[ψ†
a′ ,O

/m](i
←−
∂m1+H0)a′a = Fm[ψ†

a,O /m]. (46b)

For the correlators on the right, containing all contribu-
tions not involving g0, we used the shorthand

Fm[O] = G
[
[Om, Hint],O /m

]
+
∑
n

/m
δ(m,n)G[O /mn]( /m),

(47)

where the superscript on Fm singles out m for special
treatment. The first term on the right involves single-
index composite operators, to be denoted (cf. Eq. (17a))

qa =
[
ψa, Hint

]
, q†a = −

[
ψ†
a, Hint

]
. (48)

Figure 7(a) gives a diagrammatic representation of Fm.
Let us exemplify Eq. (47) for the case that all operators

in [O] are single-particle operators, On = ψ
(†)
a . Then,

the (anti)commutator in the altered slot n of [O /mn] is
nonzero only for the cases listed in Eqs. (42). For O =

[ψ1, ψ
†
2], e.g., we obtain

F1[ψ1, ψ
†
2] = G[q1, ψ

†
2] + δ(1, 2)112,

F2[ψ1, ψ
†
2] = −G[ψ1, q

†
2]− δ(2, 1)121.

(49)

The second terms on the right were simplified using

G
[
[ψ1, ψ

†
2]ζ

]
= G[112] = 112. We will call the resulting

combinations δ(1, 2)112 “identity contractions” and dia-
grammatically depict them using dotted lines (see Fig. 7).

Similarly, for O = [ψ1, ψ
†
2, ψ3, ψ

†
4], we have

F1[O] = G[q1, ψ
†
2, ψ3, ψ

†
4]− iδ(1, 2)112G[ψ3, ψ

†
4](3, 4)

− iδ(1, 4)114G[ψ†
2, ψ3](2, 3),
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FIG. 7. Diagrammatic depiction of F [1] = F1[ψ1,O
/1] [Eq. (47), rounded squares] and G[1] = G[ψ1,O

/1] [Eq. (54), circles].

Operators from the argument list O/1 are represented by long lines, drawn thin for single-particle operators or thick for operators

of unspecified type (single-particle or composite). (a,b) General case. In the
∑/1

n sums, leg n is decorated by tiny [ ] brackets

and two endpoints labeled 1 and n, representing the replacement of On by δ(1, n)[ψ1,On]ζn1 [cf. Eq. (47)]. (c) For On = ψ†
n,

the latter reduces to the identity contraction δ(1, n)11n, depicted as a dotted line. (d-k) Examples illustrating (a,b) for various

choices of [ψ1,O
/1], with (d-g) ℓ = 2 and (h-k) ℓ = 4: (d,e) [ψ1, ψ

†
2], (f,g) [ψ1, q

†
2], (h,i) [ψ1, ψ

†
2, ψ3, ψ

†
4], and (j,k) [ψ1, ψ

†
2, ψ3, q

†
4].

The 2p diagrams (d-g) illustrate how cases encountered in Sec. IID on the self-energy (cf. Fig. 3) arise in the present formulation.

(h) represents the first equation of Eqs. (50). The last diagram of (j) depicts the 3p correlator G
[
ψ†

2, ψ3, [ψ1, q
†
4]ζ

]
.

F2[O] = −G[ψ1, q
†
2, ψ3, ψ

†
4] + iδ(2, 1)121G[ψ3, ψ

†
4](3, 4)

+ iζδ(2, 3)123G[ψ1, ψ
†
4](1, 4),

F3[O] = G[ψ1, ψ
†
2, q3, ψ

†
4]− iζδ(3, 2)132G[ψ1, ψ

†
4](1, 4)

− iδ(3, 4)134G[ψ1, ψ
†
2](1, 2),

F4[O] = −G[ψ1, ψ
†
2, ψ3, q

†
4] + iδ(4, 1)141G[ψ†

2, ψ3](2, 3)

+ iδ(4, 3)143G[ψ1, ψ
†
2](1, 2).

(50)

Again, identity contractions arise on the right from, e.g.,

G
[
[ψ1, ψ

†
2]ζ , ψ3, ψ

†
4

]
(2, 3, 4) = (−i)112 G[ψ3, ψ

†
4](3, 4).

The first lines of Eqs. (49) and (50) are illustrated in
Figs. 7(d) and 7(h), respectively.

We now eliminate the bare time evolution expressions
from the EOMs (46) for G[ψa,O /m]. We begin with

G[ψa,O /m] =

∫
m′
δ(m,m′)1aa′G[ψa′ ,O

/m](m′, /m), (51)

an identity which trivially follows from the definition of
the delta function and the identity matrix 1. By inserting
the EOM (45b) for the bare propagator, we find

G[ψa,O /m]

=

∫
m′
g0aā(m,m

′)(−i
←−
∂′m1−H0)āa′G[ψa′ ,O

/m](m′, /m)

=

∫
m′
g0aa′(m,m

′)Fm[ψa′ ,O
/m](m′, /m). (52)

In the second step, we used integration by parts to con-
vert the partial derivative from acting to the left to acting

to the right, i.e., from −
←−
∂′m to ∂′m, and then used the ℓp

EOM (46a). Importantly, the boundary term in the in-
tergration by parts can be shown to vanish, see App. A or
App. B. This procedure is analogous to solving Eq. (24)
by multiplying (iω −H0)−1 on both sides in Sec. II, but
now in the time domain.
Finally, let us express Eq. (52) in a concise form hiding
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orbital indices. To this end, we define

(g0m)aa′(m,m
′) = g0aa′(m,m

′),(
G[m(†)]

)
a
(·) = G[ψ(†)

a ,O /m](·),(
F [m(†)]

)
a′
(m′, /m) = Fm[ψ

(†)
a′ ,O

/m](m′, /m).

(53)

Viewing g0m as an Ntot × Ntot matrix and G[m(†)] and
F [m(†)] as vectors of length Ntot w.r.t. to their orbital
indices, the implicit sum

∑
a′ in Eq. (52) amounts to

matrix-vector multiplication. We thus obtain

G[m](z) =

∫
m′
g0m(m,m′)F [m](m′, /m), (54a)

G[m†](z) = −
∫
m′
F [m†](m′, /m)g0m(m′,m). (54b)

Equation (54b) follows similarly from Eq. (46b), where
Om = ψ†

a. The extra minus sign reflects the sign differ-
ence in the H0 terms in Eqs. (46a) and (46b).

Figure 7(b) diagrammatically depicts the EOM (54a)
for G[m] with Om = d1, for the case that the in-
teraction is quartic. The differentiation i∂1 generates
two types of diagrams, both involving a bare prop-
agator: it is either connected to the bare interac-
tion vertex associated with a composite operator q1 =
[ψ1, Hint] or to the “(anti)commutator leg” representing
[ψ1, O

n]ζ . If On equals the single-particle operator ψa,
the (anti)commutator reduces to 11a, thus disconnecting
the bare propagator, as exemplified in Figs. 7(e,i,k).

The main upshot of this section is as follows: those
external legs of a correlator G that represent full single-
particle propagators g can be converted, via EOMs, to
bare single-particle propagators g0 connected to various
other correlators (schematically, G = g0F). This sets the
stage for Sec. IV. There, we will remove bare propagators
through multiplication by (g0)−1 = g−1 + Σ (schemati-
cally, F = (g0)−1G, hence g−1G = F −ΣG). In this way,
we arrive at a strategy for amputating legs (computing
g−1G) without explicitly dividing by g.

D. Some remarks on quantum impurity models

We briefly pause the development of our general for-
malism to make some remarks about quantum impurity
models. There, an interacting impurity is coupled to a
noninteracting bath. Typically, the correlators of inter-
est are “impurity correlators”, involving only impurity
operators. Here, we show that impurity correlators sat-
isfy a suitably modified version of EOM (54), involving
only impurity operators and indices.

Let us consider a quantum impurity model where the
noninteracting Hamiltonian consists of both impurity op-

erators di, d
†
i (i = 1, ···, Nimp) and bath operators cb, c

†
b

(b = 1, ···, Nbath), while only impurity operators appear
in the interacting Hamiltonian:

Hint = Hint[di, d
†
i′ ]. (55)

The subscripts enumerate both the spin and orbital in-
dices. We let ψa (a = 1, ···, Ntot = Nimp + Nbath) enu-
merate all annihilation operators:

ψa =

{
di for i = a = 1, ···, Nimp

cb for b = a−Nimp = 1, ···, Nbath.
(56)

It will henceforth be understood that the indices i and
b are used exclusively for impurity or bath operators,
respectively, while a encompasses both.

The bare propagator g0aa′ = g0[ψa, ψ
†
a′ ] of Eq. (43), de-

fined as the propagator withHint = 0, can be obtained by
solving the bare EOMs (45) (e.g., by transforming to the
Fourier domain). The aa′ = ii′ components of the result-

ing bare propagator, g0ii′ = g0[di, d
†
i′ ], comprise the “bare

impurity propagator”. It encodes information about the
bath via the hybridization function [see, e.g., Eq. (16),
or the Hint = 0 version of Eqs. (24)–(26)]. Together with
Hint, it fully specifies the impurity dynamics. In this
sense, once g0ii′ has been found, the bath has in effect
been integrated out and needs no further consideration.

The inverse of the bare impurity propagator, (g0)−1
ii′ ,

is defined as the inverse of the Nimp×Nimp matrix g0ii′ ,
not the Nimp×Nimp block of the inverse of the Ntot×Ntot

matrix g0aa′ . Thus, in the Fourier domain we have

(g0)−1
ii′ g

0
i′i′′ = 1ii′′ . (57)

Now, we turn our attention to full correlators of ℓ
impurity operators. We assume that at least one, say

Om = d
(†)
i , is a single-particle operator; all others

may be general (single-particle or composite) operators,

On(̸=m) = On[di, d
†
i′ ]. The EOM for this correlator has

the form of the general EOM (52), but now contain-
ing only impurity operators on both sides, either ele-
mentary or composite ones. To see this, notice that

Fm[cb,O
/m] = Fm[c†b,O

/m] = 0, since the bath opera-

tors (anti)commute with Hint and O /m. Therefore, the
dummy orbital index a′ in Eq. (52) can be limited to im-
purity orbitals. The same is true for all implicit orbital
indices in Eq. (54), where we now have

(g0m)ii′(m,m
′) = g0ii′(m,m

′),(
G[m(†)]

)
i
(·) = G[d(†)i ,O /m](·),(

F [m(†)]
)
i′
(m, /m) = Fm[d

(†)
i′ ,O

/m](m, /m).

(58)

The EOMs of impurity correlators are again represented
by the diagrams of Fig. 7, with g0 now representing the
bare impurity propagator in the presence of a bath.

In what follows, we will keep the discussion general,
mostly writing di. The EOM and improved estimators
for a generic many-body Hamiltonian without a bath
[Eq. (41)] can be simply obtained by setting di = ψa
and Nbath = 0.
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E. EOM in the frequency domain

Next, we Fourier transform the EOM (54) from the
time domain to the frequency domain for each of the
three formalisms (MF, ZF, KF).

1. MF

In the MF, the Fourier transform of the bare-
propagator EOM (45a) reads

(iω1−H0)aāg
0
āa′(iω) = 1aa′ . (59)

Similarly, the Fourier transform of Eq. (47) for Fm reads

FmM [O](iω) = GM

[
[Om, Hint],O /m

]
(iω)

+
∑
n

/m
GM

[
O /mn

]
(iω /mn),

where ω /mn is defined in Eq. (38).
By Fourier transforming the ℓp EOM (54), one finds

GM[m](iω) = g0M,m(iωm)FM[m](iω),

GM[m†](iω) = −FM[m†](iω)g0M,m(−iωm),
(60)

or, more compactly, with implicit frequency arguments,

GM[m] = g0M,mFM[m],

GM[m†] = −FM[m†]g0M,m.
(61)

The implicit frequency argument of g0M,m can be in-
ferred to have iωm in the outer frequency argument.
For the left-multiplication (right-multiplication) of g0M,m,

we use g0M,m(iωm) = g0M,m(iωm,−iωm) (g0M,m(−iωm) =

g0M,m(−iωm, iωm)) [Eq. (7)], so that the outer, left (right)
frequency argument is iωm. For ℓ = 2, m = 1, and

[di,O2] = [d1, d
†
2], Eq. (60) gives

F 1
M[d1, d

†
2] = GM[q1, d

†
2] + 112. (62)

Substituting this into the first relation of Eq. (61), one
recovers the 2p EOM (23) derived in Sec. II.

2. ZF

In the ZF, the Fourier transforms of Eqs. (45a), (47),
and (54) read

(ω1−H0)aāg
0
āa′(ω) = 1aa′ ,

FmZ [O](ω) = GZ

[
[Om, Hint],O /m

]
(ω)

+
∑
n

/m
GZ

[
O /mn

]
(ω /mn), (63)

GZ[m](ω) = g0Z,m(ωm)FZ[m](ω),

GZ[m
†](ω) = −FZ[m

†](ω)g0Z,m(−ωm).

They have the same structure as the MF Eqs. (59), (60),
and (61).

3. KF

Finally, let us derive the EOM in the KF. We will first
do so in the contour basis and subsequently transform
the result to the Keldysh basis. The time-domain EOM
for the bare propagator [Eq. (45a)] reads

(i∂m1−H0)aāg
0 cc′

āa′ (t, t′) = Zcc
′
δ(t− t′)1aa′ , (64)

where we used δ(m,n) = Zcmcnδ(tm − tn), with Z =(
1 0
0 −1

)
the Pauli z matrix defined in Table II. Fourier

transforming this EOM gives

(ω1−H0)aāg
0 cc′

āa′ (ω) = Zcc
′
1aa′ . (65)

The Fourier transformation of Eq. (47) for Fm reads

Fm,cK [O](ω) = Gc
K

[
[Om, Hint],O /m

]
(ω)

+
∑
n

/m
ZcmcnGc /m

K

[
O /mn

]
(ω /mn).

(66)

Here, c /m = (···, cm−1, cm+1, ···) is defined as in Eq. (36),
and, in the last term, Zcmcn comes from the KF version
of δ(m,n) in Eq. (47). [Note that in Eq. (66) all c indices,
including cm and cn, are fixed by the left side.] Similarly,
the Fourier-transformed EOMs (54) for G[m(†)] read

Gc
K[m](ω) = g

0 cmc
′′
m

K,m (ωm)Zc
′′
mc

′
mF c′m

K [m](ω),

Gc
K[m

†](ω) = −F c′m

K [m†](ω)Zc
′
mc

′′
mg

0 c′′mcm
K,m (−ωm),

(67)

where c′m = (c′m, c
/m) = (···, cm−1, c

′
m, cm+1, ···) is de-

fined as in Eq. (36), and summations
∑
c′m,c

′′
m
are implied.

