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Abstract: Parisi’s hypercube model describes a charged particle hopping on a d-

dimensional hypercube with disordered background fluxes in the large d limit. It was

noted previously [Jia and Verbaarschot, J. High Energy Phys. 11 (2020) 154] that the

hypercube model at leading order in 1/d has the same spectral density as the double-

scaled Sachdev-Ye-Kitaev (DS-SYK) model. In this work we identify the set of observ-

ables that have the same correlation functions as the DS-SYK model, demonstrating

that the hypercube model is an equally good microscopic model for near-AdS2/near-

CFT1 holography. Unlike the SYK model, the hypercube model is not p-local. Rather,

we note that the shared feature between the two models is that they both have a large

amount of disordered but uniform fluxes on their Fock-space graphs, and we propose

this is a broader characterization of near-CFT1 microscopics. Moreover, we suggest

that the hypercube model can be viewed as the operator growth model of the DS-

SYK model. We explain some universality in subleading corrections and relate them

to bulk vertices. Finally, we revise a claim made the aforementioned reference about

the existence of a spectral gap.
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1 Introduction

Two-dimensional nearly anti-de Sitter (NAdS2) spacetime arises ubiquitously as the

near-horizon geometry of near-extremal black holes in higher dimensions. More pre-

cisely, inD > 2 spacetime dimensions, very often the near-horizon geometry of extremal

black holes is of the form AdS2 ×MD−2 where MD−2 is a compact manifold that de-

scribes the shape of the black hole horizon [1]. The AdS2 geometry cannot consistently

support excitations due to large backreactions. So in order to study excitations we

must consider near-extremal black holes and modify the AdS2 geometry to near-AdS2,

where we cut off the AdS2 geometry at some finite distance away from the horizon

and the cutoff boundary is allowed to fluctuate, consistent with the higher-dimensional

flow. The resulting effective theory is Jackiw-Teitelboim (JT) dilaton gravity in two

dimensions along with a spatial cutoff [2–4], where the dilaton describes the size of the

MD−2.

Recently, considerable progress has been made by directly constructing microscopic

models for nearly conformal field theory in one dimension (NCFT1), most notable of

which is the Sachdev-Ye-Kitaev (SYK) model [5–9]. The SYK model is a system of
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N Majorana fermions interacting through a p-body interaction in which each fermion

couples to the rest. At low energy, the model’s dynamics matches that of JT gravity on

NAdS2 spacetime [10]. Apart from its importance in the AdS/CFT correspondence, the

SYK model is also important as a solvable model of quantum chaos in p-local systems

per se (and also be realized experimentally [11]). However, a slightly different large

N limit—the double-scaled SYK (DS-SYK) limit p,N → ∞ with λ = 2p2/N fixed—

can be solved exactly in λ for all energy scales using the so-called “chord diagram”

technique. The latter technique can also be used to compute correlation functions and

also allows for the some reconstruction of the AdS2 dynamics (where it generalizes it

to a q-deformed AdS2) [12–15].

P -locality, however, is not the essential ingredient for a quantum mechanical model

to have an NAdS2 dual. This is so because there are additional models that are not

p-local but have the same combinatorial solution. The simplest such example is the

hypercube model of Parisi [16, 17]. The model is made out of d qubits, along with

a Hamiltonian with interactions that couple together all degrees of freedom in each

term (and not just p ≪ N of them), albeit in a very specific way. More precisely,

we can view Parisi’s model as a d-dimensional hypercubic model where a particle can

occupy one of two positions in each lattice direction. The Hamiltonian is just a sum of

terms, where each of them is a hopping term in just one direction. However, there are

statistically independent nontrivial phases (fluxes) around each plaquette. Compared

to the theory without the fluxes, they frustrate the return amplitude of the hopping

particle and hence contributes to thermalization of the system.

The aim of this paper is to study further the Parisi model and to clarify which

microscopic aspects of the SYK model, or a general quantum mechanical model, are

essential and which are not for having an NAdS2/NCFT1 holographic duality, including

the gravitational form of quantum chaos. Given these two distinct classes of models

(SYK-like and Parisi-like), we will clarify what is in common between the two models, in

terms of the dynamics of the Hamiltonian and in terms of a suitable set of observables,

and suggest a broader characterization of NAdS2/NCFT1 microscopics. Enlarging the

set of models and clarifying what is essential for an NAdS2 dual may help build specific

examples of AdSD+1/CFTD (D > 1) that flow to AdS2.

The paper is organized as follows:

• in section 2, we introduce the Parisi model and reinterpret it as a hypercube in

the Fock space.

• In section 3, we discuss how to solve the model using the moment method; in

particular we recapitulate the solution of the spectral density. We then identify

the preferred class of observables in this model for which the chord technique
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applies, which have nice conformal properties at low energies (which demonstrates

the emergence of maximal chaos).

• In section 4, we discuss why the hypercube model, despite being non-p-local,

shares the same phenomenology with the SYK and other p-local models. We then

propose a unified picture for characterizing NCFT1 microscopics, and speculate

how it may arise from higher-dimensional holographic CFTs.

• In section 5 we discuss how the operator growth of the SYK model may be

approximately mapped to a hypercube.

• In section 6, we discuss the hypercube moments at subleading order in 1/d and

demystify a previously observed coincidence with the subleading moments of the

sparse SYK model. Furthermore, we discuss how such subleading combinatorics

might correspond to an interaction vertex in the AdS2 bulk.

• Finally in section 7, we demonstrate that it is unlikely that the model possesses

a spectral gap at any nonzero flux, thus revising the claim made in [17].

For a short summary of this paper, see companion article [18].

2 The model and its (re)interpretation

2.1 The Parisi hypercube model in symmetric gauge

We wish to consider the quantum mechanics of a charged particle hopping on the lattice

points of a d-dimensional hypercube, under the influence of a static uniform background

magnetic field. The magnetic field will be drawn from a time-independent probability

distribution, namely the magnetic field will be quench disordered.

Let us consider a d-dimensional unit hypercube which is centered at the coordinate

origin, so that the lattice positions of the hypercube are

x⃗ = (x1, x2, . . . , xd), xi = ±1

2
. (2.1)

We will denote the position eigenstates of the charged particle as |x⃗⟩. We will also use

a C2-qubit representation for the two states in each direction∣∣∣∣−1

2

〉
→
(
0

1

)
,

∣∣∣∣+1

2

〉
→
(
1

0

)
. (2.2)
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The Hamiltonian for the hypercube model is defined as

H = − 1√
d

d∑
µ=1

Dµ := − 1√
d

d∑
µ=1

(T+
µ + T−

µ )

T+
µ =

d∏
ν=1,ν ̸=µ

e
i
4
Fµνσ3

νσ+
µ , σ+

µ =
σ1
µ + iσ2

µ

2
,

T−
µ = (T+

µ )
†, Fµν = −Fνµ,

(2.3)

where Fµν is a antisymmetric field strength tensor, namely a magnetic field flux on

each plaquette (labeled by [µν]). Once two directions are chosen ([µν]) the flux is

independent of the rest of the directions in the hypercube. The normalization factor

1/
√
d is chosen for convenience so that the spectral support is finite.

The magnetic fluxes on the plaquettes are drawn from a random disorder distri-

bution P ({Fµν}). For simplicity Fµν (for each µ < ν) is assumed to be identically

and independently distributed (i.i.d.) and to be such that ⟨sinFµν⟩ = 0. Actually, for

simplicity, we will assume that it is symmetric in Fµν around 0. Another natural choice

is to have Fµν = 0 or π with any weight. We will see this appearing when we discuss

the relation with the SYK model. The operators σiµ are Pauli matrices σi acting on the

µth qubit, and the operator T+
µ is a parallel transporter that transports the particle to

the positive µ direction while assigning the particle with a phase that lives on the link

of the transport. Hence H is the (negative of) lattice covariant Laplacian (with the

removal of a multiple of identity) defined on a hypercube, under the background Fµν .

The parallel transporters satisfy

T±
µ T

±
ν = T±

ν T
±
µ e

iFµν , T±
µ T

∓
ν = T∓

ν T
±
µ e

−iFµν (2.4)

for µ ̸= ν and

(T±
µ )

2 = 0, T±
µ T

∓
µ = σ±

µ σ
∓
µ . (2.5)

These imply

T−
ν T

−
µ T

+
ν T

+
µ = e−iFµνσ−

ν σ
+
ν σ

−
µ σ

+
µ , (2.6)

which is our expected holonomy for the particle hopping around an elementary plaque-

tte (a unit square) in the µν plane under a uniform flux. in fact, an equivalent but

more convenient holonomy formula we shall repeatedly use is

DνDµDνDµ = cosFµν − i sinFµνσ
3
µσ

3
ν . (2.7)

Computations for more complicated loops follow, and we will do such in section 3.4. The
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Hamiltonian (2.3) transforms in a rather symmetric way under rotations (see appendix

A), and hence we call it the symmetric gauge. This is in contrast with the axial gauge

used by Parisi. We now briefly describe the axial gauge for the purpose of bridging the

gap with earlier literature, but for the remaining parts of the paper we work exclusively

with the symmetric gauge, because correlators are much simpler to compute in this

gauge.

2.2 Relation to Parisi’s conventions

Parisi introduced the hypercube model in the axial gauge where link variables are

defined as

Uµ(x⃗) = ei
∑µ−1

ν=1 Fµνxν , (2.8)

where x⃗ are coordinates of the hypercube vertices. Note here µ only denotes positive

directions, and the link variables in the negative directions are defined as the inverses

of Uµ. The Hamiltonian can then be defined via matrix elements,

Hx⃗,y⃗ = − 1√
d

∑
µ

(
Uµ(x⃗)δx⃗+êµ,y⃗ + U−1

µ (x⃗)δx⃗−êµ,y⃗
)
. (2.9)

To see it produces the right fluxes, we compute the Wilson loop of an elementary

plaquette, the same as what was computed in equation (2.6),

U−1
ν (x⃗)U−1

µ (x⃗+ êν)Uν(x⃗+ êµ)Uµ(x⃗) = e−iFµν , (2.10)

and more complicated loops follow similarly. Hence we conclude the Hamiltonian (2.9)

must be related to the Hamiltonian (2.3) by a gauge transformation. The axial gauge

Hamiltonian also has a qubit representation which is more complicated [17]. Moreover,

Parisi studied a particular form of disorder distribution,

Fµν = ϕSµν , (2.11)

where ϕ is a constant in [0, π] and Sµν = ±1 with equal probability, i.e.,

P ({Fµν}) =
∏
µ>ν

[
1

2
δ(Fµν − ϕ) +

1

2
δ(Fµν + ϕ)

]
. (2.12)

In this paper, we will consider both this disorder distribution and more general distri-

butions. We can compute correlators in the axial gauge, but the results will be less

transparent than those of the symmetric gauge. We demonstrate some examples in

appendix B.
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It is worth mentioning on the fly that Parisi’s original interest was the second

quantized Hamiltonian
∑

x⃗,y⃗ φ
∗
x⃗Hx⃗,y⃗φy⃗, where φ is a complex bosonic field representing

the order parameter of the superconducting dots living on the hypercube vertices, so

the physics is that of a system of Josephson junctions. Here we are only concerned with

the first quantized Hamiltonian Hx⃗,y⃗ and a very different kind of physics. The fact that

the physics becomes very different should not come as a surprise: this is analogous to

removing the spin degrees of freedom from the Sherrington-Kirkpatrick model, upon

which only a random matrix remains and all the glassy physics disappears. The main

insight of Parisi is that when d→ ∞, a Wilson loop that contributes to
〈
TrHk

〉
simply

has the value (cosϕ)A, where A is the number of elementary plaquettes enclosed by the

loop. Parisi also noticed that the q-deformed oscillator algebra can be used to solve

such a moment problem. These combinatorics are the same as that of the double-scaled

SYK model and ensures that the Parisi model has the same NCFT1 physics, which is

the inspiration for [17] and our current study.

2.3 The model as a Fock-space hypercube and comments on p-locality

We can (and we will) take an alternative view on what Parisi’s hypercube describes.

We take the Hamiltonian (2.3) as the starting point, and view it as a many-body

system of d qubits. If we represent the basis states as points, and connect two points

whenever the corresponding states give a nonzero element for the Hamiltonian, we get

back to a hypercube graph. In other words, the hypercube does not live in the real

space any more but represents how a state evolves in the Fock space. This is the notion

of a Fock-space graph. In general a Fock-space graph allows us to represent a many-

body problem by a single-particle one. For example, the classic reference [19] considers

the problem of many-body localization-delocalization transition using a complex-SYK-

like Hamiltonian with two- and four-body terms. In the occupation number/Fock

basis, this Hamiltonian represents a single-particle hopping problem where a single

hopping can change the “Hamming distances” between basis vectors by 0, 2 or 4 units

and thus defines a graph. The main hope is that in this manner the many-body

localization problem is mapped to a single-particle Anderson localization problem on

graphs. However, the resulting problem is still rather complicated. This often limits

the practical usefulness of Fock-space graphs, and in the particular example of [19],

some approximations are made in order to make progress: the Fock-space graph is

approximated by a tree graph with a constant and finite node degree (Cayley tree)—

see [20] for a more refined discussion and for caveats of this approximation. On the other

hand, the Parisi Hamiltonian in the qubit form (2.3) describes a system of interacting

qubits, but it has a very simple Fock-space graph which is a hypercube. In our case the

diverging node degrees of the hypercube play a central role in understanding the chaotic
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and fast-scrambling behaviors of the model, which is consistent with the heuristics of

Sekino and Susskind [21]. It is also clear why any kind of tree approximation will

obliterate the physics of the Parisi model: without loops one can never see the effect

of fluxes Fµν . Now that the fluxes live in a Hilbert space, it is no longer appropriate

to treat them as magnetic fields. Rather, we find it natural to consider them as Berry

curvatures and we will give some justification for this proposal in section 4.

We stress that our qubit Hamiltonian couples all available qubits together, which

is in sharp contrast with p-local models such as the SYK model:

HSYK = ip/2
N∑

i1<i2···<ip

Ji1,i2,...,ipψi1ψi2 · · ·ψip , (2.13)

or the DS-SYK model in which p is scaled as p ∼
√
N . The precise definitions for

the DS-SYK model will be given in section 4, and here let us just note that the SYK

Hamiltonian, though nonlocal, couples p ≪ N operators at a time. This is called the

p-locality condition, which is often used for constructing NCFT1 models. The Parisi

hypercube model goes beyond this structure.

We shall remark that a hypercubic Fock-space graph is not a novelty in itself: the

transverse Ising model has a hypercubic Fock-space graph as well. The surprise here

may be that a Fock-space graph as simple as a hypercube is adequate to produce SYK-

type holographic physics. Ultimately we would like to argue that the Fock-space graph

geometry (or the p-locality condition) is not crucial, rather it is the large amount of

random uniform fluxes that matter. We will come back with a more detailed discussion

on this in section 4.

