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Although topological phenomena attract growing interest not only in linear systems but also in
nonlinear systems, the bulk-edge correspondence under the nonlinearity of eigenvalues has not been
established so far. We address this issue by introducing auxiliary eigenvalues. We reveal that the
topological edge states of auxiliary eigenstates are topologically inherited as physical edge states
when the nonlinearity is weak but finite (i.e., auxiliary eigenvalues are monotonic as for the physical
one). This result leads to the bulk-edge correspondence with the nonlinearity of eigenvalues.

Introduction.—The topological phase of matter has at-
tracted considerable interest due to its exotic nature. In
particular, topological band theory has played a crucial
role in unveiling various types of topological phases by
combining the principles of band theory and topology [1–
24]. One of the most intriguing phenomena of topo-
logical phases is the bulk-edge correspondence (BEC),
which indicates the edge states induced by the bulk-
topology [25, 26]. Such topological edge states emerge
regardless of other details of systems and are sources
of anomalous behaviors. For instance, the robust edge
states in integer quantum Hall systems result in quan-
tized Hall conductance with extreme accuracy [27–31].
Notably, in these years, the notion of topological states
and BEC has expanded to encompass a broad range
of systems, [32–55]. including interdisciplinary systems,
such as meteorological systems [56].

Along with the above progress, generalizing topolog-
ical band theory has also elucidated exotic phenomena.
For instance, while topological band theory originally de-
veloped for systems with Hermitian eigenvalue problems,
generalizing it to non-Hermitian systems has discovered
the emergence of exceptional points [57–72] and skin ef-
fects [73–80] which do not have Hermitian counterparts.

In this respect, generalizing the topological band the-
ory to nonlinear systems also induces novel phenom-
ena. Indeed, the interplay between topology and non-
linearity of the eigenvectors has recently been discussed
in Refs. [81–88], elucidating topological synchronization
induced by interplay between the nonlinearity and the
topology [84]. Despite the above extensive efforts, the
interplay between the topology and nonlinearity of eigen-
values, another type of nonlinearity, has not been dis-
cussed so far. In particular, BEC, which plays a cen-
tral role, has not been established in nonlinear systems
of eigenvalues. The significance of this issue is further
enhanced by the existence of relevant systems; some of
photonic crystals and mechanical metamaterials are de-
scribed by the nonlinear eigenvalue problem [89, 90].

In this letter, we establish the BEC for nonlinear sys-
tems of eigenvalues. Our strategy is based on an auxiliary
eigenvalue. Introducing the auxiliary eigenvalue allows

FIG. 1. Schematic picture of the auxiliary bands λ(k, ω) for
two-dimensional cylindrical system. The system is periodic in
y-direction and with boundaries for x-direction. Bulk states
are illustrated in green, while edge states are represented in
red for each omega. The eigenstates that cross the λ = 0 plane
are of particular interest in the context of physics. Physical
bands of ω(k) for each k is shown in the inset. The gapless
edge states of the auxiliary bands λ are inherited to the physi-
cal nonlinear bands of ω. Namely, red, blue, green, and white
dots on the gray plane of λ = 0 respectively corresponds to
the physical edge states. For example, they can be dots in
the inset.

us to analyze the auxiliary edge states induced by the
bulk-topology. Among them, focusing on the physical
edge states leads us to the BEC under the nonlinearity
of eigenvalues. We demonstrate the emergence of edge
states due to nonlinear BEC for two-dimensional insu-
lators and three-dimensional semimetals. Our approach
of the auxiliary eigenvalue is considered to be versatile;
it can be extended to systems in other symmetry classes
and dimensions.

Auxiliary eigenvalue and nonlinear bulk-edge corre-
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spondence.—Here, we provides our strategy to discuss
the nonlinear BEC, i.e., the BEC of the nonlinear eigen-
value problems [see Eq. (1)]. We introduce the auxiliary
eigenvalues and discuss the BEC between the bulk topol-
ogy of the auxiliary bands and the physical edge states.

We consider the following nonlinear equation.

H(ω,k)ψ = ωS(ω,k)ψ, (1)

which is a nonlinear eigenvalue problem [91]. Here, H (S)
is the Hamiltonian (overlap) matrix, ψ is the eigenvector,
and k is the wave number vector. We allow the matrices
H and S may depend on the eigenvalue ω [92, 93].