It is often useful to transform KF correlators from the
contour basis c ∈ {−,+} to the Keldysh basis k ∈ {1, 2},
by applying the orthogonal transformation

Dkc =
1
√
2

(
1 −1
1 1

)
kc

=
1
√
2
(−1)k·δc,+ (68)

to each contour index:

Gk
K[O](ω) =

∑
c1,···,cℓ

ℓ∏
p=1

DkpcpGc
K[O](ω). (69)

Then, the bare-propagator EOM (65) becomes

(ω1−H0)aāg
0 kk′

āa′ (ω) = Xkk′
1aa′ . (70)

Here, we have used the identity

DkcDk′c′Zcc
′
= (DZD−1)kk

′
= Xkk′ , (71)

which transforms the Pauli z matrix in the contour basis
to the Pauli x matrix, X = ( 0 1

1 0 ), in the Keldysh basis.
For later use, we also define a rank-ℓ tensor

P k1···kℓ =
∑

c,c1,···,cℓ

ℓ∏
n=1

ZccnDkncn =
∑
c

(−1)ℓ·δc,+
ℓ∏

n=1

Dknc
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=
1 + (−1)ℓ(−1)k1+···+kℓ

√
2ℓ

=

{
1√
2ℓ−2

if k1 + ···+ kℓ + ℓ is even,

0 if k1 + ···+ kℓ + ℓ is odd.
(72)

The rightmost expression in the first line follows since the
Z matrices yield a nonzero result only if all their indices
are equal, c = c1 = ··· = cℓ. For example, ℓ = 3 gives

P k1k2k3 =

{
1√
2

if k1 + k2 + k3 is odd,

0 if k1 + k2 + k3 is even.
(73)

This tensor appears when transforming EOMs from the
contour to the Keldysh basis. It satisfies the identities
(sums over repeated indices are implied)

Xk1k
′
1Xk2k

′
2P k

′
1k

′
2k3 = P k1k2k3 , (74a)

P k1k2k3P k3k4k5 = P k1k2k4k5 , (74b)

which follow directly from its definition.
Next, we transform Eqs. (66) and (67) to the Keldysh

basis. First, we multiply Eq. (66) by
∏ℓ
p=1D

kpcp and
sum over the contour indices. The last term becomes

∑
c1,···,cℓ

( ℓ∏
p=1

Dkpcp
)
ZcmcnGc /m

K

=
∑
cm,cn

DkmcmDkncnZcmcn(D−1)cnkmnGk /mn

K

=
∑
cn

(−1)3·δcn,+DkmcnDkncnDkmncnGk /mn

K

= P kmknkmnGk /mn

K . (75)

Here, k /mn = (···,��km, ···, kn−1, kmn, kn+1, ···), defined as
in Eq. (38), is obtained from k by removing km from
the list and replacing kn by a new dummy index kmn,
summation over which is implied. To arrive at the third
line, we used Zcmcn = δcmcn(−1)δcn,+ = δcmcn(−1)3δcn,+ .
Then, Eq. (66) transforms to

Fm,kK [O](ω) = Gk
K

[
[Om, Hint],O /m

]
(ω) (76)

+
∑
n

/m
P kmknkmnGk /mn

K [O /mn](ω /mn).

The P tensor maps the (ℓ−1)-element list of Keldysh
indices, k /mn, to the original ℓ-element list k. Similarly,
by transforming Eq. (67) to the Keldysh basis, we find

GK[m] = g0K,mXmFK[m], (77a)

GK[m
†] = −FK[m

†]Xm g
0
K,m. (77b)

Here, the subscript on Xm indicates that it acts on the
Keldysh index km of FK[m

(†)]. We extended Eq. (58) and
defined g0K,m, GK[m

(†)], and FK[m
(†)] as a matrix and

vectors in the basis of the orbital and Keldysh indices:

(g0K,m)kk
′

ii′ (ω) = g0,kk
′

K,ii′ (ω),(
GK[m

(†)]
)km
i

(ω) = Gk
K[d

(†)
i ,O /m](ω),(

FK[m
(†)]

)km
i

(ω) = Fm,kK [d
(†)
i ,O /m](ω).

(78)

For the KF, we use this compact notation only in the
Keldysh basis, not in the contour basis, because the X
matrix changes to the Z matrix when transformed to the
contour basis.
The KF EOMs (77) have the same structure as the

MF EOMs (61) and ZF EOMs (63), except for the factor
Xm acting on the Keldysh indices. In the rest of this
paper, we write formulas only in the KF, and drop the
subscripts on GK and FK. The corresponding MF and
ZF formulas can be obtained by dropping the Keldysh
indices and replacing X and P by unity.
We conclude this subsection by giving, for future ref-

erence, the Fourier-transformed KF versions of the first
lines of Eqs. (49) and (50):

F 1, kk′ [d1, d
†
2](ω) = Gkk

′
[q1, d

†
2](ω) +Xkk′

112 , (79)

F 1,k[d1, d
†
2, d3, d

†
4](ω) = Gk[q1, d

†
2, d3, d

†
4](ω)

− 2πiδ(ω12)X
k1k2112G

k3k4 [d3, d
†
4](ω3, ω4)

− 2πiδ(ω14)X
k1k4114G

k2k3 [d†2, d3](ω2, ω3).

(80)

To arrive at these equations from Eq. (76), we used∑
k12

P k1k2k12Gk12 [112] =
∑
k12

P k1k2k12
√
2δk12,2 = Xk1k2

(81)
for Eq. (79), and, for Eq. (80), we used an analogous

equation for Gk12k3k4 [112, d3, d
†
4].

F. EOM for connected correlators

A vertex is defined in terms of the connected part of
the corresponding correlator, i.e., the part that cannot be
expressed through products of lower-point correlators. It
is therefore desirable to have an EOM directly applicable
to connected correlators. Here, we show that the EOM
(77) holds also if one evaluates only the connected (con)
part or only the disconnected (dis) part of the correlators
from both sides:

Gcon/dis[m] = g0mXmFcon/dis[m],

Gcon/dis[m
†] = −Fcon/dis[m

†]Xmg
0
m.

(82)

When distinguishing between the connected and discon-
nected parts, we treat a composite operator as a whole,
with the single-particle operators comprising it consid-
ered to be mutually connected. For instance, in the

expansion of G[d1d
†
2d3, d

†
4](t, 0) based on Wick’s theo-

rem, the term G[d1, d
†
4](t, 0)G[d

†
2, d3](t, t) appears. Even
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FIG. 8. (a) Diagrammatic representation of the inductive
proof, starting from Eq. (84), for a disconnected 6p correlator
Gdis[1], for which O1 is a single-particle operator. We only
display diagrams corresponding to S = {2, 3, 4}; the dots rep-
resent contributions from all other disconnected parts. In the
second step, we used the induction hypothesis (i.h.) to obtain
Eq. (85). (b) Corresponding diagrammatic representation of
Fdis[1], see Eq. (86). In the second equality, we expand F 1

con

using the definition of F [Eq. (47); Fig. 7(a)].

though the two propagators appear disconnected, this
term is classified as connected when concerning the cor-

relator of d1d
†
2d3 and d†4, because the two operators d†2

and d3 from the second correlator are connected to the

operator d1 from the first.
Considering the connected part vastly simplifies the

EOM for ℓ ≥ 3. For example, the connected part of the
F 1 correlator in Eq. (80) simply reads

F 1,k
con [d1, d

†
2, d3, d

†
4](ω) = Gk

con[q1, d
†
2, d3, d

†
4](ω). (83)

For 2p correlators, the EOM for the connected part has
the same form as the total EOM because the discon-
nected part is zero for a 1p correlator.

Equation (82) can be understood inductively. Let us
assume that the EOM holds for the connected ℓ′p corre-
lators for all ℓ′ < ℓ. Disconnected ℓp correlators involve
sums over products of connected and disconnected lower-
point correlators. According to the inductive assump-
tion, the connected factors already satisfy the EOMs,

while the disconnected factors are spectators regarding
the manipulations performed when applying the EOMs.
Therefore, their product also satisfies the EOMs. This
idea is schematically illustrated in Fig. 8 for ℓ = 6.
We now develop this idea into a formal proof. For

ℓ = 1, the disconnected part is zero, so the EOM triv-
ially holds for both parts. Now, we assume that the EOM
holds for connected ℓ′p correlators with all ℓ′ < ℓ and
show that the EOM holds for the disconnected ℓp corre-
lator. Without loss of generality, we set m = 1, as the
EOMs for m ̸= 1 follow from the former by permuting
the operators. The disconnected part of the ℓp correlator
can be expressed as

Gdis[d1,O
/1] =

∑
S
ζSG[OS′

]Gcon[d1,O
S ] (84)

where OS and OS′
are sublists of O listing the operators

connected or not connected to d1, respectively, indexed
by sets S and S ′ with S ∪ S ′ = {2, ···, ℓ}. ζS is a sign
factor and the sum

∑
S enumerates all disconnected con-

tributions. The diagram for ℓ = 6 and S = {2, 3, 4} is
shown in the first line of Fig. 8(a).

By the induction hypothesis, Gcon[d1,O
S ] satisfies

Eq. (82). Hence, we can write Eq. (84) as

Gdis[d1,O
/1] =

∑
S
ζSG[OS′

]g01X1Fcon[d1,O
S ]

= g01X1Fdis[d1,O
/1], (85)

where, in the last step, we identified

F 1
dis[O] =

∑
S
ζSG[OS′

]F 1
con[O1,OS ]. (86)

Figure 8(b) shows the corresponding diagrams for ℓ = 6
operators and S = {2, 3, 4}. Equation (85) is the de-
sired ℓp EOM of the disconnected part. The ℓp EOM
holds also for the connected part, since Gcon = G−Gdis,
concluding the proof.

G. EOM with full propagators

The EOM derived in the previous sections involves full
correlators and bare propagators. For methods where
bare and full propagators stem from different numerical
settings, it is desirable, as argued before, to exclusively
use fully renormalized objects [13, 18, 22, 24]. Here, we
derive such an EOM. The idea, inspired by Ref. [22], is
to express the bare propagator g0 through the full prop-
agator g and the self-energy Σ using (g0)−1 = g−1 + Σ.
Applying this manipulation to the EOM [Eq. (82)] yields

g−1
m Gcon[m] = XmFcon[m]− ΣmGcon[m], (87a)

Gcon[m
†]g−1

m = −Fcon[m
†]Xm −Gcon[m

†]Σm. (87b)
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FIG. 9. (a) Depiction of the EOMs (87) (first line) and
(90) (second line) for the connected part of a full propagator,
Gcon[1], for a quartic interaction. We used Eq. (89) to repre-

sent F
[ ]
con in terms of correlators. (b) Depiction of Eq. (91) for

Gcon[1•] (indicated by dark shading between internal legs),
involving the subtraction of one-particle-reducible contribu-
tions. The short length of the leg labeled 1 indicates that the
corresponding external leg has been amputated.

Equations (87) are the first main result of this paper.
They generalize the 4p MF EOM of Hafermann et al.
[8] for m = 1 to an arbitrary ℓp correlator, to any in-
dex m, and to the KF and ZF. The g−1 term on the
left-hand side amputates one external leg of the correla-
tor; the terms on the right achieve this amputation in a
manner that conveniently avoids division by g. Repeated
use of such manipulations will amputate the connected
correlator and thus yield the vertex without the need to
explicitly divide out the propagators. Thereby, we obtain
improved estimators for multipoint vertices.

The second terms on the right of Eqs. (87) subtract
one-particle-reducible (1PR) contributions from the first
terms. To make this explicit, we express Fcon[m

(†)] as

Fcon[m
(†)] = (−)Gcon[q

(†)
m ,O /m] + F [ ]

con[m
(†)], (88)

where we define

F [ ]
con[m

(†)] =
∑
n

/m
P kmknkmnGk /mn

K, con[O /mn](ω /mn)
∣∣∣
Om=ψ

(†)
m

.

(89)
By definition, the first and second terms on the right of
Eq. (88) are obtained from those of Eq. (76) by replac-

ing Om there by ψm (or ψ†
m). The superscript on F

[ ]
con

indicates that its operator argument O /mn involves an
(anti)commutator. The (−) sign before Gcon, applicable
for Fcon[m

†] but not for Fcon[m], reflects the sign differ-
ence in definitions (48) for q†m and qm. Then, Eqs. (87)
can be expressed as

g−1
m Gcon[m] = Gcon[m•] +XmF

[ ]
con[m], (90a)

Gcon[m
†]g−1

m = Gcon[m
†
•]− F [ ]

con[m
†]Xm. (90b)

where we defined

Gcon[m•] = XmGcon[qm,O /m]− ΣmGcon[m], (91a)

Gcon[m
†
•] = Gcon[q

†
m,O /m]Xm −Gcon[m

†]Σm. (91b)

The second terms on the right of Eqs. (91) subtract the
1PR contributions from the first terms, completing the
amputation of the m-th leg. Figure 9 gives a diagram-
matic depiction of Eqs. (87) and (91).

IV. SYMMETRIC IMPROVED ESTIMATORS

In this section, we use the EOM to derive improved
estimators for the self-energy, 3p vertex, and 4p vertex.
Although we write the formula in the KF, let us empha-
size that all results of this section apply also to the MF
and ZF when all the Keldysh indices are dropped and
the coefficients Xkk′ and P k1···kn are replaced by unity.

We confine ourselves to Hamiltonians with a quartic
interaction:

Hint =
∑

i,i′,j,j′

Uii′jj′d
†
idi′d

†
jdj′ . (92)

Due to the sum over orbital indices, different choices of
the U tensor can describe the same interaction. The
symmetrized interaction tensor

U sym
1234 = U1234 + ζU3214 + ζU1432 + U3412, (93)

is unique for a given interaction. For the single-orbital
AIM [Eq. (13)], one may choose U↑↑↓↓ = U0 and let all
other components be zero to get U sym

σσσ′σ′ = ζU sym
σσ′σ′σ =

U0δσ̄,σ′ , where σ̄ denotes the opposite spin to σ. Later,
we show that U sym equals the bare vertex [see Eqs. (101b)
and (101c)].

