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Composite topological phases with intriguing topology like Möbius strips emerge in sublattice
symmetric non-Hermitian systems due to spontaneous breaking of time-reversal symmetry at some
parameter regime. While these phases have been characterized by nonadiabatic complex geometric
phases of multiple participating complex bands, the physical properties of these phases largely
remain unknown. We explore the dynamical response of these phases by studying Loschmidt echo
from an initial state of the Hermitian Su-Schrieffer-Heeger (SSH) model, which is evolved by a non-
Hermitian SSH Hamiltonian after a sudden quench in parameters. Topology-changing quenches
display non-analytical temporal behavior of return rates (logarithm of the Loschmidt echo) for
the non-Hermitian SSH Hamiltonian in the trivial, Möbius and topological phase. Moreover, the
dynamical topological order parameter appears only at one side of the Brillouin zone for the Möbius
phase case in contrast to both sides of the Brillouin zone for quench by the trivial and topological
phase of the non-Hermitian SSH model. The last feature is a dynamical signature of different
symmetry constraints on the real and imaginary parts of the complex bands in the Möbius phase.

I. INTRODUCTION

Topology and quantum dynamics are shown to be in-
trinsically related in the early research on topology in
condensed matter physics [1]. Several near-equilibrium
dynamical quantities like linear electrical transport [2, 3],
change in electrical polarization [4], and Josephson cur-
rent [5] are directly connected to the underlying topol-
ogy of the band structures. Recent studies have further
extended the realm of their connections to the out-of-
equilibrium regime. It has been found that topology-
changing quenches are always followed by non-analytical
temporal behavior of return rates (logarithm of the
Loschmidt echo), characterizing dynamical phase transi-
tions (DPTs) [6–8]. Topological edge modes can further
influence features of non-equilibrium transport in open
topological systems [9, 10]. The effective Hamiltonian
of an open quantum system is non-Hermitian. In recent
years, there has been massive research interest in explor-
ing topological features in non-Hermitian models [11–20].

The energies are complex-valued in non-Hermitian sys-
tems in contrast to the Hermitian systems with real
eigenvalues [21–25]. The degeneracy in complex energy
spectrum leads to the non-analyticities (singularities)
coined as exceptional points (EPs) [18, 26, 27]. The com-
plex energy spectrum and the EPs pave the way for the
ramification and unification of various crucial symme-
tries in non-Hermitian systems [28–30]. Such unification
and branching out of symmetries have led to intriguing
topological phases, both with and without their Hermi-
tian counterparts. For instance, the trivial and topo-
logical phase with a complex-energy gap in a sublattice
symmetric non-Hermitian Su-Schrieffer-Heeger (NSSH)
model [31–34] are similar to those phases with a real-
energy gap in the related Hermitian model. The NSSH
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model also hosts a gapless composite topological phase
named the Möbius phase in the parameter region be-
tween two EPs. The Möbius phase involves the multiple
participating complex bands [11, 12, 30] and does not
have a Hermitian analog.
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Figure 1. Summary of main results for two quench proto-
cols from a trivial (T) phase of Hermitian SSH model to a
Möbius (M) and a topological (TP) phase of non-Hermitian
SSH model. Pancharatnam phase ϕG(k, t) is calculated for
single particle with momentum k at time t. Parameters of
initial and final Hamiltonian are denoted by δi, θi and δf , θf ,
respectively. Number of DTOPs per Brillouin zone is repre-
sented by νBZ, which shows different νBZ for the final Hamil-
tonian in the M and TP phase.

