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Abstract—Optimal placement of climate sensors for environ-
mental monitoring and disaster management presents a signifi-
cant challenge due to its NP-hard complexity. Traditional sensor
placement strategies have relied on exact, approximation, or
heuristic methods, with heuristics being the most common due
to their practicality. However, heuristics methods often depend
heavily on expert knowledge, limiting their adaptability. Recent
advances in deep learning offer a new avenue for enhancing
heuristic algorithms either by generating them automatically or
by guiding their search processes. In this paper, we propose a
novel approach to sensor placement that leverages a Transformer-
based network, trained through reinforcement learning (RL), to
refine the search strategy of heuristic algorithms. By comparing
our method against various heuristic-based strategies, we demon-
strate its superior ability to generate high-quality solutions for
the optimal sensor placement problem.

Index Terms—Heuristic algorithms, deep learning, neural net-
works, optimisation, sensor placement

I. INTRODUCTION

Strategically placing climate sensors is crucial in climate
research and forecasting for environmental monitoring and
disaster management [3]. By deploying sensors strategically,
we can gather comprehensive and accurate information about
climate factors such as precipitation and temperature. This
data is essential for accurately predicting conditions in areas
lacking sensor coverage, often achieved through spatial inter-
polation techniques [3], [25]. Moreover, observations collected
from climate sensors play a vital role in calibrating downscaled
meteorology’s climate models, such as ACCESS-S2 [29].
These models are utilized for weekly to seasonal forecasts,
where adjustments are made to correct biases between observa-
tions and predictions. Consequently, the placement of climate
sensors holds significant importance in the field of climate
research and forecasting.

Determining optimal sensor locations is a class of optimiza-
tion problems (henceforth referred to as Sensor Placement
Problem, shortly named as SPP), which poses a significant
challenge to solve due to their NP-hard nature [2]. Traditional
methods for addressing sensor placement problems can be
classified into exact methods [14], [32], [38], approximation
methods [10], [17], [20], and heuristics [3], [11], [35]. While
exact methods provide optimal solutions, they struggle to scale
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to large environmental datasets due to high computational cost.
Approximation methods can produce sub-optimal solutions,
but these solutions may be far from the optimal [22]. Heuris-
tics, which are the most widely used approach, often provide
satisfactory solutions within reasonable computational time
frames. However, their development heavily relies on expert
intuition and experience [22].

To improve heuristics based methods, deep learning (DL)
has emerged as a promising approach to automatically gen-
erate heuristics or guide the search behaviours of heuristics
[5], [30], leading to the creation of superior heuristics com-
pared to those designed by humans [7]. This successes is
mainly due to two reasons: 1) the uniform data structure
presents in a class of problem instances, with variations in
data following a specific distribution, and 2) the capacity of
DL models to detect patterns within a problem class using
supervised learning/reinforcement learning (RL). For example,
sequence-to-sequence models, such as transformers, has been
incorporated into heuristic improvement for decision-making
[21], [30], [31], [36]. The attention mechanism in transformers
acts like a ’spotlight,’ enabling the transformers to concentrate
on the most relevant features and relationships of a class of
problem instances, and is trained to optimise the performance
of heuristic using supervised learning/RL.

Despite some recent successes in DL-based methods on im-
proving heuristics for routing problems, such as the Traveling
Salesman Problem (TSP) [16], [30] and the Vehicle Routing
Problem (VRP) [16], [24], [30]. The problems investigated
in the past are simplified benchmark problems in computer
science domain, failing to address the complexity of real-world
challenges, such as formulating a real-world optimisation
problem (e.g., complex climate sensor placement problem)
into a heuristic improvement problem, an absence of datasets
or appropriate problem environments (e.g., simulators) for
training DL models, and defining suitable objective functions
(also named as reward functions in RL) for heuristic improve-
ment. In other words, the application of using DL techniques
to our problem remains unexplored.

The overall goal of this paper is to develop a DL-based
sensor placement approach that optimise the locations of cli-
mate sensors via learning and improving heuristics on sensor
placement. In contrast to traditional heuristics that rely on
manually-designed search policies, our approach leverages RL
to effectively guide the heuristic behaviour without extensive
domain knowledge. We accomplish three primary contribu-
tions in this work:

1) We present an RL formulation on our optimal climate
sensor placement problem as a heuristics improvement
problem, where a RL policy is responsible for directing
moving sensor to desired candidate sensor locations,
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enabling more effective search strategies. Moreover, we
implement an environmental simulator designed specif-
ically for the climate sensor placement problem. This
simulator is capable of generating random problem
instances represented by the state of the environment,
performing actions to move sensors from one location to
another, return rewards for every action and total reward
over time.

2) We develop a DL-based sensor placement approach
based on a transformer, which represent the RL policy
and it is trained via an actor-critic algorithm. This
algorithm enables this transformer-based policy to con-
tinuously learn and adapt based on the current state of
the environment.