For notational convenience, we henceforth focus on ℓp
correlators with ℓ ≤ 4 (though the strategy presented
below can readily be generalized). We write the 4p con-
nected correlator as

G
(·,·,·,·)k
1234 (ω) = Gk

con[d1, d
†
2, d3, d

†
4](ω), (94)

using odd (even) indices for annihilation (creation) oper-
ators. The superscript (·, ·, ·, ·) indicates that this corre-
lator is a 4p object and will later serve as a “parent cor-
relator” for the definition of various auxiliary correlators.
Hereafter, we omit the subscript 1234 and superscript k
for 4p correlators. We primarily work with the connected
correlators, as vertices are defined from these by ampu-
tating their external legs. Working with the connected
part also simplifies the equations after repeated applica-
tions of the EOM. The 4p vertex is defined as

Γ(ω) = g−1
1 (ω1)g

−1
3 (ω3)G

(·,·,·,·)(ω)g−1
2 (−ω2)g

−1
4 (−ω4),

(95)
where g−1

m is matrix-multipied to the m-th orbital and
Keldysh indices of the 4p correlator. This 4p vertex is
called F in Refs. [3, 10, 12, 13, 25, 26] and γ in Ref. [8].
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A. Auxiliary correlators

As for G2p, the estimators for G4p will be obtained
through multiple applications of EOMs. These will gen-
erate various auxiliary correlators, all derived from the
same “parent correlator” G4p, containing not only the

single-particle operators di and d
†
i , but also the compos-

ite operators qi =
[
di, Hint

]
and q†i =

[
Hint, d

†
i

]
, and

(possibly nested) (anti)commutators of all of these, aris-
ing from the [On, Hint] and δ(m,n) terms in the EOMs,
respectively. For (anti)commutators involving composite
operators, we recursively introduce the following compact
notation [generalizing Eq. (17b)]:

qi1i2 = [q
(†)
i1
, d

(†)
i2

]ζ1 ,

qi1i2i3 = [qi1i2 , d
(†)
i3

]ζ2 ,

qi1···in = [qi1···in−1
, d

(†)
in

]ζn−1 .

(96)

An anticommutator is taken if both operators are
fermionic; a commutator is taken otherwise. Daggers are
used if the corresponding operators in the parent correla-
tor [Eq. (94)] have daggers. Such indices will be labelled
with an even integer, 2 or 4. For example, for a fermionic
system, the composite operators derived from Eq. (94)
include the following:

q12 = {q1, d
†
2}, q23 = {q†2, d3}, (97)

q123 = [q12, d3], q234 = [q23, d
†
4], q1234 = {q123, d

†
4}.

The KF versions of the auxiliary correlators of
Eqs. (19) are defined as

G
(·,·)k
12 (ω) = Gk[d1, d

†
2](ω) = gk12(ω),

G
(1,·)k
12 (ω) = Gk[q1, d

†
2](ω),

G
(·,2)k
12 (ω) = Gk[d1, q

†
2](ω),

G
(1,2)k
12 (ω) = Gk[q1, q

†
2](ω),

G
(12)k
12 = P k1k2k12Gk12

[
[q1, d

†
2]ζ

]
.

(98)

Hereafter, for 2p auxiliary correlators, we omit the sub-
script 12 for orbital indices and the superscript k for
Keldysh indices. The diagrammatic representations are
given in Fig. 2. As in the MF case, G(12) is the Hartree
self-energy:

G(12) = P k1k2k12
〈
[q1, d

†
2]ζ

〉√
2δk12,2 = ΣH

12X
k1k2 . (99)

Here, the
√
2δk12,2 term comes from the transformation of

Gc[q12] = ⟨q12⟩ to the Keldysh basis as
∑
cD

kc =
√
2δk,2.

The factor P k1k22 = 1√
2
Xk1k2 [Eq. (73)] maps the single

Keldysh index of Gk12 via a summation on k12 to a two-
fold Keldysh index k1k2.

Next, we consider connected auxiliary correlators de-
rived from the parent G4p of Eq. (94). We illustrate our

notational conventions, described below, with some ex-

amples, assuming all d
(†)
i to be fermionic:

G(·,·,·,·) = Gk
con[d1, d

†
2, d3, d

†
4],

G(1,2,·,·) = Gk
con[q1, q

†
2, d3, d

†
4],

G(1,·,3,·) = Gk
con[q1, d

†
2, q3, d

†
4],

G(12,·,·) = P k1k2k12Gk12k3k4con [{q1, d
†
2}, d3, d

†
4],

G(23,·,·) = P k2k3k23Gk23k1k4con [{q†2, d3}, d1, d
†
4], (100)

G(12,3,·) = P k1k2k12Gk12k3k4con [{q1, d
†
2}, q3, d

†
4],

G(124,3) = P k1k2k4k124Gk124k3con [[{q1, d
†
2}, d

†
4], q3],

G(12,34) = P k1k2k12P k3k4k34Gk12k34con [{q1, d
†
2}, {q3, d

†
4}],

G(1234) = P k1k2k3k4k1234Gk1234con [{[{q1, d
†
2}, d3], d

†
4}].

By definition, all correlators G(···) carrying superscripts
in round brackets are connected correlators. Depend-
ing on the number and type of composite operators in-
volved, they may be 4p, 3p, 2p, and 1p correlators; corre-
spondingly, the superscripts contain 4, 3, 2, or 1 comma-
separated arguments. As before, ‘·’ is a placeholder for

d
(†)
i , a solitary numeral i signals its replacement by q

(†)
i ,

and i1···in denotes the replacement of the corresponding

operators by the composite operator qi1···in .

All such auxiliary correlators depend on the same num-
ber of indices and frequency arguments: 4 orbital indices,
4 Keldysh indices, and 4 frequency arguments. These are
inherited from those of parent G4p, either directly for

single-particle operators d
(†)
i and q

(†)
i , or indirectly for

composite operators, according to the following rules: to

qi1···in , assign the frequency ωi1···in = ωi1 + ···+ ωin and
the dummy Keldysh index ki1···in , then map the latter
to an n-fold index ki1 ···kin through multiplication by the
rank-(n + 1) tensor P ki1 ···kinki1···in [Eq. (72)] and sum-
mation over the dummy ki1···in .

Finally, when defining auxiliary correlators, we or-
der the operator arguments according to the follow-
ing conventions: (i) operators with higher nesting come
first, and (ii) non-nested operators (q , d, q†, and d†)
are ordered by their subscripts in increasing order. In
Eq. (100), we suppressed frequency arguments, since they
can be inferred from the structure of the superscripts.
For example, the superscripts (12, ·, ·) and k12k3k4 both
indicate a frequency argument (ω12, ω3, ω4), while super-
scripts (124, 3) and k124k3 both indicate (ω124, ω3), etc.

Figure 10 is a diagrammatic representation of the 4p
auxiliary correlators listed in Eqs. (100). Some auxiliary
correlators, such as G(12,·,·), G(12,34), and G(1234), con-
tain bosonic operators. Diagrams in which the latter are
disconnected from all the other operators should also be
subtracted to obtain the connected part. As mentioned
before, for composite operators, all the external legs of
the constituent single-particle operators are regarded as
being connected to each other. As reflected in the dia-
gram, the 1p correlator G(1234) equals the bare vertex up
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FIG. 10. Diagrammatic representations of the 4p auxiliary
correlators of Eq. (100) for a quartic interaction. Only the
connected diagrams are evaluated.

to a sign factor:

−G(1234) = Γbare, (101a)

Γbare = U sym
1234 (MF, ZF), (101b)

Γk
bare =

{
1
2U

sym
1234 if k1+k2+k3+k4 is odd

0 otherwise
(101c)

with U sym defined in Eq. (93).
We also define auxiliary correlators where some oper-

ators are replaced by q
(†)
i , and the corresponding 1PR

contributions are subtracted as in Eq. (91). We denote
such correlators using bullets (‘•’) instead of dots (‘·’) in
the superscript and define them as

G(•,x2) = X1G
(1,x2) − Σ1G

(·,x2) ,

G(x1,•) = G(x1,2)X2 −G(x1,·)Σ2 ,

G(12,•,x4) = X3G
(12,3,x4) − Σ3G

(12,·,x4) ,

G(12,x3,•) = G(12,x3,4)X4 −G(12,x3,·)Σ4 ,

G(•,x2,x3,x4) = X1G
(1,x2,x3,x4) − Σ1G

(·,x2,x3,x4) ,

G(x1,•,x3,x4) = G(x1,2,x3,x4)X2 −G(x1,·,x3,x4)Σ2 ,

G(x1,x2,•,x4) = X3G
(x1,x2,3,x4) − Σ3G

(x1,x2,·,x4) ,

G(x1,x2,x3,•) = G(x1,x2,x3,4)X4 −G(x1,x2,x3,·)Σ4 ,

(102)

where xn ∈ {•, ·, n}. Xn and Σn are left (right) multi-
plied for odd (even) n, as they correspond to an anni-
hilation (creation) operator in the original 4p correlator
[Eq. (94)]. This definition will be used repeatedly in the
derivation of improved estimators. Note that Xn and
Σn are left (right) multiplied for odd (even) indices, re-
flecting the absence or presence of a dagger in the cor-
responding operator of the parent correlator [Eq. (94)].
One can apply this definition recursively to evaluate aux-
iliary correlators with multiple bullets in the superscript,
e.g.,

G(•,•,·,·) = G(•,2,·,·)X2 −G(•,·,·,·)Σ2

= X1G
(1,2,·,·)X2 − Σ1G

(·,2,·,·)X2

−X1G
(1,·,·,·)Σ2 +Σ1G

(·,·,·,·)Σ2. (103)

FIG. 11. Depiction of Eq. (109) for the symmetric self-energy
estimator ΣS, expressed through 1PR-subtracted correlators
[cf. Fig. 9(b)].

B. Self-energy estimators

We now derive the sIEs, starting with the self-energy.
We will reproduce the result of Ref. [22] but will take a
slightly different path. Instead of using the EOM with
the bare propagator (77), we apply the EOM with the
full propagator (87) to G(·,·) twice, once for each external
leg. This amputates the legs and yields the self-energy.
The same procedure will be used to derive the multipoint
vertex estimators.
First, using g = G(·,·) = G[d1, d

†
2] in Eqs. (87), we find

g−1g = XG(1,·) − Σg + 1, (104a)

gg−1 = G(·,2)X − gΣ+ 1. (104b)

Solving for Σ, we find two aIEs for the self-energy, distin-
guished here by superscripts and illustrated in Fig. 3(c):

ΣL = XG(1,·)g−1, (105a)

ΣR = g−1G(·,2)X. (105b)

Next, we employ EOMs for the auxiliary correlators

that appear in the aIE by using G(1,·) = G[q1, d
†
2] in

Eq. (87b) or G(·,2) = G[d1, q
†
2] in Eq. (87a):

G(1,·)g−1 =
(
G(1,2) +G(12)

)
X −G(1,·)ΣR , (106a)

g−1G(·,2) = X
(
G(1,2) +G(12)

)
− ΣLG(·,2). (106b)

On the right, we used ΣR (or ΣL) in terms containing
the self-energy as a factor on the right (or left), because
this choice leads to the third, symmetric self-energy es-
timator discussed in IVB. It is obtained by substituting
Eqs. (106) into the aIEs of Eqs. (105). The two expres-
sions obtained this way,

ΣS = X
[(
G(1,2) +G(12)

)
X −G(1,·)ΣR

]
, (107a)

ΣS =
[
X
(
G(1,2) +G(12)

)
− ΣLG(·,2)]X, (107b)

are equal (hence we denote both by ΣS), as can be seen
by inserting the aIEs of Eq. (105) on the right (we also
use XG(12)X = ΣHX [Eq. (99)]):

ΣS = XG(1,2)X +ΣHX −XG(1,·)g−1G(·,2)X. (108)

Equation (108) is the Keldysh version of the sIE for the
self-energy illustrated in Fig. 3(e). The term involving
G(1,·)g−1G(·,2) subtracts all 1PR diagrams from G(1,2)
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(cf. Fig. 4). Using Eqs. (107), this 1PR subtraction can
also be expressed as

ΣS = XG(1,•) +XΣH = G(•,2)X +ΣHX, (109)

where we employed notation analogous to that of
Eqs. (102). Figure 11 illustrates Eq. (109) using the
shaded vertex of Fig. 9(b). The choice of using ΣL or
ΣR in subtraction terms containing the self-energy as left
or right factors will also be used in later sections when
evaluating the multipoint estimators.

C. 3p vertex estimators

The sIE for the 4p vertex turns out to depend, among
others, on a number of 3p vertices. In this section, we
therefore explain how to obtain sIEs for these. To be
concrete, we consider the 3p vertex for the auxiliary cor-
relator G(ab,·,·), defined by amputating the external legs
that correspond to d or d†. For example, the vertex for
G(12,·,·), called Γ(12,·,·), or Γ(12) for short, is

Γ(12,·,·) = g−1
3 G(12,·,·)g−1

4 = . (110)

Here, g−1
3 and g−1

4 matrix-multiply the third and fourth

orbital and Keldysh indices of G(12,·,·).
For fermionic systems, these 3p vertices are fermion-

boson vertices which are related to the Hedin vertex [27].
They are an important ingredients of, e.g., diagrammatic
extensions of dynamical mean-field theory and the calcu-
lation of response properties [25, 28–35]. We note that
although Γ(12) has four Keldysh indices, one can easily
convert it to have 3 Keldysh indices to more clearly reveal
its 3p nature:∑

k1,k2

P k1k2k12Γ(12)k = Γ(12) k12k3k4 . (111)

Our goal is to derive an estimator for Γ(12), symmetric
with respect to legs 3 and 4, by using EOMs (87) to
amputate the external legs of G(12,·,·). We first find the

EOM w.r.t. ω3 for G(12,·,·) = Gcon[q12, d3, d
†
4](ω12, ω3, ω4)

by using Eq. (87a) with m = 2:

X3[g
−1
3 +Σ3]G

(12,·,·)(ω)

= P k1k2k12F 2,k12k3k4
con [q12, d3, d

†
4](ω12, ω3, ω4)

= P k1k2k12

[
Gk12k3k4con [q12, q3, d

†
4](ω12, ω3, ω4)

+ P k12k3k123Gk123k4con

[
[d3, q12], d

†
4

]
(ω123, ω4)

+ P k3k4k34Gk12k34con

[
q12, [d3, d

†
4]ζ

]
(ω12, ω34)

]
. (112)

The first term in the square bracket gives G(12,3,·)(ω)
[Eq. (100)]. The second term gives −G(123,·)(ω) when

Eq. (74b), the identity P ·P = P , is used; the minus sign

comes from [d3, q12] = −q123 [Eq. (97)]. The third term

vanishes because the connected part of G
[
q12, [d3, d

†
4]ζ

]
=

G[q12,134] is zero: the identity operator does not have
any external leg and thus cannot be connected with other
operators. Therefore, Eq. (112) becomes

X3

[
g−1
3 +Σ3

]
G(12,·,·) = G(12,3,·) −G(123,·). (113)

Writing this equation in terms of the 1PR-subtracted
auxiliary correlators [Eq. (102)], we find

g−1
3 G(12,·,·) = G(12,•,·) −X3G

(123,·), (114)

Amputating the remaining fourth leg from g−1
3 G(12,·,·),

one finds the aIE for the 3p vertex:

Γ(12) =
[
G(12,•,·) −X3G

(123,·)]g−1
4 . (115)

Now, consider the EOM w.r.t. ω4 for each of the aux-
iliary correlators on the right of Eq. (115):

G(12,·,·)g−1
4 = G(12,·,•) + ζG(124,·)X4,

G(12,3,·)g−1
4 = G(12,3,•) +

[
G(12,34) + ζG(124,3)

]
X4,

G(123,·)g−1
4 = G(123,•) +G(1234)X4. (116)

By substituting these equations to Eq. (115), one obtains
the sIE for the 3p vertex:

Γ(12)

= G(12,•,•) +X3

[
G(12,34) + ζG(124,3) −G(1234)

]
X4

− ζΣ3G
(124,·)X4 −X3G

(123,•)

= K(12,·,·) +X3

[
G(12,34) −G(1234)

]
X4

+ ζG(124,•)X4 −X3G
(123,•). (117)

Here, K(12,·,·), or K(12) for short, is defined as

K(12,·,·) = G(12,•,•)

= X3G
(12,3,4)X4 −X3G

(12,3,·)Σ4

− Σ3G
(12,·,4)X4 +Σ3G

(12,·,·)Σ4. (118)

K(12) is one-particle irreducible (1PI) in the third and
fourth legs thanks to the 1PR subtraction shown in
Fig. 9(b). It is a sum of four terms, obtained by per-
forming one of the two operations for both n = 3 and
n = 4: (i) multiply by −Σn (xn = ·) or (ii) insert n into
the superscript for the auxiliary correlator and multiply
by Xn (xn = n). The symbol K is used as this term is
identical (up to a sign) to the K2 asymptotic class of the
4p vertex [26] (see Sec. IVF).