Now, we discuss BEC of nonlinear eigenvalue prob-
lems. As a first step, we consider the matrix pencil
P (ω,k) [94],

P (ω,k) = H(ω,k)− ωS(ω,k), (2)

where the solution of P (ω,k)ψ = 0 is equivalent to
Eq. (1). In order to discuss the BEC of Eq. (1), we intro-
duce the auxiliary eigenvalue λ and analyze its eigenvalue
problems [95, 96],

P (ω,k)ψ = λψ. (3)

Here, λ is auxiliary and does not have physical mean-
ing except λ = 0. The physical eigenvalue ω is a free
parameter.

Next, we analyze Eq. (3) and discuss the BEC in the
auxiliary bands of λ. Here, we need to assume λ = 0
exists in the band gap of auxiliary eigenvalues. We note
that the eigenstates only on λ = 0 emerge in physics
because auxiliary eigenvectors with finite λ do not sat-
isfy Eq. (1). When the bulk bands of λ are topological,
they possess gapless edge states under the open boundary
condition. Since the edge states are gapless, those edge
states cross λ = 0 inevitably (see Fig. 1). Therefore,
those edge states can be expected to emerge in physics.

Here, a comment is in order about the range of valid-
ity of the above discussion. The above discussion is valid
when nonlinearity is weak in the vicinity of ω of inter-
est (i.e., auxiliary eigenvalues are monotonic with respect
to ω). This is because the band indices of the bands of
λ and the bands of ω correspond one-to-one when the
nonlinearity is weak. In this case, the gapless (gapped)
nature of edge states of λ is inherited to the bands of ω.
In contrast, when the nonlinearity is strong, band indices
of the bands of λ and the bands of ω do not correspond
in general. In this case, the edge states of ω can be gap-
less even if the edge states of λ are gapped. Thus, these
gapless edge states cannot be characterized by the topo-
logical number, which is calculated by the eigenstates of λ
(for details, see Sec. I of Supplemental Material [97]). In
addition, Eq. (1) can possess complex eigenvalues even
when the matrices H and S are Hermitian under the
strong nonlinearity. While the above cases are intrigu-
ing, strong nonlinearity induces additional complexities,

FIG. 2. Band structure of the auxiliary eigenvalue λ of
the two-dimensional model. Edge (bulk) states are plotted
in red (gray). (a1)-(c1) [(a2)-(c2)]: Plot of λ for each ω [kx]
with M0 = −1, M0 = 0.35, and M0 = 1 respectively. The
parameter kx (ω) is fixed in kx = 0 (ω = 1). Parameter kx
(ω) is choosen in kx = 0 (ω=1). Edge states emerge when
M0 < 0.35.

which requires different approaches. Therefore, in the
following discussion, we focus on the case where the non-
linearity is weak, i.e., the band indices of the bands of λ
and the bands of ω correspond, and λ is real.

Nonlinear Chern insulator and gapless edge states.—
Here, we explore the nonlinear BEC in a two-dimensional
model. We examine the relationship between the bulk
topology of the auxiliary bands of λ and the gapless edge
states of ω in a two-dimensional system described by a
nonlinear eigenvalue problem [Eq. (1)].

Here, we analyze the following two-dimensional model
with ω-dependent terms,

H(k) =

(
E +MH(k) sin(kx)− isin(ky)

sin(kx) + isin(ky) E −MH(k)

)
, (4)

S(ω) =

(
1−MS(ω) 0

0 1 +MS(ω)

)
, (5)

with E = 1, MH(k) = M0 +
∑

i=x,y[1 − cos(ki)], and
MS(ω) = M1tanh(ω)/ω. Here, M1 is fixed to 0.5. We
denote this system by a nonlinear Chern insulator (for
the case of the chiral symmetric system, see Sec. II of
Supplemental Material [60]). From these matrices, ma-
trix P is given by,

P (ω,k) =

(
EP(ω) +MP(ω,k) sin(kx)− isin(ky)
sin(kx) + isin(ky) EP(ω)−MP(ω,k)

)
,

(6)
with EP(ω) = E − ω and MP(ω,k) =MH(k) + ωMS(ω).
Here, let us analyze the auxiliary band structure of λ

by solving the eigenvalue problem P (ω,k)ψ = λψ. The
band structure of λ is plotted in Fig. 2. For the calcula-
tions of Fig. 2, we consider the open (periodic) boundary
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FIG. 3. Band structure of ω of the two-dimensional model.
Edge (bulk) states are plotted in red (gray). (a)-(c): Plot of
ω for each kx and the Chern number of the bands of λ with
M0 = −1, M0 = 0.35, and M0 = 1 respectively. The band
gap is fully opening in the orange-colored regions. (d): Plot
of the Chern number calculated from the eigenstates of λ1 for
each M0 and ω. The Chern number takes a non-zero (zero)
value in the blue-colored region. The black line represents
ω = 1. The band structures in Figs. 3(a), 3(b), and 3(c)
emerge on the black, red, and green dots. The region where
the Chern number takes non-zero values corresponds to the
region where the edge states emerge.