3) We conduct extensive experimental comparison of our
method with other heuristic based approaches, ultimately
demonstrating the effectiveness and superiority of our
proposed approach in producing high-quality solutions.

The remainder of this paper is structured as follows: Sect. II
delves into related work concerning methods for solving
optimization problems and provides essential preliminaries.
Sect. III details the formulation of our sensor placement prob-
lem. Sect. IV offers an overview of the method we propose.
Sect. V evaluates our method’s effectiveness by contrasting
it with recent algorithms. Sect. VI elucidates the underlying
insights of the model. Finally, Sect. VII concludes the paper
and discusses potential avenues for future research.

II. LITERATURE REVIEW

The challenge of optimal sensor placement for environmen-
tal monitoring and disaster management has been a subject of
extensive research [3]. A wide variety of methods have been
proposed, each with its own advantages and shortcomings.
These methods can be broadly grouped into three categories:
exact methods, approximation methods, and heuristic methods.
Recently, there has been a growing interest in learning im-
provement heuristics that leverage deep reinforcement learning
(RL) to automatically discover effective improvement policies
[22].

A. Exact Methods

Exact methods are designed to find the optimal solution to a
problem, ensuring the best possible outcome. While there are
various frameworks available, the branch and bound technique
is one that is commonly employed in the design of these
methods [14], [32], [38]. For example, the sensor placement
problem in [38] was formulated as a mixed integer convex
programming in water sensor networks. Through convex relax-
ation, a branch and bound algorithm was proposed to find the
global optimum. Similarly, a toolkit was developed in [14] to
combine general purpose heuristics with bounding algorithms
and integer programming.

However, due to their high computational complexity, exact
methods are usually limited to small problem instances. De-
spite their limitations, exact methods are a valuable benchmark
for assessing the performance of other, more computationally
feasible methods.

B. Approximation Methods

Approximation methods provide a balance between compu-
tational feasibility and solution quality [8], [10], [17], [20].
These methods, including linear programming relaxations and
local search algorithms [8], [20], do not guarantee an optimal
solution but offer solutions within a known range from the
optimum. This makes them a more practical choice for large
problem instances. For example, an approximation algorithm
with a constant approximation ratio based on a divide and
conquer technique named partitioning and shifting was pro-
posed in [17] with the goal of maximizing the sensor coverage.
Similarly, approximation algorithms have also been designed
in [10]. In [20], a local search approximation algorithm was
proposed where sensors were allocated into groups and local
search was applied within each group to find the sensor
locations.

However, one of the main challenges with approximation
methods is that they can yield solutions that deviate signif-
icantly from the optimal solution, especially in cases where
local optima are far from the global optimum [1].

C. Heuristic Methods

Heuristic methods use rules of thumb or educated guesses
to find satisfactory solutions within a reasonable time frame
[3], [11], [13], [28], [34], [35], [37]. They are particularly
useful when dealing with complex problems where exact or
approximation methods are not practical.

A greedy algorithm was proposed in [3] to iteratively select
sensor locations with the highest ranking score calculated by
different measurements, such as the network coverage and the
mean absolute error [6]. Another popular heuristic method
is Genetic Algorithms (GA), which has been used to deploy
a minimum number of sensor nodes, while maximizing the
coverage [11], [13], [35]. Other heuristics such as Particle
Swarm Optimization (PSO) [28], [34], and Simulated Anneal-
ing (SA) [37], have also been widely used in sensor placement.

The above heuristic methods rely heavily on expert intuition
and experience for designing the heuristic rules, which makes
the development of heuristics a complex and time-consuming
process. While heuristics typically function without assured
optimal results, in certain circumstances, it is possible to
establish a worst-case performance bound. This boundary
delineates the maximum potential deviation of the solution
from the optimal result.

D. Learning Improvement Heuristics

Recognizing the limitations of traditional heuristic methods,
researchers have started to explore the idea of learning based
approaches to address TSP [12], [15], [27] and VRP [16],
[24]. All these works learned heuristics to construct a complete
solution directly from scratch. However, when the number of
decision variables increases, it can be challenging to construct
solutions directly [9].

Meanwhile, learning improvement heuristics has been pro-
posed [9], [19], [30]. Rather than constructing solutions from
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scratch, improvement heuristics are learned to iteratively im-
prove a given solution. For example, NeuReWriter [9] for-
mulated the VRP as a rewriting problem and learned two
policies: a region-picking policy and a rule-picking policy.
Given a state, the region-picking policy first picks a region
(i.e., the partial solution) and the rule-picking policy picks a
rewriting rule to apply to the selected region to generate an
improved solution. Similarly, a learning improvement heuristic
for capacitated VRP was proposed in [19]. Started with a
feasible solution, the algorithm iteratively updates the current
solution with an improvement operation selected by RL.
Meanwhile, the algorithm also perturbs the current solution
with a rule-based operation to partially or completely destroy
and reconstruct a solution whenever a local minimum is
reached.

