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Abstract

Adiabatic quantum computing (AQC) is a promising ap-
proach for discrete and often NP-hard optimization prob-
lems. Current AQCs allow to implement problems of re-
search interest, which has sparked the development of quan-
tum representations for many computer vision tasks. De-
spite requiring multiple measurements from the noisy AQC,
current approaches only utilize the best measurement, dis-
carding information contained in the remaining ones. In
this work, we explore the potential of using this information
for probabilistic balanced k-means clustering. Instead of
discarding non-optimal solutions, we propose to use them
to compute calibrated posterior probabilities with little ad-
ditional compute cost. This allows us to identify ambiguous
solutions and data points, which we demonstrate on a D-
Wave AQC on synthetic tasks and real visual data.

1. Introduction

Clustering and uncertainty quantification (UQ) are funda-
mental problems in machine learning and computer vision.
Clustering, the task of grouping objects based on the simi-
larity of their features, plays a pivotal role in analysis and
organization of vast quantities of unlabeled visual data with
applications including image classification [16, 51, 65], seg-
mentation [23, 32], tracking [48], and network training
[22, 75, 76]. UQ, on the other hand, aims to assess the
trustworthiness of predictions and accounts for the impact
of data variability. As a crucial element for certifying con-
fidence in results, UQ is indispensable in clustering, espe-
cially given the often ambiguous nature of data partition-
ing [41].

Clustering typically involves solving for an optimal as-
signment of data points to (latent) centroids, while a full
Bayesian UQ approach strives to accurately depict the pos-
terior distribution. Unfortunately, both of these problems
are known to be notoriously difficult, classified within the
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Figure 1. The proposed approach uses an adiabatic quantum com-
puter to sample solutions of a balanced k-means problem. By us-
ing an energy-based formulation, likely solutions are drawn from
a Boltzmann distribution. By reparametrizing the distribution, the
calibrated posterior probability of each solution can be estimated.

NP complexity class1 [24, 26, 55]. These challenges within
the Turingian modes of computation have motivated: (i)
continuous relaxations in clustering [78] and (ii) the advent
of approximate Bayesian inference methods for UQ, includ-
ing the EM algorithm [30], variational inference [13], and
sequential MCMC [29].

In this paper, departing from the above-mentioned ap-
proximations or continuous relaxations, we take a com-
pletely different approach and harness the upcoming and
novel computational paradigm of quantum computers to
tackle the challenging task of clustering with calibrated
uncertainty quantification. Specifically, we focus on the
widely used balanced K-means [52, 54, 56], which is an it-
erative algorithm that first assigns each data point to a clus-
ter followed by an update of cluster centroids.

Despite their early state, quantum machine learning al-
gorithms have approached tasks such as optimization of
quadratic problems [47], training of restricted Boltzmann
machines [33], and learning with quantum neural net-
works [1]. While the current quantum computers can only
solve small-scale problems, they provide the basis to de-
velop and test algorithms that can considerably increase the
size of feasible problems in the future. In our work, we in-
terpret K-means clustering in an energy-based framework

1Computing marginal probabilities on a Bayesian network is, basically,
a counting problem that can become arbitrarily hard to solve.
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and aim to model the posterior distribution by sampling
multiple high-probability binary assignments from it on ac-
tual quantum hardware at little additional cost. We specif-
ically use the quantum annealer (QA) of D-Wave [58],
which follows the concept of adiabatic quantum comput-
ing (AQC) [10] and avoids simulating costly Markov chains
as in classical computers. To achieve this, we first formu-
late the k-means objective as a quadratic energy function
over binary variables and embed the clustering task into the
quantum-physical system of D-Wave. By repeatedly mea-
suring the quantum system, we sample high-probability so-
lutions according to the Boltzmann distribution. Unlike pre-
vious approaches that only use the best solution and discard
all other measurements, we utilize all samples to generate
probabilistic solutions for the k-means problem, as shown
in Figure 1. Due to temperature mismatch [68], AQCs sam-
ple from a modified posterior instead of the true posterior,
which needs to be re-calibrated for the task at hand. We
do so by estimating the posterior probability for each solu-
tion. This allows us to identify ambiguous points and pro-
vide alternative solutions. By leveraging QA, our approach
respects the binary nature of the assignment problem.

We demonstrate our algorithm on a D-Wave quantum
computer and also perform extensive experiments in sim-
ulation. On real data, we show that our approach can be uti-
lized for distributions that do not strictly follow the initial
assumptions and that it is suitable for identifying ambigu-
ous images. Our primary contributions are:
• A quantum computing formulation of balanced k-means

clustering that predicts calibrated confidence values and
provides a set of alternative clustering solutions.

• A reparametrization approach used to calibrate posterior
probabilities from samples that avoids exact tuning of the
AQC sampling temperature.

• Extensive experiments on synthetic and real data showing
the calibration of our approach both on simulations and
on the D-Wave Advantage 2 QA prototype.

Developing better heuristics for the NP-hard challenges of
clustering and UQ presents significant difficulties for clas-
sical approaches. However, we are optimistic that the on-
going progress in quantum computing technology will pro-
gressively enhance the effectiveness of our algorithms.

2. Related Work

Quantum computation. With the availability of quan-
tum computers to the general research community [15, 28,
57, 58], the research interest in finding applications for
such systems has considerably increased. In this context
AQC [15, 47] provides a well-tangible starting point, even
though many applications need a complete reformulation
considering the architectural differences of a quantum com-
puter. Current applications for AQC are optimization tasks

in different fields [61, 62, 64, 66], including quantum com-
puter vision [12], where a strong interest in finding quan-
tum computing formulations has developed. These are often
related to hard permutation problems [6, 7, 12] like track-
ing [77], graph, shape and point matching [6, 9, 60] or train-
ing binary (graph) neural networks [49]. In this context,
Birdal et al. [12] evaluate the k-best solutions, however,
without the energy-based formulation, only little improve-
ment is achieved. Another tasks of interest for the commu-
nity is model fitting to find camera parameters [34] or sepa-
rating motion components [3], which can be formulated as a
quantum-computing problem [3, 19, 20, 34, 37, 74] instead
of consensus maximization.