Next, we note that the last line of Eq. (117) van-

ishes. Since Hint is a 4p interaction,
[
{q(†)a , d

(†)
b }, d

(†)
c

]
=

x
(abc)
abcd d

(†)
d holds for a constant factor x

(abc)
abcd , yielding

G(123,•) = x
(123)
123d (G

(·,2)
d4 X4 −G(·,·)

d4 Σ4) = 0,

G(124,•) = x
(124)
124d (X3G

(1,·)
3d − Σ3G

(·,·)
3d ) = 0,

(119)
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FIG. 12. Diagrammatic representation of the sIE for the 3p
vertex Γ(12) [Eq. (120)], comprising only connected diagrams.

where the cancellations follow from Eq. (105). Using
X3G

(12,34)X4 = G(12,34) [via Eq. (74a)] and G(1234) =
−Γbare [Eq. (101a)], we find the following compact sIE
for Γ(12), represented diagrammatically in Fig. 12:

Γ(12) = K(12) +G(12,34) + Γbare,

Γ(13) = K(13) +G(13,24) − ζΓbare,

Γ(14) = K(14) −G(14,23) + Γbare,

Γ(23) = K(23) +G(14,23) − Γbare,

Γ(24) = K(24) −G(13,24) + ζΓbare,

Γ(34) = K(34) +G(12,34) + Γbare.

(120)

We also listed analogous sIEs for the other 3p vertices,
which can be derived similarly.

D. 4p vertex estimators

Finally, we derive a sIE for the 4p vertex Γ [Eq. (95)].
We use the same strategy of repeatedly applying the
EOM (87) to 4p auxiliary correlators. At the m-th or-
der, we use the EOM w.r.t. ωm as well as the lower-order
estimators.
The EOM of the 4p connected correlator G(·,·,·,·) w.r.t.

ω1 is

g−1
1 G(·,·,·,·) = G(•,·,·,·). (121)

By amputating the remaining external legs, we find a
first-order 4p aIE:

Γ = g−1
3 G(•,·,·,·)g−1

2 g−1
4 . (122)

This equation is the 4p aIE used in Eq. (84) of Ref. [13].
The same formula holds if one takes the correlators them-
selves instead of their connected parts as the discon-
nected parts on both sides cancel via the 2p EOM. Then,
Eq. (122) becomes Eq. (26) of Ref. [8].

The relevant EOMs w.r.t. ω2 are

G(·,·,·,·)g−1
2 = G(·,•,·,·),

G(1,·,·,·)g−1
2 = G(1,•,·,·) +G(12,·,·)X2 .

(123)

By inserting Eq. (123) into Eq. (122) and using the defi-
nition (102), we find a second-order 4p aIE:

Γ = g−1
3

[
G(•,•,·,·) +G(12,·,·)

]
g−1
4 . (124)

Inserting the EOMs

g−1
3 G(·,·,·,·) = G(·,·,•,·)

g−1
3 G(1,·,·,·) = G(1,·,•,·) −X3ζG

(13,·,·)

g−1
3 G(·,2,·,·) = G(·,2,•,·) −X3G

(23,·,·)

g−1
3 G(1,2,·,·) = G(1,2,•,·) −X3

[
ζG(13,2,·) +G(23,1,·)],

(125)

into the second-order aIE [Eq. (124)], we obtain a third-
order 4p aIE:

Γ =
[
G(•,•,•,·) + g−1

3 G(12,·,·) + ζG(13,·,·)Σ2

− ζG(13,2,·)X2 +Σ1G
(23,·,·) −X1G

(23,1,·)
]
g−1
4

=
[
G(•,•,•,·) + g−1

3 G(12,·,·) − ζG(13,•,·) −G(23,•,·)
]
g−1
4 .

(126)

The second and third rows of this formula can be simpli-
fied using the 3p EOMs,

G(13,·,·)g−1
2 = G(13,•,·) + ζG(123,·)X2,

g−1
1 G(23,·,·) = G(23,•,·) +X1G

(123,·).
(127)

Further simplification is possible using

X1G
(123,·)g−1

4 = G(123,·)X2g
−1
4 = −Γbare, (128)

which is derived by substituting Eqs. (119) and (101a)
into the third equation of Eq. (116). Here, the X1 and
X2 terms cancel with the X4 term in Eq. (119) due to the
structure of the KF bare vertex [Eq. (101c)]. Substituting
Eqs. (127) and (128) into Eq. (126) yields

Γ = G(•,•,•,·)g−1
4 + Γ(12) − ζΓ(13) − Γ(23) − 2Γbare.

(129)

Finally, using the EOMs w.r.t. ω4,

G(·,·,·,·)g−1
4 = G(·,·,·,•),

G(1,·,·,·)g−1
4 = G(1,·,·,•) +G(14,·,·)X4,

G(·,2,·,·)g−1
4 = G(·,2,·,•) + ζG(24,·,·)X4

G(·,·,3,·)g−1
4 = G(·,·,3,•) +G(34,·,·)X4,

G(1,2,·,·)g−1
4 = G(1,2,·,•) +

[
G(14,2,·) + ζG(24,1,·)]X4,

G(1,·,3,·)g−1
4 = G(1,·,3,•) +

[
G(14,·,3) +G(34,1,·)]X4,

G(·,2,3,·)g−1
4 = G(·,2,3,•) +

[
ζG(24,·,3) +G(34,·,2)]X4,

G(1,2,3,·)g−1
4 = G(1,2,3,•) +

[
G(14,2,3) + ζG(24,1,3)

+G(34,1,2)
]
X4, (130)

we find the desired fourth-order 4p sIE,

Γ = Γcore

+K(12) − ζK(13) −K(23) +K(34) + ζK(24) +K(14)

+G(12,34) − ζG(13,24) −G(14,23)
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FIG. 13. Diagrammatic representation of the 4p sIE of
Eq. (131) (listing the contributions in the same order as
there). Only connected diagrams are involved. Indices of the
amputated external legs are indicated by their orientation.

+ Γbare, (131)

fully symmetric in all four frequencies. Here, we used

Γcore = G(•,•,•,•). (132)

This term is defined recursively in Eq. (102) and con-
tains 24 = 16 terms that can be evaluated using the same
rule as the 3p case [Eq. (118)]: either (i) multiply −Σn
(xn = n) or (ii) add n in the superscript of the auxiliary
correlator and multiply Xn (xn = ·), for n = 1, 2, 3, 4.
We also used the definition of K(ab) [Eq. (118)] to isolate
the bosonic 2p correlators G(12,34), G(13,24), and G(14,23),
and the bare vertex G(1234). From the top to bottom of
Eq. (131), the rows contain 4p, 3p, 2p, and 1p correla-
tors. Equation (131), giving a sIE for the 4p vertex, is
our second main result. Figure 13 depicts it diagram-
matically.

E. Perturbative behavior of the estimators

One regime where the robustness of sIEs against
numerical errors becomes particularly evident is the
weak-interaction limit. In this regime, when using
diagonalization-based methods like NRG without im-
proved estimators, numerical artifacts may dominate the
signal due to the small magnitude of the vertex [13]. We
hence discuss the perturbative limit explicitly in the fol-
lowing. However, note that the improved estimators are
of course formally exact at all interaction strengths.

First, let us consider the self-energy. In the limit of
small U , directly calculating the self-energy from the
Dyson equation [Eq. (15)] can lead to an error of order

O(U0) due to an imperfect cancellation between the bare
and full propagators. In the aIE [Eq. (105)], the leading
error is O(U1) as the auxiliary correlator G(1,·) contains
Hint. Analogously, with the sIE [Eq. (108)], the error in
the frequency-dependent part is O(U2) because all terms
in the estimator (except the Hartree self-energy, which
is computed directly via the equilibrium density matrix,
using Eq. (99)) include Hint at least twice.
Next, for the 3p sIEs in Eq. (120) and Fig. 12, a pertur-

bative expansion of the three terms gives contributions of
orderO(U3), O(U2), andO(U1), respectively. The third,
O(U1) term is the exact bare vertex. The second, O(U2)
term is a bosonic 2p correlator which can be computed
much more accurately than the 3p correlators. Only the
first, O(U3) term K(12) involves 3p correlators. Finally,
the 4p sIE also contains the exact bare vertex at O(U)
and involves only bosonic 2p correlators up to O(U2):

Γ = Γbare+G
(12,34)−ζG(13,24)−G(14,23)+O(U3). (133)

Thus, the 4p sIE is highly accurate in the weak-coupling
limit, with errors from multipoint calculations entering
only at O(U3). In contrast, a direct amputation of the
correlator [Eqs. (110) and (95)] or the use of first-order
aIEs [Eq. (115) and (122)] introduces errors three and two
orders (two and one orders) earlier, respectively, than for
the 4p (3p) sIE.
Our estimators for the 3p and 4p vertex are invariant

under a shift of Hint by a quadratic term:

H0 → H0 + λijd
†
idj , Hint → Hint − λijd†idj . (134)

The self-energy estimators transform as

Σ→ Σ− λ. (135)

Since NRG is linear in each argument of the correlator,
the choice of λ does not affect the numerical results cal-
culated with the estimators (for a given z shift) [22]. An
interesting choice of the shift is λ = ΣH. In this case, Σ
scales as O(U2) in the small-U limit. Then, the first and
second terms of the 1PR-subtracted vertex [Fig. 9(b)]
scale as O(U1), and O(U2), respectively. Hence, K(12)

[Eq. (118)] and Γcore [Eq. (132)] can be decomposed into
terms that enter at different orders in the perturbative
expansion according to the number of occurrences of
Σ. For example, in Eq. (118), we have a O(U3) term
(X3G

(12,3,4)X4), two O(U4) terms (Σ3G
(12,·,4)X4 and

X3G
(12,3,·)Σ4), and a O(U5) term (Σ3G

(12,·,·)Σ4). Sim-
ilarly, for Γcore, the perturbative order of each term can
be classified into orders ranging from O(U4) to O(U8).

F. Relation to the vertex asymptotics

A similar numerical advantage of the sIEs is also ex-
pected in the large frequency limit. When the input fre-
quencies are much larger than any intrinsic energy scales
of the system, the propagator g is inversely proportional
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to the frequency. At high frequencies, numerical results
for g become noisy due to the vanishing magnitude and
a small signal-to-noise ratio. Direct amputation, i.e. di-
vision by g, introduces a large error in the vertex. The
sIEs for Γ3p and Γ4p are free from this error because they
do not require any amputation.

The 4p sIE of Eq. (130) bears a close connection to
the asymptotic behaviors of the 4p vertex. If any of the
external frequency arguments is taken to infinity, a dia-
gram carrying this frequency in a (non-amputated) line
vanishes [26, 36]. We now use this property to connect
the 4p sIE [Eq. (131)] and its diagrammatic representa-
tion (Fig. 13) to the asymptotic classes of the 4p vertex.

If all four frequency arguments are taken to infinity
without any particular constraint except ω1234 = 0, the
4p vertex reduces to the bare interaction. The last term
of the 4p sIE (131) is this bare interaction [Eq. (101a)]:

lim
|ω1|,···,|ω4|→∞

Γ(ω) = Γbare. (136)

Nontrivial asymptotic classes are defined by the limits
of some or all frequencies going to infinity while keep-
ing the sum of two frequencies to a fixed, finite value.
Concretely, we have [26]

lim
|νr|→∞

lim
|ν′

r|→∞
Γ(ωr) = Γbare +Kr1(ωr),

lim
|ν′

r|→∞
Γ(ωr) = Γbare +Kr1(ωr) +Kr2(νr, ωr),

lim
|νr|→∞

Γ(ωr) = Γbare +Kr1(ωr) +Kr2′(ν′r, ωr),

(137)

where we parametrize the frequencies as

ωr =


(νr,−νr − ωr, ν′r + ωr,−ν′r) for r = t (ph),

(νr,−ν′r,−νr − ωr, ν′r + ωr) for r = p (pp)

(νr,−ν′r, ν′r + ωr,−νr − ωr) for r = a (ph).

(138)
Here, t, p, and a denote the transverse, parallel, and
antiparallel channels, according to, e.g., the conventions
of Ref. [37–39].

The first asymptotic class K1 corresponds to the
bosonic 2p correlators [26] in the third line of Eq. (131):

Kt1(ωt) = G(12,34)(−ωt, ωt),
Kp1(ωp) = −ζG(13,24)(−ωp, ωp),
Ka1(ωa) = −G(14,23)(−ωa, ωa).

The second asymptotic class, involving K2 and K2′ ,
comes from the K(ab) terms:

Kt2(νt, ωt) = K(34)(ωt, νt,−νt − ωt),
Kt2′(ν′t, ωt) = K(12)(−ωt, ν′t + ωt,−ν′t),
Kp2(νp, ωp) = ζK(24)(ωp, νp,−νp − ωp),
Kp2′(ν

′
p, ωp) = −ζK(13)(−ωp,−ν′p, ν′p + ωp),

Ka2(νa, ωa) = −K(23)(ωa, νa,−νa − ωa),

Ka2′(ν′a, ωa) = K(14)(−ωa,−ν′a, ν′a + ωa). (139)

The remaining core contribution, which does not con-
tribute to the asymptotics, is Eq. (132):

Γ−
[
Γbare +

∑
r

(Kr1 +Kr2 +Kr2′)
]
= Γcore. (140)

For computational schemes built on the asymptotics-
based parametrization of the 4p vertex, using the 4p sIE
is highly advantageous because each asymptotic class is
calculated separately. The core contribution, in partic-
ular, which decays in all high-frequency limits, can be
calculated using Eq. (132). This is expected to be much
more accurate than subtracting terms that belong to dif-
ferent asymptotic classes from the full vertex.