2.4 Symmetries

On the hypercube, we can implement a parity transformation x⃗ → −x⃗ in the qubit

representation as

A = σ1 ⊗ σ1 ⊗ · · · ⊗ σ1. (2.14)

Since Fµν are invariant under parity transformation, the inversion is a symmetry and

indeed one can check that

[A,H] = 0 (2.15)

by using

AT±
µ A

−1 = T∓
µ . (2.16)

In the axial gauge, this parity symmetry needs an accompanying gauge transforma-

tion to respect the gauge-fixing condition, and was named the “magnetic inversion
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symmetry” in [17].

Since the hypercube is bipartite, it also has a sublattice “symmetry” which anti-

commutes with the Hamiltonian

{Γ5, H} = 0, (2.17)

where

Γ5 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3. (2.18)

This anticommutation relation holds also for T±
µ ,

{Γ5, T
±
µ } = 0. (2.19)

Note that equation (2.18) gives the same operator that represents the sublattice sym-

metry in the axial gauge, which is not surprising because sublattice symmetry is simply

the statement that the hypercube is bipartite, implying that the Hamitonian can be

put in a block form where the diagonal blocks are zero.

These symmetries are important for the study of level statistics of the hypercube

model, and it was shown in [17] that with the disorder (2.12) the level statistics follow

that of a chiral Gaussian unitary random matrix ensemble, and hence the model is

quantum chaotic in the sense of random matrix universality. These symmetries will

also play a role in the correlation functions as we shall see in section 3.

2.5 The velocity operator

It is clear from our definition of position eigenstates that the position operators on the

Fock-space hypercube are

Xµ =
σ3
µ

2
. (2.20)

If we compute the Heisenberg equation of motion for position operators, we obtain the

velocity operators

Ẋµ = i[H,Xµ] =
1√
d
Vµ, (2.21)

where

Vµ := i
(
T+
µ − T−

µ

)
. (2.22)

This is a parity-odd operator that satisfies

{A, Vµ} = 0, (2.23)

{Γ5, Vµ} = 0. (2.24)
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Among other things, these imply that

Tr(HkVµ) = 0, (2.25)

or more generally any odd number of insertions of Vµ in the moments vanish exactly.

The introduction of Vµ is also necessary for closing the algebra of Dµ under multiplica-

tion and addition (see appendix C). There is a gauge transformation that transforms

(Dµ, Vµ) 7→ (Vµ,−Dµ). (2.26)

This is a gauge transformation that assigns a factor of i to all the vertices of one sub-

lattice and leaves the other sublattice invariant. Explicitly, a link variable transforms

as

eiAµ(x) → Ω(x)eiAµ(x)Ω−1(x+ êµ).

We can assign Ω(x) = i and Ω(x + êµ) = 1. Note x and x + êµ are always on two

different sublattices of the hypercube, so this is a consistent assignment that multiplies

all forward hoppings by i (and hence backward hoppings by −i). This gauge trans-

formation squares to Γ5, and it generates a Z4 subgroup of all gauge transformations.

This gauge equivalence motivates us to define the operator

V := − 1√
d

∑
µ

Vµ (2.27)

which is related to the Hamiltonian H by a gauge transformation, and hence has the

same spectrum. Although V is gauge equivalent to H, in either given gauge only one

of them can be called the Hamiltonian. If we were to call V the Hamiltonian, the

parity operator would be AΓ5, and Dµ would be the parity-odd (under this new parity)

velocity operator. As we will see in the next section, the velocity operators (with

general disorders) serve as one of the good choices for probe operators that give the

same correlation functions as those of the double-scaled SYK model.

3 Moments, correlation functions and maximal chaos

The moment problem of computing
〈
TrH2k

〉
was solved by [16, 22, 23] by considering

the combinatorics of loops on the hypercube, and mapping it to a q-deformed harmonic

oscillator. The same combinatorial problem can be represented diagrammatically by

chord diagrams, and was solved again in the context of double-scaled models first for

a quantum spin model [24], and later for the DS-SYK model [25–27] following the
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mathematical work of [28–30] or using the transfer matrix method of [12, 13]. In

this section we will essentially repeat the same story for
〈
TrH2k

〉
, but adapted to the

notations we have been using so far. Furthermore, we will study operator insertions in

moments
〈
Tr · · ·Hk3OHk2OHk1

〉
and demonstrate it has exactly the same form as the

corresponding problem in the DS-SYK model and hence reduce it to a solved problem

[12, 13]. The key here is the correct identification of an appropriate class of operators,

which is one of the main new results of this work. This implies Parisi’s hypercube has

the same correlation functions as those of the DS-SYK model, including the conformal

two-point functions and the out-of-time-ordered four-point function which saturates the

chaos bound [31]. We will favor the chord diagram representation of the combinatorics

because it gives a more direct interpretation as particles propagating in the AdS2 bulk

[12–14]. However, the nature of the microscopics of NCFT1 is more transparent in the

Fock-space and holonomy language, which we will discuss in due time.

3.1 Moments and chord diagrams

The hypercube model has the moments

2−d
〈
TrH2k

〉
= 2−d

1

dk

∑
µ1,...µ2k

⟨TrDµ2k . . . Dµ1⟩ . (3.1)

Since the trace is a sum over loop amplitudes in the Fock space, each forward hop-

ping must be paired with a backward hopping in the same direction. This means the

subscripts {µ1, . . . , µ2k} must form k pairs. Any further coincidence of the k pairs is

1/d suppressed, thus we can consider the cases where there are k distinct indices and

there are (2k − 1)!! such pairings possible. When subscripts are distinct, we have the

holonomy relation

Wµν := DνDµDνDµ = cosFµν − i sinFµνσ
3
µσ

3
ν ,

q := ⟨Wµν⟩ = ⟨cosFµν⟩ .
(3.2)

This is equivalent to equation (2.6) where the holonomy is computed in terms of T±
µ ,

but it is more convenient to use Dµ and we will continue to do so for the rest of this

paper. In appendix C we present a more complete list of algebraic relations among

Dµ and Vµ operators. To compute the moments, we further need D2
µ = 1. The task

is then to move the hopping operators around in equation (3.1) until the each pair of

Dµ become adjacent to each other and square to identity. We can apply the holonomy

relation (3.2) repeatedly, and each time when we have an interlacing ordering of two

indices µ and ν, we get a factor of cosFµν and an imaginary part proportional to sinFµν .
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Figure 1. Left: a chord diagram that contributes to the 2−d
〈
TrH6

〉
, where the repeated

indices are summed over. This diagram evaluates to q2 since there are two intersections.
Right: a chord diagram that contributes to 2−d

〈
TrH3OHO

〉
, where the solid chords represent

pairings of hoppings coming from H, and the dashed chord represents the pairing of hoppings
coming from O. This diagram evaluates to qq̃.

Since we have just argued that all k indices must be distinct at leading order, we are

never going to have a sin2 Fµν term and all the sinFµν ensemble average to zero by

assumption; also the cosFµν we get must be statistically independent (by definition)

and the ensemble average is just a power of q, and this power is just the number of

interlacing orderings in a sequence of subscripts. On the hypercube, this power counts

the number of elementary plaquettes enclosed by a hopping sequence.

We can represent the trace diagrammatically as a circle, and each hopping operator

as a point on the circle. We connect two points by a chord inside the circle if the

corresponding hoppings share a subscript. In this way we obtain what is called chord

diagrams, and we illustrate an example in the left panel of figure 1. Every interlacing

ordering of two pairs of subscripts appears as a chord intersection, therefore the general

formula for moments is

2−d
〈
TrH2k

〉
=

∑
chord diagrams

qnumber of chord intersections. (3.3)

This is identical to the moment formula for the double-scaled SYK model [12, 25, 26]

(and also the double-scaled p-spin model [24]) , and the corresponding spectral density

is given by the density function for q-Hermite polynomials [32]:

ρ(E) =
Γq2
(
1
2

)
π
√
1 + q

[
1− E2

4
(1− q)

] 1
2

∞∏
l=1

[
1− (1− q)qlE2

(1 + ql)2

]
,
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Γq2

(
1

2

)
=
√

1− q2
∞∏
j=0

(1− q2j+2)(1− q2j+1)−1. (3.4)

This spectral density behaves as ∼ sinh
√
E − E0 in the limit

q → 1−, (− log q)
3
2 ≪ E − E0 ≪ (− log q)

1
2 . (3.5)

This is sometimes called the triple-scaled limit of the SYK model [25], but in this work

we will call it the NCFT1 limit to emphasize that it reproduces the NAdS2/NCFT1

phenomenology.

3.2 Choice of probe operators

Next we would like to ask what are suitable observables in the theory. For finite d one

can discuss any operator on the Hilbert space, but in the limit d→ ∞ not all operators

make sense. Mathematically we are interested in operators which survive the large N

limit in the sense that their correlation functions are well defined in this limit—this is

the starting point for von Neumann algebras. But sometimes, if there is more structure

in the theory, we can make a physically motivated choice of a smaller set of observables.

Following [12], the AdS/CFT correspondence provides us with a hint on how to

select an appropriate set of operators. Suppose that we have some background which

starts with a D-dimensional AdS space, AdSD, and flows to a near-horizon geometry

AdS2 × MD−2, for some compact manifold MD−2. Suppose that we model the IR

AdS2 ×MD−2 in terms of some effective degrees of freedom which are related in some

complicated way to the UV degrees of freedom (the details will not matter for us),

and suppose that the IR degrees of freedom are described by a Parisi-type model. The

operators that we can insert are determined by the UV boundary and hence they will

be complicated in terms of the IR degrees of freedom. Inspired by some familiar cases

of AdS/CFT, we will refer to them as “single-trace” operators. We really cannot say

much about them beyond their statistical properties. So the problem becomes that of

identifying a reasonable statistical class of random observables in the IR theory, i.e.,

operators acting on the Parisi model’s qubits.

Next note that the Hamiltonian is one such single-trace operator for which the

discussion above applies. The rest of the operators that we are interested in are similar

single-trace operators and should be of a similar statistical nature when acting on the

degrees of freedom with which we model the black hole. For example, in N = 4 super

Yang-Mills theory, there is no reason that the local operator Tr(X2) and any other local

operator Tr(Xk), or their descendants, would be radically different from each other on

the black hole degrees of freedom.
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So our operators will be similar to the random Hamiltonian, and the simplest

construction would be summing over operators analogous to Dµ or Vµ but with different

fluxes. Namely, we can choose our probes to be

O = − 1√
d

∑
µ

D̃µ or − 1√
d

∑
µ

Ṽµ, (3.6)

where D̃µ and Ṽµ are defined in the same manner as Dµ and Vµ, but with different fluxes

F̃µν . To be very explicit, they are constructed out of new parallel transport operators

D̃µ = T̃+
µ + T̃−

µ , Ṽµ = i(T̃+
µ − T̃−

µ ) (3.7)

with

T̃±
µ =

∏
ν ̸=µ

e±
i
4
F̃µνσ3

νσ±
µ . (3.8)

The probe flux F̃µν is required to satisfy a similar requirement as Fµν , namely to be

i.i.d. for distinct pairs of µν and be distributed as an even function in F̃µν , however,

it may or may not be correlated with Fµν . The above two options are by no means

exhaustive. More generally, we can consider operators of the form

Ogeneral =
∑
α,A

Wα,AOα,A (3.9)

where α,A together specify a generalized direction in the Fock space,

α = {µ1, ..µp}, A = {n1, .., np}, ni = ±, (3.10)

Wα,A denotes the hopping strengths, and Oα,A contains the hopping and phase terms

Oα,A =

(
p∏
i=1

σni
µi

)(
d∏

ν=1

e−if̃α,νσ3
ν

)
. (3.11)

The random phases f̃α,j must be generated from some random uniform fluxes, and the

factor in the second parentheses is an analog of the link variables Uµ(x⃗) where µ is

replaced by the generalized direction α. So the general random probes are defined by

two parameters: how many qubits define a hopping and the new random phases on

the remaining qubits. We recover the simplest probes in (3.6) by setting p = 1 and

f̃α,ν = F̃µν and we will focus on this case in the rest of the section.
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3.3 One-point functions

The one-point function ⟨Tre−βHO⟩ (or any odd-point function) for the choice O ∼
∑
Ṽµ

simply vanishes

Tr(Hk−1Ṽµ) = 0 (3.12)

because of the parity and sublattice symmetries discussed in section 2.4 (use sublattice

symmetry for odd k and parity symmetry for even k). The situation with the choice

O ∼
∑
D̃µ is more subtle. Consider the one-point function:

2−dd−k/2
∑
µ

〈
Tr(Hk−1D̃µ)

〉
(3.13)

with even k (odd k vanishes due to sublattice symmetry). At leading order, a nonzero

contribution comes from the pairing of a Dµ in one of the H’s and the D̃µ in O. This

pairing contribution is given by

2−dd−1
∑
µ

〈
Tr
(
σ+
µ σ

−
µ

∏
ρ̸=µ

e
i
4
(F̃µρ−Fµρ)σ3

ρ + herm. conj
)〉

=

〈
cos

F̃ − F

4

〉d−1

(3.14)

which is to be multiplied by the contribution from the remaining pairings in
〈
Tr(Hk−1O)

〉
.

Hence the one-point function, and by the same reasoning every odd-point function of

O, is exponentially suppressed and vanishes at large d as long as〈
cos

F̃ − F

4

〉
̸= 1, (3.15)

i.e., for any operator other than H (or those differing from H only by a measure zero).

Therefore, choosing
∑
Ṽµ or

∑
D̃µ makes little difference unless we wish to consider

the limit F̃ → F , in which case for D̃µ insertions we need to take the d→ ∞ limit first

before taking F̃ → F , whereas for Ṽµ insertions we can set F̃ = F from the start.

3.4 Two-point functions

To obtain two-point thermal correlations ⟨Tre−βHO(τ)O(0)⟩, we will need to evaluate

the two-point moments ⟨TrHk2OHk1O⟩. We will repeatedly use the relations (see

appendix C for more details)

D̃νDµD̃νDµ = cos
F̃µν + Fµν

2
− i sin

F̃µν + Fµν
2

σ3
µσ

3
ν , (3.16)
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or

ṼνDµṼνDµ = cos
F̃µν + Fµν

2
+ i sin

F̃µν + Fµν
2

σ3
µσ

3
ν . (3.17)

and that

D2
µ = D̃2

µ = Ṽ 2
µ = 1. (3.18)

Also because we assumed the distribution of F to be an even function, and we have〈
sin

F̃ + F

2

〉
= 0. (3.19)

Similar to what was discussed in the last section, at large d two O operators must be

paired or else there is an exponential suppression. This means we have a second type

of chord which only connects the probes. We will call it the O chord (and refer to the

Hamiltonian chord the H chord) and draw it using a dashed line, see the right panel of

figure 1 for an example. The chord combinatorics are obtained by essentially the same

manipulations used in the last section, and the upshot is that to leading order in 1/d

we have

2−d
〈
TrHk2OHk1O

〉
=

∑
chord diagrams

with a dased chord

qNo. of H-H intersections q̃No. of O-H intersections, (3.20)

where

q = ⟨cosF ⟩ , q̃ =

〈
cos

F + F̃

2

〉
. (3.21)

Again, these are the same chord diagram rules as those of the DS-SYK model [12, 13].