Clustering. Clustering is a well-studied problem for
quantum- as well as quantum-inspired algorithms [2]. It
groups a dataset X into disjoint clusters c1, ..., cK , with
each cluster containing points similar in the feature space.
For example, k-means algorithm [39, 53] utilizes quadratic
distances, favoring compactness, whereas dbscan [36] iden-
tifies local high-density regions. Quantum clustering meth-
ods use either the paradigm of AQC [4, 5, 50, 65] or circuit-
based quantum computing such as Quantum clustering [43]
that models clustering through the Schrödinger equation,
where cluster centers are defined as the minima of its poten-
tial function. Casaña-Eslava et al. [18] extend this formula-
tion with a probabilistic estimate of cluster memberships.
These approaches use classical computation and circuit-
based quantum computers that are fundamentally different
from AQC and currently still on a smaller scale.

Closest to this work, Arthur and Date [4] present a bal-
anced k-means clustering algorithm with predefined target
size sk suitable for an AQC and Nguyen et al. [65] use a
similar formulation to cluster visual features. While our un-
derlying algorithm follows a similar approach as [4, 65],
they discard all but the best measurement. Our approach,
however, utilizes all information by employing AQC as a
sampler to generate probabilistic solutions of the cluster-
ing problem, rather than only using the best solution in
an optimization framework. We particularly consider bal-
anced clustering, as it forms the basis of several AQC algo-
rithms [7, 12, 77] in computer vision.

Uncertainty quantification in clustering. Knowing the set
of high-quality solutions and their confidence offers valu-
able insights for both low- and high-level tasks. E.g. at a
low level, the probability of top solutions can help to deter-
mine the correct cluster count. Choosing a different number
than the actual data process introduces ambiguity [17]: too
many clusters cause overlap, while too few clusters spread
points, reducing associated probability.

For high-level tasks, calibrated clustering solutions have
the potential to enhance matching problems like multi-
object tracking [21]. Following the AQC framework,
tracking becomes a clustering problem with additional
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constraints that represent the temporal relation between
points [77], where each cluster corresponds to one track.
The feature defining clusters can be visual similarities from
re-identification [42, 67, 79] or spatial similarity [8]. The
set of solutions models different trajectories due to occlu-
sions or intersecting paths. In complex systems like au-
tonomous vehicles, understanding multiple probable solu-
tions helps to predict multimodal future trajectories [31,
46], to assess risks when taking actions. In a similar ap-
proach, AQC is used for feature matching [12] and uncer-
tainty estimation potentially allows to discard ambiguous
candidates during 3d reconstruction.

3. Adiabatic Quantum Computing
Quantum computing is a fundamentally new approach, that
utilizes the state of a quantum system to perform computa-
tions. In contrast to a classical computer, the state is prob-
abilistic and described by its wave function, which enables
the use fundamental properties of quantum systems like su-
perposition and entanglement. Quantum algorithms that can
efficiently run on these systems allow to solve previously in-
feasible problems, including the well-known prime factor-
ization by Shor’s algorithm [71]. In the following, the most
important basics of quantum computing are explained.
Qubit. Qubits are the building block of a quantum com-
puter. In contrast to the classical bit, which is in either of its
two basis states |0⟩ , |1⟩, the qubit can exist in a state of su-
perposition, which is a linear combination of any two basis
states |ψ⟩ = α |0⟩+ β |1⟩. The two complex-valued factors
α, β describing the superposition are called amplitudes.
Entanglement. To perform meaningful operations, a quan-
tum computer operates on a system of multiple qubits. If
the qubits are independent of each other, the joint state of
the system can be computed as the tensor-product of all
involved qubit states. If the qubits of a system are entan-
gled [35, 70], it is is not possible to decompose the joint
state into the tensor-product of each separate qubit state.
Therefore, measuring the state of one qubit in a entangled
system, affects the state of the other qubits. This is a funda-
mental property of quantum mechanics and plays a crucial
role for the capabilities of quantum computing.
Measurement. During computation on the quantum com-
puter, the state of the system can be any valid superposition
of basis states. Nevertheless, a measurement of the system
always results in a single state of the measurement basis,
which is referred to as wave-function collapse [73]. The
probability of measuring a state is the respective squared
amplitude. In the single qubit case, this corresponds to

p(|0⟩) = |α|2 p(|1⟩) = |β|2. (1)

In contrast to all other operations in quantum computing,
this is not reversible.

Adiabatic Quantum Computing. AQC, which is used in
this work, is a quantum computing paradigm where the state
of a quantum system is modified by performing an adiabatic
transition. Current hardware implementations such as the
D-wave systems [15] follow this approach by implement-
ing QA to solve quadratic unconstrained binary optimiza-
tion (QUBO). They are based on the Ising model [45, 47],
which describes the configuration of a set of interacting par-
ticles that all carry an atomic spin si.

The spin can either be +1 or -1 and the particles are cou-
pled by interactions Jij as well as influenced individually
by a transversal magnetic field hi. The energy of this sys-
tem is described by its Hamiltonian function

H(s) = −
∑

i

∑

j

Jijsisj −
∑

i

hisi. (2)

Thus, finding the lowest energy state or ground state of the
Ising model corresponds to solving the QUBO defined by
the Hamiltonian function. This relation is used in the QA,
where the system of qubits implements an Ising model HT

that represents the QUBO of interest.
The lowest energy state is found by following the adi-

abatic theorem [14]. Starting with an initial system in its
ground state described by a Hamiltonian H0, the adiabatic
theorem states that during a sufficiently slow change of the
Hamiltonian the system never leaves its ground state. The
change of the Hamiltonian is called an adiabatic transition
and is often performed with a linear schedule

H(t) = H0(1−
t

Ta
) +HT

t

Ta
(3)

over the annealing-time Ta and allows to solve an optimiza-
tion problem with the Hamiltonian HT .

While in an ideal noise-free case, the system stays in its
ground state, any real system is embedded in a tempera-
ture bath that can induce a change to a higher energy state.
The distribution of measured final states will then follow the
Boltzmann distribution with temperature T

p(s) = exp[−H(s)/T ]/
∑

s′

exp[−H(s′)/T ], (4)

where p(s) describes the probability of finding the system
in state s and s′ are all possible states. In this work, we
use this property, to sample from the Boltzmann distribution
corresponding to the energy-based model of clustering.