Nevertheless, existing learning based methods predomi-
nantly focus on routing problems [9], [16], [19], [24], [30]
while the potential for applying learning based techniques to
other challenging problems (e.g., sensor placement) remains
largely unexplored.

E. Preliminaries

1) Attention models: Attention-based models have emerged
as an influential component in sequence modeling tasks,
especially, nature language processing problems. Bahdanau
and his team introduced an intuitive but potent form of
attention, named Additive-Attention [4], which highlights the
significance of certain words in reference to an external query.
This principle was later expanded by Vaswani et al. [26],
who proposed the concept of Self-Attention or Multiplicative-
Attention. Unlike basic attention, self-attention takes into ac-
count the interaction between words within the same sentence.

Eq. 1 mathematically illustrates self-attention mechanism.
The mechanism begins by creating three distinct vectors
from the input embeddings, named Query(Q), Key(K), and
V alue(V ). The initial stage comprises the calculation of the
dot product between the Q and K vectors, which results in an
attention map. In this map, related entries score high, while
unrelated ones receive lower scores. This map is then scaled
by the square root of the embedding dimension (dh), followed
by processing through a softmax function to form a probability
matrix. The multiplication of this probability matrix with the
V vector generates the final output, emphasizing the elements
of focus.

ATT (Q,K, V ) = V · softmax

(
KTQ√

dh

)
(1)

III. PROBLEM FORMULATION

A. SPP formulation

In our SPP, we consider the possible placements of a set
of sensors for climate station network. Formally, a sensor is
considered as a tuple si = (pi, zi) where pi is the location
of the ith sensor, and zi is an observed value of a target
environmental variable at a site location pi. Location pi is
also considered as a tuple pi = (xi, yi), and xi and yi are
latitude and longitude of the location pi.

The set of all sensors in the climate station network
joint form a sensor network. Formally, a sensor network is
considered as a set of tuple S = {s1, s2, . . . , si, . . . , sn},
made of a group of interconnected sensors that monitor
environmental variables, with n being the total number of
sensors to be installed. For any arbitrary sensor network S,
the set of site locations of a sensor network S is denoted as
P = {p1, p2, . . . , pi, . . . , pn}.

We consider m candidate climate site locations, defined
as Q = {pn+1, . . . , pk, . . . , pn+m} with Q ∩ P = ∅, that
can be used to relocate sensors from S. The full sensor site
location set considered in SPP is denoted as P = P ∪ Q =
{p1, p2, . . . , pn, pn+1, . . . , pn+m}. Fig. 1 shows an example of
a full climate sensor site location set P on a regular 5km grid
covering New Zealand, with an sensor site pi ∈ P in red, and
candidate climate sites pk ∈ Q in blue.

Fig. 1: An example of a full sensor site location set P

In practice, we often rely on a spatial interpolation technique
to estimate the target environmental variable, ẑj , at any geo-
graphic location p′j on the map [3]. Often, we are interested in
estimating the target variable at a set of geographic locations
P ′ = {p′1, p′2, . . . , p′j , . . . , p′q} with P ′ ∩ P = ∅. Herein
we consider a simple but effective technique, i.e., Inverse
Distance Weighting (IDW) technique [18], to estimate ẑj using
n observations from a sensor network S .

ẑj =

n∑
i=1

wizi

n∑
i=1

wi

(2)

where wi is a weight assigned to the ith sensor si in a sensor
network S , given by wi = 1

di
, and di = ||pi − p′j ||2 is an

Euclidean distance between the ith sensor and the location
pj , determining the degree of influence of the distance on the
weight wi.

The problem investigated in this paper aims to find an
optimized sensor network S⋆, where some sensors in sen-
sor network S are strategically reallocated in different but
available places in P. Specifically, we aims to minimize the
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Mean Absolute Error (MAE) over all estimated values for q
geographic positions P ′ as follows:

MAE(S) = MAE(S | P ′)

=
1

q

q∑
j=1

|zj − ẑj |,

∀ zj ∈ S (3)

where zj is the ground truth, i.e., actual value of the jth

estimation, and ẑj is the predicted value of the jth observation.
A lower MAE indicates a better prediction and a better sensor
network.

B. MDP formulation of the SPP

We formulate the Markov Decision Process (MDP) as
follows:

1) State ST t: the state ST t represents a problem instance
at time step t, i.e., a sequence of selected sensor lo-
cations and a sequence of candidate locations where
sensors can move to. The initial state ST 0 is an initial
solution that we aim to improve using a heuristic H.
For example, ST t = [p1, p2, . . . , pn, |pn+1, . . . , pn+m].
Each position on the left side of | corresponds to a sensor
location in P , while the right side corresponds to the
remaining available candidate locations in Q. Note that
| is just displayed for the courtesy of the reader, not
part of the state. Moreover, a sensor network St can be
decoded from the state of the sensor network ST t at that
specific time step t. We can noted it as St ⇐= ST t.