Hence we conclude they have the same two-point function, and the conformal dimension

of O in the NCFT1 limit [defined by equation (3.5)] is given by

∆O =
log q̃

log q
= α as q̃ = qα → 1− (3.22)

with α fixed. In terms of Fock-space fluxes this gives

∆O =

〈
(Fµν + F̃µν)

2
〉

4
〈
F 2
µν

〉 . (3.23)
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As a side remark, we note that the NCFT1 limit is analogous to taking a continuum

limit of the hypercube, reminiscent of that in lattice gauge theories. This is clearer if

we keep a lattice spacing a in our expressions. All the Fµν are replaced by ga2Fµν (g is

the gauge coupling), and the continuum limit is where a → 0 with Fµν fixed. This is

the same as taking Fµν → 0 without restoring a. Let us keep a explicit for a moment,

then the parameters q and q̃ behave in the continuum limit as

q ≈ 1− 1

2
g2a4

〈
F 2
〉
, q̃ ≈ 1− 1

2
g2a4

〈(
F + F̃

2

)2〉
, (3.24)

and the conformal dimension of a probe operator is just a ratio of squared fluxes in

dimensionful units. This continuum limit is not quite the same kind one uses in lattice

gauge theories: here we are not keeping any lattice length scale fixed and the number

of degrees of freedom does not increase as the limit is taken. More importantly we

interpret the lattice to live in a Hilbert space instead of a real space.

3.5 Four-point functions

We now consider four-point functions. We may define two types of probes O1 and O2

by two probe fluxes F̃ (1) and F̃ (2) which may or may not correlate with each other. Fol-

lowing the discussion of the two-point functions we know that at leading order the four-

point insertions must be of the form of two pairs, namely ⟨O1O1O2O2⟩, ⟨O1O2O2O1⟩
and ⟨O1O2O1O2⟩. We will refer to former two as uncrossed and the last one as crossed

contractions for obvious reasons, and we draw one example for each in figure 2. If we

set O1 = O2 then the result is the sum over all the three contractions, but for simplic-

ity we will keep them distinct. Note that Oi cannot contract with the Hamiltonian,

and intersections between an Oi chord and H-chords follow the same rules of equation

(3.20).

3.5.1 Uncrossed contractions

For uncrossed contractions we need to sum over all possible chord diagrams with two

dashed chords that are uncrossed, and the summands follow similarly from the discus-

sion of two-point insertions,

2−d
〈
TrHk4O2H

k1O2H
k2O1H

k1O1

〉
=

∑
chord diagrams with

two uncrossed dashed chords

qNo. of H-H inters. q̃No. of O1-H inters.
1 q̃No. of O2-H inters.

2 , (3.25)
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Figure 2. Uncrossed and crossed four-point insertions. The left figure gives an un-
crossed example 2−d⟨TrHO1O2HO2O1⟩ and the right figure gives a crossed example
2−d⟨TrHO1HO2O1O2⟩.

where

q̃1 =

〈
cos

F + F̃ (1)

2

〉
, q̃2 =

〈
cos

F + F̃ (2)

2

〉
. (3.26)

This is the same rule as that of the DS-SYK model [13].

3.5.2 Crossed contractions and maximal chaos

One can derive crossed four-point chord diagram rules very similarly, and a new q-

parameter is needed for the intersection of the O1 and O2

q̃12 :=

〈
cos

F̃ (1) + F̃ (2)

2

〉
, (3.27)

such that

2−d
〈
TrHk4O2H

k1O1H
k2O2H

k1O1

〉
=q̃12

∑
chord diagrams with

two crossed dashed chords

qNo. of H-H inters. q̃No. of O1-H inters.
1 q̃No. of O2-H inters.

2 , (3.28)

The main difference with the uncrossed contribution (3.25) is not the appearance of

q̃12, but that the chord diagrams which are summed over have very different structures.

This is again identical with DS-SYK model chord diagram rules [13]. Therefore, the

Parisi model reproduces the same four-point functions, and consequently its NCFT1

limit also has the same exponentially growing out-of-time-ordered correlator (OTOC)
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that saturates the chaos bound [13],

⟨O1(t1)O2(0)O1(t2)O2(0)⟩c ∼ λconst exp

[
2π

β

(
t1 + t2

2

)]
, (3.29)

where the subscript c denotes the connected part of the OTOC and λ := − log q. The

exponent on λ is independent of time or temperature, but can depend on the conformal

dimensions of the probes.

We stress that the factor in front of the exponential growth (3.29) is λ instead

of 1/d, which implies that the scrambling time is proportional to log(λ−1) instead of

log(entropy) [21]. The lack of d dependence is expected from a technical perspective:

the OTOC is derived from the chord diagrams at leading order of 1/d, in other words,

we are setting d = ∞ and it is no longer a parameter. However, we are still owed

an intuitive explanation on why λ−1 serves as a measure of the scrambled degrees of

freedoms. In the Parisi model, information is scrambled due to the random phases

the hoppings pick up as time evolves. In the NCFT1 limit λ → 0, each hopping only

picks up an infinitesimal phase (recall λ ∼ ⟨F 2⟩) and it is reasonable to expect that the

scrambling only happens when the cumulative random phase reaches O(1). Hence as λ

gets smaller, more hopping steps are needed to achieve this; let us also recall that the

large d limit requires each hopping to be along a distinct direction on the hypercube, so

more directions—equivalently, more qubits—must be explored in order to get an O(1)

cumulative phase. Therefore, λ−1 measures the number of degrees of freedom an initial

state must explore before the information gets scrambled.

4 The importance of random uniform fluxes

We have demonstrated that Parisi’s hypercube model has the correct NAdS2/NCFT1

physics by showing that it has the same correlation functions as those of the DS-SYK

model. We achieved this by showing that at leading order it has the same chord

combinatorics as those of the DS-SYK model. However, the hypercube Hamiltonian

looks nothing like the SYK Hamiltonian, in particular it is not p-local. This is in

contrast to the fact that all models that exhibit NAdS2/NCFT1 physics discovered

until now were p-local. The question is then what exactly do the two types of models

have in common. In this section we try to address this question, and the answer will be

a simple characterization of NCFT1 microscopics. We will further speculate how such

microscopics can arise from higher-dimensional holography.
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4.1 The SYK model is also a model of Fock-space fluxes

The SYK Hamiltonian of N Majorana fermions can be written as

H = ΣIJIΨI (4.1)

where I is a multi-index of length p (p is an even integer),

I = (i1, i2, . . . , ip), 1 ≤ i1 < i2 < · · · < ip ≤ N, (4.2)

so the Hamiltonian is a sum over
(
N
p

)
terms. Moreover JI are Gaussian random variables

that are independently and identically distributed, with the variance

〈
J2
I

〉
=

(
N

p

)−1

. (4.3)

The operators ΨI are defined as

ΨI = ip/2ψi1ψi2 · · ·ψip , (4.4)

where ψi are Majorana fermions satisfying

{ψi, ψj} = 2δij. (4.5)

The operators ΨI can be viewed as a linear combination of hoppings much like the Dµ

operators in the hypercube model, and the subscript I effectively specifies a direction in

the Fock space. Specifically, we write each Majorana fermion ψ as a linear combination

of complex fermions. The latter are fermionic ladder operators that can flip qubits

and thus define hoppings in the Fock space [19, 33]. In the Majorana SYK model there

would be N/2 qubits, and the hopping is restricted by Hamming distances 0, 2, 4, . . . , p.

Similar to hoppings on the hypercube, an elementary holonomy in the SYK Fock

space is given by

WIK := ΨKΨIΨKΨI = (−1)|I∩K|, (4.6)

where |I ∩K| is the cardinality of the set intersection of I and K. Such holonomy gives

rise to uniform fluxes in the Fock space, where by this we mean that the right-hand side

of equation (4.6) is constant under changing the location of the loop (in this case it is

proportional to the identity operator). So overall, the phase of a loop in the Fock space

only depends on the sequence of hopping directions that it defines, but does not depend

on where the loop is located. Comparing with the holonomy formula (3.2), we see that

the fluxes of the SYK model are 0 or π. However, since |I ∩K| is Poisson distributed
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with mean p2/N , then the average of (−1)I∩K [over pairs of index sets (I,K)], i.e., the

average holonomy, is between 0 and 1 [equation (4.10)] and plays the same role as q

above and will be important below.

After averaging over the Gaussian couplings, the moments for the SYK model

become

2−N/2
〈
TrH2k

〉
= 2−N/2

(
N

p

)−k ∑
paired I’s

Tr(ΨI1ΨI2 . . .), (4.7)

where there are (2k−1)!! pairings in total, and for each pairing an Einstein summation

convention is assumed on the paired subscripts. Hence we can represent the SYK

moments by chord diagrams as well, in the same way as in figure 1. By repeatedly

using the SYK holonomy (4.6) and that Ψ2
I = 1, for a given chord diagram G we have

2−N/2
〈
TrH2k

〉
=

(
N

p

)−k ∑
I1,...,Ik

(−1)c(G), (4.8)

where c(G) is the sum of all |Ii∩Ij| as long as the Ii chord and Ij chord intersect in the

chord diagram G. Thus, the SYK moment is also a sum over Fock space holonomies

whose phases are generated by uniform fluxes (of 0 and π), just as in the hypercube

model. These fluxes are effectively random since |Ii ∩ Ij| can be viewed as a number

sampled from a long list of numbers. However, the analogy with the hypercube model

is not yet complete: in the fixed p SYK model each operator is so short that there is

generically no nontrivial holonomy (|Ii∩Ij| = 0 with probability 1), and one then needs

to go to subleading orders in 1/N to retrieve nontrivial physics [27, 34]. A complete

analogy is achieved by going to the double-scaled limit,

λ =
2p2

N
fixed, p,N → ∞. (4.9)

In this limit, |Ii ∩ Ij| has a finite probability of being nonempty. Moreover, set in-

tersections Ii ∩ Ij are independently random variables where triple (and higher) set

intersections are negligible, and hence the chord intersections factorize. The average of

an elementary holonomy in this limit becomes(
N

p

)−2∑
I,K

(−1)|I∩K| → q = e−λ. (4.10)

Note here the averaging is an effective one, that is, each plaquette has a unique value

for its holonomy, but we average over holonomies on all plaquettes. In the hypercube
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Hypercube DS-SYK

q ⟨cosF ⟩ exp(−2p2/N)

q̃ ⟨cos[(F + F̃ )/2]⟩ exp(−2pp̃/N)

q̃12 ⟨cos[(F̃ (1) + F̃ (2))/2]⟩ exp(−2p̃1p̃2/N)

∆O ⟨(F + F̃ )2⟩/(4⟨F 2⟩) p̃/p

Table 1. Comparison of the q-parameters and the conformal dimensions in the hypercube
and DS-SYK models.

model, the average is over an a priori distribution of fluxes. Hence we arrive at

2−N/2
〈
TrH2l

〉
DS-SYK

=
∑

chord diagrams

qNo. of chord intersections, (4.11)

which is the same as the hypercube result. By the same random probe argument as in

section 3.2, the DS-SYK random probes have the form

O = ΣĨ J̃ĨΨĨ (4.12)

where Ĩ is a multi-index of length p̃ (p̃ is an even integer that scales as p̃ ∼
√
N),

and J̃Ĩ is a Gaussian disorder independent of JI . The route toward the chord diagram

description of the correlation functions is the same as the hypercube model, that is, by

considering mixed holonomies

ΨKΨĨΨKΨĨ = (−1)|Ĩ∩K|. (4.13)

The upshot [12, 13] is the same chord combinatorics for correlation functions as those

of the hypercube model, including equations (3.20), (3.25) and (3.28) for two- and

four-point functions. For the DS-SYK model the extra q-parameters are

q̃1 = e−
2p̃1p

N2 , q̃2 = e−
2p̃2p

N2 , q̃12 = e−
2p̃1p̃2
N2 . (4.14)

We present a comparison of the q-parameters in table 1. From this comparison, it is

clear that the number of fermions (p or p̃) in the operators Ψ measures the strength of

the flux it carries in the Fock space, at least in the NCFT1 limit.
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4.2 p-local operators as Fock-space flux generators

The discussion regarding the DS-SYK model in the last section applies to general p-local

systems. By a p-local system, we mean

• the Hilbert space is made out of N copies of some basic Hilbert space
⊗N

i=1Hi.

For fermionic models it is more appropriate to think of
⊕N

k=0

(∧k
i=1 Hi

)
.

• On each Hi there is a family of noncommuting operators (acting irreducibly on

Hi, or else we split each Hi to its components). Denote these operators by

sai , i = 1 . . . N, a = 1 . . . L.

• Denote by I a subset of length p of ordered distinct integers between 1 and N ,

and by A a vector of length p of integers each taking values between 1 and L.

Define monomials of the form

ΣI,A = Πi∈Is
Ai
i . (4.15)

The Hamiltonian is then given by a sum over ΣI,A for all (I, A) with random

coefficients with zero mean and finite second moment.

• The double-scaled limit is p2/N fixed with p,N → ∞ (for fixed L, otherwise L

can be absorbed into the double-scaled limit as well).

The moments of all such Hamiltonians are essentially the same in the double-scaled limit

and are captured by chord diagrams. A well-studied example in this class other than

the DS-SYK model is the double-scaled p-spin model of Erdős and Schröder [12, 24],

HES =
∑
i1,...ip

∑
a1,...ap

J
a1,...ap
i1,...,ip

σa1i1 · · · σapip , (4.16)

where σai is one of the three (a = 1, 2, 3) Pauli matrices on the ith qubit.

For a double-scaled model, a pair of monomials ΣI,A and ΣI′,A′ do not generically

commute, hence the model is highly frustrated. However, the operator that encodes

the holonomy

W(I,A),(I′,A′) := ΣI′,A′ΣI,AΣI′,A′ΣI,A (4.17)

is an operator acting on a finite number of Hi in the intersection I∩I ′, with probability

1 in the thermodynamic limit. In particular, |I ∩ I ′| is Poisson distributed with finite

mean determined by p2/N . Having a finite mean is important because this would allow

the q-parameter to be tunable, or else q will always be 1.
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It is also important that the triple (and higher) intersections I∩I ′∩I ′′ are negligible,
i.e., it is empty with probability 1. This ensures that almost always

[W(I,A),(I′,A′),ΣI′′,A′′ ] = 0. (4.18)

Since ΣI,A are the basic hopping operators in the Fock space, equation (4.18) expresses

the fact that the holonomies are generated by uniform fluxes in the Fock space. From

this perspective, p-local models are convenient ways—but not the only ways—of gener-

ating a large amount of random uniform fluxes in the Fock space, and the double scaling

ensures the holonomies to have a tunable average while being statistically independent.