4. Balanced Quantum K-Means
In the following, we define an energy-based model (EBM)
that directly connects to AQC. Based on this, we derive the
energy function for k-means and demonstrate how an AQC
can sample from the corresponding distribution.
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EBM Inference. We use the variable Z ∈ ZN
2 , to represent

our binary parameters. The posterior density of interest fol-
lows from the Bolzmann distribution as:

π(Z) := p(Z|X) ∝ exp(−E(Z,X)), (5)

where X denotes the observations, a.k.a. the collection of
all specified data and E is called the potential energy:

E(Z,X) := −(log p(X|Z) + log p(Z)). (6)

Following [11, 12], we consider the probabilistic inference,
where we will be interested in the following quantities:
I Maximum a-posteriori (MAP):

Ẑ = argmax
Z∈ZN

2

log p(Z|X) (7)

where Ẑ denotes the entirety of the sought parameters.
II The full posterior distribution: p(Z|X) ∝ p(X,Z).
Both of these problems are very challenging and cannot be
directly addressed by standard methods such as gradient de-
scent (problem I) or standard MCMC methods (problem
II). The difficulty in these problems is mainly originated by
the fact that the posterior density is non-log-concave (i.e.
the negative log-posterior is non-convex) and any algorithm
that aims at solving one of these problems should be able
to operate in the particular space of binary variables. Nev-
ertheless, The MAP estimate is often easier to obtain via
a Quantum annealer and useful in practice [7, 12]. On the
other hand, samples from the full posterior can provide im-
portant additional information, such as uncertainty. Not
surprisingly, the latter is a much harder task, especially con-
sidering the discrete nature of our problem. Unfortunately,
available QAs such as D-Wave [58] are not directly capa-
ble of tackling the second problem since they sample from
a modified posterior and not the true one. Our work fills
this gap for the task of balanced K-means clustering using
quantum annealing as a direct way to sample from a physi-
cal system that follows the Boltzmann distribution [68] and
recomputes the posterior from the found solutions to ensure
callibration.

Clustering as QUBO. We now focus on obtaining a sin-
gle point-estimate as a solution to problem I. To solve the
clustering problem using AQC, a QUBO formulation of the
K-means energy is required. We use a variation of the one-
hot encoding approach [27] to formulate the QUBO of k-
means, with cost terms similar to Arthur and Date [4]. It
uses a matrix Z ∈ {0, 1}K×I to encode the cluster assign-
ment of I samples to K clusters. Each row corresponds to
one of K clusters and each column to one of I samples. An
entryZki = 1 indicates that the sample xi belongs to cluster
ck. As each sample needs to be assigned to a single cluster,
the sum of each column of Z needs to satisfy the constraint

∑
k Zki = 1 ∀i. The implementation of constrained clus-

tering, where each cluster has a fixed size sk furthermore
requires the row constraints

∑
i Zki = sk ∀k on Z. The

total energy of a solution E(Z,X) can be separated into
terms e(i, j, k) modeling the energy of assigning the pair of
samples xi and xj to the same cluster ck.

E(Z,X) =
∑

k

∑

i

∑

j

ZkiZkje(i, j, k) + E(Z) (8)

where E(Z) models the row and column constraints as an
indicator function. By vectorizing Z in row-major order as
z = vec(Z), the energy can be rewritten in matrix form as

E(Z,X) = E(X|Z) + E(Z) = z⊺Qz + E(Z), (9)

where Q is a block diagonal matrix with blocks Q0, ..., QK

and Gz = d corresponds to the matrix formulation of the
constraints. Each block Qk of Q is a square matrix that
contains the energy e(i, j, k) at Qk,ij .

To be solved on the AQC, the potential energy needs to
be formulated in a QUBO, which cannot exactly implement
E(Z) to model the constraints and is circumvented by using
Lagrangian multipliers, leading to the MAP estimate

ẑ = argmin
z

z⊺Q′z + b′
⊺
z (10)

with constraints Q′ = Q + λG⊺G and b′ = −2λG⊺b. To
avoid a mixed discrete and continuous optimization prob-
lem, a quadratic penalty reformulation λ||Gz − d||22 is cho-
sen. In contrast to a linear penalty approach, where the mul-
tiplier λ needs to be optimized, our selection only requires
a sufficiently high λ, as all constraint violations result in an
increased penalty term. With such selection, the penalty
term evaluates to zero if all constraints are fulfilled, and
thus, the minimizer ẑ of the modified optimization problem
is a minimizer of the original optimization problem. Be-
sides modeling balanced clustering, further constraints can
be introduced using Lagrangian multipliers. This allows to
represent a wide range of tasks as QUBO clustering prob-
lems solvable with AQC in the same way.

4.1. Probabilistic Quantum Clustering

The MAP estimate was obtained as the lowest energy solu-
tion measured during sampling. We now consider approxi-
mating the posterior distribution to quantify the confidence
of these solutions matching the actual ground truth. In-
stead of relying on a sequential Markov Chain Monte Carlo
(MCMC) method as done in a plethora of classical algo-
rithms [29], we will approximate the posterior distribution
by recomputing the Boltzmann distribution from the set of
likely AQC solutions. As the likely solutions are already
sampled during quantum annealing, given that the objec-
tive follows the EBM, the posterior distribution can be esti-
mated without any large additional computational overhead.
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Note, this is unlike MCMC, which incurs significant com-
putational load.

Our clustering formulation employs a mixture of Gaus-
sians to explain the observations and to define the energy
function E(X|Z). Each sample in a cluster ck is modeled
as a sample drawn from a Gaussian distribution N (µk, I)
with mean µk and identity covariance similar to k-means.
As shown in Section 4, we are interested in the posterior
distribution over possible assignments Z:

p(Z|X) =
p(X|Z)p(Z)∑

Z′ p(X|Z ′)
=
p(X|Z)p(Z)

A
. (11)

While this approach provides a probabilistic estimate by
jointly modeling information about the possible cluster con-
figurations and the distribution of data points, it is of-
ten intractable to evaluate due to the partition function∑

Z′ p(X|Z ′), the sum over all possible solutionsZ ′, which
incurs exponential cost in the number of samples. To over-
come this, we utilize an AQC that samples directly from the
corresponding Boltzmann distribution, which we parame-
terize according to the probabilistic clustering problem.
Data Model. Determining the potential energy and thus,
cost function of the QUBO is a design choice of the algo-
rithm. For our probabilistic approach, a well-defined data
distribution, that forms the basis of the cost function is re-
quired. While many tasks approached in quantum computer
vision, such as tracking [77] or synchronization [6, 12],
costs are based on learned metrics or heuristics, they can
also be trained to reflect the properties required in our ap-
proach.