conditions in the y-direction (x-direction). Figures 2(a1)-
2(c1) [2(a2)-2(c2)] displays auxiliary eigenvalues λ for
each ω (kx) with kx = 0 (ω = 1). Bulk (edge) states
are plotted in gray (red). When M0 = −1, edge states
emerge [see Figs. 2(a1) and 2(a2)]. Since these edge
states are gapless in the momentum space, the edge states
cross λ = 0 inevitably. This result suggests the exis-
tence of physical edge states inherited from the auxiliary
bands. In Figs. 2(b1) and 2(b2), the band gap closes
at M0 = 0.35. The point of λ(ω = 1, kx = 0) becomes
the Dirac point. When M0 = 1, the band gap reopens,
and the edge states vanish. From these results, we can
conclude that the topological phase transition occurs at
M0 = 0.35. Therefore, when M0 < 0.35, we can expect
the presence of physical edge states since the edge states
of auxiliary bands cross λ = 0 inevitably.

In order to characterize the gapless edge states in
Fig. 2, let us consider the topological number of the aux-
iliary bands of λ. For our two-dimensional model, the
Chern number can be used as a topological number. The

Chern number of the band index n is defined by,

Nn
Ch(ω) =

1

2π

∫

1BZ

dkxdky∇k ×An(ω,k), (7)

An(ω,k) = ⟨ψn,k(ω)|∇kψn,k(ω)⟩, (8)

where |ψn,k(ω)⟩ is an auxiliary eigenstate with band in-
dex n and momentum k. The integration is conducted in
the first Brillouin zone of the momentum space. In our
model, Berry connection An(ω,k) depend on ω. Thus,
the Chern number becomes the function of ω.
In our model, the Chern number takes non-zero values

when M0 < 0.35. In Fig. 2(a2), the Chern number of
the lower (upper) band is N1

Ch(ωR) = 1 [N2
Ch(ωR) = −1]

while N1
Ch(ωR) = N2

Ch(ωR) = 0 in Fig. 2(c2) with ωR =
ω = 1. Therefore, the Chern number calculated by the
eigenstates of λ corresponds to the number of edge states
of the auxiliary bands of λ.
Here, let us investigate the nonlinear BEC between

the above Chern number and the edge states of ω. The
physical band structures of ω are plotted in Fig. 3 by
extracting the data of λ = 0. In Figs. 3(a)-3(c), the bands
of ω are plotted for each kx with M0 = −1, M0 = 0.35,
and M0 = 1 respectively. Bulk (edge) states are plotted
in gray (red or blue). For the calculation of these figures,
the open (periodic) boundary condition is imposed in the
y- (x-) direction. The region where the band gap of ω
remains open across all kx is colored with orange. In
our model, the gapless edge states of ω emerge when
M0 = −1 [see Fig. 3(a)]. The edge states are inherited
from the edge states of λ plotted in Fig. 2(a2). The
band structure of ω become gapless when M0 = 0.35 [see
Fig. 3(b)]. This gapless point corresponds to the gap-
closing point in Fig. 2(b2), which elucidates a nonlinear
topological phase transition. When M0 = 1, the edge
states vanish [see Fig. 3(c)].

Figure 3(d) is the plot of the Chern number of the lower
band obtained from the eigenstates of λ for each M0 and
ω. The Chern number takes a non-zero value in the blue-
colored region. The black line represents ω = 1. The
band structures plotted Figs. 3(a), 3(b), and 3(c) emerge
on the black, red, and green dots in Fig. 3(d). Impor-
tantly, correspondence exists between the regions where
the Chern number is non-zero and the regions where edge
states emerge. The above results demonstrate that the
nonlinear BEC holds for nonlinear Chern insulator.

Here, we note that when discussing the nonlinear BEC
from the phase diagram plotted in Fig. 3(d), ωR is prop-
erly chosen so that it is inside of the band gap of ω.
Taking ωR outside the band gap can lead to a mismatch
between the Chern number and the edge states.

Nonlinear topological semimetal and Fermi arc surface
states.—Next, let us consider the nonlinear BEC in a
three-dimensional model. We demonstrate the existence
of the nonlinear BEC between the bulk topology of the
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FIG. 4. Plot of the Chern number calculated by the eigen-
states of λ for each kz and ω. The Chern number takes 1 (0)
in the blue (white) region. The black line represents ω = 1.
Band structures of Figs. 3(a), 3(b), and 3(c) emerge on the
black, red, and green dots. The boundaries between the blue
and the white regions correspond to the Weyl nodes.

auxiliary bands and the Fermi-arc surface states of the
nonlinear Weyl semimetals (see below) by analyzing a
three-dimensional model including ω-dependent term.