The models we have discussed so far all have the accidental property that (forward

plus backward) hopping operators square to identity: D2
µ = 1 for the hypercube and

Σ2
I,A = 1 for the SYK model and the p-spin model (4.16). This is not essential to the

physics. In fact, if we replace the Pauli matrices in the hypercube model or the p-spin

model by a higher-spin representation of su(2), say spin-3/2 representation, then the

hoppings no longer square to identity, but the chord diagram combinatorics remain the

same. In the Fock space of the hypercube model, this amounts to having a hypercubic

lattice with four lattice sites in each direction, and the hopping strengths can vary, but

the properties of the fluxes remain unchanged.

4.3 A characterization of NAdS2/NCFT1 microscopics

To summarize, we get q-combinatorics for chord diagrams and therefore NAdS2/NCFT1

physics, if a model has Fock-space fluxes that are both

1. uniform and quench-disordered, and

2. independently and identically distributed (i.i.d.) on different (nonparallel) pla-

quettes of the Fock-space graph, with a real and tunable average holonomy.

The NAdS2/NCFT1 physics arises when the variance of the fluxes is tuned to zero

after the thermodynamic limit is taken. These conditions should be understood as

large-system-size statements, and deviations suppressed by sufficiently high powers of

system size are allowed. We can construct many more NCFT1 models based on the two

given conditions. For example, we can take a p-local model and start adding random

phases on each qubit (as long as these new phases are also generated by random uniform

fluxes), and we end up with a Hamiltonian that looks like the right-hand side of equation

(3.11).

We stress that the two conditions we give are sufficient but not necessary for hav-

ing NAdS2/NCFT1 physics, as there are regimes that go beyond the q-combinatorics
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of chord diagrams, such as the fixed p large N limit of the SYK model which gives

NAdS2/NCFT1 but breaks the second condition. However, the two conditions should

not be broken too violently. For example, we can strongly break the uniformity re-

quirement by assigning an independently random phase to each edge of the hyper-

cube [35], and we end up with radically different combinatorics which will not deliver

NAdS2/NCFT1 physics; a local spin chain model strongly breaks the second condition

(much more so than the fixed p SYK), because it can only support nonzero fluxes on

a vanishingly small fraction of the Fock-space plaquettes. Hence we would like to sug-

gest that the picture of random uniform Fock-space fluxes is relevant even outside the

chord diagram regime, however it is far from clear what the precise characterization is

in that case. Some nontrivial modification is likely needed, since some p-local models

do not reproduce NAdS2/NCFT1 physics in the fixed p large N limit (even though

they do in the double-scaled limit); for example the fixed p SYK model works but the

Erdős-Schröder p-spin model likely does not because of a replica-off-diagonal ordering

[36], and a tentative complete characterization must be able to distinguish them.

4.4 How can the fluxes arise?

If random uniform flux is indeed a unifying feature of NCFT1 microscopic models,

we then need an explanation on how such fluxes could conceivably arise in a UV-

complete holographic CFT such as the N = 4 super Yang-Mills theory. We speculate

that such disordered fluxes can arise as Berry curvatures [37]. Since near-AdS2 is the

near-horizon long-throat geometry of a near-extremal black hole, and as such there

is a separation of timescales of the near-horizon and far-away-from-horizon degrees

of freedom. Holography suggests that there should be a separation of timescales on

the CFT side as well which entails adiabaticity. We might generically expect Berry

curvatures to appear on the slow subsystem once the fast subsystem is integrated

out. The paradigmatic way in which this happens is through the Born-Oppenheimer

approximation (BOA) [38–40], but at the present moment it is unclear to us if the

original BOA works here because our slow degrees of freedom are chaotic, whereas BOA

needs the slow part to be approximately integrable.1 It is independently interesting to

ask if and how BOA needs to be replaced in such a situation, even in the context of

few-body physics. Since black holes correspond to chaotic states on the CFT side, the

resulting Berry fluxes will be pseudorandom and therefore can be modeled as disorders

[41–43], and adiabaticity makes the disorders naturally quenched in time and smoothly

1When dealing with the fast degrees of freedom, BOA replaces the slow degrees of freedom by a set
of quantum numbers, which are approximately conserved due to the timescale separation. However,
this cannot hold if the slow part is chaotic: if there were a set of (approximate) quantum numbers
that completely fixes the state, then the state is (approximately) integrable.
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varying (though not necessarily strictly uniform) across the slow degrees of freedom.

That is, adiabaticity alone already ensures that some parts of the conditions we listed

in section 4.3 are not going to be violated too strongly. There is no particular reason to

think that the fluxes generated this way should be statistically independent, but this is

not a serious obstruction since we know the SYK model with fixed p is a NCFT1 model

as well, and its Fock-space flux correlations play a non-negligible role. Finally, Berry

phase is a fairly ubiquitous phenomenon in quantum mechanics, which may correspond

to the fact that NAdS2 is a fairly ubiquitous near-horizon geometry on the gravitational

side.

5 Operator growth

Both the Parisi model and the DS-SYK model share the same chord expansion. In

this section we suggest that there is a deeper relation which is that a Parisi hypercube

model can be used as a fairly universal model for operator growth in p-local systems.

Here we will just present the construction and leave its further analysis to future work.

We will comment on the relation to the gravitational two-sided Hilbert space, and to

Krylov complexity at the end of the section.

5.1 “Growth” of the thermofield double with temperature

The simplest starting point for the construction is to consider the DS-SYK model’s

thermal density matrix e−βH , and how it “evolves” with respect to β. Recall that

H =
∑

I JIΨI , and expand e−βH as a sum of products of the ΨI (we will discuss

shortly to what extent this is a faithful representation). When discussing the DS-SYK

model, we will use the notations of section 4.

Consider now the following hypercube in operator space (i.e., H†⊗H). First choose

some arbitrary ordering (denoted by Λ) over the set of multi-indices. Denote ordered

product over the multi-indices (from smallest to largest) by
∏

I∈Λ. For each vector of

{0, 1}, of length
(
N
p

)
, define the following operators

O(n⃗) =
∏
I∈Λ

ΨnI
I , nI ∈ {0, 1} (5.1)

so that the expansion above becomes

e−βH =
∑
n⃗

an⃗O(n⃗) (5.2)
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Since O(n⃗) are the points on a hypercube, then we can consider e−βH as a state on the

hypercube (embedded into states of H† ⊗H).

Next consider the “evolution” of the density matrix with β, ∂βe
−βH = −e−βHH.

When written as a wave function on the hypercube above we can consider this evolution

as generated by an effective Hamiltonian, made out of terms that change a single digit

in n⃗, so we exactly have a motion on the hypercube. The main difference from the

Parisi model, as we defined it before, is that instead of taking a trace over all the states

of the hypercube, we start at the origin n⃗ = (0, 0, .....) which corresponds to β = 0 or

the identity operator. The regime in which the computation is strictly valid is when we

start from the origin and do any finite number of steps2, i.e., a number of steps which

does not scale linearly in d.

The remaining issue is to evaluate the phases. This is straightforward since moving

around the plaquette just amounts to a phase

ΨIΨJΨIΨJ = (−1)|I∩J | (5.3)

and the average of the phases is just ⟨(−1)|I∩J |⟩ = q. In the SYK model, the phases

along different plaquettes have complicated correlations. What the Parisi independent

phase approximation does is replace them by independent random variables on pla-

quettes, with the same mean. So the Parisi model is a typified version of the growth

of e−βH with β in the SYK model. In the DS-SYK model, we do not encounter the

complicated correlations of the SYK model because we do a finite number of steps [in

the large d =
(
N
p

)
limit] around the operator hypercube. This statement is the same as

the statement that there are no triple intersections in the DS-SYK limit.

Finally, we would like to comment on the “faithfulness” of the expansion (5.2).

Clearly it is not, since for example there are many relations of the form ΨIΨJ = ΨJ ′ΨI′

for appropriate I, J, I ′, J ′, (and even more constraints from higher-order products). But

this problem is also solved by taking a finite (but arbitrarily large) number of steps

from the origin when d → ∞. In this limit, such redundancies in the description are

of measure zero. If we use the sparse (double-scaled) SYK this problem is further

alleviated. This is because the sparse Hamiltonian typically contains ∼ N (instead of

Np) terms in the random sum, so the system has to time evolve much longer before we

run into the redundancies.

The discussion here is a refinement of the discussion in [44] of the Krylov complexity

in the DS-SYK model. The authors there start with the so-called |0⟩ state in the

chord language, which (for some computational purposes) is the identity matrix on

the Hilbert space, i.e., 1 ∈ H† ⊗ H, and the mainly discussed evolution there is the

2Actually, it could be valid also for a number of step ∝ dα, α < 1.

– 26 –



one-sided evolution. The chord number, or Krylov complexity as discussed there, is

just the distance |n| from the origin. In section 5.3 we will show that in the hypercube

model, this notion of complexity is precisely the coarse description of the microscopic

Hamming distance on the hypercube.

5.2 More general operators

In section 5.1 we considered the evolution of the density matrix of the DS-SYK model

as a function of β. This is not the standard time evolution of a generic operator. So

we would like to see whether there is a hypercube growth model for other operators.

It turns out that different classes of operators can have different hypercube growth

models. For example, let us consider two classes of operators: a single monomial of

fermions ΨI , and operators which we will call simple, of the form O =
∑

I cIΨI , where

the cI are i.i.d. random numbers. In the SYK model the simple operators are the

probe operators used to define correlation functions. The nomenclature might be a bit

unusual. Sometimes in literature monomials are referred to as “simple”. As we will see

below, they are actually difficult to deal with, whereas what we call simple here have

a universal behavior, for example in the chord language we discussed.

5.2.1 Simple operators

Let us focus first on simple operators O =
∑
cÎΨÎ for i.i.d. Gaussian cÎ , and as before

Λ is some order on the set of Î. We will denote the order by Λ = {I1, I2, ....Imax} and

the reverse order by Λ̄ = {Imax, .., I2, I1}. The relevant hypercube is now

O(m⃗, n⃗) =
∏
Ĵ∈Λ̄

Ψ
mĴ

Ĵ
· O ·

∏
Î∈Λ

Ψ
nÎ

Î
, mĴ , nÎ = 0, 1. (5.4)

Time evolution

∂tO(t) = i

(∑
I

JIΨI

)
O(t)− iO(t)

(∑
I

JIΨI

)
(5.5)

is now simply hopping on two independent lattices, one associated with the left and

one with the right. As before this description is valid only when the number of hopping

is finite in the large d limit.

Finally, there is one interesting subtlety here which complicates things relative to

the hypercube model, and that is the fact that states in the hypercube with m⃗ + n⃗

fixed are not orthogonal. For example, suppose we start at some point in the double

hypercube which we denote by O. We then hop by ΨI either in the left or in the right
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hypercube. In this case we have two states that mix and the matrix of norms is(
Tr(OΨIΨIO) Tr(OΨIOΨI)

Tr(OΨIOΨI) Tr(ΨIOOΨI)

)
∝
(
1 qα

qα 1

)
(5.6)

where α is determined by the length of O. This is positive definite with eigenvalues

1±qα > 0. The general structure is similar to the Hilbert space discussed in q-Gaussian

processes [45–49], and we expect that the mixing Hilbert space will be nondegenerate

in general, but we have not proven this.

This is also just the inner product for the two-sided Hilbert space discussed in [14].

In fact, if we keep track only of the how far we are from the origin in each hypercube,

i.e., |m| and |n| separately, then we obtain the gravitational two-sided solution with

a particle inserted in the middle with distances |m| and |n| from the left and right

[14, 50, 51].

5.2.2 Monomials

We will not discuss much about operators that are single monomials. The complication

is that now there is a specific ±1 factor which occurs when we go from ΨÎO to OΨÎ .

This means that we should work with a single-sided lattice

O(n⃗) = O ·
∏
Î∈Λ

Ψ
nÎ

Î
, nÎ = 0, 1 (5.7)

where the operators ΨÎ are the ones that appear in the Hamiltonian. Evolution is

now hopping on the single lattice but we can hop with one of two phases, depending

on whether we apply ΨÎ on the left or on the right. The regime of validity of this

description is as discussed before.

We will not discuss this further, since it is difficult to make a robust statement due

to the phases above.

5.3 Chord Krylov complexity as coarse-grained Hamming distance

We would like to end with a few more words on the notions of Krylov complexity and

coarse graining implemented by chords. It has been shown in the DS-SYKmodel [12, 13]

and in the Parisi model itself [16] that the averaged moments in the above regime can

be equivalently computed as the expectation value of a q-deformed oscillator system,

2−d
〈
TrHk

〉
= ⟨0|T̂ k|0⟩, (5.8)
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where

T̂ = a+ a†, , aa† − qa†a = 1, a|0⟩ = 0. (5.9)

The oscillator vacuum state |0⟩ is interpreted as a zero-chord state, and by applying

a† operator n times on the vacuum state we get an n-chord state |n⟩. Note that

the equality (5.8) only holds at leading order in 1/d and for k ≪ d, and hence the

replacement of H by T̂ is essentially a coarse-graining procedure. In the Parisi model,

the correspondence between microscopic operators and the coarse-grained operators is

particularly simple. To see how it works, we replace the trace on the left-hand side of

equation (5.8) by a state expectation value. The choice for such a state is nonunique,

but for convenience we can choose it to be annihilated by all T−
µ , namely the position

eigenstate |x⃗⟩ with xi = −1/2 for all coordinate components. It then becomes clear

that

− 1√
d

∑
µ

T+
µ

coarse−→ a†, − 1√
d

∑
µ

T−
µ

coarse−→ a. (5.10)

We note that a very similar coarse-graining procedure was proposed in [48]. The n-

open-chord state |n⟩ is then the coarse description of a linear superposition of all

microstates that are n-Hamming distance (in terms of hypercube coordinates) away

from the starting position x⃗. In [44], chord states |n⟩ are identified as Krylov basis of

the transfer matrix T̂ and the time evolution of a chord state has the form

|ϕ(t)⟩ = e−iT̂ t|ϕ(0)⟩ =
∑
n

ϕn(t)|n⟩, (5.11)

which has the chord Krylov complexity

C(t) =
∑
n

n|ϕn(t)|2, (5.12)

which is essentially the expectation value of open chord numbers. In the Parisi hy-

percube model, this quantity has a clear-cut meaning as the coarse description of the

average Hamming distance that a microstate has traveled on the hypercubic Fock-space

graph. In DS-SYK, such an identification is less straightforward since the Hamiltonian

flips infinite number (∼
√
N) of qubits.

6 Subleading moments, sparse SYK, and bulk vertices

In [17, 52] it was observed and proved that the hypercube model and the (double-

scaled) sparse SYK model share the same expression for moments up to subleading

order. Equipped with our new understanding that an SYK model is also a model of
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Fock-space fluxes, we explain why this has to be the case in this section. The gist is that

if a model has—on top of the two conditions listed in section 4.3—also an expansion

in terms of node degree of its Fock-space graph, then its subleading (in inverse node

degree) moment has a unique form independent of the finer details of its microscopics.

This implies the form of the subleading moments is also very ubiquitous, which should

be found in many more models other than just the hypercube model and the sparse SYK

model. Furthermore, we will observe that when the same subleading consideration is

applied to operator probes, we get diagramatics that are suggestive of a bulk interaction

vertex with the correct suppression factor due to dimensional reduction down to AdS2.