We therefore, follow the mixture of Gaussian model,
where each cluster generates samples from a normal distri-
bution. With the independence of observations and clusters,
given the distribution parameters, the likelihood of the joint
observations for an assignment Z is given as the product of
the individual likelihoods

f(X|Z) =
K∏

k=1

f(X|Zk) =
K∏

k=1

∏

i∈Zk

f(xi|Zk) (12)

where the likelihood f(xi|Zk) corresponds to a Gaussian
distribution that follows N (µk, I) and d is the dimension-
ality of the space. This result can be used to formulate the
energy-based model with the energy function

E(X|Z) =
K∑

k=1

∑

i∈Zk

1

2
(xi − µk)

⊺I(xi − µk). (13)

Using the energy function to rewrite the posterior distribu-
tion leads to the Boltzmann distribution from Equation 4

p(Z|X) =
exp [−(E(X|Z) + E(Z))]∑

Z′ exp [−E(X|Z ′)]
. (14)

In this formulation, the energy of the assignment E(Z) cor-
responds to the prior p(Z), which models feasible and in-
feasible solutions by an indicator function. In the case of
balanced clustering, this corresponds to allowing assign-
ments that have each point assigned to exactly one cluster
and a cluster size according to sk. When the AQC is used
as an optimizer, finding the the lowest energy solution cor-
responds to the MAP as shown in Equation 7

As the AQC qubit system is an Ising model, it requires
formulating E(X|Z) and E(Z) quadratic in the optimiza-
tion variables Z, enabling the joint discovery of assign-
ments and cluster means. This is achieved by using the max-
imum likelihood estimator of the mean µk = 1

sk

∑
i Zkixi,

resulting in a quadratic energy formulation that fits the Ising
model in Equation 10

Ek(X|Z) =
1

sk

∑

i

∑

j

ZkiZkj (xi−xj)⊺(xi−xj). (15)

The second energy term E(Z) in Equation 14, modeling
the prior distribution over possible assignments cannot ex-
actly be embedded in the Ising model and is approximated
using Lagrange multipliers. Importantly, this does not in-
fluence the energy of feasible solutions relevant in the pos-
terior distribution, as the penalty evaluates to zero for these.

Posterior recomputation. While ideally the measurements
on AQC are direct samples from the Boltzmann distribu-
tion [25, 33], it requires solving a range of challenges that
prohibit a direct use in our scenario [68]: Mapping between
the cost function and the physical system implemented on
the AQC requires Hamiltonian scaling [68]. Estimating
the scaling factor is nontrivial [63] and prohibitive for us-
ing samples directly in many cases. Additionally, hardware
limitations including imperfection of the processor and the
spin-bath polarization effect [68] prevent the AQC to sam-
ple the Boltzmann distribution exactly. Finally, as the en-
ergy term E(Z) can only be implemented using the penalty
method, the sampling density is influenced by solutions not
fulfilling the constraints. We compensate for these limita-
tions by evaluating the energy of all measured feasible so-
lutionsZ ′ and recompute p(Z|X) by evaluating the analytic
partitioning function over these, which only requires sam-
pling solutions at a sufficiently high temperature.

Coresets. Having the set of the most likely clustering so-
lutions Z available together with their posterior probabil-
ity P (Z|X) allows to find an assignment Z∗ of a subset
of points that solves the clustering problem with increased
probability P (Z∗|X). Such a set can be found by using
Algorithm 1, which implements a greedy approach that dis-
regards points that disagree between different clustering so-
lutions. With a sufficiently well-sampled Boltzmann distri-
bution, the resulting coreset assignment Z∗ with the corre-
sponding probabilistic estimate P (Z∗|X) is still calibrated.

5



Algorithm 1 CoresetSearch
1: Z∗ ← Z0

2: p← P (Z0|X)
3: i← 1
4: while p ≤ pmin do
5: Z ′

i ← align(Zi, Z
∗)

▷ Find the cluster permutation that minimizes the num-
ber of points assigned to different clusters in Zi and Z∗.

6: Z∗ ← Z∗ ∩ Z ′
i

▷ Remove points assigned to different clusters.
7: p← p+ P (Zi|X)
8: i← i+ 1
9: end while

10: return Z∗

Lagrange multiplier optimization. Using the quadratic
penalty method to implement the constraints requires find-
ing suitable Lagrangian multipliers λ. Even though a very
high multiplier theoretically guarantees finding a feasible
solution, it also deteriorates the conditioning of the opti-
mization problem. Therefore, a suitable Lagrangian mul-
tiplier lifts the cost of any constraint violation above all
relevant solutions of the clustering problem, while keeping
them low enough to avoid scaling the total energy of the
problem up considerably. To estimate the multipliers, we
follow an iterative procedure as also proposed in [77].

In an initial step, balanced classical k-means [56] is used
to find a feasible clustering solution. This solution is used
to estimate Lagrangian multipliers that avoid any first-order
violation of the constraints. In subsequent iterative opti-
mization steps, the problem is solved in simulation, to find
multipliers that result in a well-conditioned problem.

Such optimization procedure is crucial due to the low fi-
delity of the current generation of QAs, which requires care-
ful engineering of the problem energy. Therefore, we expect
this procedure to become of reduced importance with the
progress of quantum computing.

5. Experiments and Results

We perform experiments on synthetic as well as real data
to verify the efficacy of our method in finding the set
of high-probability solutions and in estimating calibrated
confidence scores. The experimental scenarios are solved
with QA, Simulated Annealing (SIM), and exact exhaus-
tive search using the presented energy formulation and with
k-means as a baseline method. This further allows us to un-
derstand the limitations and required work when deploying
the approach to real quantum computers.