2) Action At: any action At corresponds to selecting a
pair of locations (pa, pb) and moving the sensor from
position pa ∈ P to position pb ∈ Q.

𝑝!"#	…	𝑝!"$𝑝!…𝑝%𝑝$

𝑝!"#	…𝑝%𝑝!…	𝑝!"$𝑝$

Fig. 2: Moving a sensor from position p2 to position pn+1.

3) Transition T : the next state ST t+1 is obtained in a
deterministic manner from ST t by performing an action
At, i.e., ST t+1 = T (ST t,At).

4) Reward Rt: the reward function Rt is designed to best
improve the initial solution within T steps as follows:

Rt = Rt(ST t,At,ST t+1)

= MAEbest(ST t)−min{MAEbest(ST t),MAE(ST t+1)}
(4)

Where ST t is the best solution found up to step t and
is updated when ST t+1 is a better solution. The reward
Rt is positive only when a better solution is found;
otherwise, it equals 0. The objective is to maximize the
cumulative reward GT =

∑T−1
t=0 γtRt, where γ is the

discount factor. This discount factor, γ, typically lies
in the range of 0 to 1, which is used to balance the

relative importance of immediate rewards versus future
rewards. A value closer to 0 makes the model short-
sighted, focusing on immediate rewards, while a value
closer to 1 encourages the model to consider long-term
rewards.

C. Simulation of the SPP

To address the lack of datasets or suitable environments
(e.g., simulators) for training deep learning (DL) models, we
generate synthetic problem instances of the SPP to effectively
train our transformer-based policy. For each problem instance,
every sensor location — latitude xi and longitude yi—of n+
m sensors in ST 0 are sampled randomly across a specified
area of interest on the map. Following this, we employ an
IDW model D to estimate the target observation value at each
sampled location. The IDW model is constructed and trained
using real-world sensor observation data. This model is chosen
for its efficiency in spatial interpolation and estimation. For
more details, please refer to simulation settings in Sect. V

IV. A NOVEL SPP APPROACH BASED ON A
TRANSFORMER

Our policy network is composed of two main compo-
nents, as illustrated in Figure 3. The first component learns
a sequence embedding for sensor locations (i.e., the state
ST t) via a L stacked encoder with self-attention. The second
component focuses on computing the compatibility between
sensor location pairs (i.e., the action At). Using self-attention,
it produces a probability matrix, where each element rep-
resents the likelihood of selecting the corresponding sensor
location pair to guide an action. In this matrix, each row
represents a specific sensor at its current location, while each
column represents a potential destination location for that
sensor. Therefore, the entry in the a-th row and b-th column
corresponds to the probability of moving the sensor at location
pa to location pb. In essence, this matrix captures the network’s
strategy for reallocating sensors to improve the quality of the
sensor network. The two components of the policy network
are defined in the underlying Eq. 5 1 and Eq. 6, respectively,
and also explained below.

[h0
1, ..., h

0
n+m] = NFE(ST ) +PFE(ST )
H0 = [h0

1, ..., h
0
n+m]

Hℓ = BNℓ
(
H(ℓ−1) +ATTℓ

(
Hℓ−1

))
H ′ℓ = BNℓ

(
Hℓ +NLTℓ

(
Hℓ

))
, ℓ = 1, . . . , L

(5)

Hc = LT
(
Max(H ′L)

)
+ LT

(
H ′L)

M = Compati (Hc)

PR = softmax (MASK (M))

(6)

NFE - Node Feature Embedding: We use linear transfor-
mation to project every sensor location, i.e., pi = (xi, yi),

1The time step t is omitted here for better readability
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NFE - Node Feature 
Embedding

+
PFE - Positional 

Feature Encoding

ATT - Self-Attention 
Layer

Add & BN - Batch 
Normalization

NTL - Non-Linear 
Transformation

Add & BN - Batch 
Normalization

L ×

Max - Max Pooling

LT - Linear 
Transformation& Add 

Compati -
Compatibility Layer

MASK - Masked 
SoftMax Layer

Probability 
Matrix

(n+m × n+m)

Updated 
Mask

(n+m × n+m)

[𝑝!, 𝑝", ..., 𝑝#, |	𝑝#$!, …, 𝑝#$%	]

[1, 2, ..., n, |n + 1, …, n + m]

[ℎ!ℓ, …, ℎ#$%ℓ ]

[ℎ!'ℓ, …, ℎ#$%'ℓ ]

[ℎ!(, …, ℎ#$%( ]

𝑝)	and 𝑝*

The 1st Component The 2nd Component

Fig. 3: Our policy network architecture

from state ST into a dh-dimension embedding using a linear
transformation.