Let us now begin with a very simple rederivation of the subleading combinatorics for

the hypercube model, since the approach used for the derivation in [17] is unnecessarily

complex.

6.1 Subleading combinatorics for moments

The general expression for moments
〈
TrH2k

〉
is given by equation (3.1), and we noted

that the subscripts form k distinct pairs at leading order. Therefore, such contributions

always give a prefactor of d(d− 1) . . . (d− k+1)/dk, multiplying the q-moment expres-

sions such as equation (3.3). This implies that the subleading correction to 2−d
〈
TrH2k

〉
always has a piece of contribution of the form

−1

d

(
k

2

)
M leading

2k , (6.1)

where M leading
2k is given by equation (3.3).

What is more interesting is the genuinely new subleading contributions that account

for the further coincidence of the k pairs of the subscripts. Namely, hoppings of the

form ∑
µ,µ1,...,µk−2

〈
Tr(Dµ1 · · ·Dµ · · ·Dµ · · ·Dµ · · ·Dµ · · ·Dµk−2

· · · )
〉

(6.2)

which mean that we consider Fock-space paths where one of the directions (the µ direc-

tion) is traversed four times [16, 22]. Hence, this subleading contribution to
〈
TrH2k

〉
is

obtained by summing over all possible insertions of a quadruple of identical hoppings

into
〈
TrH2k−4

〉
. We show one example in the left panel of figure 3, since the quadruple

is a group of four operators with identical subscripts, there is no natural way to divide

them into two pairs, so we show it as a “bulk dot” in the disk with four legs reaching

out to the circumference.

Upon such an insertion, if an H chord in the
〈
TrH2k−4

〉
intersects with odd number

of the quadruple legs then we would have exactly one q factor, and if it intersects with
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Figure 3. Left: a diagram for a subleading contribution to
〈
TrH8

〉
, which evaluates to q.

Right: subleading diagram for probe four-point function; in general the four probes can carry
different fluxes, and we draw arrows on the legs to indicate the flux conservation condition
(6.9). This diagram evaluates to q̃2 if all four legs carry the same flux. In both figures, the
solid circle at the center of the disk means that this is best considered as a contact point
(bulk dot) of four legs rather than an intersection of two chords.

an even number of legs we would have none. This is because in equation (6.2) the

hoppings along the µth direction must occur as

either · · ·T+
µ · · ·T−

µ · · ·T+
µ · · ·T−

µ · · · or · · ·T−
µ · · ·T+

µ · · ·T−
µ · · ·T+

µ · · · . (6.3)

So when moving a Dν across two Dµ’s, a T±
ν operator always crosses one T+

µ and

one T−
µ . Then according to the relation (2.4), it will get two exactly opposite phases

from the two crossings, which cancel. By the same reasoning, if an H chord crosses

three quadruple legs we get a factor of q. Hence, the (genuinely new) subleading chord

diagram rule is

M sub
2k =

1

d

∑
CD(k − 2) with a
quadruple inserstion

qNo. of H−H inters.q(No. of H chord–quaduple leg inters.) mod 2, (6.4)

where the sum is over all chord diagrams with k−2 ordinary H chords and a quadruple

insertion (so there are 1
3

(
k
2

)
(2k−1)!! diagrams). Note that, as expected, the factors are

the same regardless of whether an H chord crosses the Dµ chords to the left or to the

right of the bulk dot.

In [17] the same combinatorics were obtained by considering all possible ways of

degenerating lattice paths for
〈
TrH2k

〉
, and there it was called the “merge and delete”

prescription: merge refers to merging a pair of chords in
〈
TrH2k

〉
, which is equivalent

to an insertion of the four-legged quadruple into
〈
TrH2k−4

〉
, and delete corresponds to

the mod 2 operation. The sparse double-scaled SYK model has the same expression

(6.4) for its subleading moments, which we will explain soon. The first few moments

up toM sub
18 were already computed explicitly in the early work on the hypercube model
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[22], but a simple algebraic expression for M sub
2k is still lacking, except for the special

cases of q = 1 and q = 0 (see appendix D).

6.2 Probes at subleading order and bulk interactions

Now let us apply the same subleading consideration to probe operators, and we will

suggest that these subleading corrections are relevant for bulk interactions. We would

like to consider probe hoppings of the type µµµµ and relate it a bulk four-point vertex.

For probes we have the freedom to assign different fluxes to each probe, namely we can

insert

· · · D̃(1)
µ · · · D̃(2)

µ · · · D̃(3)
µ · · · D̃(4)

µ · · · (6.5)

where D̃
(i)
µ is defined by a flux F̃ (i). Again, in terms of forward and backward hoppings,

they can only appear in the order of either

· · · T̃+,(1)
µ · · · T̃−,(2)

µ · · · T̃+,(3)
µ · · · T̃−,(4)

µ · · · (6.6)

or

· · · T̃−,(1)
µ · · · T̃+,(2)

µ · · · T̃−,(3)
µ · · · T̃+,(4)

µ · · · . (6.7)

The four fluxes need to obey a constraint, as can be seen by computing

2−dd−2
∑
µ

∑
x=±

〈
Tr(T̃ xµ,(1)T̃

−x
µ,(2)T̃

x
µ,(3)T̃

−x
µ,(4))

〉
=

1

d

〈
cos

F̃ (1) − F̃ (2) + F̃ (3) − F̃ (4)

4

〉d−1

.

(6.8)

This means we must have

F̃ (1) + F̃ (3) = F̃ (2) + F̃ (4) (6.9)

to avoid exponential suppression. At large d this resembles a four-point vertex that

imposes a conservation law for fluxes. This conservation is naturally satisfied by the

uncrossed correlators ⟨O1O1O2O2⟩ and ⟨O1O2O2O1⟩ considered before. In the right

panel of figure 3, we show this subleading contribution as a quadruple insertion with

four legs (dashed lines), and in this case we attach arrows to the legs to imply the flux

conservation. This mimics a four-point bulk vertex if we think of the disk as an AdS2.

The strength of this four-point vertex is 1/d according to equation (6.8), and this is

consistent with the expectation from compactification of a gravitational theory in the

bulk down to two dimensions. For example, consider the following compactification

11D SUGRA → AdS4 × S7 → AdS2 × S2 × S7. (6.10)
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The first arrow comes from a background solution of supergravity (SUGRA) and the

second arrow comes from going to the near-horizon limit of an extremal black hole in

AdS4. We anticipate a scalar probe φ that descends from one of the components of the

metric tensor in 11 dimensions, and let us check what the natural scale for the φ4 term

would be after compactification. We only need to look at the Einstein-Hilbert term

S ∼ 1

G11

∫
d11x

√
−gR + . . . (6.11)

where G11 is the 11-dimensional Newton’s constant. After compactification and taking

the lowest modes on S7, we expect AdS4 effective action to be

S ∼ 1

G11

∫
d4x

√
−g
[
A(∂φ)2 +Bφ4

]
+ . . . (6.12)

where we have only included the kinetic and quartic terms of φ. The constants A and

B are powers of the radius lAdS of S7 and AdS4. Given that φ is dimensionless (since

it was a metric component), we deduce that

SAdS4 ∼
1

G11

∫
d4x

√
−g
[
l7AdS(∂φ)

2 + l5AdSφ
4
]
+ . . .

∼ 1

G4

∫
d4x

√
−g
[
(∂φ)2 + l−2

AdSφ
4
]
+ . . .

∼
∫
d4x

√
−g
[
(∂φ̂)2 + (l−2

AdSG4)φ̂
4
]
+ . . .

(6.13)

where to obtain the second line we absorbed some of the lAdS dependence into G11 to

write the action in terms of four-dimensional Newton constant G4, and to canonically

normalize the scalar we defined

φ̂ :=
φ√
G4

(6.14)

which gives us the last line. Now in going to the near-horizon limit of an extremal

black hole we encounter a new length scale: the black hole radius r0. Repeating the

same compactification procedure down to AdS2 we get

SAdS2 ∼
∫
d2x

√
−g
[
r20(∂φ̂)

2 +
G4r

2
0

l2AdS

φ̂4

]
+ . . .

∼
∫
d2x

√
−g
[
(∂φ̄)2 +

G4

r20l
2
AdS

φ̄4

]
+ . . .

(6.15)
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where we obtained the canonically normalized action for the scalar by defining

φ̄ := r0φ̂ =
r0φ√
G4

. (6.16)

To obtain the connected four-point function of the boundary from the bulk, we will

need to integrate the bulk vertex of φ̄ over the AdS2. If we have a large black hole with

r0 ≫ lAdS then the AdS2 radius will be the same as the AdS4 radius lAdS [53], and this

cancels the 1/l2AdS factor. We then conclude

⟨φ̄(τ1)φ̄(τ2)φ̄(τ3)φ̄(τ4)⟩c ∼
G4

r20
∼ 1

SBH

, (6.17)

where SBH is the Bekenstein-Hawking entropy of the black hole. We can similarly

consider the reduction of 10D type IIB → AdS5 × S5 → AdS2 × S3 × S5 and we will

end up with the same entropic suppression. Since SBH ∼ d in the Parisi model, we

conclude the subleading suppression factor 1/d for a four-point insertion is consistent

with the existence of a four-point bulk vertex in the dual AdS2 theory in terms of the

interaction strength. To summarize, we have two hints which suggest the subleading

four-point function of the Parisi model may be dual to a AdS2 four-point vertex:

• The corresponding diagram has four legs which cannot be divided into pairs,

mimicking a contact interaction. We take figure 3 as an inspiration.

• The suppression factor is consistent with the gravitational compactification result

from the bulk.

However, we will need to work out the actual form of the subleading four-point function

before we can verify or falsify this identification, which is beyond the scope of the

present paper. We can however write down the full chord diagram rule for such four-

point insertions, the derivation is entirely analogous to the one that led to equation

(6.4). The only complication is that there can be four different fluxes now, so if an H

chord crosses one of the four legs, it gets a factor of

q̃i =

〈
cos

F + F̃ (i)

2

〉
, (6.18)

but if an H chord crosses two legs, for example D̃
(1)
µ and D̃

(2)
µ , then it gets a factor of〈

cos
F̃ (1) − F̃ (2)

2

〉
. (6.19)
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If all probe fluxes are equal F̃ (1) = F̃ (2) = F̃ (3) = F̃ (4) = F̃ , then we have again a

succinct formula,

2−d
〈
TrHk4OHk3OHk2OHk1O

〉
sub

(6.20)

=
1

d

∑
CD(k − 2) with a

quadruple O−insertion

qNo. of H−H inters.q̃(No. of H−O leg inters.) mod 2.

If (still a big if) this “subleading hopping path ↔ bulk interaction vertex” correspon-

dence holds, then such Fock-space graph models can be a versatile tool for building

AdS2 bulk interactions. We can imagine using probes that allow n-step loop paths

to model an n-point bulk vertex. For example, we can add to probe operators some

hopping terms that hop along the face diagonals of the elementary plaquettes, then

there can be nonzero three-point functions.

We do not claim this discussion captures all the subtleties of subleading hologra-

phy. For example, [54] discusses the subleading effects of dilatons as an obstruction for

finding SYK-like boundary duals. Our discussion does not touch upon such consider-

ations. Moreover, the hypercube model also contains too many light fields, as in the

case of various SYK-like models.

6.3 Connection to the sparse SYK model and the ubiquity of subleading

combinatorics

As we have seen, the 1/d expansion in the hypercube model is essentially a node degree

(of the Fock-space graph) expansion: leading order is where every direction is traversed

exactly twice, subleading order is where one of the directions is traversed four times,

and subsubleading order will be where one direction is traversed six times or two of

the directions are traversed four times, and so on. Since we have established that the

DS-SYK model is in the same class as the hypercube model, we may wish to investigate

what happens with its node degree expansion. Analogous to the hypercube model, the

subleading (in node degree) term has the form

Tr(· · ·ΨI · · ·ΨI · · ·ΨI · · ·ΨI · · · ) (6.21)

where the index set I is summed over. In the SYK model the node degree is
(
N
p

)
, so this

type of contribution is suppressed by a factor of Np compared to the leading moment,

which is exponentially small in the double-scaled limit where p ∼
√
N . However, as

alluded to in the previous sections, in SYK there are also higher-order corrections from

the correlations of the fluxes, which in the p-local operator language corresponds to

considering the effect of nonzero triple and higher set intersections. It turns out such
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corrections go as 1/p ∼ 1/
√
N [13, 27, 34], which is much bigger than the correction

from (6.21) and makes it invisible in the large N expansion.

So what does it take to make the SYK type of correction (6.21) into a parametrically

independent one? One way to achieve it is to simply introduce a second independent

parameter into the model that tracks the node degree expansion but is unaffected by

flux correlations: the sparse SYK model [52, 55] does precisely this. In the sparse SYK

model a second discrete random variable xI is introduced,

Hsparse =
∑
I

xIJIΨI . (6.22)

The new random variable xI takes the value of either 0 or 1, and xI with different

subscripts are independently and identically distributed. The expectation value ⟨xI⟩ ∈
[0, 1] measures how sparse the Hamiltonian matrix is: the smaller ⟨xI⟩ is, the more

sparse the Hamiltonian is. We trade ⟨xI⟩ for another equivalent parameter k defined

by

kN := ⟨xI⟩
(
N

p

)
(6.23)

where k can have a scaling anywhere between N0 to Np−1, and kN is the average

number of operator monomials that appear in the right-hand side of (6.22) and thus

keeps track of the node degrees of the Fock-space graphs. This second parameter allows

us to expand the moments in 1/kN while staying in the double-scaled limit. It was

observed in [52] that as a function of the q-parameter, such an expansion has the form

(sparse SYK moments)double scaled =Parisi leading +
3

kN
× Parisi subleading

+O(1/(kN)2), (6.24)

where the 1/(kN)2 term does not agree with the hypercube model. One can further

study the deviation from the double-scaled result due to flux correlations of different

faces of the Fock-space graph (triple or higher intersections for I’s), and the effect is to

add terms suppressed in powers of 1/p (or mixed powers of 1/p and 1/kN) to the above

expression. In other words, the introduction of the node degree parameter k allows us

to perform a double expansion in 1/kN and 1/p for the sparse SYK, and since k never

enters the flux correlation effect, there will be no ambiguity in how to organize the

double expansion.

Hence, the sparse DS-SYK is not only the same as the hypercube model in that

they both satisfy the two conditions listed in section 4.3, which ensures they have the

same leading moments, but also that they have an expansion with the same graph-
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theoretic interpretation (the node degree expansion). This alone does not yet ensure

the subleading moments to coincide, after all, the two models are not identical mi-

croscopically and we would generically expect higher-order expansion to capture the

microscopic differences. After taking the ensemble average, such difference should man-

ifest as different correlation patterns of the fluxes. We have made sure that fluxes on

different plaquettes are independent, but there is always the self-correlation. The self-

correlation effects can be seen when a loop circles the same plaquette for more than

once. For example, if a loop circles a plaquette twice, its value is ⟨cos 2F ⟩ which in the

hypercube model cannot be simply related to the value of q = ⟨cosF ⟩ unless we assume

simple forms of the disorder distribution, whereas in the sparse SYK model its value

is simply ⟨cos 2F ⟩ = 1 since F is either 0 or π. However, this effect can only be seen

from the subsubleading order because to loop around a plaquette twice, two distinct

directions must be traversed four times each.