Implementation details. Quantum annealing (QA) ex-
periments are performed on the D-Wave Advantage 2 Pro-
totype 1.1 [58]. The system offers 563 working qubits, each
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Figure 2. Evaluation of the calibration and distribution for QA,
SIM and exhaustive search in tasks with 2 to 4 clusters, each with
5 points. All results are generated with 1,000 problems in each
scenario and 5,000 measurements for each clustering problem.

connected with up to 20 neighbors. For each clustering
problem 5000 measurements are performed, each with 50µs
annealing time. Due to the strong compute-time limits on an
QA, all Lagrangian optimization steps are performed with
SIM, before measuring the final results on the QA.
Simulated annealing (SIM) provided by D-Wave is used
for larger scale comparisons. Similar to QA, we perform
5000 runs for each clustering problem. We reduce the num-
ber of sweeps performed in each run to 30, which allows us
to sample the Boltzmann distribution at a sufficiently high
temperature in most scenarios, making it comparable to QA.
Exact exhaustive search is used as a reference method to
validate the energy-based formulation on small problems.
By iterating all feasible solutions, the lowest energy solu-
tion is guaranteed to be found and the partitioning function
is computed exactly.
K-Means clustering with a balanced cluster constraint [56]
forms the baseline for our approach. We run the algorithm
until convergence for a maximum of 1000 iterations. While
this solution does not provide a probabilistic estimate, it is
useful to assess the relative clustering performance.
Data for the quantitative evaluation of our method is syn-
thetically generated. For each clustering problem a total of
I points are sampled from a separate normal distribution for
each ofK clusters. The centroids are randomly drawn, such
that the distance between each pair of clusters lies within a
predefined range [dmin, dmax]. For each experiment a total
of L clustering tasks is generated. This allows us to evalu-
ate the calibration metrics over a large value range. For all
experiments that directly compare methods, identical clus-
tering tasks are used.

Further results are provided for the IRIS dataset [38] and
a dataset of images containing ambiguous objects that are
to be identified. The IRIS contains 50 samples of 4 fea-
tures in 3 classes. We randomly subsample the points and
dimensions to generate the parameters required for our ex-
periments.
Clustering metrics are computed using the available
ground-truth clusters. We evaluate 4 standard metrics: The
accuracy, which measures the ratio of clustering solutions
that are identical to the ground-truth. Completeness [69]
measures the ratio of points from a single cluster being
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15 Points, 3 Clusters, 2 Dim 30 Points, 3 Clusters, 2 Dim 45 Points, 3 Clusters, 2 Dim
SIM 56.4±1.6 79.5±0.8 74.7±1.0 81.9±0.7 38.6±1.5 74.2±0.8 73.3±0.9 81.6±0.6 50.8±1.6 86.2±0.5 87.3±0.5 91.4±0.3
K-means 51.3±1.6 75.0±0.9 68.8±1.1 77.7±0.8 37.0±1.5 71.9±0.8 70.2±0.9 79.4±0.6 52.8±1.1 85.9±0.4 86.6±0.4 90.9±0.3

15 Points, 3 Clusters, 2 Dim 10 Points, 2 Clusters, 2 Dim 20 Points, 4 Clusters, 4 Dim
QA 56.1±1.6 79.4±0.8 74.6±1.0 81.9±0.7 74.3±1.4 80.2±1.1 79.6±1.1 88.7±0.6 12.4±1.0 51.2±0.8 34.0±1.0 47.9±0.8
SIM 56.4±1.6 79.5±0.8 74.7±1.0 81.9±0.7 74.1±1.4 80.0±1.1 79.5±1.1 88.6±0.6 32.4±1.5 70.4±0.8 59.2±1.1 67.8±0.8
K-means 51.3±1.6 75.0±0.9 68.8±1.1 77.7±0.8 70.1±1.4 76.3±1.2 75.4±1.2 86.3±0.7 20.9±1.3 61.9±0.8 47.4±1.0 58.5±0.8
Exhaustive 56.4±1.6 79.5±0.8 74.7±1.0 81.9±0.7 74.3±1.4 80.2±1.1 79.6±1.1 88.7±0.6 - - - -

Table 1. Synthetic data results for our approach (QA, SIM, exhaustive) and k-means. All numbers in % with standard error of the mean.

grouped together. The adjusted Rand score [44] compares
all pairs of points in the ground truth and prediction and the
Fowlkes-Mallows index [40] combines precision and recall
into a single score.

5.1. Results

Calibration performance. We evaluate the calibration of
our method on a synthetic clustering scenario with 3 clus-
ters and 15 points using QA, SIM and exhaustive search
on 1000 tasks. First all clustering solutions Z are accumu-
lated in bins according to their estimated posterior proba-
bility P (Z|X). This process also includes all sampled non-
optimal but feasible solutions. Figure 2 shows the resulting
histogram of solutions and the ratio of correct solutions in
each bin after accumulation. It thus evaluates calibration,
where the ideal case has mean predicted probabilities on the
diagonal. We find our approach to generate well-calibrated
probabilities in both simulation and when using QA for the
two smaller experiments for up to 15 points. Due to the
problem QUBO size, only SIM is able to find the correct
solutions on the largest example.

Clustering performance. We evaluate the performance of
our clustering formulation using synthetic data in Table 1.
The upper rows show results for 3 clusters with an increas-
ing number of points and 1000 tasks/setting for SIM and
k-means. Due to the problem size, it cannot be solved us-
ing QA and exhaustive search. Our formulation with SIM
outperforms k-means on the small tasks, however, the dif-
ference vanishes with increasing problem size. This can be
attributed to the globally optimal solution our approach is
optimizing for. Ideally, the global solution is at least as
good as the k-means solution, however, an increasing prob-
lem size also increases the complexity of the QUBO, which
explains the dropping performance on large problems.

For the largest clustering problem with 3 clusters and
45 points, k-means provides the best accuracy with more
correct solutions compared to SIM. However, the clustering
quality metrics are higher for SIM. This indicates that our
formulation is able to find a better solution in cases where
the problem is not solved correctly by SIM and k-means.
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(a) Solver comparison for the
adjusted Rand index.
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solver.