G. Subtracting the disconnected contributions

So far, we presented 3p and 4p sIEs involving con-
nected auxiliary correlators. Such estimators are suitable
for NRG, where correlators are computed using spectral
representations which offer a natural way for obtaining
connected correlators by subtracting disconnected parts
on the level of partial spectral functions [12, 13]. Yet,
other methods, like QMC, only have access to the to-
tal correlator. It is then useful to have total correlators
instead of their connected parts in the vertex estimators.
Leaving the derivation to App. D, we here present a

KF 4p sIE involving only total correlators:

Γ = Γtot − 2πδ(ω12)Σ
k1k2
12 Σk3k434 − 2πδ(ω14)ζΣ

k1k4
14 Σk3k232 .

(141)
Here, the subscript ‘tot’ indicates that the connected
auxiliary correlators in Eq. (131) are replaced by total
correlators, i.e., the sum of the connected and discon-
nected parts. The additional self-energy terms cancel
the disconnected diagrams in the total correlator. In the
MF, the Dirac delta function 2πδ(ω) is replaced by the
Kroneker delta βδω,0.
The additional disconnected terms involve the self-

energy; hence, they vanish in the noninteracting case, as
well as in the perturbative limit up to O(U1) [or O(U2)
if Hint is shifted to give ΣH = 0, cf. Sec. IVE]. Moreover,
they are much smaller than those obtained by direct am-
putation, where disconnected terms involve the square
of the inverse propagator. When using sIEs, significant
cancellations occur between the disconnected parts of the
various auxiliary 4p correlators involved; thus, the dis-
connected parts surviving these cancellations are much
smaller.

In App. D, we also show that the estimators using total
correlators share the same perturbative and asymptotic
properties as the original estimators expressed through
connected correlators discussed in the previous sections.

One remaining choice to be made is which self-energy
estimators to use when evaluating the vertex estimators.
Possible choices include the aIEs ΣL [Eq. (105a)] and ΣR
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FIG. 14. MF and KF 4p vertices (Γ↑↓ −Γbare;↑↓)/U in the AIM at weak interaction (∆/D = 0.1, U/∆ = 0.5, and T/∆ = 0.01)
at ω = 0. They were computed using (a) the sIE of Eq. (131), and (b,c) the aIE of Eq. (122), with (a,b) log-Gaussian broadening
or (c) Lorentzian broadening (see App. E 2 for details). Only the KF vertices are shown for (c) as broadening does not affect
MF vertices. For all three panels (a,b,c), the upper (lower) row shows the real (imaginary) part. For the sIE, the MF vertex is
purely real, and the KF vertex at k = 1122 and k = 1111 are purely imaginary. Keldysh components not plotted are related
to those plotted by crossing symmetry, complex conjugation, or both (see App. C). The aIE vertex breaks these symmetries.
In panels (b) and (c), the KF data is clearly inferior (more noisy, showing spurious features, etc.) than in (a), illustrating that
aIEs are not suitable for computing all components of the KF vertex.

[Eq. (105b)], and the sIE ΣS [Eq. (108)]. Although these
estimators are all equivalent analytically, this choice may
affect the results in the presence of numerical noise.

We propose to use the aIE ΣL (ΣR) for the self-energies
Σ1 and Σ3 (Σ2 and Σ4) which left- and right-multiply the
auxiliary correlators. This choice maximizes the cancel-
lation of disconnected diagrams: e.g., the disconnected
term in the 3p sIE for Γ(34) is proportional to

ΣLG(·,·)ΣR−XG(1,·)ΣR−ΣLG(·,2)X+XG(1,2)X+ΣHX.

If Eqs. (105) are used, the first three terms are all equal
up to signs. Thus, two of them mutually cancel (even
if ΣL and ΣR differ due to numerical noise), so that the
expression simplifies to

−XG(1,·)g−1G(·,2)X +XG(1,2)X +ΣHX = ΣS. (142)

Then, by using ΣS in Eq. (141) to remove the remaining
disconnected terms, the cancellation is made exact. Such
a cancellation may be particularly beneficial for QMC
where the total correlators are computed. For NRG, the
disconnected parts are already subtracted on the level of
partial spectral functions. Still, we use ΣL (ΣR) for left
(right) multiplications in Eq. (131), expecting that this
helps with the cancellation of any remnant disconnected
terms that might have survived as numerical artifacts.

V. NUMERICAL RESULTS

In this section, we demonstrate the advantages of sIEs
over aIEs for NRG computations of the 4p vertex [12, 13].
To this end, we consider the AIM and compare results
from NRG to those of third-order perturbation theory
(PT3) and renormalized perturbation theory (RPT) [40–
43]. For our purposes, NRG, PT3, and RPT may all be
viewed as black-box methods for computing MF and KF
vertices, where PT3 and RPT are restricted to weak in-
teraction and asymptotically low energies, respectively.
(Reference [13] describes the inner workings of NRG ver-
tex computations and App. E some further refinements
needed for present purposes.) We also refrain from dis-
cussing the physics of the AIM or analyzing the physical
information encoded in its 4p vertex. Instead, we focus
on the advantages of sIEs over aIEs.

The Hamiltonian of the AIM was already given in
Eq. (13). We here take a rectangular hybridization func-

tion−Im∆R(ν) = π
∑
b |Vb|

2
δ(ν−εb) = ∆Θ(D−|ν|) with

half-bandwidth D and hybridization strength ∆. We fo-
cus on the particle-hole symmetric case, εd = −U/2.

In the following, we represent the 4p vertex in the t-
channel parametrization [Eq. (138)] at vanishing transfer
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the MF vertex (which is purely real), and the real and imaginary parts of the causal component of the KF vertex, respectively,
comparing results from NRG (first, third columns) and third-order perturbation theory (PT3) (second, fourth columns). (b)
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frequency,

Γσσ′(ν, ν′) = Γσσ′(ν, ν′, ω = 0)

= Γ[dσ, d
†
σ, dσ′ , d

†
σ′ ](ν,−ν, ν′,−ν′). (143)

Thus, Γ describes the effective interaction of an electron
with energy ν and spin σ and an electron with energy
ν′ and spin σ′. We will analyze Γ in the MF and the
KF. In the KF, we will consider its components in the
Keldysh basis as well as the causal component in the
contour basis (corresponding to c = −−−−). The latter
is a particularly sensitive probe to the numerical accuracy
as it involves a sum over all components in the Keldysh
basis:

Γcausal = 1
4

∑
k1,···,k4 Γ

k1k2k3k4 . (144)

By crossing and complex conjugation symmetries, one
has (see App. C)

ReΓcausal = 1
2Re (Γ

1222 + Γ2111) + (ν ↔ ν′), (145a)

ImΓcausal = 1
4 Im (Γ1212 + Γ1221 + Γ1122 + 1

2Γ
1111)

+ (ν ↔ ν′). (145b)

A. Weak interaction

As the first benchmark, we study the AIM at weak in-
teraction, ∆/D = 0.1, U/∆ = 0.5, and T/∆ = 0.01, and
compare our NRG results against those from PT3. In the
weak coupling regime, defined by U/(π∆) ≪ 1 [44, 45],
PT3 yields fairly accurate results and thus serves as a
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agreement between NRG and RPT is remarkably good. The RPT parameters are Ũ = 0.20U , Z = 0.36, and Γ̃ = Ũ/Z2 = 1.6U .

useful benchmark. For NRG, being a diagonalization-
based method, the accuracy of the results does not de-
pend on the strength of the coupling, i.e., weak coupling
is as non-trivial a challenge as strong coupling.

Figures 14(a) and 14(b) compare the 4p vertex ob-
tained using the sIE [Eq. (131)] and the aIE [Eq. (122)],
respectively, both broadened the same way, using a nar-
row (log-Gaussian) broadening kernel (see App. E 2 for
details). The aIE results are completely dominated by
fan-shaped noise, an artifact of NRG discretization. By

contrast, the sIE results are almost completely free from
such artifacts. This clearly illustrates the advantage of
the sIE over the aIE. For comparison, Fig. 14(c) shows
aIE results broadened with a much broader (Lorentzian)
kernel (in the same way as for the aIE results of Ref. [12],
Fig. 12). This hides the discretization artifacts by smear-
ing them out, at the cost of strongly over-broadening the
physically meaningful features seen in the sIE results of
Fig. 14(a). In addition, Keldysh components of the aIE
vertex other than the fully retarded k = 1222 component
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FIG. 19. FDRs of the KF 4p vertices in the AIM at a strong
interaction (parameters: same as for Fig. 17), computed using
(a) the sIE and (b) an aIE. The four columns show the real
and imaginary parts of Eq. (147a), Eq. (147b), and Eq. (147c),
respectively, normalized by U . Their left sides are shown in
the upper rows of (a,b), the difference between the left and
right sides (violation of the FDR) in the bottom rows. Re-
markably, for the sIE the violations are two orders of magni-
tude smaller than the vertices, and our 4p sIE NRG results
thus satisfy vertex FDRs to within a few percent. By contrast,
for the aIE, the violations are not much smaller than the ver-
tices themselves, implying sizeable violations of the FDRs.
In the bottom row for k = 1122, we do not plot results in
the hatched region where |ν′| > |ν| + 4T , as the right-hand
side of Eq. (147b) becomes numerically unstable due to the
cosh(ν′/2T )/ cosh(ν/2T ) term, which increases exponentially
with |ν′| − |ν|.

strongly deviate from the corresponding sIE result.
Figure 15 displays the contributions from the K1 and

K2 asymptotic classes obtained with NRG and PT3. We
find an excellent agreement for all asymptotic terms, in
the MF and the KF. The fact that even the line cuts
match perfectly is testament to the accurate broadening
of the NRG data.

Next, we focus on the core part, which is very chal-
lenging to compute from perturbation theory due to the
leading-order contribution of the envelope diagram. Fig-
ure 16 compares the core vertex obtained using the sIE
[Eq. (132)] (top row) and an aIE (bottom row). Since the
aIE [Eq. (122)] does not contain a decomposition into
asymptotic classes, one must subtract the asymptotic
contributions from the full vertex to get the core part
[Eq. (140)]. For the AIM parameters used here, the core
vertex is around two orders of magnitude smaller than the
full vertex. Hence, the subtraction entails a large numer-
ical error. Indeed, the data in the bottom row of Fig. 16

is completely dominated by numerical noise, ten times
larger than the true core vertex (upper row), in both the
MF and the KF. By contrast, using the sIE, the core
vertex is determined from its own estimator (132), which
involves no subtraction of terms with different asymp-
totics or perturbative order. Thereby, the sIE is much
less susceptible to numerical errors than the aIE.

B. Strong interaction

We now turn to the nonperturbative regime with a
stronger interaction ∆/D = 0.04, U/∆ = 5, and T/∆ =
0.0025. Figure 17 compares sIE and aIE results for the
4p vertex. The MF and KF vertices differ significantly
from the weak-coupling case (Fig. 14). The discretiza-
tion artifacts observed with the aIE in Fig. 17(b) are
less prominent at strong coupling than at weak coupling,
but are still noticeable. Yet, being asymmetric, the aIE
breaks several symmetries of the vertex, having, e.g., a
nonzero real part in the k = 1122 and 1111 components.
In the nonperturbative regime, accurate reference re-

sults for the entire 4p vertex are not available. How-
ever, in the low-energy Fermi-liquid regime, where the
temperature and all frequencies are much lower than the
Kondo temperature TK (here, T ≃ 0.02TK [12]), RPT
predicts a specific behavior of the vertex [40–43]. For an
SU(2)-symmetric single-orbital AIM at half filling, the
MF, causal KF, and fully retarded KF vertices in the
low-temperature, low-frequency limit have the following
form [41–43],

ΓM, σσ′(iν, iν′) = Γ̃δσσ̄′ − Γ̃2

π∆2
(|ν−ν′| − δσσ̄′ |ν+ν′|),

(146a)

Γcausal
K, σσ′(ν, ν′) = Γ̃δσσ̄′ + i

Γ̃2

π∆2
(|ν−ν′| − δσσ̄′ |ν+ν′|),

(146b)

2Γ1222
K, σσ′(ν, ν′) = Γ̃δσσ̄′ + i

Γ̃2

π∆2
[(ν−ν′)− δσσ̄′(ν+ν′)],

(146c)

where σ̄ = −σ. The last equation for the fully retarded
KF vertex is derived using the analytic continuation of
the absolute value f(iν) = |ν| to fR/A = −i(ν ± i0+).
The effective static interaction Γ̃ is given by Γ̃σσ′ =

δσσ̄′Ũ/Z2, where Ũ is the quasiparticle interaction and
Z the quasiparticle weight. These can be directly ex-
tracted from the low-energy eigenspectrum spectrum of
NRG [12, 40, 46–48]; for our strong-coupling parameters,

we find Ũ = 0.20U , Z = 0.36, and Γ̃ = Ũ/Z2 = 1.6U .
These are the same values as in Ref. [12]. While, there,
the agreement with RPT in the limit ν, ν′ → 0 was
checked for the MF and fully retarded KF vertices, we
here significantly extend this comparison by including the
linear order in ν and ν′ and all Keldysh components.
Figure 18(a) shows the low-energy part of the sIE ver-

tex, with |ν|, |ν′| ≲ TK. Figure 18(b) compares NRG and
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RPT results for line cuts of the vertex, showing remark-
ably good agreement in the low-energy regime |ν′| ≪ TK,
for both the MF and KF. This provides strong confirma-
tion of the accuracy of the imaginary- and real-frequency
vertices computed from NRG using the sIE. We note that
the small undershooting of Γ↑↓(0, 0, 0) can be systemat-
ically improved by using a denser grid for binning and
a smaller broadening parameter, at the expense of in-
creased computational costs (see App. E).

As a final test, we check how well the NRG results
for Γk satisfy generalized fluctuation-dissipation relations
(FDRs). These FDRs are known from the literature [49–
51] and take a particularly simple form at ω = 0:

Γ2111 = Γ2122 + tν′(Γ2112 − Γ2121)

− 2itνtν′ ImΓ2212 + itν ImΓ2211, (147a)

ImΓ1122 = c2ν′/c2ν ImΓ2211

+ 2tν ImΓ1222 − 2tν′c2ν′/c2ν ImΓ2212, (147b)

ImΓ1111 = [2tν(1+t
2
ν′) ImΓ1222 − t2ν′ ImΓ1122

+ tνtν′(ImΓ2121−ImΓ2112)] + (ν↔ν′). (147c)

Here, we used cν = cosh ν
2T and tν = tanh ν

2T (same
for ν′) for short and omitted the frequency argument
(ν, ν′, ω = 0) for the vertices. The FDRs for the other
Keldysh components with one 2 follow from Eq. (147a) by
crossing symmetry or complex conjugation (cf. App. C).
Figure 19 shows that the FDRs are all satisfied remark-
ably well for the sIE vertex [Fig. 19(a)], with errors two
orders of magnitude smaller than the signal. By con-
trast, the FDRs are strongly violated for the aIE vertex
[Fig. 19(b)].