PFE - Position Feature Embedding: Let i denote the se-
quence position of a sensor in ST , and let d = 1, 2, ..., dh de-
note the dimension index. The functions ⌊·⌋ and mod represent
the floor and modulo operations, respectively. Following the
position feature embedding in [26], Eq. 7 employs sinusoidal
positional encoding to represent the position of each sensor
position in the sequence. Note that it is important to differen-
tiate between the terms “sensor location” and “sensor position”
in this context. “Sensor location” refers to the geographic
coordinates (latitude and longitude) of the sensor, whereas
“sensor position” refers to the index of the sensor in the
sequence.

g(i, d) =

{
sin(i/10000

⌊d/2⌋
dh ), if d is even

cos(i/10000
⌊d/2⌋
dh ), if d is odd

(7)

ATT - Self-attention: In alignment with Eq. 1, the self-
attention mechanism can be applied to an input matrix
H(l−1) = [h

(l−1)
1 , ..., h

(l−1)
n+m ], which is produced by NFE and

PFE. The self-attention can thus be expressed by the following
equation:

ATTℓ
(
Hℓ−1

)
= V ℓ · softmax

(
(Kℓ)TQℓ

√
dh

)
(8)

where the query, key, and value matrices of Hℓ−1 are given
by Qℓ = W ℓ

qH
ℓ−1, Kℓ = W ℓ

kH
ℓ−1, and V ℓ = W ℓ

vH
ℓ−1,

respectively. W ℓ
q , W ℓ

k , and W ℓ
v are the weight matrices to be

trained.

NTL and BN - Non-Linear Transformation and Batch
Normalization: NTL perform a weighted sum of inputs, add
a bias term, and apply an activation function to produce an
output. NTL can be computationally expensive and prone to
overfitting. In Eq. 5, we further incorporate Batch normaliza-
tion and Skip connection techniques, which help to stabilize
the training process and mitigate overfitting.

Max and LT - Max-pooling and Linear Transformation:
In Eq. 6, we combine the embeddings using max-pooling
and subsequently enhance the resulting embedding by trans-
forming HL into Hc via Linear Transformation. This design
effectively integrates the global information of an instance into
its corresponding embedding.

Compati - Compatibility Matrix: Compatibility has proven
to be effective in representing connections among words
within sentences. Similarly, this concept is applied to predict
sensor location pairs in a sensor network for a moving opera-
tor. Given the embeddings Hc = [hc

1, ..., h
c
n+m], we compute

the dot product between the query matrix Qc and key matrix
Kc, as seen in Eq 9. Both Kc and Qc are derived in a manner
akin to (Kℓ)T and Qℓ in Eq. 8. Each element Ma,b in the
compatibility matrix M signifies the score associated with
selecting each sensor location pair (pa, pb).

M = Compati(Hc) = KT
c Qc (9)

MASK - Mask matrix: We introduce a mask to the com-
patibility matrix, as demonstrated in Eq. 10. The diagonal
elements are masked as they hold no meaningful value for
position pair selection, and a tanh function is employed to con-
fine the compatibility matrix values within the range [−C,C].
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Therefore, the entry pra,b in PR represents the probability of
moving a sensor from pa to pb.

MASK(M) =

{
C · tanh (M) , if a ̸= b

−∞, if a = b
(10)

A. Training the Transformer Model

The continuous n-step actor-ccritic algorithm is an advanced
reinforcement learning (RL) method that combines the advan-
tages of both actor-critic and n-step bootstrapping [23], [30].
This algorithm provides a flexible framework for optimizing
policies and value functions in a RL setting, making it suitable
for training a continuing (also called non-episodic) RL task.
Our SPP is formulated as a continuing RL task, since the
action performed on the environment is ongoing without a
definite end, requiring continuously learning and optimizing.

As shown in Algorithm 1, the algorithm takes as input
the number of timesteps per update (Tn) and the maximum
episode length (T ). It initializes the policy and value function
parameters, iterating over several epochs. In each epoch, M
problem instances are initiated. For each batch drawn from
these instances, actions are selected based on the current
state and policy. The algorithm observes the consequent
state and reward. For every Tn steps, the future rewards
are predicted using the value function. The algorithm then
goes back through each of the last Tn timesteps, calculating
a TD-error (Temporal-Difference error), which reflects the
difference between the predicted and current value estimates.
This error is then used to compute gradients for updating the
policy and value function parameters. The average of these
gradients across all instances in the batch and the last Tn

timesteps is used to adjust these parameters. After updating,
the process repeats for the next batch. The loop continues
until termination criteria are met, resulting in the final policy
and value function parameters. This algorithm can effectively
learns continuous control policies, effectively managing the
exploration-exploitation trade-off.

V. EXPERIMENT

To evaluate the performance of our proposed method, we
conduct experimental evaluations using a simulator based on
real-world data, comparing with serveral baseline methods.