Figure 3. Sparsification plots of clustering metrics.

The lower rows in Table 1 show settings with 2,3,
and 4 clusters, each containing 5 points, again with 1000
tasks/setting. For the two smaller scenarios QA on the D-
wave Advantage 2 provides results close or identical to SIM
and exhaustive search. For the largest scenario with 20
points in 4 clusters, QA loses performance.

The quality of predicted posterior probabilities can be
further evaluated by linking them to the clustering metrics
and sparsifying the set of tasks. Starting with metrics over
the whole set of clustering tasks, we remove tasks accord-
ing to increasing probability and evaluate the metric over
the remaining set. For an ideal predictor, this removes the
lowest-performing tasks first. In Figure 3a this is done for
the adjusted Rand index with different solvers and in Fig-
ure 3b QA with different metrics. The solid lines show the
sparsification plots using the predicted probabilities and the
dashed lines show the same plots for an oracle method that
generates the best possible ordering based on the metrics.

In Figure 3a it becomes apparent that QA, SIM and ex-
haustive search perform close to each other over most of
the value range. Nevertheless, for a high sparsification with
more than 80% of the tasks removed, QA shows a drop
in performance compared to the other methods. This is
caused by tasks where only a single, but incorrect solu-
tion is found, which gets assigned a posterior probability
of P (Z|X) = 1.0. In such cases, the Boltzmann distribu-
tion has not been sampled sufficiently well, either because
of too few measurements or because of a low effective sam-
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Figure 4. Visualization of coresets for synthetic data with the prob-
ability for each of the determined pointsets.

(a) QA. (b) SIM.

Figure 5. Qualitative results
on the IRIS dataset.
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QA 47.2 81.7 76.8 83.4
SIM 47.1 81.7 76.7 83.4
K-means 47.0 80.6 75.5 82.5
Exhaustive 47.1 81.8 76.8 83.5

Table 2. Performance on IRIS
subsets (3 clusters/15 points).

pling temperature. As SIM does not show this behavior the
source can likely be traced back to current limitation of the
quantum computer.

Coresets. Qualitative examples for the coresets generated
with Algorithm 1 are depicted in Figure 4. The shape of
each point represents the ground truth class and the color the
assigned cluster. Starting with the most likely solution hav-
ing a predicted probability of p(Z|X) = 0.61 on the left,
each plot shows one additional step of the algorithm, which
successively removes points from the solution, indicated by
plotting them in Grey. The illustration demonstrates that the
CoresetSearch algorithm is able to generate well-separated
clusters from the probabilistic predictions.

Real-World Datasets While our method assumes an iden-
tity covariance in the data, it can be applied to other distri-
butions, which we evaluate on the widely used IRIS dataset
as well as a set of self-collected images. Clustering metrics
for experiments on IRIS using 3 clusters with 5 points each
are provided in Table 2 and show that our formulation us-
ing QA and SIM is competitive with k-means. Figures 5a
and 5b show differently sized qualitative examples from
the dataset solved using our formulation with QA and SIM
respectively. On the full IRIS dataset, SIM and k-means
achieve identical results with a Completeness of 77.7%, Ad-
justed Rand index of 78.6% and further results provided in
the supplementary. The results from Algorithm 1 using re-
sults from SIM are provided in Figures 6 and 7 for IRIS and
our dataset respectively. They show that even for a distribu-
tion mismatch the coresets can provide meaningful results
for removing ambiguous samples.

To demonstrate that meaningful ambiguous samples can
be identified in a high-dimensional space present in image
data, we collected publicly available images of cars, boats
and cars towing boats. Image features were extracted us-

Figure 6. Coresets generated using SIM on the IRIS dataset with
60 points.

Figure 7. First coreset using SIM on our collected dataset.

ing VGG [72] and subsequently clustered using our ap-
proach. Similar to IRIS, the distribution does not match
our assumptions, however, we are still able to identify am-
biguous images that contain cars towing a boat by using
Algorithm 1. The first coreset is depicted in Figure 7 where
differently colored frames indicate the cluster assignment
and Grey frames mark ambiguous samples. Clustering is
performed on the 1000-dimensional feature and images are
plotted at their 2D projection generated using UMAP [59].
Our approach correctly identifies the images that contain a
car towing a boat and thus, cannot be uniquely assigned to
either cluster.

6. Conclusion

In this work, we proposed a probabilistic clustering ap-
proach based on sampling k-means solutions using AQC.
By using all valid measurements, calibrated confidence
scores are computed at little cost and solutions are compet-
itive to an iterative balanced k-means approach. We eval-
uated our method on synthetic as well as real data using
simulation, exhaustive search as well as the D-Wave Ad-
vantage 2 prototype QA to explore the potential of quantum
computing in machine learning and computer vision.

While the approach is still limited in the problem size,
quantum computing enables a fundamentally different ap-
proach to clustering that can provide additional informa-
tion that is costly to compute otherwise. Nevertheless, even
with the current progress and potential to scale to real-world
problems, more work is required to adapt existing problem
formulations, such that the full capability of quantum com-
puting can be effectively used.

Acknowledgement: This work was funded by Toyota Mo-
tor Europe via the research project TRACE Zürich.
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1. Introduction

The main manuscript presents a novel approach for proba-
bilistic clustering based on exploiting the probabilistic na-
ture of adiabatic quantum computing (AQC). In the sup-
plementary material, we provide additional details and
that complement the main manuscript. Section 2 presents
the detailed derivation of the energy function used in the
manuscript. Section 3 discusses the optimization of the
inference parameters to increase the AQC solver perfor-
mance. Section 4 provides information on data generation
for the synthetic and real-world datasets used in the exper-
iments. Sections 5, 6 and 7 extend the clustering perfor-
mance and calibration evaluation on synthetic data and the
IRIS dataset respectively. In Section 8, we discuss failure
cases encountered during the experiments. Finally, we out-
line the limitations of our approach in Section 9.

Overall, the supplementary material aims to clarify open
questions from the main manuscript, provides additional in-
sights into the proposed method and discusses its current
limitations.