VI. SUMMARY AND OUTLOOK

We presented a new estimator for the 4p vertex which
is symmetric in all indices and involves only full (inter-
acting) correlators. This sIE achieves the amputation of
external legs via EOMs, without dividing the correlators
by propagators, and also maximizes the cancellation of
the disconnected parts between multipoint objects. The
asymptotic decomposition of the vertex naturally arises
from the sIE, ensuring the accuracy of every term via a
separate estimator for each, without any large-frequency
limits or numerically unstable subtractions. We demon-
strate the utility of the sIE by calculating the 4p ver-
tex of the AIM at weak coupling and strong coupling
using multipoint NRG. Both the imaginary-frequency
MF and real-frequency KF vertices agree very well with
known limits, namely weak-coupling perturbation theory
and low-energy Fermi-liquid theory, and the latter accu-
rately satisfies the generalized fluctuation-dissipation re-
lations. We expect that the sIE may also be useful for
other computational methods such as QMC. For NRG,
it provides a robust way of computing the real-frequency
Keldysh vertex, opening up the possiblility for studying

real-frequency nonlocal correlations via diagrammatic ex-
tensions of DMFT [3].
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Appendix A: Boundary conditions of correlators

In this Appendix, we show that the boundary term
that arises when integrating by parts in Eq. (52) vanishes.
In the MF, this can be easily seen using the boundary
condition of the imaginary-time correlator on the contour
of Fig. 5(a). However, in the ZF and the KF, correlators
defined by Eq. (31) and the contours of Figs. 5(b) and
5(c) do not have simple boundary conditions. We can
nevertheless show that the boundary term vanishes, using
(i) correlators ordered on a modified (L-shaped) contour
(Fig. 20) [23] and (ii) the adiabatic assumption, which is
widely adopted (also in the original work of Keldysh [52])
as it simplifies the derivation.
It may be surprising that the adiabatic assumption is

evoked in the ZF and KF but not in the MF. After all, in
thermal equilibrium (which we assume in this work), the
entire information is encoded in MF correlators. Indeed,
one can obtain the retarded components of the KF by
analytic continuation [12, 50, 51] and all other compo-
nents by further accounting for the discontinuities of the
MF correlator in the complex frequency plane [51]. We
resolve this issue in App. B by showing that it is indeed
possible (albeit more tedious) to derive the KF EOMs in
thermal equilibrium without the adiabatic assumption.
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(a) MF (c) KF
∞−∞

− −iβ∞

0

−iβ

(b) ZF

−iβ

∞−∞

∞

FIG. 20. Time contour for each many-body formalism con-
sidered similar to Fig. 5, but with the vertical imaginary-time
branches for (b) and (c).

1. Contour formalism for MF, ZF, KF correlators

Using the notation for ℓp correlators from Sec. III, we
define a correlator of ℓ operators O at times z on a con-
tour with a (possibly) time-dependent Hamiltonian H(z)
as

G[O](z) = (−i)ℓ−1
Tr

[
T e−i

∫
dz̄H(z̄)O1

S(1)···OℓS(ℓ)
]

Tr
[
T e−i

∫
dz̄H(z̄)

] , (A1)

where T denotes the contour ordering of the operators
and z̄ denotes a contour integration variable (not the
complex conjugate of z). Here, OmS (m) = OmS (zm) de-
note operators in the Schrödinger picture, in contrast
to the Heisenberg operators Om(m) of Eq. (3), because

time dependence is generated by e−i
∫
dz̄H(z̄). The corre-

lator (A1) satisfies the Kubo–Martin–Schwinger (KMS)
boundary condition

G[O](z)
∣∣
zm=zi

= ζmG[O](z)
∣∣
zm=zf

, (A2)

where zi and zf are the endpoints of C, and ζm is +1
(−1) if Om is a bosonic (fermionic) operator. The sign
factor arises from commuting Om past all other opera-
tors. (The correlator is nonzero only for an even number
of fermionic operators. Hence, if Om is fermionic, the
remaining operators include an odd number of fermionic
operators, leading to a −1 sign factor.) The KMS bound-
ary condition is easily proven using the cyclicity of the
trace [23].

Such a simple boundary condition does not hold for the
correlators from Eq. (35), defined as the thermal expec-
tation value of time-ordered operators, because in gen-
eral Om does not commute with the thermal density ma-
trix ρ = e−βH/Tr e−βH involved in the thermal average
⟨. . .⟩. In the KF (Fig. 5(c)), e.g., we have zi = −∞− and
zf = −∞+, which leads to

G[O](zi, z2, ···) = Tr
[
ρO1(−∞)O2(2)···

]
̸= ζ1G[O](zf , z2, ···) = Tr

[
ρO2(2)···Oℓ(ℓ)O1(−∞)

]
= Tr

[
O1(−∞)ρO2(2)···

]
, (A3)

if O1 does not commute with ρ.
To connect Eq. (A1) with the correlators of the MF,

ZF, and KF, we choose the contours

MF : C = CM,0 = [0,−iβ], (A4a)

ZF : C = C− ⊕ CM,∞, (A4b)

KF : C = C− ⊕ C+ ⊕ CM,−∞, (A4c)

respectively, as illustrated in Fig. 20, where CM,a = [a, a−
iβ]. The overline distinguishes these contours from those
used in the main text [Eq. (32) and Fig. 5]. In the MF,
we set

MF : H(z) = H. (A5a)

The time evolution on the vertical branch CM,0 then gen-
erates e−βH , the interacting thermal state. Thus, we
readily find that, in the MF, the contour-ordered corre-
lators are identical to the imaginary-time-ordered corre-
lators [Eq. (31a)].
In the ZF and KF, we instead use

ZF : H(z) =

{
Hη(t) if z ∈ [−∞,∞]

H0 if z ∈ [∞,∞− iβ]
, (A5b)

KF : H(z) =


Hη(t) if z = t±, t < 0

H if z = t±, t ≥ 0

H0 if z ∈ [−∞,−∞− iβ]
, (A5c)

where t− (t+) denotes time t on the forward (backward)
branch, and

Hη(t) = H0 + e−η|t|Hint (A6)

describes the adiabatic switching of the interaction with
an infinitesimal rate η = 0+ on the horizontal branches.
The interaction is fully switched off on the vertical
branch.
In the KF, the time evolution on the vertical branch

generates e−βH
0

, the noninteracting thermal state. Ac-
cording to the adiabatic assumption, the adiabatic
switching of the interaction on the horizontal branches
connects this state to the interacting thermal state [52]:

e−βH

Tr e−βH
adia.
= Uη(0,−∞)

e−βH
0

Tr e−βH0 Uη(−∞, 0), (A7)

where Uη is the time-evolution operator for Hη. Un-
der this adiabatic assumption, the contour-ordered cor-
relator is identical to the ordinary Keldysh correlators
defined as the equilibrium expectation value of contour-
time-ordered operators [Eq. (31c)] [23]:

GcK[O](t)
adia.
= (−i)ℓ−1

〈
T [O](tc)

〉
. (A8)

In the ZF, the adiabatic switching connects the non-
interacting ground state

∣∣Ψ0
〉
to the interacting ground

state |Ψ⟩ (assuming no level crossing) [53]:

|Ψ⟩ adia.= Uη(0,−∞)
∣∣Ψ0

〉
. (A9)

Then, again, the ZF contour-ordered correlator equals
the ground-state expectation value of time-ordered oper-
ators [Eq. (31b)]:

GZ[O](t)
adia., T=0

= (−i)ℓ−1
〈
T [O](t)

〉
. (A10)
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2. Derivation of vanishing boundary terms

Let us now prove Eq. (52). The derivation of the EOMs
leading up to Eq. (52) [including Eqs. (39), (40), (45),
and (46)] holds unchanged for the contour correlators
defined by Eq. (A1). The step from Eq. (51) to Eq. (52),
with the boundary term made explicit, reads

G[ψa,O /m]

=

∫
m′
g0aā(m,m

′)(−i
←−
∂′m1−H0)āa′G[ψa′ ,O

/m](m′, /m)

=

∫
m′
g0aā(m,m

′)(i∂′m1−H0)āa′G[ψa′ ,O
/m](m′, /m)

− ig0aa′(m,m′)G[ψa′ ,O
/m](m′, /m)

∣∣zf
zi
. (A11)

Thanks to the KMS boundary condition [Eq. (A2)],
which holds for all three choices of the contour C defined
in Eq. (A4), the last line vanishes:

g0(m, zi)G(zi, /m) = g0(m, zf)G(zf , /m). (A12)

Here, we omitted the orbital subscript and operator ar-
guments for brevity. The sign factors coming from g0

and G are both ζm and thus cancel as ζ2m = 1. We em-
phasize that this logic cannot be used for the ZF and KF
contours without vertical branches [Eq. (32)] as the KMS
boundary condition (A2) then does not hold [Eq. (A3)].

Inserting the EOM (46a) into Eq. (A11), we find the
analogue of Eq. (52),

G[ψa,O /m] =

∫
m′
g0aa′(m,m

′)Fm[ψa′ ,O
/m](m′, /m), (A13)

where the integral over z′m is performed over C [Eq. (A4)].
In the MF, this concludes the proof because CM = CM.
In the ZF and KF, C and C differ by the vertical branches
CM,∞ and CM,−∞, respectively. If all the time arguments
z are on the horizontal branches C±, z

′
m on the vertical

branch does not contribute to the integral of Eq. (A13),
because the interaction is zero on the vertical branch
[Eqs. (A5b) and (A5c)]:

Fm(z′m, z
/m)
∣∣
Im z′m ̸=0 and zn∈C±

= 0. (A14)

Note that the adiabatic assumption is crucial here: if
the interaction were nonzero on the vertical branch,
Eq. (A14) would not hold. With the vertical branch
not contributing, the integration domain in Eq. (A13)
becomes C, thus concluding the proof of Eq. (52).

Appendix B: EOM derivation without adiabatic
assumption

In this Appendix, we prove the EOM in the integral
form [Eq. (54)] in the KF without resorting to the adi-
abatic assumption. Without the adiabatic assumption,
one needs to use a contour with the interaction present

(a)

t0−iβ

∞t0 (b) (c)∞−∞ t0−∞

Ir+

Ir−

Ii

FIG. 21. Time contours for KF (a) without or (b) with the
adiabatic assumption [Fig. 5(c)], and (c) the difference be-
tween (a) and (b).

on both the horizontal and vertical branches. We will
show that the contribution of the vertical branch to the
EOM vanishes. We thus recover the EOM with only the
horizontal branchs, as used in the main text.
After introducing the relevant contours in Sec. B 1, we

prove the EOM in Sec. B 2 by rewriting the correlators in
terms of ℓp greater correlators [Eq. (B11)]. We finish in
Sec. B 3 by presenting a much simpler proof that applies
only to a subset of Keldysh components.

1. Correlators without the adiabatic assumption

We use the contour

Ct0 = C−,t0 ⊕ C+,t0 ⊕ CM,t0 , (B1)

C−,t0 = [t0,∞], C+,t0 = [∞, t0], CM,t0 = [t0, t0 − iβ],

as shown in Fig. 21(a), and set

H(z) = H. (B2)

Since the interaction is present on the vertical branch, the
adiabatic assumption [Eq. (A7)] is not needed to equate
the contour-ordered correlators with the equilibrium ex-
pectation values. Instead, Eq. (A1) directly yields

GcKF, w/o adia.[O](t) = (−i)ℓ−1
〈
T

ℓ∏
i=1

[O](tc)
〉
. (B3)

If all time arguments lie on the horizontal branches,
i.e., for real valued t1, ···, tℓ, the contour Ct0 itself defines
a real-time correlator Gc(t) only for ti ≥ t0. Still, we can
extend the definition to ti < t0 in a manner that yields
a time-translation-invariant correlator by construction.
We define a time shift ∆t = t0−min(t0, t1, ···, tℓ) so that

t+∆t =
(
t1 +∆t, ···, tℓ +∆t

)
(B4)

are on the contour Ct0 , i.e. ti+∆t ≥ t0. Then, we define

Gc(t) = Gc(t+∆t), (B5)

where the left side is given by the right side. This ex-
tended definition enlarges the domain of Gc(t) to in-
clude C− ⊕ C+ [Fig. 21(b)], the domain of the correla-
tor of Eq. (31c), as a subset. By construction, the re-
sulting Gc(t) satisfies time-translational invariance. We
note that one cannot simply set t0 = −∞ because this
limit is ill-defined for the EOM in the integral form [e.g.,
Eq. (B8b) evaluates to Eq. (B24)].
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Let us consider the EOM (54a) with m = 1. (Other
EOMs easily follow by permutation and complex conju-
gation.) Our goal is to prove the EOM (54a) with z′1
integrated over C− ⊕ C+ [Fig. 21(b) or Fig. 5(c)]:

G[1](z) =
∫
1′∈C±

g01(1, 1
′)F [1](1′, /1). (B6)

A similar equation, but with z′1 integrated over Ct0
[Fig. 21(a)], can readily be derived as in Sec. A 2:

G[1](z) =
∫
1′∈Ct0

g01(1, 1
′)F [1](1′, /1). (B7)

We will now derive Eq. (B6) from Eq. (B7) by showing
that the right sides of the two equations are equal.

The difference between the right sides comes from the
integral over the segments shown in Fig. 21(c). This is
given by Ir + Ii, where Ir = Ir+ + Ir−, and

Ir±(t
c) = ±

∫ t0

−∞
dt′g0aa′(1, t

′±)G[qa′ ,O
/1](t′±, /1), (B8a)

Ii(t
c) = −i

∫ β

0

dτg0aa′(1, t0 − iτ)G[qa′ ,O
/1](t0 − iτ, /1).

(B8b)

The right sides contain G, not F , because the equal-time
commutators in F [the last term of Eq. (47)] do not con-
tribute since the domains of 1′ and /1 do not overlap. We

used the shorthand qa′ = [ψa′ , Hint] and

(1, t′) = (tc11 , t
′), (z, /1) = (z, tc22 , ···, t

cℓ
ℓ ) (B9)

as in Eq. (36). Henceforth, we drop the superscript 0 on g

and abbreviate G[qa′ ,O
/1] as Ga′ . The time arguments tc

are treated as given, fixed points on the contour Ct0−⊕C
t0
+ ,

so that

ti ≥ t0. (B10)

2. General proof of the EOM

To prove Ir+Ii = 0, we begin by defining an ℓp “greater
correlator”

G>c/1

[O](z, t/1) = (−i)ℓ−1
〈
O1(z) T [O/1](t/1 c/1

)
〉
, (B11)

where the superscript > denotes that O1(z) does not
follow the contour ordering and is always ordered as
the last, put at the leftmost position within the ther-
mal expectation value. This correlator is a general-
ization of the greater component of the 2p correlator
G>(t, t′) = G(t+, t′−). We allow z to be any complex
number in Eq. (B11). The Fourier transform of the
greater correlator reads

G>c/1

(t, t/1) =

∫
dℓω

(2π)ℓ
e−iω·tG>c/1

(ω)2πδ(ω1···ℓ). (B12)

We now rewrite the integrands of Ir± and Ii in terms
of greater correlators, starting with Ii [Eq. (B8b)]. While

t0 − iτ is the first argument of G[qa′ ,O
/1](t0 − iτ, /1) and

thus already in the right place for equating this cor-
relator with a greater correlator, this is not the case
for gaa′(1, t0 − iτ). However, using the simple relation
G[O1,O2](z1, z2) = ζG[O2,O1](z2, z1), which holds irre-
spective of the contour used in Eq. (A1), we can switch
the two arguments of g. Thereby, we obtain

gaa′(1, t0 − iτ) = ζg>[ψ†
a′ , ψa](t0 − iτ, 1),

G(t0 − iτ, /1) = G>(t0 − iτ, /1). (B13)

Rewriting Ii(t
c) in terms of the greater correlators yields

Ii(t
c) = −i

∫ β

0

dτgaa′(1, t0 − iτ)Ga′(t0 − iτ, /1)

= −i
∫ β

0

dτζg>[ψ†
a′ , ψa](t0 − iτ, 1)G

>
a′(t0 − iτ, /1)

= −i
∫ β

0

dτf(t0 − iτ, tc). (B14)

Here, we defined

f(z, tc) = ζg>[ψ†
a′ , ψa](z, 1)G

>
a′(z, /1), (B15)

which appears with z = t0 − iτ . Below, it will reappear
with other complex time arguments.