Here, we analyze Eqs. (4)-(6) with M0 = cos(kz).
In this model, the gapless band structure plotted in
Fig. 3(b) emerges at cos(kz) = −0.35. These gapless
points of ω correspond to the Weyl points, which form
a line structure in the four-dimensional parameter space,
composed of ω, kx, ky and kz. The band structure in
Fig. 3(a) [(b)] also emerges at kz = π [kz = 0]. In this
manner, we define a system described by the nonlinear
eigenvalue problems that possess pairs of Weyl points as
nonlinear Weyl semimetals.

Figure 4 is the plot of the Chern number of the lower
band obtained from the eigenstates of λ for each kz and
ω. The blue (white) region represents where the Chern
number takes 1 (0). The black line represents ω = 1, and
colored dots indicate the points where the band struc-
tures plotted in Fig. 3 emerge. On the black, red, and
green points, The band structure plotted in Fig. 3(a),
3(b), and 3(c) emerges. In Fig. 4, the boundaries be-
tween the blue and white colored region correspond to
the Weyl nodes. In our model, Weyl nodes form line
structures in the kz-ω space. However, in general, these
lines of Weyl points emerge in the four-dimensional pa-
rameter space composed of kx, ky, kz, and ω. Notably, as
is the case of the two-dimensional model, the correspon-
dence exists between the region where the Chern number
takes a non-zero value and the region where edge states

emerge. This result shows the applicability of nonlinear
BEC even in the topological semimetals.

Summary.— In this letter, we have established the
BEC for nonlinear systems of eigenvalues. We have intro-
duced an auxiliary eigenvalue and showed the emergence
of BEC between the bulk topology of auxiliary eigen-
states and physical edge states when the nonlinearity is
weak. Applying our argument to two-dimensional insula-
tors and three-dimensional semimetals, we have demon-
strated the emergence of edge states induced by the non-
linear BEC. Our results show BEC remains valid even
beyond the linear systems. Our nonlinear BEC is appli-
cable to the model with more complicated ω-dependence
as long as the nonlinearity is weak (i.e., auxiliary eigen-
values are monotonic with respect to ω). Our approach
with the auxiliary eigenvalue is considered to be extended
to systems in other symmetry classes and dimensions.
These extensions and applications to more physical se-
tups are left as future works.
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tonics 8, 821 (2014).
[36] L.-H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901

(2015).
[37] S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and

Y. Arakawa, Optical weyl points below the light line
in semiconductor chiral woodpile photonic crystals, in
Conference on Lasers and Electro-Optics, p. JTu5A.42,
Optica Publishing Group, 2017.

[38] S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and
Y. Arakawa, Journal of the Physical Society of Japan
87, 123401 (2018).

[39] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,
L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zil-
berberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006
(2019).

[40] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante,
M. Notomi, Y. Arakawa, and S. Iwamoto, Nanophotonics
9, 547 (2020).

[41] Y. Moritake, M. Ono, and M. Notomi, Nanophotonics
11, 2183 (2022).

[42] T. Kariyado and Y. Hatsugai, Scientific reports 5, 1
(2015).

[43] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and
B. Zhang, Phys. Rev. Lett. 114, 114301 (2015).

[44] S. D. Huber, Nature Physics 12, 621 (2016).
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I. STRENGTH OF NONLINEARITY FOR NONLINEAR BEC

In this section, we discuss the relation between the strength of nonlinearity of ω and the nonlinear BEC. In order
to discuss the nonlinear BEC, we have made the assumption that the nonlinearity of ω is weak near the ω of interest
in the main text. When the nonlinearity of ω is weak, the band indices of λ correspond to the band indices of ω [see
Fig. 1(a)]. Consequently, the presence of gapless edge states between λi and λi+1 results in the gapless edge states
within ωi and ωi+1. This is due to the fact that the gapless edge states of λ intersect the λ = 0 for any ω within the
ranges of ωi and ωi+1. When the edge states of λ are gapped (edge states in the gap do not connect the upper and
lower bands), there exist ω that do not cross λ = 0. Therefore, the edge states of ω also become gapped.

On the contrary, when the nonlinearity of ω is strong, the band indices of λ do not correspond with the band indices
of ω [see Fig. 1(b)]. In such cases, even if the edge states of λ are gapped, the edge states of ω can still be gapless.
As a result, when this situation arises, there exists a case that the bands of ω are gapples even if the bands of λ are
gappless.