In short, the reason that equation (6.24) holds is that we are doing the same

expansion on models defined by random uniform and i.i.d. Fock-space fluxes, and

although there are differences in the microscopics of the two models, such difference

cannot be seen until subsubleading order because flux self-correlations can only be

detected by looping a plaquette more than once. With this understanding, it is clear

the subleading moments of the hypercube model must also be very ubiquitous, that is,

a model must have a subleading (in node degree) moment in the form of equation (6.4)

as long as it satisfies, on top of the two conditions listed in section 4.3, also a third

condition:

3. It has an expansion in large node degree of the Fock-space graph.

One easy new example to construct would be to take the double-scaled p-spin model

(4.16), and sparsify it in the same way as the sparse SYK construction, and there are

many more. One may have noted that the factor of three in front of the subleading

term of equation (6.24) does not quite follow from this reasoning. This is an artifact

of the Gaussian averaging in the sparse SYK model; namely before Gaussian averaging

we have J4
I = (J2

I )
2 but after averaging we have ⟨J4

I ⟩ = 3 ⟨J2
I ⟩

2
. The “binary sparse

SYK” model proposed in [56] avoids Gaussian averaging and is likely an even closer

analog of the Parisi hypercube.
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7 Is there a spectral gap?

In [17] a connection was made between the Parisi model and the two-site SYK model

proposed by Maldacena and Qi [57],

HMQ = HSYK,L +HSYK,R + iµ
∑
k

ψkLψ
k
R, (7.1)

where ψkL and ψkR are two sets of Majorana fermions defined on two spatial sites that

satisfy

{ψka , ψlb} = 2δabδ
kl, a, b ∈ {L,R}, k, l ∈ {1, . . . , d}. (7.2)

It was noted that at zero flux the Parisi Hamiltonian H0 (which is also the graph

adjacency matrix for the hypercube) is the same as the coupling term of the Maldacena-

Qi (MQ) Hamiltonian. Namely when the left and right fermions are written in the

appropriate Jordan-Wigner representation [17], we have

√
dH0 = i

∑
k

ψkLψ
k
R. (7.3)

We may say the zero-flux Parisi model coincides with the strong coupling limit (µ = ∞)

of the MQ model. A natural question follows: if we turn on a small flux on the

hypercube, does it retain some MQ physics away from the strong coupling limit? A

useful indicator for the answer is the spectral gap (the gap between the ground state

and the first excited state). In the thermodynamic limit of the MQ model, there is an

order-one spectral gap for the full Hamiltonian (in the normalization where the free

energy is extensive) induced by the coupling term, which separates the unique ground

state from the continuum states. This gives the MQ model two phases: a traversable

wormhole phase below the gap and a two-black-hole phase above the gap.

It should be noted that the moment method we have used so far is not adequate

to determine if there is a unique gapped ground state: such a state will contribute an

exponentially small amount to moments, which is invisible to any order in 1/d. In this

sense, the gap question is interesting independent of its possible relation to the MQ

model: if a gap remains in the thermodynamic limit, then our previous results derived

from the moment method are only valid above the gap scale. Based on numerical

simulations, it was claimed in [17] that the Parisi model does possess a spectral gap for

flux smaller than π/2. However, the numerics of [17] rely on relatively small values of

d (up to d = 14, this is the same size as N = 28 in the SYK). We would like to revisit

this question through both a perturbative analysis and a numerical analysis for larger

values of d up to d = 27. The disorder distribution we use will be Parisi’s original

– 38 –



choice Fµν = ϕSµν where Sµν = ±1 with equal probability, and this is the same choice

used in [17]. We will find the following:

• The numerical results conclusively show that there is no gap for
√
dH for suffi-

ciently large d if the flux ϕ ≥ 0.3π.

• The most likely scenario is that
√
dH (and hence H) is gapless for any value of

fixed nonzero flux in the large d limit.

Thus we believe the statements in [17] regarding the spectral gap need to be revised: in

fact there is no spectral gap for any nonzero flux at large d, and the analogy with the MQ

model probably does not hold beyond the zero-flux case. Note that the Hamiltonian

used in [17] differs by a normalization factor of
√
d from the one used in this paper,

namely what we write as
√
dH presently is H in [17].

As an anticipation of what is to come, in section 7.1 we analytically solve for the

eigenvalues and eigenstates for the zero-flux Hamiltonian
√
dH0, to set up notations for

the coming perturbative analysis. In section 7.2 we study the problem perturbatively

and discuss the implications on the gap closing behavior. In section 7.3 we demonstrate

numerically that the gap closes at least for all ϕ ≥ 0.3π, and together with the pertur-

bative analysis this poses strong evidence that the gap should close for all fixed nonzero

flux. Finally, in section 7.4 we discuss what happens in the scaling regime ϕ ∼ 1/
√
d;

this is the regime where
√
dH gives rise to a free energy that is extensive in d.

7.1 The spectrum for the zero-flux Hamiltonian

From equation (2.3) we get that for zero flux

√
dH0 = −

d∑
µ=1

σ1
µ. (7.4)

This is the same as the adjacency matrix for a d-dimensional hypercube graph, whose

spectrum is well known. However, we will still solve for the spectrum explicitly here to

set up notations that will be useful for the later perturbative calculations. It is clear

that the eigenstates of H0 are built from tensor multiplying the eigenstates of −σ1,

|−⟩ = 1√
2

(
1

1

)
, |+⟩ = 1√

2

(
−1

1

)
. (7.5)

The ground state of H0 is simply

√
dH0|0⟩ :=

√
dH0| − − · · · − −⟩ = −d|0⟩. (7.6)
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Flipping any one of the |−⟩ to |+⟩ will increase the energy by 2. We can denote the

eigenstates simply by the positions where we have |+⟩, for example

|2⟩ = | −+−− · · ·−⟩, |1, 3⟩ = |+−+−− · · ·−⟩ (7.7)

and so on. The complete set of eigenstates and their energies are

√
dH0|0⟩ = −d|0⟩

√
dH0|m1⟩ = (−d+ 2)|m1⟩,

· · ·
√
dH0|m1,m2, . . . ,md⟩ = d|m1,m2, . . . ,md⟩,

(7.8)

where {m1,m2, . . . ,mk} ⊂ {1, 2, . . . , d}. Namely the spectrum is

Ek = −d+ 2k, k = 0, 1, . . . , d (7.9)

with degeneracies

nk =

(
d

k

)
. (7.10)

The spectrum of
√
dH0 contains d gaps, each of which is of order 1. Note the eigenstates

have alternating parity quantum number

A|m1,m2, . . . ,mk⟩ = (−1)k|m1,m2, . . . ,mk⟩, (7.11)

where parity operator A was defined in equation (2.14).

7.2 A perturbative analysis

Since the Parisi model lacks a quasiparticle description, nor do we know how to apply

Schwinger-Dyson type of technique here, we will simply study perturbation theory using

the original degrees of freedom. Let us treat the small-ϕ Hamiltonian as a perturbation

of the ϕ = 0 Hamiltonian H0. The perturbative analysis in this section serves two

purposes: first, it indicates that the ground state mixes strongly with a finite fraction

of all levels; second, it will be a benchmark for our numerical analysis in the next

section, in the sense that we will know the numerical results are in a nonperturbative

regime when it deviates strongly from the perturbative predictions, and this is where

we look for the gap closing (or nonclosing) behavior.
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To first order in perturbation theory, the ground state energy is simply

⟨0|
√
dH|0⟩ = −d

〈
cos

F

4

〉d−1

= −d cosd−1(ϕ/4). (7.12)

We can estimate its range of validity by requiring the shift in ground state energy to be

smaller than the gap size of H0. Note that the relevant gap size is 4, namely the energy

difference between the ground state and the second excited states. This is because the

parity quantum number of the first excited states is different from that of the ground

state, so their wave functions can never mix. Hence we need

δE(1) =
√
d⟨0|H −H0|0⟩ = d(1− cosd−1(ϕ/4)) ≪ 4. (7.13)

For any fixed value of ϕ, the above criterion is always violated for sufficiently large d.

The criterion can be satisfied only if we take a scaling ϕ < 1/d, however this regime is

of no physical interest to us. The smallest scaling regime that is still physically relevant

is ϕ ∼ 1/
√
d as we shall see in section 7.4. This divergence is a familiar phenomenon in

many-body systems: a perturbation that is small per degree of freedom can still have

a large effect when the total number of degrees of freedom is large. This in itself does

not give us hints on whether the gap closes, and for that we need to study the mixing

between the unperturbed ground state and the excited states.

How strongly do other states mix with the ground state? We can consider the

second-order perturbative correction to the ground state, which requires the computa-

tion of

δE(2) = −
∑

|ψ⟩≠|0⟩

|⟨ψ|
√
dH|0⟩|2

Eψ − E0

, (7.14)

where |ψ⟩ are the eigenstates of H0 excluding the ground state. in fact, due to parity

symmetry, this only receives contributions from |ψ⟩ = |m1,m2, . . . ,m2l⟩ with 1 ≤ l ≤
d/2. The first nonzero contribution comes from the second excited states |ψ⟩ = |m,n⟩
with Eψ = −d+ 4:

⟨m,n|
√
dH|0⟩ = sin2

(
ϕ

4

)
cosd−3

(
ϕ

4

) ∑
µ̸=m,n

SµmSµn (7.15)

for the Parisi’s disorder distribution Fµν = ϕSµν with Sµν = ±1. The expression for

general disorder is given in appendix E. Upon taking modulus square and ensemble

averaging, summing over the |m,n⟩ states gives part of the second-order correction

– 41 –



(7.14),

−1

4

(
d

2

)
(d− 2) sin4

(
ϕ

4

)
cos2d−6

(
ϕ

4

)
. (7.16)

In fact, the specific choice of the disorder greatly simplifies the perturbative calculation

and the mixing of the ground state with any excited state takes the simple form

⟨m1, . . . ,m2l|
√
dH|0⟩ = (−1)l sin2l

(
ϕ

4

)
cosd−2l−1

(
ϕ

4

) ∑
µ̸=m1,...,m2l

Sµm1 . . . Sµm2l
.

(7.17)

Hence, upon ensemble averaging, the total second-order energy correction to the ground

state is

δE(2) =−
d/2∑
l=1

1

4l

(
d

2l

)
(d− 2l)[sin (ϕ/4)]4l [cos (ϕ/4)]2(d−2l−1)

=− [cos (ϕ/4)]2d−2

d/2∑
l=1

2l + 1

4l

(
d

2l + 1

)
tan4l

(
ϕ

4

)
.

(7.18)

We can find a bound for |δE(2)| by simply noting 3l ≥ 2l + 1 > 2l:

3

4
C ≥ |δE(2)| ≥ 1

2
C, (7.19)

where

C =[cos (ϕ/4)]2d−2

d/2∑
l=1

(
d

2l + 1

)
tan4l

(
ϕ

4

)
=− d cos2d−2(ϕ/4) +

1− cosd(ϕ/2)

2 sin2(ϕ/4)
.

(7.20)

An important point the result demonstrates is that the ground state mixes quite gener-

ically with all other states with the same parity quantum number, which are half of

all states. And although the contribution of a given higher excited state is suppressed

by higher powers of sin(ϕ/4), the suppression is offset by a smaller power in cos(ϕ/4)

and a larger degeneracy that is a higher power in d, and hence cannot be neglected.

Indeed, this second-order correction provides a sizable improvement on the agreement

with the numerical results (see figure 4). The situation in the MQ model is just the

opposite: the ground state only mixes with a vanishingly small fraction of all excited

states (see appendix F for a proof). This suggests the gap of the Parisi model should
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eventually close as d → ∞, unlike the MQ model. One may still raise the following

objection by simply reversing the logic on its face: suppose you do find a gap by a

powerful numerical calculation, then would you not post hoc declare that there must

be a hidden structure in the Hamiltonian, and there has to be a smarter way of doing

perturbation theory so that the mixing is small? This was exactly the position taken

by [17]: after observing that a gap seems to remain for all ϕ < π/2 (for small values of

d), they attempted to find a new basis so that the ground state better approximates

the thermofield double state. Indeed there is some ground to speculate ϕ = π/2 is a

special point because this is where the bulk q-Hermite density qualitatively changes

the shape. In the following section, we address this numerically by pushing for larger

values of d and demonstrate that the gap closes at least down to ϕ = 0.3π, below which

there is no more reason to think that some special structure can emerge.

7.3 A numerical analysis

One difficulty with the numerical computation of the Parisi model is that near the

spectral edge the finite-d properties converge rather slowly to their limits at d = ∞,

presumably due to the sparse nature of the Hamiltonian. This is contrary to the

ordinary SYK model, where for all values of q numerical results for d as small as 14

(same size as N = 28 SYK Majoranas) no visible spectral gap remains. For the Parisi

model, using the in-built sparse diagonalization algorithm in MATLAB and our cluster

resource, we obtain the energies of the lowest two levels for ϕ = 0.1π, 0.2π, 0.3π, and

0.4π from d = 14 to d = 27. For each value of d and ϕ we obtain results for ten disorder

realizations.3

In figure 4 we compare (the absolute values of) the numerical ground state energies

with the perturbative results. As we can see, up to d = 27, perturbative results are

still very accurate for ϕ = 0.1π and ϕ = 0.2π, so we cannot tell if their gaps close only

based on the numerical results. On the other hand, for ϕ = 0.3π and 0.4π the numerical

results clearly diverge from the perturbative results for larger values of d, and we should

look at the gap behavior in these nonperturbative regions. For these two fluxes, we

present two pieces of evidence that their gaps close. First is the comparison with the

spectral edge—namely the end of the continuous part of the spectrum—predicted by

3In particular, we use ten realizations of magnetic flux for each value of ϕ with varying d. For
example, for ϕ = 0.1π we can generate a flux Fµν for d = 30, and use subsets of Fµν to generate
Hamiltonians from d = 14 up to d = 27. In other words for each ϕ we generate ten disorder realizations
instead of (27− 14 + 1)× 10 = 140 realizations.
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Figure 4. Comparison of the perturbative and the numerical results. For ϕ = 0.1π the first-
and second-order perturbations give nearly identical results, so the solid and dashed blues
lines are hard to distinguish. For ϕ = 0.1π and ϕ = 0.2π the numerical results agree perfectly
with the perturbative calculations, whereas for ϕ = 0.3π and ϕ = 0.4π the numerical results
at larger d show clear deviations from the perturbative results.