Simulation settings. In the simulation, an IDW model is
learnt from the observation data from the National Climate
Database (CliDB)2, maintained by the National Institute of
Water and Atmospheric Research (NIWA) in New Zealand.
We use daily maximum temperature as an example of target
climate varaible in this study. The daily maximum temperature
was recorded from 258 NIWA temperature sensors (including
CWS - NIWA Compact Weather Station and EWS - NIWA
Electronic Weather Station). The 258 NIWA temperature sen-
sors are partitioned into two distinct sets for training and
testing purposes. Specifically, a random subset comprising
20% of these observations, equating to 52 sensor locations,

2CliDB is an online climate data platform provided by NIWA, New Zealand.
For more information, visit https://cliflo.niwa.co.nz/.

Algorithm 1: Continuous n-Step Actor-Critic
Input: Number of timesteps per update Tn, Max

episode length T
Output: Updated policy πθ (Actor) and value function

Vϕ (Critic) parameters θ and ϕ
1 Initialize policy πθ (Actor) and value function Vϕ

(Critic) parameters θ and ϕ;
2 for each epoch do
3 Initialize M problem instances and t = 0;
4 for each batch B sampled from M do
5 repeat
6 Select action At ∼ πθ(·|ST t);
7 Observe next state ST t+1 and reward Rt;
8 t← t+ 1, dθ ← 0, dϕ← 0;
9 if t mod Tn = 0 then

10 R̂← Vϕ(ST t);
11 for i ∈ {t− 1, . . . , t− Tn} do
12 R̂← Ri + γR̂;
13 δ ← R̂− Vϕ(ST i);
14 dθ ←

dθ +
∑

|B| δ∇ log πθ(At|ST t);
15 dϕ← dϕ+

∑
|B| δ∇ log Vϕ(ST t);

16 end
17 update θ by dθ

|B|Tn
;

18 update ϕ by dϕ
|B|Tn

;
19 end
20 until t < T ;
21 end
22 end

corresponds to the testing set (i.e., P ′, as defined in Sect. III).
The remaining 80%, consisting of 206 sensor locations, forms
the training set. Fig. 4(a) and Fig. 4(b) provides a visual
representation of the two sets of daily maximum temperatures.

For each training epoch, we generate 5120 problem in-
stances, each comprising a sensor network with 206 ran-
dom sensor locations within New Zealand’s boundaries, using
EfrainMaps’ Shapefiles 3. These locations are assigned ground
truth values for maximum temperature, generated via an
Inverse Distance Weighting (IDW) model trained on our initial
dataset, as shown in Fig. 4(a). Through this approach, we
create a large, diverse array of problem instances, improving
the robustness and generalizability of our policy.

Parameter Settings. In each training epoch, all the pre-
generated 5120 problem instances are divided into ten dis-
tinct batches for training our transformer model. To reduce
the operation cost, 60 sensors are selected from 205 sensor
locations. As previously mentioned, improvement heuristics
are modeled as a continuing RL task. Nevertheless, the agent
is trained for a modest step limit (T = 200). In our following,
we will demonstrate that the trained policies exhibit strong
generalization capabilities in unseen initial solutions and with
significantly larger step limits (i.e., 1000 steps) in the testing

3EfrainMaps supplies ESRI format shapefiles (*.shp) for various countries
and worldwide. For more information, visit https://www.efrainmaps.es/
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(a) Training set (i.e., 206 sensor locations)

(b) Testing set (i.e., 52 sensor locations)

Fig. 4: Daily maximum temperature map of New Zealand

phase. The discount factor, γ, is assigned a value of 0.99,
while the n-step return parameter, n, is set to 4.

Training is performed over 200 epochs with an initial
learning rate of 10−4 and a decay rate of 0.99 applied to both
the actor and critic networks, following reported values in [30].
Leveraging the computational power of 4 Tesla A100 GPUs,
the average training time for each epoch is around 30 minutes.
The Pytorch-based source code and pre-trained models related
to this study can be accessed on Gitlab 4.

Competing algorithms. The DL-based methods we propose
and evaluate in this study include the Tran-mask swap and
Tran-swap. The former, ‘Tran-mask swap’, include the mask
introduced in Eq. 10. The latter, only permits swap actions
performed over two distinct locations from Q and P , respec-
tively.

In our experiment, we compare our proposed method with
two baseline algorithms, Stochastic Search and Context Dis-
tance Search [3]. Stochastic Search randomly selects and
moves a pair of sensor locations in each of its 1,000 iterations,
ultimately returning the best solution with the lowest Mean
Absolute Error (MAE). Conversely, Context Distance Search
employs a heuristic strategy aiming to maximize the collec-

4The source code and instructions can be obtained from
https://git.niwa.co.nz/rl-group/spp-transformer-ac

tive distances amongst sensors. This is crucial as it broad-
ens coverage and minimizes redundancy, potentially leading
to more efficient data collection and better environmental
monitoring. This algorithm exhaustively traverses all possible
configurations to find the solution with the maximum sensor
separation. Comparing these baseline algorithms with our
method provides valuable insights into each approach’s relative
strengths and weaknesses in tackling SPP.