Our main aim of this study is to identify physical signa-
tures of these non-Hermitian phases particularly the gap-
less Möbius phase. We are not aware of any study explor-
ing equilibrium or out-of-equilibrium physical properties
of the Möbius phase yet. We here explore the global dy-
namical features arising from the integration or disinte-
gration of different crucial symmetries and the accompa-
nying topological phases of the NSSH model. We study
Loschmidt echo from an initial state of the Hermitian
SSH model, which is evolved by an NSSH Hamiltonian
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after a sudden quench in parameters. Previous studies
on Loschmidt echo with non-Hermitian topological mod-
els have mostly considered parity-time (PT ) symmetric
models [35–37] apart from few exceptions [38, 39]. Never-
theless, pertinent questions remain unanswered, particu-
larly for sublattice symmetric models, as shown here. We
first show that a quench by the NSSH Hamiltonian in the
Möbius phase exhibits DPTs from both the trivial and
topological phase. The last feature is sharply different
from the quench by a PT symmetric SSH Hamiltonian
in the broken phase [35–37] from both the phases when
there is no DPT. Further, we also observe unique dy-
namical signatures related to the symmetry constraints
in the composite phase of the sublattice symmetric NSSH
model. We demonstrate these unique features in the re-
turn rates and the dynamical topological order parameter
(DTOP). We here observe two DTOPs in the Brillouin
zone (BZ) for a topology changing quench by the NSSH
model in either trivial or topological phase, and the ini-
tial state in any band. However, there is only one DTOP
in the positive or negative half of the BZ when the NSSH
model in the Möbius phase. Analyzing the consequences
of symmetries on the complex energy spectrum, we ex-
plain the differences in the number of the DTOPs for
quench by NSSH in the topological or trivial phase versus
Möbius phase. The Fig. 1 summarizes our main findings.

The rest of the paper is divided into three sections.
In Sec. II, we introduce the NSSH model, its complex
Bloch vector and spectrum, important symmetries and
their consequences on various topological phases. We also
briefly describe the non-Hermitian analogs of various dy-
namical quantities like Loschmidt echo, return rate, and
DTOPs, which we apply to analyze DPTs in different
quench settings. We give our main results from the vari-
ous quench protocols in Sec. III and explain these results
there. We conclude the paper with a summary of our
main findings and some outlook for possible issues and
future extensions of this research in Sec. IV.

II. MODEL & QUENCH DYNAMICS

A. Non-Hermitian SSH model

The Hamiltonian of the bi-partite sublattice symmetric
NSSH chain [11, 12] reads as

H =

L∑
m=1

(vℓa
†
mbm + vrb

†
mam + wℓb

†
mam+1 + wra

†
m+1bm),

(1)

where c†m (cm) represents the spinless fermionic creation
(annihilation) operator at c = a, b sublattice site of the
mth unit cell, and L is the length of the chain. We con-
sider periodic boundary condition (PBC), e.g., L+ i ≡ i.
Here, vλ (wλ) represents the intra-cell (inter-cell) hop-
ping amplitude with a subscript λ = ℓ, r indicating the
left and right direction of hopping, respectively. The

PBC allows us to write H as a 2 × 2 matrix in the mo-
mentum k space as

H(k) =

[
0 (vℓ + wre

ik)
(vr + wℓe

−ik) 0

]
. (2)

In the rest of the paper, we parameterize as vℓ = vr =
J(1 − δ), wr = wℓe

−θ = J(1 + δ), θ > 0, which fa-
cilitate symmetric quenches and a single control of non-
Hermiticity (θ). The boundaries of various topological
phases can be controlled by tuning the system parame-
ters, e.g., δ, θ. The trivial, Möbius and topological phase

appear, respectively, for 1−eθ

1+eθ
> δ, 1−eθ

1+eθ
< δ < 0 and

δ > 0 [11, 12].
We can further present H(k) in terms of the Pauli ma-

trices, σ⃗ = (σx, σy, σz), as H(k) = d⃗k.σ⃗, where d⃗k =
(dxk, d

y
k, d

z
k) ∈ C3 is a complex-valued three-dimensional

Bloch vector with components as

dxk = J(1− δ) + J(1 + δ)e
θ
2 cos

(
k + i

θ

2

)
,

dyk = −J(1 + δ)e
θ
2 sin

(
k + i

θ

2

)
, dzk = 0. (3)

In the Hermitian limit (θ = 0), d⃗k becomes the real-
valued Bloch vector (dx,y,zk ∈ R) of the SSH model [40,
41], whose endpoint traces out a closed loop on the dxk, d

y
k

plane either encircling or excluding the origin as k is
swept across the BZ, k = −π → π. The bulk wind-
ing number indicating the topology of the model counts
the number of times the loop winds around the origin.
In Figs. 2(g-i), we show the analogous plots for the real

and imaginary parts of d⃗k of the NSSH model for three
different values of δ (= −0.9,−0.1, 0.9). The loop by the