Figure 5. Comparison of the ground state energies with the rescaled q-Hermite prediction
for the spectral edge [equation (7.21)]. The spectral edge is where the continuum spectrum
ends and a priori does not need to converge to the exact ground state, but we see for ϕ = 0.3π
and 0.4π they clearly converge. The blue solid line (q-Hermite prediction for ϕ = 0.1π) is
truncated at the top of the figure since it is well above other scales of the plot.
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Figure 6. Ground-state gaps as functions of d. Left: ϕ = 0.1π and ϕ = 0.2π. Right:
ϕ = 0.3π and ϕ = 0.4π. Gaps quite clearly close for ϕ = 0.3π and ϕ = 0.4π.

the q-Hermite density,4

Eedge = ± 2
√
d√

1− q
= ± 2

√
d√

1− cosϕ
. (7.21)

We plot the comparison in figure 5 and see that the ground state energies of ϕ = 0.3π

and 0.4π well converge to the continuum spectral edge (7.21), implying the closure

of the gaps. In fact, by comparing figures 4 and 5, we see the results converge to

the continuum spectral edges as soon as they start deviating significantly from the

perturbative predictions. Second, we plot the numerical spectral gaps as functions of

d in figure 6, and it is very clear that the ϕ = 0.3π and ϕ = 0.4π gaps close for large d.

At d = 27, the gaps’ ensemble fluctuations (not plotted) are comparable to the average

gap sizes. Especially for ϕ = 0.4π, the gaps become so small as early as d = 17 that the

effects of disorder fluctuations start making the curve look ragged rather than smooth.

Strictly from the numerical evidences, we can only conclude that the gaps close for

ϕ ≥ 0.3π. However, from the previous perturbative discussions we expect gaps to close

generically for any ϕ ̸= 0 due to strong mixing, unless some special hidden structure

emerges for the Hamiltonian. It was suggested by [17] that ϕ = 0.5π could be such a

special point, but the numerical results in this section quite conclusively rule out this

possibility, and there is no good reason to believe any other smaller flux is special.

Therefore, we believe there is no spectral gap that survives the d → ∞ limit at any

fixed nonzero flux.

4The moment method predicts that spectrum of H is a q-Hermite density whose edges are at
±2/

√
1− q.
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7.4 The extensive scaling

The scalings we have used so far (H or
√
dH) do not give extensive free energy (except

for the zero-flux Hamiltonian
√
dH0). in fact, any overall scaling of H cannot help

because the second cumulant and the fourth cumulant cannot be made simultaneously

extensive in d, which means we must scale q as well. We suggest 1 − q ∼ α/d (or

ϕ ∼
√

2α/d) is such a scaling for
√
dH, where α is an order-one positive constant.

This is analogous to how one formally obtains the large p SYK from DS-SYK. There

are two pieces of evidence for the extensiveness for this scaling. First, we can work

out the high-temperature expansion of the free energy (say, using the exact results for

moments listed in [22], up to the eighth moment), and it is extensive in d.5 Second, in

such a scaling the ground state energy seems to be extensive in d. For example, taken

at face value the first-order perturbative result (7.12) predicts that the ground state

energy moves to

−d cosd−1(ϕ/4) → −de−
α
16 , as cosϕ→ 1− α/d. (7.22)

and the second-order perturbative correction (7.18)–(7.20) is extensive in d as well in

this scaling. Furthermore, the q-Hermite rescaling gives

− 2
√
d√

1− cosϕ
→ − 2d√

α
, as cosϕ→ 1− α/d. (7.23)

Both estimates are consistent with an extensive ground state energy. However, we

caution that we should not take the exact values of these two estimates too seriously.

For perturbation theory, the reason is obvious; for the q-Hermite rescaling, other than

the fact that this scaling is not strictly within the range of validity of the moment

method we used, there is also a hard failure because it can violate the diamagnetic

inequality: if α < 4, this result would be smaller than −d which is the ground state

energy of H0 without any magnetic field.

The point on the diamagnetic inequality might require some explanation. The in-

equality states that an external magnetic field cannot decrease the ground state energy

of a spinless particle. The inequality is normally phrased for the covariant derivatives

−i∇⃗− A⃗ in the continuum; here we give a simple proof of it for the Parisi model based

on moments. We consider the situation of finite d and before any ensemble averaging.

It is clear that

Tr(H2l) ≤ Tr(H2l
0 ) (7.24)

5Strictly speaking we only have the results of some low-order cumulants which are extensive in d,
and we have not proved the extensiveness to all orders of the high-temperature expansion.
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because the contribution of each Wilson loop becomes smaller in the presence of a

magnetic flux, namely each Wilson loop gives 1 for Tr(H2l
0 ) and gives a cosine for

Tr(H2l). We in turn have

Tr(e−βH) ≤ Tr(e−βH0) (7.25)

by simply Taylor expanding the exponentials and applying the inequality (7.24). Taking

β → ∞ picks out the ground states on both sides, and we conclude

⟨Ω|
√
dH|Ω⟩ ≥ ⟨0|

√
dH0|0⟩ = −d. (7.26)

Since the Parisi model has a sublattice symmetry Γ5 so that eigenvalues always come

in ± pairs, this also implies that the largest positive eigenvalue of
√
dH is smaller than

d. We can also infer from this that the annealed free energy density of the model is not

divergent at very low temperatures, unlike that of the fixed p Erdős-Schröder model

[36].

Can we say anything about the gap behaviors in this scaling? The perturbative

results (7.18)–(7.20) suggest that the mixing of states is still strong in this scaling, thus

we are inclined to say the gap should also close, but to end on a cautious note we would

like a second method to corroborate this, which we do not have at the moment.

8 Conclusion and outlook

Using chord diagram techniques we demonstrate that the Parisi hypercube model has

the same correlation functions as those of the double-scaled SYK model. In addi-

tion, this model exhibits random matrix universality in its energy level correlations

as was shown in a previous work [17]. Hence, the hypercube model is an equally

good microscopic construction of NAdS2/NCFT1 near-horizon holography. We further

demonstrate that it is unlikely that the model has any spectral gap as long as the flux

is nonzero, thereby revising the claim made in [17]. In our view the main value of

this model is that its definition looks significantly different from the SYK model and

other p-local models. This stark contrast serves as a good filter for us to discern which

aspects of the microscopics are essential and which are spurious for NAdS2/NCFT1

physics. Our conclusion is that having a large amount of random uniform fluxes in the

Fock space is the important feature for NCFT1 microscopics. This characterization is

made precise for all the aforementioned models in the regime solvable by chord dia-

grams. This has several implications. First, it enlarges our toolbox for model building,

since (double-scaled) p-local models are a proper subset of the class of models we char-

acterized. More specifically, p-local operators play two roles at the same time: they

provide a Fock-space graph structure and generate a lot of Fock-space fluxes by virtue
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of their noncommutativity and nonlocality. But this is not necessary and these two

roles can be played by separate objects as we saw from the hypercube model. Second,

this may mean when we are looking for an NCFT1 by RG flowing a higher-dimensional

holographic CFT, we should more broadly look for signatures of such Fock-space fluxes,

and a speculative possibility is that such fluxes could arise as Berry curvatures.

Finally, let us end the discussion by making a list of some puzzles we would like to

see solved and some unexplored applications of the current work, some of which have

already been stated in the main text:

• The precise version of the characterization of NCFT1 microscopics we gave in

section 4.3 only applies to models solvable by q-combinatorics of chord diagrams.

However, the p-body SYK model with a fixed p is also a valid NCFT1 model but

does not strictly satisfy this characterization. We would like to find a way to

expand our current characterization to include such models as well. Perhaps a

useful case study is the p-spin model studied by Erdős and Schröder [24]. It was

pointed out in [36] that the fixed p version of this model develops some kind of

ordering at low energy, which is also consistent with the level statistics study of a

very similar model [58], and thus is unlikely to be a good model for NCFT1. Yet

its double-scaled limit has identical behavior to the double-scaled SYK. It maybe

worthwhile to understand this contrast in terms of microscopics.

• Related to the first point, it would be useful to have a better mathematical control

of the hypercube model with the scaling ⟨F 2⟩ ∼ 1/d, which we briefly discussed

in section 7.4. By analogy, this scaling could behave like the first large N then

large p limit of the SYK model. This could be an entry point for understanding

the more conventional limits of the SYK model in terms of Fock-space fluxes.

Yet another related question is if Schwinger-Dyson or GΣ action techniques are

applicable in any limit of the hypercube model.

• We speculated that a timescale separation and Berry curvature could be the

dynamical origin for the Fock-space fluxes we need. To test the feasibility of this

idea, it is desirable to find a toy model with slow and fast degrees of freedom, in

which if the fast ones are integrated out we could end up with a lot of random

fluxes. in fact, it is not entirely clear to us what this “integrate out” procedure

should look like because the slow degrees of freedom we are interested in are

chaotic, as was explained in section 4.4. A clearer understanding of this even in

the case of few-body physics is very welcomed.

• We pointed out in section 6 that the form of the subleading moments of the

hypercube model is also ubiquitous and more than a mere coincidence between
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the hypercube model and the sparse SYK model. It is therefore interesting to find

a solution to the subleading moment problem. A related fact is that at subleading

order the insertion of four probe operators shows a qualitatively correct behavior

of a nontrivial conformal four-point function, which could be interpreted to be

from a bulk four-point interaction vertex. We would like to see an explicit solution

of this as well.

• It is clear we can incorporate charge structures using the hypercube hopping op-

erators, by noting that [
∑

ν σ
3
ν/2, T

±
µ ] = ±T±

µ . We may try to use this fact to

construct NCFT1 models with conserved U(1) charges and/or supersymmetries,

analogous to those SYK-type models such as the complex SYK and supersym-

metric SYK. It should be explored what new possibilities this new construction

could offer.
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A Rotations in the symmetric gauge

To see why the Hamiltonian (2.3) is in a symmetric gauge, let us check how the Hamil-

tonian transforms under rotations. Consider a counterclockwise π/2 rotation in the

κ−λ plane (κ < λ) about the center of the hypercube, namely a rotation implemented

by (
x′κ
x′λ

)
=

(
0 −1

1 0

)(
xκ
xλ

)
(A.1)

in the κ and λ indices and identity in all the remaining d− 2 indices. Using the qubit

representation (2.2) of the lattice positions, we find the unique transformation that

implements the rotation in the tensor product representation:

Rκλ := σ1
λPκλ, (A.2)

where σ1
λ is the first Pauli matrix acting on the λth qubit subspace and Pκλ simply

permutes states in the κth subspace and the λth subspace. In a gauge-fixed system a

purely geometric transformation like Rκλ normally would not respect the gauge-fixing

condition, and an extra gauge transformation is needed. This is the case if we used the

axial gauge, but for the symmetric gauge (2.3) Rκλ is enough. Let us now demonstrate

this by rotating the physical flux and write the Hamiltonian using the gauge (2.3) with

the rotated flux. Under the rotation (A.1) the field strength transforms as

Fκλ → F ′
κλ = Fκλ, (A.3)

Fµν → F ′
µν = Fµν for µ, ν ̸= κ, λ, (A.4)

Fκν → F ′
κν = Fλν for ν ̸= λ, (A.5)

Fλν → F ′
λν = −Fκν for ν ̸= κ. (A.6)

In the symmetric gauge, the parallel transporters with the transformed field strength

are

T+
µ

′ =
∏
ν ̸=µ

e
i
4
F ′
µνσ

3
νσ+

µ . (A.7)

A simple calculation would confirm that

T+
µ

′ = RκλT
+
µ R

−1
κλ , µ ̸= κ, λ, (A.8)

T+
κ

′ = RκλT
+
λ R

−1
κλ , (A.9)

T+
λ

′ = RκλT
−
κ R

−1
κλ . (A.10)
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Hence the transformation rules on Dµ = T+
µ + T−

µ are simply

D′
µ = RκλDµR

−1
κλ , µ ̸= κ, λ,

D′
κ = RκλDλR

−1
κλ , (A.11)

D′
λ = RκλDκR

−1
κλ ,

and finally

H ′ = RκλHR
−1
κλ . (A.12)

Note that a rotation is not a symmetry before taking the ensemble average. We stress

again that D′
µ and H ′ are in the same gauge as Dµ and H. Hence a rotation on

parallel transports is implemented by a flux-independent similarity transformation.

This is quite different from the situation in the axial gauge used by Parisi, where after

a rotation a compensating gauge transformation must be implemented so that the

gauge-fixing condition is respected [17]. It is in this sense that the new gauge we are

using is a symmetric one.

B Some results in the axial gauge

For convenience let us copy definition (2.8) of link variables in the axial gauge here,

Uµ(x⃗) = ei
∑µ−1

ν=1 Fµνxν ,

Note in Parisi’s original convention xν = 0 or 1, but here we follow the convention in

the main body of our paper and let xν = ±1/2. We note that the µ index on the right-

hand side of the definition must take a positive value. Strictly speaking this definition

is only meant for links pointing toward positive directions and the links pointing toward

negative directions are defined as inverses of equation (2.8). Note that since we are

on a hypercube, once the vertex position x⃗ and link axis µ are specified, it is entirely

determined whether the link is pointing in the positive direction êµ or negative direction

−êµ: the link points positive if xµ = −1/2 and negative if xµ = 1/2. We utilize this

fact and rewrite equation (2.8) to be valid for any µ and x⃗:

Uµ(x⃗) = e−isgn(xµ)
∑µ−1

ν=1 Fµνxν = e−i2xµ
∑µ−1

ν=1 Fµνxν , (B.1)

where µ is still positive, but µ only labels the link axis not the link direction. If we

consider a Wilson loop C of an elementary plaquette for which the starting point is x⃗,

the first step is along the µ axis and the second step is along the ν axis, the value of
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the loop is

W (C) = Uµ(x⃗)Uν(x⃗+ êµ)U
−1
µ (x⃗+ êν)U

−1
ν (x⃗) = e−isgn(xµxν)Fµν , (B.2)

where x⃗+ êµ and x⃗+ êν are interpreted as mod 2 sums. In other words,

x⃗+ êµ = (x1, x2, . . . ,−xµ, xµ+1, . . . , xd) (B.3)

With the above notations we can write down the matrix elements of the Hamiltonian

simply as

Hx⃗,y⃗ = − 1√
d

∑
µ

Uµ(x⃗)δx⃗+êµ,y⃗. (B.4)

Analogous to the symmetric gauge situation, we may consider operators O in the

same statistical class as the axial gauge Hamiltonian, that is

(Oaxial)x⃗,y⃗ = − 1√
d

∑
µ

Ũµ(x⃗)δx⃗+êµ,y⃗, (B.5)

where again x⃗+ êµ is a mod 2 sum as defined in equation (B.3), and

Ũµ(x⃗) = e−isgn(xµ)
∑µ−1

ν=1 F̃µνxν . (B.6)

where F̃µν may or may not correlate with Fµν . An important fact is that although

Haxial is gauge equivalent to Hsymmetric and Oaxial is gauge equivalent to Osymmetric,

correlation functions of Oaxial are not the same as Osymmetric. This is because the gauge

transformation that transforms Haxial to Hsymmetric is not the same as the one that

transforms Oaxial to Osymmetric. In other words,

M1HsymmetricM
−1
1 = Haxial,

M2OsymmetricM
−1
2 = Oaxial,

(B.7)

but

M1 ̸=M2. (B.8)

Alternatively, one can define probe operators in the axial gauge as

O′
axial :=M1OsymmetricM

−1
1 , (B.9)

which would give the same results for correlators as the symmetric gauge, however,

O′
axial will look complicated in the axial gauge. Let us study the correlators of Oaxial
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defined in (B.5), and we will omit the subscript “axial” from now on. To compute the

one-point moment, we first note

2−d
〈
Tr(−D̃µH)

〉
=

1√
d

〈
cos

(
Fµν − F̃µν

2

)〉µ−1

. (B.10)

So we arrived at a somewhat peculiar result: the contraction is 1/
√
d suppressed for

µ = O(1), but exponentially suppressed for µ ≫ 1 (say µ ∼ d). This reflects the fact

that the axial gauge is highly asymmetric. Hence

2−d ⟨Tr(HO)⟩ = 1

d

1−
〈
cos
(
Fµν−F̃µν

2

)〉d
1−

〈
cos
(
Fµν−F̃µν

2

)〉 , (B.11)

which is 1/d (instead of exponentially) suppressed. These results for suppression hold

for general one-point insertions ⟨Tr(HmO)⟩.
The finite correlators start from two-point insertions 2−d⟨Tr(H2m−k−2OHkO)⟩. As

we have shown, to leading order there is no contraction between any H and D̃µ. Inter-

sections among H chords just give powers of ⟨cosF ⟩, and for intersections between the

O chord and multiple H chords we will need to compute the mixed holonomy

Ũµ(x)Uν(x+ êµ)Ũ
−1
µ (x+ êν)U

−1
ν (x) =

{
e−isgn(xµxν)F̃µν if ν < µ,

e−isgn(xµxν)Fµν if ν > µ.
(B.12)

Then for each interlacing ordering D̃µHD̃µH we would get

µ− 1

d
⟨cos F̃ ⟩+ d− µ

d
⟨cosF ⟩, (B.13)

Again, the µ dependence is a reflection of the highly asymmetric nature of the axial

gauge. The total contribution from H −O chord intersections is

1

d

d∑
µ=1

[
µ− 1

d
⟨cos F̃ ⟩+ d− µ

d
⟨cosF ⟩

]No. of H-O int.