FIG. 1. Sketch of the auxiliary and physical band structures. Edge states are illustrated in red. The band structure of ω is
sketched in insets. (a): Band structures when λ is monotonic for each ω. The band indices of λ correspond to the band indices
of ω. (b): Band structures when λ is not monotonic for each ω. The band indices of λ do not correspond to the band indices
of ω. Although the edge states of λ are gapped, edge states of ω are gapless.

II. 1D MODEL AND TOPOLOGICAL ZERO MODES

In this section, we demonstrate the nonlinear BEC between the bulk topology of the auxiliary eigenvalue λ and
physical edge states. We achieve this by analyzing a one-dimensional model that contains the nonlinearity of the
physical eigenvalue ω. One-dimensional systems can exhibit topological zero modes. Therefore, if the auxiliary bands
of λ possess topological zero modes, these modes can manifest as physical behaviors.
Here, we analyze one-dimensional model with ω dependent term MS(ω),

H(k) =

(
0 sin(k)− iMH(k)

sin(k) + iMH(k) 0

)
, (1)

S(ω) =

(
1−MS(ω) 0

0 1 +MS(ω)

)
, (2)
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where ω and k represent frequency and wavenumber, respectively. We consider the cases MH(k) =M0 + [1− cos(k)]
and MS(k) = M1tanh(ω)/ω. We note that λ decreases monotonically with respect to ω when M1 ≦1. Thus, we
fix M1 = 0.5. Because the matrix S depends on ω, the eigenvalues cannot be obtained simply by diagonalization.
We analyze this nonlinear eigenvalue problem using the auxiliary eigenvalue λ. From these matrices, matrix P is
composed as follows,

P (ω, k) =

(
−ω +MS(ω) sin(k)− iMH(k)

sin(k) + iMH(k) −ω −MS(ω)

)
. (3)

Let us analyze the one-dimensional model described by P (ω, k)ψ = λψ. In Figs. 2(a)-2(c), the auxiliary eigenvalue
λ is plotted for each ω under the open boundary condition. Bulk (edge) states are plotted in gray (red). When
M0 = −0.8, the edge states emerge [see Fig. 2(a)]. The edge states degenerate at ω = 0 because MS(ω) becomes zero
at ω = 0. The band gap closes at M0 = 0 [see Fig. 2(b)], and the edge states vanish when M0 = 0.8 [see Fig. 2(c)].
From these figures, we can conclude that topological phase transition occurs at M0 = 0. Therefore, when M0 < 0, we
can expect the presence of physical edge states at ω = 0 since the edge states cross λ = 0.
In order to characterize the edge modes in Fig. 2(a), let us discuss the bulk topology of auxiliary bands of λ. In

this model, matrix P (ω, k) satisfy the chiral symmetry,

Γ−1P (ω0, k)Γ = −P (ω0, k), (4)

with ω = ω0 = 0. The chiral operator is denoted by Γ. Notably, chiral symmetry guarantees the emergence of the
edge states of λ at λ(ω0, k) = 0. Thus, the topological zero modes protected by the chiral symmetry of P emerge as
the physical edge modes. We note that the chiral symmetry of the matrix P does not have any physical meaning.
The symmetry purely imposes a mathematical constraint on P and λ.

Here, let us verify the correspondence between the bulk topology of the auxiliary bands of λ and the physical edge
states of ω. Since our model satisfies the chiral symmetry at ω = ω0, the winding number can be defined as follows,

ν =
i

2π

∫ π

−π

dk∂klogP12, (5)

where P12 is 1, 2 component of P (ω,k). We employ the winding number to discuss the bulk topology of the band
structure of λ.
In Fig. 2(d), the frequency ω and the winding number of P12 are plotted for each M0. When M0 < 0, since the

spectrum of P12 wind around the origin, the winding number takes a non-zero value ν(ω0) = 1. Corresponding to
the non-zero winding number, the physical edge modes of ω emerge at ω = 0. Contrarily, since the spectrum of P12

does not wind the origin when M0 > 0, the winding number becomes zero, and the edge state vanishes. This result
implies that the bulk topology of the band of λ corresponds to the physical edge state of ω.
Based on the above discussion, we can conclude that a BEC exists between the topological number of the auxiliary

bands of λ and the physical edge states of ω.
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FIG. 2. Band structure of the one-dimensional model. Edge (bulk) states are plotted in red (gray). (a)-(c): Band structures
of λ for each ω with M0 = −0.8, M0 = 0, and M0 = 0.8 respectively. Edge states emerge when M0 < 0. (d): Plot of ω for each
M0 and the winding number ν with ω = ω0 = 0. The winding number takes a non-zero value where the region that the edge
states emerge.