imaginary part of d⃗k always includes the origin of the

dxk, d
y
k plane. However, the loop by the real part of d⃗k

shows interesting features in three different phases of the
NSSH model. In the topological phase, it winds around
both the origin and the loop by the imaginary part with-
out intersecting the loop in Fig. 2(i). The loop by the

real part of d⃗k avoids the origin as well as the loop by

the imaginary part of d⃗k in the trivial phase as shown
in Fig. 2(g). For the Möbius phase, the loops by the

real and imaginary parts of d⃗k intersect, and the loop
by the real part may or may not include the origin like
in Fig. 2(h). Comparing the Bloch vector between the
Hermitian and non-Hermitian case in Eq. 3, we find a

modification of the inter-cell hopping as J(1 + δ)e
θ
2 , and

an emergence of complex-valued momentum k′ = k + i θ2
in the non-Hermitian model, which lead to various kinds
of skin effects [42–45] in such model.
The complex energy eigenvalues of the two bands of

the NSSH model are

E±(k) = ±ϵk = ±
√

(vℓ + wreik)(vr + wℓe−ik). (4)

We show the real (full lines) and imaginary (dashed lines)
parts of Ep(k) for p = ± with k in Figs. 2(a-c) for
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Figure 2. The complex energy spectrum E±(k) with momentum k (top row) and on the parametric space of Re[E±(k)] and
Im[E±(k)] (middle row) in three different phases of non-Hermitian SSH model. The contour of the endpoints of real (full line)

and imaginary (dashed line) part of d⃗k on the dxk, d
y
k plane as k is swept across the Brillouin zone, k = −π → π (bottom row).

The parameters are J = 1, θ = 0.4, and δ = −0.9 (trivial), −0.1 (Möbius), and 0.9 (topological). The dot represents value at

k = −π and arrow indicates k = −π → π for complex energy E±(k) and Bloch vector d⃗k in the middle and bottom rows. The
exceptional point and the origin of dxk, d

y
k plane are shown by black star and dot, respectively.

three different values of δ (= −0.9,−0.1, 0.9) represent-
ing the trivial, Möbius and topological phases of the non-
Hermitian chain. The bi-orthogonal eigenvectors to the
corresponding eigenvalues ±ϵk are

|ψ±
k ⟩ =

1√
2

(vℓ + wre
ik

ϵk
ã†k ± b̃†k

)
|0⟩, (5)

⟨χ±
k | = ⟨0| 1√

2

(vr + wℓe
−ik

ϵk
ãk ± b̃k

)
, (6)

where c̃†k(c̃k) is the fermionic creation (annihilation) op-
erator at c = a, b sublattice with a momentum k.

The NSSH chain with non-reciprocal hoppings has
anti-unitary symmetries, time-reversal symmetry (TRS)
TK and particle-hole symmetry (PHS†) CK, and uni-
tary sublattice symmetry (SLS) S given by the follow-
ing relations: T −1H∗(k)T = H(−k), C−1H∗(k)C =
−H(−k) and S−1H(k)S = −H(k) where T = σ0, C =
σz,S = σz with σ0 being 2 × 2 identity matrix and
K is the complex-conjugate operator [46]. The com-
plex energy bands individually respect the TRS in all
three phases: E±(k) = E∗

±(−k). The SLS indi-

cates the bands appear as an opposite-sign pairs. The
TRS gives, Re[E±(k)] =Re[E±(−k)], and Im[E±(k)] =
−Im[E±(−k)], which indicate the real and imaginary
part of complex bands are, respectively, an even and odd
function of k. The SLS tells that the real or imaginary
part of the two complex bands is of the same magnitude
and an opposite sign at any k. Nevertheless, the bands do
not respect individually PHS† in any phase. Rather, the
complex bands are paired via PHS†: E±(k) = −E∗

∓(−k).
The TRS and PHS† make the complex spectrum symmet-
ric about the real and imaginary axis, respectively, as we
show in Figs. 2(d-f). These plots also display a complex-
energy gap in the trivial and topological phases, and no
gap in the Möbius phase.
When a state is simultaneous eigenstate of the Hamil-

tonian and TRS or SLS, the energy of the state is either
purely real or zero. The states at time-reversal-invariant
momenta k = 0,±π in the topological and trivial phase
for PBC, and the edge states for an open or a special
boundary conditions [11, 12] in the topological phase
follow the above constraints on energy. However, such
consequences of the TRS and SLS break down in the
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Möbius phase for δ ∈ (0, 1−eθ