=

∫ ⟨cos F̃ ⟩
⟨cosF ⟩ ũ

No. of H-O int.dũ

⟨cos F̃ ⟩ − ⟨cosF ⟩
+O(d−1).

(B.14)

So O behaves like a uniform statistical mixture of all possible D̃µ.
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C Algebra and motion on the hypercube

We would like to take advantage of the simplicity of the hypercube geometry and try

to gain some elementary intuition of particle motions on this Fock-space graph. To

that end let us compute the equation of motion for the position operator. It is useful

to first list the algebraic relations among Dµ, Vµ, and Xµ operators,

DµDν = (cosFµν)DνDµ − (i sinFµν)VνVµ,

VµVν = (cosFµν)VνVµ − (i sinFµν)DνDµ,

DµVν = (cosFµν)VνDµ + (i sinFµν)DνVµ,

VµDν = (cosFµν)DνVµ + (i sinFµν)VνDµ,

[Dµ, Xν ] = [Vµ, Xν ] = [Xµ, Xν ] = 0,

(C.1)

for µ ̸= ν and that

VµDµ = −DµVµ = iσ3
µ = 2iXµ,

VµXµ = −XµVµ = −iDµ/2,

DµXµ = −XµDµ = iVµ/2,

D2
µ = V 2

µ = (2Xµ)
2 = 1.

(C.2)

Among other things this shows {Dµ}, {Vµ} and {Xµ} form an algebra under multipli-

cation and addition. We can also augment this alegbra by including D̃µ and Ṽµ, and

use

T±
µ T̃

±
ν = T̃±

ν T
±
µ e

i
Fµν+F̃µν

2 , T±
µ T̃

∓
ν = T̃∓

ν T
±
µ e

−iFµν+F̃µν
2 . (C.3)

The end result is essentially to replace all the Fµν in equation (C.1) by an average

(Fµν + F̃µν)/2, for example

DµD̃ν =

(
cos

Fµν + F̃µν
2

)
D̃νDµ −

(
i sin

Fµν + F̃µν
2

)
ṼνVµ,

DµṼν =

(
cos

Fµν + F̃µν
2

)
ṼνDµ +

(
i sin

Fµν + F̃µν
2

)
D̃νVµ,

(C.4)
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As we have seen in equation (2.21) that Ẋµ = Vµ, now let us derive a “Newtonian”

(second derivative in time) equation in the following way:

ẊµDµ = VµDµ = 2iXµ,

=⇒ ẌµDµ + ẊµḊµ = 2iẊµ = 2iVµ,

=⇒ ẌµD
2
µ + ẊµḊµDµ = 2iVµDµ = −4Xµ,

=⇒ Ẍµ + ẊµḊµDµ + 4Xµ = 0,

(C.5)

where we have used identities presented in equations (C.1) and (C.2). The harmonic

term 4Xµ is solely due to the finiteness of the hypercube and is present even if the

magnetic field is turned off. The second term in the last line is nonzero if and only

if the magnetic field is nonzero, so it must play the role of Lorentz force. To see this

more clearly, we write the second term as

ẊµḊµDµ = iVµ[H,Dµ]Dµ = i
∑
ν ̸=µ

Vµ[Dν , Dµ]Dµ

= i
∑
ν ̸=µ

VµDν − i
∑
ν ̸=µ

VµDµDνDµ

= i
∑
ν ̸=µ

(1− cosFµν)VµDν −
∑
ν ̸=µ

sinFµνDµVµ

= i
∑
ν ̸=µ

(1− cosFµν)VµDν −Dµ

∑
ν ̸=µ

sinFµνẊν ,

(C.6)

where we have used multiple identities in equations (C.1) and (C.2). So far all the

equations above are exact. To see the “continuum limit” of the motion,6 we take a

small Fµν and Taylor expand equation (C.5) to the first power of Fµν with fixed d, and

this gives

ẊµḊµDµ = −σ1
µ

∑
ν

FµνẊν +O(F 2
µν), (C.7)

where we used Dµ(t) = σ1
µ + O(Fµν). Hence in the continuum limit the Newtonian

equation becomes

Ẍµ − σ1
µ

∑
ν

FµνẊν + 4Xµ = 0. (C.8)

The second term is almost what one expects from a classical Lorentz force except here

we have an extra σ1
µ coefficient. The σ1

µ coefficient seems to suggest there is no truly

6See the discussion below equation (3.22).
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classical Lorentz force on the hypercube.7 In fact, without the σ1
µ coefficient we will

be in trouble: the motion becomes exactly the same as a harmonic oscillator in a

uniform magnetic field, which is integrable, contradicting the chaotic physics of the

Parisi model we have known so far. A useful comparison is a d = 2 lattice with a large

linear size, which is a Landau problem for Bloch electrons whose spectrum is known

to be complicated but integrable [59]. Note that the Lorentz force term is a sum over

d terms, so it could dominate over the harmonic potential even when each Fµν is very

small. This is consistent with our earlier result that the system is fast scrambling when

Fµν is sent to zero after the large d limit is taken. Moreover, according to a numerical

analysis of the Parisi model [60], it indeed looks like any nonzero small magnetic field

would lead to random matrix statistics and hence quantum chaos. It should be said

that if we want to take the large d limit, the truncation to linear order in (C.7) is

not valid unless ⟨F 2⟩ ≪ 1/d2 because the O(F 2) term involves summing d2 terms.

Nevertheless equation (C.8) could be useful; for example, it gives us a hint on what

kind of scaling a localizing potential must have so that our model can have a localized

phase. For example, we can add to the Parisi Hamiltonian a term

−
∑
µ

Eµ
σ3
µ

2
= −

∑
µ

EµXµ (C.9)

where Eµ can be interpreted as the components of an electric field acting on the charged

particle, and hence has the effect of localizing the particle on hypercube vertices. This

electric term would change the equation of motion (C.8) to

Ẍµ − σ1
µ

∑
ν

FµνẊν + 4Xµ − σ1
µEµ = 0. (C.10)

Since the Lorentz force term sums over d random numbers, we estimate its magnitude

to be roughly
√
d
〈
F 2
µν

〉
. Therefore Eµ must at least scale as

√
d
〈
F 2
µν

〉
for it to be a

real competition with the Lorentz force term. This is naturally satisfied in a scaling

regime that has an extensive free energy (see section 7.4):

〈
F 2
µν

〉
∼ 1

d
,
〈
E2
µ

〉
∼ 1. (C.11)

7The conventional continuum limit would have a shrinking lattice spacing a with some length scale
L = na fixed, we can repeat the same derivation of the equation of motion and the upshot is the
replacement of σ1 by aΣ1 + 1 where Σ1 is the hopping on the large lattice and 1 comes from the fact
that Dµ needs a constant counter-term to become a well-defined continuum derivative. As a → 0, we
get the conventional Lorentz force.
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However, this scaling is much less understood.

D Subleading moments at q = 1 and q = 0

The subleading moments involve two pieces of contributions: One is from the d(d−1) · · ·
factor of the leading lattice paths, which (for M2p) is equal to

−1

d

(
p

2

)
MQH

2p , (D.1)

where MQH
2p denotes the q-Hermite moments. The other is from the subleading lattice

paths (with repeatedly traversed lattice directions), whose values can be computed by

equation (6.4) (the same computation was called the merge and delete procedure of

intersection graphs in [17]). At q = 1 and q = 0 subleading lattice path contributions

can be figured out for general p,

1

d

1

3

(
p

2

)
(2p− 1)!! for q = 1, (D.2)

1

d

(
2p

p− 2

)
p

2
for q = 0. (D.3)

Hence the total subleading corrections at q = 1 and q = 0 are8

δM2p =− 1

d

2

3

(
p

2

)
(2p− 1)!! for q = 1, (D.4)

δM2p =− 1

d

(
2p

p− 2

)
for q = 0, (D.5)

from which we can work out the subleading corrections to spectral densities,

δρ =
1

d

d4

dx4

[
− 1

12

e−
x2

2

√
2π

]
for q = 1, (D.6)

δρ =
1

d

d2

dx2

[
1

120π
(4− x2)

3
2 (2− 3x2)

]
for q = 0. (D.7)

8We use the fact that MQH
2p (q = 1) = (2p− 1)!! and MQH

2p (q = 0) = 1
p+1

(
2p
p

)
.
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For q = 0 the subleading density diverges rapidly near the spectral edges x = ±2, this

density should be understood in the distributional sense,∫
f(x)δρ(x)dx =

1

d

∫
f ′′(x)

[
1

120π
(4− x2)

3
2 (2− 3x2)

]
dx. (D.8)

E Degenerate perturbation for the first excited states

The general form of equation (7.15) is

⟨m,n|
√
dH|0⟩ =

∑
µ ̸=m,n

[
sin

(
Fµm
4

)
sin

(
Fµn
4

) ∏
ν ̸=µ,m,n

cos

(
Fµν
4

)]

+ i sin

(
Fmn
4

)[ ∏
ν ̸=m,n

cos

(
Fmν
4

)
−
∏
ν ̸=m,n

cos

(
Fnν
4

)]
.

(E.1)

Matrix elements of the form ⟨m|
√
dH|n⟩ are also simple to compute. Using the nota-

tions of equation (7.8), we get the matrix elements of H using the wave functions of

the first excited states (d states) of H0:

⟨m|
√
dH|m⟩ = −(d− 2) cosd−1

(
ϕ

4

)
, (E.2)

and the off-diagonal elements (m ̸= n) are

⟨m|
√
dH|n⟩ = cosd−3

(
ϕ

4

)
sin2

(
ϕ

4

) ∑
µ̸=m,n

SµmSµn − 2i cosd−2

(
ϕ

4

)
sin

(
ϕ

4

)
Smn

(E.3)

for Parisi’s disorder distribution. In full generality, we have

⟨m|
√
dH|m⟩ = −

∑
µ̸=m

∏
ν ̸=µ

cos

(
Fµν
4

)
+
∏
ν ̸=m

cos

(
Fmν
4

)

⟨m|
√
dH|n⟩ =

∑
µ̸=m,n

[
sin

(
Fµm
4

)
sin

(
Fµn
4

) ∏
ν ̸=m,n,µ

cos

(
Fµν
4

)]

− i sin

(
Fmn
4

)[ ∏
ν ̸=m,n

cos

(
Fmν
4

)
+
∏
ν ̸=m,n

cos

(
Fnν
4

)]
, m ̸= n,

(E.4)

– 58 –



We can then numerically diagonalize the d× d matrix above and its lowest energy will

approximate the first excited state energy of H. However, we did not need this in our

main text.

F State mixing in the Maldacena-Qi model

In this appendix we demonstrate that the unperturbed ground state only mixes with

a small fraction of the excited states in the MQ model. The MQ Hamiltonian is of the

form

HMQ = HSYK,L +HSYK,R + iµ
d∑

k=1

ψkLψ
k
R. (F.1)

The ψkL and ψkR operators are two sets of Majoranas defined on the left and right spatial

sites with the anticommutation relation

{ψka , ψlb} = 2δabδ
kl, (F.2)

where a, b = L,R and k, l = 1, . . . , d. HSYK,L is the standard p-body SYK Hamiltonian

built from the ψL, and HSYK,R is built from ψR but with a time reversal. As stated

in section 7, the coupling term is identical to the zero-flux Parisi Hamiltonian, so to

parallel the discussion in the main text, we treat HSYK,L + HSYK,R as a perturbation

and study the mixing between the ground state and the excited states of the coupling

term under this perturbation. Following [61], we define ladder operators to generate

the eigenstates of the coupling term,

c±k =
1√
2

(
ψkR ± iψkL

)
, (F.3)

then

i
d∑

k=1

ψkLψ
k
R =

d∑
k=1

c+k c
−
k − d (F.4)

and the commutator [
i

d∑
k=1

ψkLψ
k
R, c

±
l

]
= ±2c±l . (F.5)

Hence we can label the eigenstates in the identical way as we did for the zero-flux Parisi

Hamiltonian in equation (7.8), now with

|m1, . . . ,mk⟩ := c+m1
. . . c+mk

|0⟩, (F.6)
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where the ground state |0⟩ satisfies

c−k |0⟩ = 0 (F.7)

for all k = 1, . . . , d. Now consider the mixing

⟨m1, . . . ,ml|HL|0⟩
=⟨0|c−m1

. . . c−ml
HL|0⟩

=
∑

i1<...<ip

Ji1...ip⟨0|c−m1
. . . c−ml

ψi1L . . . ψ
ip
L |0⟩.

(F.8)

If l > p, there is at least one annihilation operator that anticommutes with every

fermion in any given set of {ψi1L , . . . , ψ
ip
L }. Then, we can just move this annihilation

operator all the way to the right and annihilate |0⟩. This means the ground state only

mixes with excited states up to |m1, . . . ,mp⟩, which only includes a vanishingly small

fraction of all states as d→ ∞.
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