2. Energy Function Derivation

The following section shows the step-by-step derivation of
the energy function used in this paper. As clusters are inde-
pendent, the energy for each cluster can be computed sep-
arately E(X|Z) = ∑

k Ek(X|Z), where X represents the
data-points and Z is the assignment matrix with entry Zki

assigning point xi to cluster ck. For a single cluster ck, the
energy can be further extended into the quadratic and linear
terms as follows

Ek(X|Z) =
∑

i

Zki(xi − µk)
⊺I(xi − µk)

=
∑

i

Zki(x
⊺
i Ixi − 2x⊺i Iµk + µ⊺

kIµk)

=
∑

i

Zkix
⊺
i Ixi − 2

∑

i

Zkix
⊺
i Iµk +

∑

i

Zkiµ
⊺
kIµk

=
∑

i

Zkix
⊺
i Ixi − 2

∑

i

Zkix
⊺
i Iµk + skµ

⊺
kIµk,

(1)
with the cluster mean µk and identity matrix I . By using the
maximum likelihood (ML) estimator of the cluster mean

µk =
1

sk

∑

j

Zkjxj , (2)

with cluster size sk, the energy formulation only depends
on the data and the cluster assignment

∑

i

Zkix
⊺
i Ixi − 2

∑

i

Zkix
⊺
i Iµk + skµ

⊺
kIµk

=
∑

i

Zkix
⊺
i Ixi − 2

∑

i

Zkix
⊺
i I

1

sk

∑

j

Zkjxj

+ sk
1

sk

∑

i

Zkix
⊺
i I

1

sk

∑

j

Zkjxj

=
∑

i

Zkix
⊺
i Ixi −

1

sk

∑

i

∑

j

ZkiZkjx
⊺
i Ixj .

(3)

This finally shows that the total energy only depends on the
distance between each pair of points
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∑

i

Zkix
⊺
i Ixi −

1

sk

∑

i

∑

j

ZkiZkjx
⊺
i Ixj

=
1

sk

∑

i

∑

j

ZkiZkj x
⊺
i Ixi − x⊺i Ixj

=
1

sk

∑

i

∑

j

ZkiZkj x
⊺
i I(xi − xj)

=
1

sk

∑

i

∑

j

ZkiZkj
1

2
[x⊺i I(xi − xj) + x⊺j I(xj − xi)]

=
1

sk

∑

i

∑

j

ZkiZkj (xi − xj)⊺I(xi − xj).

(4)

3. Inference Parameter Optimization

Using the quadratic penalty method to include constraints
in the Quadratic Binary Optimization (QUBO) formulation
requires finding suitable Lagrangian multipliers λ. Even
though a very high multiplier theoretically guarantees to
find a feasible solution, it also deteriorates the condition-
ing of the optimization problem. Therefore, a suitable La-
grangian multiplier lifts the cost of any constraint violation
above all relevant solutions of the clustering problem, while
keeping them low enough to avoid scaling the total energy
of the problem up considerably. To estimate the multipliers
for each constraint, we follow an iterative procedure.

In an initial step, balanced k-means[2] is used to find a
feasible clustering solution. This is used to offset the dis-
tance terms for each point such that the total clustering so-
lution has an energy of 0. For the next steps, the constraints
are separated into 3 components:

The cluster size constraint is defined by
∑

i Zki =
sk ∀k. Due to its strong diagonal term in its quadratic form
using Lagrange multipliers, it quickly degrades the energy
scaling of the problem. The Lagrangian multiplier corre-
sponding to this constraint is estimated from the maximum
cost improvement that can be achieved by switching one
point between clusters.

The constraint
∑

k Zki = 1 ∀i, which ensures the match-
ing of every point to exactly one cluster, is further seg-
mented into two parts. One part contains the positive off-
diagonal elements and penalizes assigning a single point
to multiple clusters. Its corresponding Lagrangian is com-
puted from the maximum cost improvement that can be
achieved by assigning an additional point to any cluster,
compared to the k-means solution. The other term contains
negative diagonal elements and adds an incentive to assign
every point to one cluster. The corresponding multiplier is
estimated by the maximum cost improvement by removing
one point from a cluster and thus violating the constraint.

In five subsequent optimization steps the clustering prob-
lem is solved using simulated annealing and the Lagrangian
multipliers are increased for constraints that are not ful-
filled.

In the last step, which is only performed for simulated
annealing, measurements at low temperatures of the Boltz-
mann distribution are handled. In scenarios where only a
single valid clustering solution is returned, the Lagrangian
multiplier of the cluster size constraint is increased, which
results in sampling the problem at a higher temperature.

Finding well-suited Lagrangian multipliers is crucial due
to the low fidelity of the current generation of AQCs, which
requires careful engineering of the problem energy. There-
fore, we expect this procedure to become of reduced impor-
tance in future generations of lower noise AQCs.

For experiments performed on the D-Wave AQC, all La-
grangian optimization steps are performed with SIM, before
measuring the final results on the AQC due to the strong
compute-time limitations.

4. Data Generation

Synthetic Data is generated by sampling a total of I points
from separate normal distributions for each of K clusters.
The cluster centers are selected as the corners of a simplex
with uniformly drawn edge length, such that the distance
between each pair of clusters lies within a predefined range
[dmin, dmax]. The feature-space needs to be at leastK−1 di-
mensional for each clustering problem. Sampling the edge-
length randomly allows to generate a wide range of cluster-
ing problems with a different degree of ambiguity, due to
the changing degree of overlap between distributions. This
allows to evaluate the whole range of predicted posterior
probability values. For each experiment a total of L cluster-
ing tasks is generated to evaluate the clustering metrics.
IRIS [1] is subsampled to generate quantitative results over
different clustering scenarios. The whole IRIS dataset con-
tains 3 classes, 50 samples for each class and 4 features
forming a 4-dimensional space. According to the exper-
iment parameters we randomly select a subset of classes,
samples and features without replacement to allow running
the tasks on a D-wave AQC. This generates different clus-
tering problems, while keeping the general structure of the
data in IRIS.
Image data is used to demonstrate the applicability of our
method to computer vision tasks. We collected 8 images
each for cars and boats and two images of cars towing boats.
Visual embeddings for each image are extracted after the
last layer of VGG16 [3] pretrained on Imagenet. Subse-
quently, the high-dimensional features are clustered using
our approach, and the first coreset is computed to identify
the ambiguous samples as demonstrated in the main paper.
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(a) 3 clusters, 30 points.