All methods, including two baselines, are tested over 1000
randomly generated problem instances. These instances rep-
resent different scenarios of the sensor placement solutions,
allowing us to assess the performance of the methods in a
variety of situations to understand their general applicability.

A. Performance Comparison

We first measure the mean of average MAE values over
varying proportions of the 1000 instances, specifically, 20%,
40%, 60%, 80%, and 100%. We conduct this test for each
epoch from 0 to 199, enabling us to track the learning progress
of the different methods over time. The results are plotted and
presented in Fig. 5(a) - Fig. 5(e) for 20%, 40%, 60%, 80%, and
100% testing instances, respectively. A clear pattern emerges
from the plot: besides Context Distance Search, the ‘Tran-
swap’ method consistently outperforms the other techniques
across all instances and epochs and for all percentages. This
indicates that the ‘Tran-swap’ method is more effective at
reducing the average MAE, thereby producing more high-
quality sensor placement solutions.

In addition to the mean MAE, we also evaluate the mean
of the best MAE values obtained for the 1000 randomly
generated instances, see Fig. 5(f). This measure gives us
an indication of the best performance that each method can
achieve. Our finding is not consistent with the previous results
that Context Distance Search was the winner. the ‘Tran-swap’
method emerges as the winner, and it consistently achieves the
lowest best MAE. In this paper, we are mainly interested in
the best MAE for each problem instance, rather than mean
MEA. Our findings demonstrates the superior performance
of ‘Tran-swap’ method in finding high-quality sensor place-
ment solutions. This superior performance of our ’Tran-swap’
method can be attributed to the combination of a transformer-
based policy and reinforcement learning. The transformer’s
attention mechanism effectively concentrates on critical sensor
pairs for swapping, thereby enhancing search efficiency. Re-
inforcement learning, meanwhile, guides the policy towards
maximizing the cumulative reward—finding optimal sensor
placements. Over time, this approach refines the heuristic,
leading to a lower best MAE, demonstrating the effectiveness
of the transformer-based policy and reinforcement learning in
improving heuristic solutions.

In summary, our proposed ‘Tran-swap’ method exhibits
excellent performance in both the average and best MAE mea-
sures, making it a promising approach for tackling the Sensor
Placement Problem. While the ‘Tran-mask swap’ method also
shows good performance, it does not surpass the ‘Tran-swap’
method in the tested scenarios.
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(a) Mean of the mean MAE values on 20 % testing instances (b) Mean of the meaan MAE values on 40 % testing instances

(c) Mean of the mean MAE values on 60 % testing instances (d) Mean of the mean MAE values on 80 % testing instances

(e) Mean of the mean MAE values on 100 % testing instances (f) Mean of the best MAE values on 100 % testing instances

Fig. 5: Testing performance on trained policies over epochs

B. Parameters sensitivity

1) Input embedding and hidden layer dimensions: Choos-
ing the correct dimensions for the input embedding and
hidden layers is integral for the optimal performance of a
Transformer-based model. We conducted an in-depth analysis
to evaluate our model’s sensitivity to these parameters. We
tested three combinations of input embedding and hidden
layer dimensions: (128, 128), (128, 256), and (256, 256).
These specific combinations were chosen based on existing
research [30], which frequently use these dimensions due to
their success in balancing model complexity and computa-
tional efficiency. Further, these dimensions have been found
to provide a good trade-off between model complexity and
performance.

Fig. 7(a) and Fig. 7(b) visualize the learning curve of model
performance over 50, 000 training steps using two key metrics:
mean reward and mean MAE respectively. The (128, 256)
configuration consistently achieved higher rewards and lower
MAE, suggesting that a larger hidden layer dimension can
improve performance, up to a point. Notably, increasing both
dimensions to 256 did not enhance performance, hinting at
a possible saturation effect or over-parameterization . These
findings guide us towards optimal model configuration, bal-
ancing model complexity and performance.

2) Reward scaling parameter: The reward scaling param-
eter often influences the rate at which the policy weights
are updated. An appropriate reward scaling parameter helps
balance the trade-off between exploration and exploitation
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TABLE I: The improvement on the mean and best MAE of four competing methods tested over 200, 400, 600, 800, and 1000
instances (Note: the lower the value the better)

Problem instance
Number

Stochastic Search
(mean value)

Context Distance Search
(mean value)

Trans-mask-swap
(mean value)

Trans-swap
(mean value)

200 2.3991 ± 0.0149 1.6558 ± 0.0634 2.0397 ± 0.4095 1.9060 ± 0.3840
400 2.5229 ± 0.0140 1.6553 ± 0.0595 2.0683 ± 0.4240 1.9748 ± 0.4363
600 2.5310 ± 0.0138 1.6571 ± 0.0588 2.0714 ± 0.4168 1.9883 ± 0.4332
800 2.5445 ± 0.0140 1.6589 ± 0.0584 2.0822 ± 0.4069 2.0091 ± 0.4419
1000 2.5577 ± 0.0139 1.6574 ± 0.0596 2.0801 ± 0.4093 2.0199 ± 0.4389

Problem instance
Number

Stochastic Search
(best value)

Context Distance Search
(best value)

Trans-mask-swap
(best value)

Trans-swap
(best value)

1000 1.6525 ± 0.0053 1.5590 ± 0.0607 1.5467 ± 0.1133 1.5362 ± 0.1229

(a) An illustration of an initial placement solution: blue
and red dots signify locations equipped with sensors and
locations without sensors, respectively.