1+eθ
) at k = ±π for PBC as

well as for the special boundary condition, when two
purely imaginary energy modes emerge. The appear-
ance of purely imaginary energy modes can be associ-
ated to the emergence of simultaneous eigenstate of the
Hamiltonian and PHS† in the intriguing Möbius phase
in the parameter region between two EPs [11, 12]. Re-
cent works [11, 12, 47, 48] point out application of differ-
ent adiabatic and non-adiabatic topological invariants for
characterizing these non-trivial topological phases with
and without Hermitian counterparts. We here explore
the dynamical features of these non-Hermitian topolog-
ical phases with the help of the Loschmidt echo and
DTOP.

B. Loschmidt echo

The Loschmidt echo [49, 50] measures the extent to
which a quantum evolution can reverse upon an imper-
fect time reversal. It is achieved by employing slightly
different forward and backward time-evolving Hamilto-
nians. The Loschmidt echo in Hermitian setups explored
quite a lot theoretically [6, 8, 51] as well as experimen-
tally [52, 53]. The Loschmidt echo [49, 54, 55] is defined

as L(t) = ⟨Ψ̃|eiHf te−iHit|Ψ⟩, where Hi and Hf are ini-
tial and final Hamiltonians with a slight difference be-
tween them. Here, {|Ψ⟩, ⟨Ψ̃|} are mutually associated
bi-orthogonal initial states. We choose |Ψ⟩ as an eigen-
state of Hi, and drop the trivial phase factor from L(t)
due to time evolution by Hi. Thus, we simplify the above
definition of the Loschmidt echo [56, 57] as

L(t) = ⟨Ψ̃|eiHf t|Ψ⟩. (7)

In particular, |Ψ⟩ is prepared as a half-filled many-body
eigenstate ofHi. To perform the quench study, we change
δi, θi characterizing Hi to δf , θf for Hf at t = 0. We
also keep J = 1 everywhere. An analytical description of
generic quench dynamics for our model is provided below.
The numerical results of the quench dynamics and Fisher
zeros (FZs) are presented in the next section.

For a generic non-Hermitian Hi, |Ψ⟩ as a half-filled
many-body eigenstate of Hi occupying the lower band
reads

|Ψ⟩ =
∏
k

|ψi,−
k ⟩ =

∏
k

1√
2

(vℓ + wre
ik

ϵk
ã†k − b̃†k

)
|0⟩. (8)

Using |Ψ⟩ in Eq. 7, we then derive

L(t) =
∏
k

Gk(t) =
∏
k

⟨χi,−
k (0)|ψi,−

k (t)⟩, (9)

where

Gk(t) = β+
k e

iϵfkt + β−
k e

−iϵfkt = cos(ϵfkt)− i d̂ik.d̂
f
k sin(ϵ

f
kt),
(10)

with, βµ
k ≡ ⟨χi,−

k |ψf,µ
k ⟩⟨χf,µ

k |ψi,−
k ⟩ = (1 − µd̂ik.d̂

f
k)/2 for

µ = ±, and d̂
i/f
k = d⃗k

i/f

√
d⃗k

i/f
.d⃗k

i/f
. We here use i,f either in

the subscript or in the superscript of different variables
to associate them with the initial and final Hamiltonian,
respectively.
The return rate (I(t)) characterizes how often the

evolved state after the quench comes close to the initial
state. It is defined as I(t) = − log |L(t)|/L, which in the
thermodynamic limit (L→ ∞) reads

I(t) = − 1

2π

∮
k

log |Gk(t)|dk. (11)

If we compare L(t) to the dynamical partition function
for boundary state |Ψ⟩ separated by z = it, I(t) denotes
the dynamical free energy for the process. The return of
the evolving state |ψi,−

k (t)⟩ after a quench to the initial

state |ψi,−
k (0)⟩ is characterized by L(t) = 1 or I(t) = 0.