Similarly, for Ir,+ [Eq. (B8a)], t′+ is the last contour
argument because t′ ≤ t0. Applying the same permuta-
tion to the arguments of g, we find

gaa′(1, t
′+) = ζg>[ψ†

a′ , ψa](t
′, 1),

Ga′(t′+, /1) = G>a′(t
′, /1). (B16)

Substituting these equations into Eq. (B8a) yields

Ir,+(t
c) =

∫ t0

−∞
dt′gaa′(1, t

′+)Ga′(t′+, /1)

=

∫ t0

−∞
dt′ζg>[ψ†

a′ , ψa](t
′, 1)G>a′(t

′, /1)

=

∫ t0

−∞
dt′f(t′, tc). (B17)

Finally, for Ir,− [Eq. (B8a)], t′ ≤ t0 is the smallest time
argument but is on the forward branch (c′ = −). Yet, we
can still relate the correlators to greater correlators by
applying time translation by t0 − t′ and using the KMS
boundary condition [Eq. (A2)]:

gaa′(1, t
′−) = gc1−aa′ (t1 − t

′ + t0, t0)

= ζgc1Maa′ (t1 − t
′ + t0, t0 − iβ)

= g>[ψ†
a′ , ψa](t

′ − iβ, 1), (B18)

Ga′(t′−, /1) = G−c/1

a′ (t0, t
/1 − t′ + t0)

= ζGc
/1

a′ (t0 − iβ, t
/1 − t′ + t0)
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= ζG>a′(t
′ − iβ, /1). (B19)

The KMS boundary condition is used in the second equal-
ities of Eqs. (B18) and (B19). For the third equalities,
we used Eq. (B13) and the time-translational invariance.
Substituting Eqs. (B18) and (B19) into Eq. (B8a) gives

Ir,−(t
c) = −

∫ t0

−∞
dt′gaa′(1, t

′−)Ga′(t′−, /1)

= −
∫ t0

−∞
dt′ζg>[ψ†

a′ , ψa](t
′ − iβ, 1)G>a′(t

′ − iβ, /1)

= −
∫ t0

−∞
dt′f(t′ − iβ, tc). (B20)

By combining Eqs. (B14), (B17) and (B20), we find

Ii(t
c) =

∫ t0−iβ

t0

dzf(z, tc), (B21a)

Ir(t
c) =

∫ t0

−∞
dt′

[
f(t′, tc)− f(t′ − iβ, tc)

]
. (B21b)

Next, we evoke the Fourier representation of f ,

f(z, tc) =

∫
dΩ

2π

dℓω

(2π)ℓ
e−iΩze−iω·tfc(Ω,ω). (B22)

Although it is not needed in what follows, one can show

fc(Ω,ω) = 2πδ(Ω + ω1···ℓ)f
c(ω),

fc(ω) = ζg>[ψ†
a′ , ψa](−ω1, ω1)G

>c/1

a′ (−ω2···ℓ,ω
/1),
(B23)

since Fourier transforms turn Eq. (B15) into a convolu-
tion, and a convolution of two delta functions is a single
delta function, δ(Ω + ω1···ℓ). In evaluating Eqs. (B21)
with Eq. (B22), we switch the z (or t′) and Ω integrals.
For Ii, the z integral reads∫ t0−iβ

t0

dz eiΩz =
−i
Ω
eiΩt0

(
eΩβ − 1

)
. (B24)

For Ir, we use the Fourier transform of the step function,∫ t0

−∞
dt′eiΩt

′
=

∫ ∞

−∞
dt′Θ(t0 − t′)eiΩt

′
=

−i
Ω− i0+

eiΩt0 ,∫ t0

−∞
dt′eiΩ(t′−iβ) =

−i
Ω− i0+

eiΩt0eΩβ . (B25)

In total, we get

Ii(t
c) + Ir(t

c) = i

∫
dΩ

2π

dℓω

(2π)ℓ
eiΩt0(eΩβ − 1)

×
(

1

Ω− i0+
− 1

Ω

)
e−iω·tfc(Ω,ω)

=

∫
dΩ

2π

dℓω

(2π)ℓ
eiΩt0(1− eΩβ)πδ(Ω)e−iω·tfc(Ω,ω)

= 0. (B26)

In conclusion, adding the contributions from the hori-
zontal and vertical branches to the difference between the
right sides of Eqs. (B6) and (B7) yields (1−eΩβ)δ(Ω) = 0,
thus proving Ii + Ir = 0 and the EOM.
Note that this derivation applies only to the equi-

librium KF as we have set H(z) = H. In the non-
equilibrium case where H(z) depends on z, correlators
that mix horizontal and vertical branches need to be
taken into account to close the EOM.
We further note that well-known FDRs in the fre-

quency domain can be derived from the KMS boundary
condition using identities similar to those derived in this
Appendix [23]. As an illustration, let us derive the 2p
FDR. We begin by noting that Eq. (B19) is valid for all
t1 and t2 if c1 = +. Then, one finds

g<(t2, t1) = ζg(t+1 , t
−
2 ) = ζg>(t2 − iβ, t1), (B27)

whose Fourier transformation reads

g<(ω) = ζe−βωg>(ω). (B28)

By substituting g>/< = 1
2 (±g

R ∓ gA + gK), we find the
familiar 2p FDR

gK(ω) =
1 + ζe−βω

(1− ζe−βω)
[gR(ω)− gA(ω)]

= [coth(βω/2)]ζ [gR(ω)− gA(ω)]. (B29)

3. Derivation of the EOMs for fully retarded
correlators

Let us finish this Appendix by presenting two cases
where Ir and Ii are both trivially zero: correlators whose
Keldysh components satisfy k1 = 1 or k/1 = (1, ···, 1).
EOMs in these two cases suffice to derive the sIEs for the
fully retarded correlators, which have only a single 2 in
the list of Keldysh indices. For example, for k = (2111),
we may use the latter case when deriving the EOM for the
first operator, and the former otherwise. The EOMs for
these components may as well be derived by the analytic
continuation of the MF EOMs.
In the Keldysh basis, the integrals of interest are

Ikr (t) = −
∫ t0

−∞
dt′gk1k

′

aa′ (t1, t
′)Xk′k′′Gk

′′k/1

(t′, t/1),

(B30a)

Iki (t) = −i
∫ β

0

dτgk1Maa′ (t1, t0 − iτ)GMk/1

(t0 − iτ, t/1),

(B30b)

where the superscript M denotes that t0 − iτ is on the
vertical branch. For Ir = Ir,− + Ir,+, the sum over the
forward and backward branches converts to the sum over
dummy Keldysh indices k′ and k′′. The (−1)δc,+ sign

factor converts to Xk′k′′ via Eq. (71).
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To show Ir = Ii = 0, we use a well-known property of
the KF correlators: the correlator is zero if the Keldysh
index of the largest real-time argument is 1 [54]:

Gk(z) = 0 if kn = 1 and zn = tn ≥ Re zi for all i.
(B31)

This holds because moving zn from the forward to the
backward branch keeps that operator order and thus the
correlator invariant. A subsequent Keldysh rotation with
Dk=1,c ∝ (−1)δc,+ then yields zero.

Let us begin with the k1 = 1 components. Ir in
the Keldysh basis [Eq. (B30a)] contains the propaga-

tor g1k
′
(t1, t

′). In the integration domain t′ ∈ [−∞, t0],
t′ ≤ t0 ≤ t1 holds [Eq. (B10)], and t1 is the largest real-
time argument. Since k1 = 1, Eq. (B31) yields

g1k
′
(t1, t

′) = 0 ⇒ Ir = 0. (B32)

Similarly, Ii in the Keldysh basis includes the propagator
g1M(t1, t0− iτ). This term is again zero because t1 is the
largest real-time argument:

g1M(t1, t0 − iτ) = 0 ⇒ Ii = 0. (B33)

Similarly, one can derive Ir = Ii = 0 for k/1 = (1, ···, 1),
i.e., for a fully retarded correlator. Let n be the in-
dex where tn is the largest among t2, ···, tℓ. Since t′ ∈
[−∞, t0], we find tn ≥ t′. Then, Eq. (B31) gives (be-
cause kn = 1)

Gk
′′k/1

(t′, t/1) = 0 ⇒ Ir = 0. (B34)

Analogously, one has

GMk/1

(t0 − iτ, t/1) = 0 ⇒ Ii = 0. (B35)

Appendix C: Symmetries of the 4p vertex

In this Appendix, we present symmetries of the 4p ver-
tex Γσσ′(ν, ν′) in the t-channel parametrization at van-
ishing transfer frequency [Eq. (143)]. A general 4p vertex
Γ1234 satisfies the crossing symmetry

Γ1234 = −Γ3214 = −Γ1432 = Γ3412 (C1)

and the complex conjugation symmetry

Γ∗
1234(ω1234) = ζk Γ2143(−ω2143), (C2)

where ζk = (−1)1+
∑

i ki . Here, the numeric subscripts re-
fer to all the relevant arguments: Keldysh, spin, orbital,
and frequency.

For a single-orbital system at zero transfer frequency,
we get a chain of identities:

Γk1k2k3k4σσσ′σ′ (ν, ν′) = Γk3k4k1k2σ′σ′σσ (ν′, ν) (C3a)

= ζk[Γ
k2k1k4k3
σσσ′σ′ (ν, ν′)]∗= ζk[Γ

k4k3k2k1
σ′σ′σσ (ν′, ν)]∗. (C3b)

Since Γ↑↑↓↓ = Γ↓↓↑↑ under SU(2) symmetry, assumed in
this work, there is no restriction from spin space.
Thereby, we obtain the symmetries

Γ1222
σσ′ (ν, ν′) = Γ2212

σσ′ (ν′, ν)

= [Γ2122
σσ′ (ν, ν′)]∗ = [Γ2221

σσ′ (ν′, ν)]∗, (C4a)

Γ2111
σσ′ (ν, ν′) = Γ1121

σσ′ (ν′, ν)

= [Γ1211
σσ′ (ν, ν′)]∗ = [Γ1112

σσ′ (ν′, ν)]∗, (C4b)

Γ1212
σσ′ (ν, ν′) = Γ1212

σσ′ (ν′, ν)

= −[Γ2121
σσ′ (ν, ν′)]∗ = −[Γ2121

σσ′ (ν′, ν)]∗, (C4c)

Γ1221
σσ′ (ν, ν′) = Γ2112

σσ′ (ν′, ν)

= −[Γ2112
σσ′ (ν, ν′)]∗ = −[Γ1221

σσ′ (ν′, ν)]∗, (C4d)

Γ1122
σσ′ (ν, ν′) = Γ2211

σσ′ (ν′, ν)

= −[Γ1122
σσ′ (ν, ν′)]∗ = −[Γ2211

σσ′ (ν′, ν)]∗, (C4e)

Γ1111
σσ′ (ν, ν′) = Γ1111

σσ′ (ν′, ν)

= −[Γ1111
σσ′ (ν, ν′)]∗ = −[Γ1111

σσ′ (ν′, ν)]∗. (C4f)

We note that the Γ2222
σσ′ component is zero by the property

of KF vertices [54].
We conclude that the independent components are

Γ1222
σσ′ (ν, ν′), Γ2111

σσ′ (ν, ν′), Γ1122
σσ′ (ν, ν′≤ν),

Γ1221
σσ′ (ν, ν′≤ν), ImΓ1212

σσ′ (ν, ν′), ImΓ1111
σσ′ (ν, ν′≤ν).

(C5)

With the arguments (ν, ν′≤ν), we indicate that there is
a symmetry in (ν ↔ ν′), so that it in principles suffices
to compute only half of the data points in the frequency
plane.

By using these symmetries, we find the following iden-
tities for the causal vertex:

ReΓcausal = 1
2 Re(Γ

1222 + Γ2212 + Γ2111 + Γ1121)

= 1
2 Re(Γ

1222 + Γ2111) + (ν↔ν′), (C6a)

ImΓcausal = 1
4 Im(2Γ1212 + 2Γ1221 + Γ1122

+ Γ2211 + Γ1111)

= 1
4 Im(Γ1212 + Γ1221 + Γ1122 + 1

2Γ
1111)

+ (ν↔ν′). (C6b)

Appendix D: Vertex estimators using the total
correlator

In this Appendix, we derive sIEs for 3p and 4p ver-
tices involving only total correlators, useful for methods
like QMC, as discussed in Sec. IVG. The main results
are Eqs. (D4), (D8), and (D11). These estimators have a
form similar to those using the connected correlators and
the same perturbative and asymptotic properties (see
Secs. IVE and IVF). The estimators of this section have
additional terms involving the self-energy to cancel dis-
connected contributions.
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Below, we derive the relations for fermionic systems
in normal (non-superconducting) phases preserving the

U(1) charge symmetry, ruling out terms like ⟨d(†)σ ⟩ and
⟨d↑d↓⟩ in the disconnected parts. We add subscripts to
correlators to distinguish the connected part (‘con’), the
disconnected part (‘dis’), and the total (‘tot’) correlator;
Gtot = Gcon +Gdis. For later use, we define

Σ̃ = Σ− ΣHX. (D1)

This modified self-energy is O(U2) in the perturbative
limit and decays to zero in the large-frequency limit.