(b) An example of action table generated by the decoder

Fig. 6: Illustrating an initial solution as input, and explaining
how our transformer policy can guide the operation of sensor
movement.

during the learning process [33]. In the RL context, a larger
reward scaling can encourage the agent to be greedy. However,

(a) Mean of the mean rewards

(b) Mean of the mean MAE

Fig. 7: Training performance of policies over steps using three
different pairs of dimensions on input embedding and hidden
layers

by avoiding state and action pairs with lower rewards, the
agent might not extensively explore the solution space, hin-
dering them from gaining higher rewards in the long term. To
determine the optimal reward scaling parameter, we conduct
sensitivity analyses with three different scaling parameters of
1, 10, and 100.

Fig. 8(a) and Fig. 8(b) show the performance trends for the
mean reward and mean MAE across 200,000 steps, respec-
tively. We can easily observe that the optimal reward scaling
parameter is 10 which provides the highest mean of average
reward and the lowest mean of MAE.
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(a) Mean of the mean rewards

(b) Mean of the mean MAE

Fig. 8: Training performance of policies over steps using three
different pairs layers

VI. MODEL EXPLORATION

In this section, we delve deeper into the complex details
of our model to understand its internal functioning better.
We begin this exploration by considering a randomly selected
testing instance as an example. Fig. 6(a) represents an initial
solution to this testing instance, which is composed of a set
of randomly determined sensor locations. The sensors are
plotted on a 2D grid, which represents the geographical area
under consideration for environmental monitoring. Each sensor
location is denoted by a point in this grid.

Passing the Input:. We pass this initial solution through
the encoder-decoder architecture of our Transformer. The role
of the encoder is to interpret the input, i.e., the initial sensor
locations, and generate a high-dimensional representation that
captures the essential features and relations of the input data.
Then, the decoder uses this high-dimensional representation
to generate an action table.

Generating Action Table: The action table, visualized
in Fig. 6(b), represents the probable actions that our model
suggests for the next step. Each action corresponds to a
potential move of a sensor. The action table is a matrix where
each entry represents the predicted reward of moving a specific
sensor to a new location. Higher values in the table indicate
a higher expected reward for the corresponding action. For
example, we can see that by moving a sensor with location
id 13 to a particular new location with id 167 achieves the

highest reward as pointed out in Fig. 6(b).
After generating the action table, we sample an action for

the next step. We follow a stochastic policy for this selection:
instead of always choosing the action with the highest expected
reward, we sample an action from a probability distribution
over the action space where the probability is proportional to
the expected reward. With the help of a stochastic policy, we
can better balance the exploration and exploitation.

The chosen action then results in a new sensor configuration,
which forms the input for the next iteration. This process is
repeated until we reach a termination condition, such as a
maximum number of iterations or a satisfactory solution qual-
ity. Through this mechanism, our model continually refines
the sensor placement, guided by the policy it has learned via
deep reinforcement learning. The result is a high-quality sensor
configuration that has been adaptively optimized for the task
at hand.

VII. CONCLUSIONS

In this paper, we have presented a novel sensor placement
approach focused on learning improvement heuristics using
deep reinforcement learning (RL) methods. This approach
overcomes the limitations of traditional methods, such as exact
methods, approximation methods, and heuristic methods, by
automatically discovering effective improvement policies that
can produce high-quality solutions. Our experimental results
demonstrate the effectiveness and superiority of the proposed
approach compared to state-of-the-art methods in solving the
sensor placement problem.

Despite the promising results, there are several avenues for
future research that could further improve the performance
and applicability of our method. Some potential directions for
future work include:

• Teacher-student based reinforcement learning: Incor-
porating a teacher-student learning paradigm, where a
pretrained teacher network provides guidance to a student
network during the training process, could help accelerate
the learning process and improve the quality of the
learned heuristics.

• Mixed learning: Combining deep reinforcement learning
with other learning techniques, such as supervised learn-
ing or unsupervised learning, may provide complemen-
tary benefits and enable our method to exploit a broader
range of information during the learning process.

In conclusion, we believe that learning improvement heuris-
tics using deep reinforcement learning offers a promising
direction for solving complex optimization problems such as
sensor placement. By continuing to explore and develop new
techniques, models, and strategies, we can further enhance the
capabilities of these methods in the future.
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