The non-analyticities in I(t) indicate the DPT in the
model, which occurs for |L(t)| = 0 or Gk(t) = 0 for any
k [51]. The solutions for |L(t)| = 0 are also known as the
FZs. The FZs for L(t) in Eq. 9 can be determined from
w(n, k) for different positive integer n, where

w(n, k) := i
π(2n+ 1)

2ϵfk
+

1

ϵfk
tanh−1(d̂ik.d̂

f
k). (12)

Similar to the Hermitian case, the critical times for the
DPT are calculated from the imaginary intercept of the
curve w(n, k) over the BZ, k ∈ (−π, π] on the parametric
complex plane [51, 58, 59]. The momentum for which the
imaginary intercept happens is termed critical momen-
tum (knc ), and is found from the solution of the equation
Re[w(n, knc )] = 0, i.e.,

π(n+
1

2
)Im[ϵfkn

c
] + Re[(ϵfkn

c
)∗ tanh−1(d̂ikn

c
.d̂fkn

c
)] = 0.

(13)

For Hermitian models (i.e., Im[ϵfk] = 0), the above equa-

tion can be expressed as tanh−1(d̂ikn
c
.d̂fkn

c
) = 0. Conse-

quently, the FZs emerge symmetrically in the BZ at ±knc .
For the quenches by a non-HermitianHf in the trivial and
topological phase in Secs. III A, III C, Im[ϵfk] ≪ Re[ϵfk] as
can be seen in Figs. 2 (a,c). Thus, the FZs emerge in
both the positive and negative BZ like the Hermitian
case. However, the contribution from Im[ϵfkc

] in Eq. 13
disrupts the above symmetry of FZs for a non-Hermitian
Hf in comparison for a Hermitian Hf . Therefore, the FZs
occur at different values of kn+c and kn−c in the BZ. The
corresponding critical time (tn±c ) when the DPT occurs
is Im[w(n, kn±c )], i.e.,

tn±c =
π(n+ 1

2 )Re[ϵ
f
kn±
c

] + Im[(ϵf
kn±
c

)∗ tanh−1(d̂i
kn±
c
.d̂f

kn±
c

)]

|ϵf
kn±
c

|2
.

(14)

In the Hermitian limit (i.e., Im[ϵfk] = 0), the Eq. 14
tn±c = π(n + 1

2 )/|ϵ
f
kn±
c

|, which is degenerate for posi-

tive and negative critical momentum and also periodic
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in time. However, the contribution from second term in
Eq. 14, particularly due to the real part of band energy,
breaks the above degeneracy and periodicity. For Hf in
the Möbius phase, the real and imaginary parts of ϵfk
are comparable as shown in Fig. 2(b), and we need to
carefully understand the role of Im[ϵfk] in Eq. 13. Since
Im[ϵfk] and Re[ϵfk] are, respectively, an even and odd func-
tion of k, the relation in Eq. 13 can only be satisfied in
one side (either negative or positive) of the BZ as we find
in Secs. III B, IIID.

The non-analyticity in I(t) indicates the vanishing
overlap between evolved and initial states for some kn±c

at time tn±c , i.e., ⟨χi,−
kn±
c

(0)|ψi,−
kn±
c

(tn±c )⟩ = 0. Such or-

thogonality between states emerges due to transition of
a particle at momentum kn±c from the filled lower band
to the empty upper band at time tn±c .

C. Dynamical topological order parameter (DTOP)

Due to translation symmetry within the PBC, the mo-
mentum k is a good quantum number for our model,
and it remains invariant under quench as we do not
change the total length of the chain. The dynamical
evolution of each particle is thus independent and sep-
arable from others. We can quantify the phase ϕG(k, t)
of such non-adiabatic evolution of a single particle at any
time t using the overlap of consecutive instantaneous non-
orthogonal states following Pancharatnam’s description,
which leads to ϕG(k, t) = ϕLE(k, t) − ϕdyn(k, t) [8, 60].
Here, ϕLE(k, t) and ϕdyn(k, t) denote, respectively, the
Loschmidt echo phase and the dynamical phase for the
evolution as given by

ϕLE(k, t) = −i log Gk(t)

|Gk(t)|
, (15)

ϕdyn(k, t) = −i
∫ t

0

dτ ⟨χi,−
k (τ)| d

dτ
|ψi,−

k (τ)⟩, (16)

|ψi,−
k (τ)⟩ =

eiHfτ |ψi,−
k (0)⟩√

⟨χi,−
k (0)|e−iH†

f τeiHfτ |ψi,−
k (0)⟩

, (17)