0.0 0.2 0.4 0.6 0.8 1.0
P predicted

0.0

0.2

0.4

0.6

0.8

1.0

P 
m

ea
su

re
d

Calibration E 1

(b) 3 clusters, 45 points.

Figure 1. Evaluation of the calibration for simulated annealing in
clustering scenarios with 3 clusters and 30/45 points respectively.
All results generated with 1,000 problems in each scenario and
20,000 measurements for each clustering problem.

5. Cluster Calibration Evaluation
This section extends the analysis of the calibration of our
method to additional synthetic scenarios with more vari-
ation and increased problem size. The plots provided in
this section are generated similarly to the main manuscript
where first all clustering solutions Z are accumulated
in bins according to their estimated posterior probability
P (Z|X), including all sampled but non-optimal solutions.
After accumulation, the ratio of correct solutions in each
bin is evaluated and plotted over the probability range of
each bin. In the plots the diagonal represents the desired
calibration.

Further calibration plots for the scenario with 3 clusters
and an increasing number of total points are provided in
Figure 1. The scenarios are solved using simulated anneal-
ing with 20,000 measurements for each problem. The ex-
periment with a total of 45 points in Figure 1b shows an
overestimation of the posterior probability of the respective
solutions. This can be attributed to two possible scenar-
ios, where 1) the best solution is found, but not all relevant
high-energy solutions are found during annealing and 2) the
lowest-energy solution is not found and thus, the probabil-
ity of all other solutions is overestimated. As the optimiza-
tion problem becomes harder with an increasing number of
points, the behavior is stronger in Figure 1b than in Fig-
ure 1a.

6. Coreset Sparsification Performance
The set of feasible solutions can be merged by using the cal-
ibrated confidence scores in Algorithm 1 introduced in the
main manuscript. It sequentially removes uncertain points
from the solution thus, increasing the solution probability.
In Figure 2, we show the probability of the best merged so-
lution being correctly evaluated over the minimum solution
probability of the sparsified coreset. It shows that our ap-
proach of removing single points can considerably increase

Figure 2. Clustering accuracy wrt. removing uncertain points by
merging coresets.

the solution probability, thus highlighting the quality of the
found coresets.

7. Evaluation on IRIS

Table 2 in the main manuscript provides performance
metrics for randomly subsampled versions of the IRIS
dataset [1]. In this section, we further evaluate the perfor-
mance on the whole IRIS dataset, which contains 3 classes,
50 samples for each class and 4 features. We use simu-
lated annealing with 20,000 measurements and balanced k-
means to solve the IRIS clustering task, which both pro-
vide the same solution. The qualitative results are de-
picted in Figure 3, where all pairs of features are visual-
ized. The shape of each sample represents the ground truth
class and the color the result of the clustering algorithm.
While the different feature pairs are plotted separately, the
problem is solved as a single 4-dimensional clustering task.
As results are identical with simulated annealing and bal-
anced k-means, clustering metrics are also identical with a
Completeness of 77.7%, Adjusted Rand index 78.6% and
Fowlkes-Mallows Score of 85.6%.

8. Failure Cases

Analyzing the failure cases of our method provides valu-
able insight into the current state of quantum computing in
computer vision, which aids to identify areas that need to
be further investigated.

8.1. K-means

The analysis of synthetic problems in Table 1 in the main
manuscript shows an advantage of our approach compared
to the balanced k-means algorithm [2] for the smaller clus-
tering scenarios. These cases can be traced back to the
k-means algorithm finding local minima where switching
points given the last cluster means does not improve the
data fit. This scenario is avoided in our formulation by
jointly optimizing for the assignment and cluster centers.
Two examples of such failure cases of k-means clustering
are provided in Figure 4.
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Figure 3. Clustering results on the IRIS dataset for simulated annealing and k-means.

8.1.1 Annealing based clustering

The scenario with a total of 45 Points in 3 Clusters shows
an advantage of k-means in the number of correctly solved
problems compared to our approach using simulated an-
nealing. The main source for this behavior lies in not find-
ing the lowest energy and thus, the optimal solution of the
clustering problem, as depicted in Figures 5a and 5b. An-
other source of error in this scenario is shown if Figures 5c
and 5d, where the local k-means solution corresponds to
the ground truth, even though it has a higher energy. As the
solutions returned by our approach are still dense clusters,
the clustering metrics remain competitive with the balanced
k-means approach.

9. Limitations

Our work aims at demonstrating the potential of using a
quantum computer as a sampler for k-means clustering, in
order to find multiple likely solutions and their associated
calibrated posterior probabilities. Given the novelty of ap-
plying quantum computing to computer vision, it’s natural

that many works in this area, including ours, still come with
limitations.

Current quantum computers are still limited in their fi-
delity of qubit couplings, which represent the terms of the
quadratic cost function. This requires a careful selection
of Lagrangian multipliers, which adds additional compu-
tational cost in the current formulation. With improving
AQCs, this problem can be reduced and help to increase the
problem size, as well as the robustness of the formulation.
Another hardware limitation is the restricted connectivity
between qubits. In the D-Wave Advantage 2 prototype used
in this work, each qubit is coupled to up to 20 neighbors.
This requires to build chains of qubits to represent a dense
cost-matrix. Therefore, investigating sparse representations
for clustering that reduce the required chain length can help
to embed larger problems on the AQC.

Finally, our clustering approach is following the k-means
cost function, with an identity covariance matrix. While this
can model a range of practical problems, where the distri-
bution of the data can directly be influenced, future work
should investigate formulations of higher-order terms.
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(a) K-means. (b) Simulated annealing.

(c) K-means. (d) Simulated annealing.

Figure 4. Failure cases for k-means clustering. While our formu-
lation finds the correct solution, k-means returns a local minimum.

(a) Simulated annealing. (b) K-means.

(c) Simulated annealing. (d) K-means.

Figure 5. Failure cases for simulated annealing clustering.
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