We begin with the 3p vertex estimator [Eq. (120)]

Γ(34) = K(34)
con +G(12,34)

con + Γbare. (D2)

The second term is an auxiliary correlator defined in
terms of a 2p bosonic connected correlator [Eq. (100)].
The corresponding disconnected part is

G
(12,34)
dis = P k1k2k12P k3k4k34Gk12k34dis [q12, q34]

= 2πδ(ω12)X
k1k2Xk3k4ΣH

12Σ
H
34, (D3)

where we used ⟨q12⟩ = ΣH
12 [Eq. (99)]. Note that δ(ω12)

and δ(ω34) can be used interchangeably because the en-
ergy conservation constraint, ω1234 = 0, is implicitly un-
derstood. In the MF, the Dirac delta function 2πδ(ω12)
is replaced by the Kronecker delta βδω12,0. Similarly de-
riving the disconnected parts for other bosonic 2p corre-

lators and using q23 = −ζq32, we find

G(12,34)
con = G

(12,34)
tot − 2πδ(ω12)X

k1k2ΣH
12X

k3k4ΣH
34,

G(13,24)
con = G

(13,24)
tot ,

G(14,23)
con = G

(14,23)
tot + 2πδ(ω14)ζX

k1k4ΣH
14X

k3k2ΣH
32.
(D4)

For the first term K34
con in Eq. (D2), which is defined

via Eq. (118) and is related to the K2 asymptotic class
[Eq. (139)], the disconnected part is given by

K(34)
dis =

∑
xn∈{n,·}
n∈{1,2}

Lx1G
(x1,x2,34)
dis Lx2

= Σ1G
(·,·,34)
dis Σ2 −X1G

(1,·,34)
dis Σ2

− Σ1G
(·,2,34)
dis X2 +X1G

(1,2,34)
dis X2, (D5)

where Lxn= · = Xn and Lxn=n = Σn. This result involves
diagrams in which the first and second legs are discon-
nected from the third and fourth legs. For example, the
disconnected part of G(·,·,34) reads

G
(·,·,34)
dis = P k3k4k34Gk1k2k34dis [d1, d

†
2, q34]

= 2πδ(ω12)X
k3k4ΣH

34G
(·,·)
12 , (D6)

where we again used ⟨q34⟩ = ΣH
34 [Eq. (99)]. By applying

the same procedure to all terms in Eq. (D5), we find

K(34)
dis = 2πδ(ω12)X

k3k4ΣH
34

(
ΣG(·,·)Σ−XG(1,·)Σ

− ΣG(·,2)X +XG(1,2)X
)k1k2
12

= 2πδ(ω12)X
k3k4ΣH

34Σ̃
k1k2
12 . (D7)

For the second equality, we employed the self-energy es-
timators (105) and (108). Using Eqs. (D4) and (D7) to
convert the right side of Eq. (D2) to the total correlator,
we find the desired 3p vertex estimator. In the following,
we also list the sIEs for other 3p vertices which can be
derived similarly,

K(12)
con = K(12)

tot − 2πδ(ω12)Σ̃
k3k4
34 Xk1k2ΣH

12,

K(13)
con = K(13)

tot ,

K(14)
con = K(14)

tot − 2πδ(ω14)ζΣ̃
k3k2
32 Xk1k4ΣH

14,

K(23)
con = K(23)

tot + 2πδ(ω14)ζΣ̃
k1k4
14 Xk3k2ΣH

32,

K(24)
con = K(24)

tot ,

K(34)
con = K(34)

tot − 2πδ(ω12)Σ̃
k1k2
12 Xk3k4ΣH

34.

(D8)

After replacing the connected auxiliary correlators by the
total ones, a disconnected term involving self-energies is

subtracted. In Eq. (D8), thanks to Σ̃, the K(34) estima-
tor is still manifestly O(U3) in the perturbative limit and
decays in the |ω1| → ∞ or |ω2| → ∞ limits. Note that
by shifting the noninteracting and interacting Hamilto-

nian by ΣH
ijd

†
idj and −ΣH

ijd
†
idj , respectively, the Hartree

self-energy and the disconnected part of the 3p vertex
estimators can be eliminated.

We close with the 4p vertex estimator (131). As most
terms already appear in the 3p estimator, it suffices to
consider the core vertex Γcore [Eq. (132)]. In the normal
(non-superconducting) phase, a disconnected 4p correla-
tor has legs 1 and 2 disconnected from 3 and 4, or legs 1
and 4 disconnected from 2 and 3. The first case gives

Γcore, dis-12

= 2πδ(ω12)
∑

xn∈{n,·}
n∈{1,2,3,4}

Lx1
Lx3

G
(x1,x2)
12 G

(x3,x4)
34 Lx2

Lx4

= 2πδ(ω12)
∑

xn∈{n,·}
n∈{1,2}

Lx1
G

(x1,x2)
12 Lx2

∑
xn∈{n,·}
n∈{3,4}

Lx3
G

(x3,x4)
34 Lx4

= 2πδ(ω12)Σ̃
k1k2
12 Σ̃k3k434 , (D9)

where Σ̃ appears as in Eq. (D5). Similarly, the second
term reads

Γcore, dis-14 = 2πδ(ω14)ζΣ̃
k1k2
12 Σ̃k3k434 . (D10)

Thus, the vertex estimator is

Γcore = Γcore, tot − 2πδ(ω12)Σ̃
k1k2
12 Σ̃k3k434

− 2πδ(ω14)ζΣ̃
k1k4
14 Σ̃k3k232 . (D11)

Again, disconnected terms involving the self-energy are

subtracted. Since Σ̃ is of order O(U2) in the perturbative
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limit and decays in the large-frequency limit, the per-
turbative and asymptotic behavior of Γcore is preserved.
Substituting Eqs. (D4), (D8), and (D11) into Eq. (131),
we get the estimator (141) for the total vertex.

Appendix E: Details of the NRG implementation

For quantum impurity models, it is possible to com-
pute local multipoint correlators with NRG using a strat-
egy described in detail in Ref. [13]. In short, MF or KF
multipoint correlators are computed by convolving a set
of MF or KF kernels, known analytically, with a set of so-
called real-frequency partial spectral functions (PSFs),
obtained via NRG [12, 13]. In this appendix, we describe
some further refinements of this strategy, needed to ob-
tain the results shown in the present paper.

1. Barycentric binning

In essence, the NRG is a scheme iteratively diagonal-
izing a discretized representation of a quantum impu-
rity model [11]. The states generated during the itera-
tive diagonalization can be used to construct a complete
set of approximate eigenstates for the interacting Wilson
chain Hamiltonian, H |i⟩ ≈ Ei |i⟩. These can be used in
Lehmann-type representations for partial spectral func-
tions (PSFs), with matrix elements

〈
i
∣∣O∣∣j〉 = Oij and

energy differences Ei1 = Ei − E1. The Lehmann repre-
sentation for an ℓp PSF has the form of a sum over the
transitions between these eigenstates, containing many
discrete delta functions [12, 13]:

S[O](ε1, ···, εℓ−1) =
∑
1,···,ℓ

ρ1

ℓ−1∏
i=1

[Oiii+1δ(εi − Ei1)]Oℓℓ,1.

(E1)
These delta functions are collected by “binning” [55–

57], which shifts the energy Ei1 to the nearest grid point
of a pre-determined grid. The grid is chosen to have loga-
rithmic spacing to capture the logarithmic discretization
of the bath in NRG. For ℓ > 2, one must be able to cap-
ture the dependence of multiple frequencies of different
magnitudes. To this end, Ref. [13] introduced a “slicing”
scheme, which encodes the frequency binning directly in
the tensor representation of O. However, the slicing ap-
proach yields a factor (Nε)

ℓ−2 to the computational cost,
with Nε the number of bins. Thus, it is desirable to use
as few bins as possible to reduce the computational cost.
On the other hand, using too coarse a grid leads to large
errors from shifting energies for binning.

To minimize the error arising from binning with mod-
erate computational cost, we use a barycentric binning
scheme, which attributes the spectral weight to both ad-
jacent bins (instead of the single nearest bin) in order to
conserve the barycenter. Hence, to bin a delta function
δ(ε−E21), we first find the grid points εn and εn+1 just

below and above the transition energy: εn ≤ E21 ≤ εn+1.
Then, we split the weight of the delta function to these
two bins with weights inversely proportional to the dis-
tance in the logarithmic scale:

δ(ε− E21) ≈ wδ(ε− εn) + (1− w)δ(ε− εn+1),

w =
ln

∣∣εn+1

∣∣− ln
∣∣E21

∣∣
ln

∣∣εn+1

∣∣− ln |εn|
. (E2)

Though one needs to consider two bins for a single spec-
tral contribution, the total number of relevant bins does
not double, but merely increase by ∼ 30%, since the
bins are typically clustered [13, 58]. Additionally, with
the barycentric scheme, the binning error is largely sup-
pressed, allowing for a much coarser frequency grid (cf.
Sec. E 4), decreasing the overall computational cost.

2. Log-Gaussian broadening

To obtain smooth functions, the discrete PSFs ob-
tained from the Lehmann representation need to be
broadened. Conversion from a binned, discrete PSF S(ε)

to a continuous one S̃(ε) can be written as an integration
involving a broadening kernel Bi:

S̃(ε) =

∫
dℓ−1ε S(ε)

ℓ−1∏
i=1

Bi(εi, ε
′
i). (E3)

For 2p calculations, the usual choice of the broadening
kernel is a convolution of a log-Gaussian and a Fermi-
Dirac function [11, 13, 56, 58]:

BLG+F(ε, ε) =

∫
dε′δF(ε, ε

′)δLG(ε
′, ε),

δsLG(ε
′, ε) =

Θ(ε′ε)√
πσLG|ε|

exp

[
−
(
ln |ε/ε′|
σLG

− σLG
4

)2
]
,

δcLG(ε
′, ε) =

Θ(ε′ε)√
πσLG|ε|

exp

(
− ln2 |ε/ε′|

σ2
LG

− σ2
LG

4

)
,

δF(ε, ε
′) =

1

2γF

(
1 + cosh

ε− ε′

γF

)−1

. (E4)

In the first line on the right, LG stands for either sym-
metric log-Gaussian (sLG), used for fermionic operators,
or centered log-Gaussian (cLG), used for bosonic opera-
tors (following Ref. [13]). The log-Gaussian broadening
smooths the logarithmically-spaced discrete data result-
ing from discretization. The subsequent Fermi broaden-
ing removes artifacts at low frequency ε ∼ T . The broad-
ening width is proportional to the discrete frequency in
the former and fixed in the latter. Correspondingly, the
broadening parameter σLG is dimensionless, while γF has
the dimension of energy.
In Refs. [12, 13], a Lorentzian kernel

BL(ε, ε) =
1

π

(σL|ε|+ γL)

(ε− ε)2 + (σL|ε|+ γL)2
(E5)
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FIG. 22. FDRs of the KF 4p vertex, analogous to Fig. 19
but at weak interaction (parameters: same as for Fig. 14),
obtained with sIEs and (a) a Lorentzian broadening (E5) with
σL = 0.3 and γL = 0.5T , and (b) log-Gaussian and Fermi
broadening (E4) with σLG = 0.3 and γF = 0.5T . Note that
the color scale for the panels showing FDR violation (lower
row, LHS−RHS) is two orders smaller in (b) than in (a).

was used for 3p and 4p calculations because, for the aIE
used there, log-Gaussian broadening turned out to yield
seemingly under-broadened results.

Here, we find that, using the sIEs, log-Gaussian broad-
ening does not yield under-broadening. On the contrary,
we find that, as in the 2p case, log-Gaussian broaden-
ing is preferable to Lorentzian broadening for multipoint
correlators because the Lorentzian kernel strongly over-
broadens low-frequency features. For example, Fig. 22
shows that the vertex obtained with Lorentzian broad-
ening [Fig. 22(a)] violates the FDT much more strongly
than those obtained with log-Gaussian and Fermi broad-
ening [Fig. 22(b)]. Thus, we use the log-Gaussian and
Fermi broadening (E4) for all calculations.

In this work, the broadening parameters in Eqs. (E4)
were chosen as σLG = 0.3 and γF = 0.5T throughout;
these were the smallest values that remove the wiggles
signalling under-broadening. For the Lorentian broaden-
ing results, we used σL =0.6 and γL =3T in Figs. 14(c)
and 17(c), which are the parameters used in Refs. [12, 13].

3. Diagonalization of the kept density matrix

As discussed in App. B of Ref. [13], the two sources
of error in subtracting disconnected parts from the PSFs
are (i) finite off-diagonal elements of the density matrices

in the kept sectors, and (ii) binning. Effect of the latter is
minimized by using the barycentric binning explained in
App. E 1. To eliminate the former source of error, we re-
diagonalize the kept-sector density matrices that are con-
structed by the standard full-density-matrix NRG. The
re-diagonalizing basis is taken as the kept energy eigen-
states (overriding those obtained during the iterative di-
agonalization), and we identify the corresponding energy
eigenvalues as the diagonal elements of the kept-sector
Hamiltonian in the re-diagonalizing basis.

4. Computational parameters

In NRG, the bath is discretized on a logarithmic grid
with grid points ±DΛ−k−z, where k ≥ 0 is an integer and
z ∈ (0, 1] is a shift parameter [59]. PSFs computed with
z = 1/nz, 2/nz, ···, 1 are averaged to reduce discretization
artifact. In this work, we used Λ = 4 and nz = 4, and
kept Nkeep = 200 multiplets respecting U(1) charge and
SU(2) spin symmetries in the iterative diagonalization
of the Wilson chain, which amounts to keeping 440–479
states per iteration.
The transition energies are collected in logarithmically

spaced bins [13]. The bins are located at ε[±m] =
±10(|m|−1)/ndecεmin for nonzero integer m and ε[0] = 0.
We used ndec = 8 (ndec = 16) bins per decade for the
AIM with weak interaction for Figs. 1, 14–16, 22 (strong
interaction for Figs. 17–19), and set εmin = T/20. Us-
ing ndec = 16 was needed to get the low-energy vertices
for the AIM at strong interaction in better agreement
with RPT as shown in Fig. 18. Figure 23 shows that
the agreement of the MF vertex at the lowest fermionic
frequencies with the RPT vertex improves for the larger
ndec = 16.
To evaluate an ℓp sIE, one needs to compute 2ℓ ℓp

auxiliary correlators [Eq. (132)], where each correlator
involves ℓ! PSFs. For the 4p case, this amounts to
24 × 4! = 384 PSFs in total. In practice, one can uti-
lize symmetries to reduce the number of PSFs evaluated.
Here, we use the SU(2) symmetry of the Hamiltonian
and the permutation symmetry of the PSFs to reduce
the number of independent 4p PSFs to 120. These PSFs
can all be computed in parallel. Although we consider
the single-orbital AIM only at half-filling, we did not ex-
ploit particle-hole symmetry.
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FIG. 23. Dependence of the zero-energy KF ver-
tex Γcausal

↑↓ (0, 0, 0) and the average of the MF vertices
ΓM,↑↓(±iπT,±iπT, 0) in the AIM at strong interaction (pa-
rameters: same as for Fig. 17) on σ2

LG and ndec. Dashed lines
are linear fits of the KF results, shown in circles. Larger ndec

gives MF vertices in better agreement with RPT, while the
KF vertices are further affected by broadening.
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