⟨χi,−
k (τ)| =

⟨χi,−
k (0)|e−iH†

f τ√
⟨χi,−

k (0)|e−iH†
f τeiHfτ |ψi,−

k (0)⟩
. (18)

Here, |ψi,−
k (τ)⟩ is the instantaneous normalized ket vector

at time τ , and the associated bra vector is ⟨χi,−
k (τ)|. In

order to access the topological change of the aforemen-
tioned dynamic process, a dynamical topological order
parameter is defined as a time-dependent winding num-
ber (ν±(t)) over the positive or negative momenta of the
BZ [6]. It is given by the relation

ν±(t) = − 1

2π

∫ ±π

0

∂ϕG(k, t)

∂k
dk. (19)

For a fully Hermitian quench between initial and fi-
nal Hermitian SSH Hamiltonian in different topological

phases, the chiral symmetry of SSH chain leads to the
quantization of the winding number ν±(t) and enforces
the condition ϕG(0, t ̸= tnc ) = ϕG(π, t ̸= tnc ) = 0 [7]. Con-
sequently, for k ∈ (0, π], the function ϕG(t) : [0, 2π] → S1

represents a continuous curve on the unit circle. For
quenches with a final Hamiltonian of the NSSH model,
the above relation for the Pancharatnam phase remains
true. We show below in Sec. III that ν±(t) remains al-
most quantized for topology changing quenches by a non-
Hermitian final Hamiltonian deep inside the trivial or
topological phase.
The existence of DTOPs is generally argued due to

the presence of a non-trivial topological change between
the initial and final Hamiltonian [7, 8, 61]. It has been
observed that quenches between topologically distinct
Hamiltonians with a change in winding number ∆ω give
at least 2∆ω topologically protected DTOPs over the
BZ [7]. Therefore, a non-zero DTOP indicates a dy-
namical topological phase transition induced by quench-
ing between topologically nonequivalent Hamiltonians.
In contrast, for quenches between topologically equiva-
lent Hamiltonians, the DTOP is zero, which indicates
the sum over the change in the Pancharatnam geomet-
ric phases of all momenta, i.e., ν±(t) is zero. For the
NSSH model, while the geometric phase or topological
invariant in the trivial or topological phase is defined for
individual bands, it is only defined for the both bands
together in the Möbius phase. This poses challenge to re-
late the change in winding number to number of DTOPs.
Here, we implement different quenches by non-Hermitian
Hamiltonian to address these issues regarding the ap-
pearance of DTOPs and their counts. A subsequent in-
terpretation of these findings is the main result of our
present work.

III. RESULTS

We now present our numerical results of the quench dy-
namics due to a non-Hermitian SSH final Hamiltonian to
an initial state |Ψ⟩ of the Hermitian SSH model, which
leads to L(t) = ⟨Ψ|eiHf t|Ψ⟩. Thus, the initial state of
Hi can be in the trivial or topological phase, and the pa-
rameters of Hf can be chosen to be in the trivial, Möbius,
topological phase. Out of such six different possibilities
of quench, we focus on the following four nonequivalent
topology changing quenches from initial to final Hamilto-
nian: (1) topological to trivial, (2) topological to Möbius,
(3) trivial to topological, and (4) trivial to Möbius.

A. Topological → Trivial

We start by investigating how the features of
Loschmidt echo alter from a fully Hermitian quench for a
non-HermitianHf . So we explore a quench from an initial
Hermitian topological phase with parameters, δi = 0.9,
θi = 0, to a non-Hermitian trivial phase of parameters,
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δf = −0.9, θf = 0.4. Fig. 3 displays the return rate,
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Figure 3. Return rate I(t) in (a), DTOP over negative mo-
mentum ν−(t) in (b), and DTOP over positive momentum
ν+(t) in (c) as a function of time. Fisher zero lines in the com-
plex plane of w(n, k) over the BZ, k ∈ (−π, π] (for n = 0,1,..4)
in (d). Points of intersection of the Fisher zero lines and the
dashed black line indicate critical momentum kn±

c . Dashed
brown (dashed-dotted grey) vertical lines through these points
correspond to critical times tn−

c (tn+
c ). Initial and final Hamil-

tonian parameters are δi = 0.9, θi = 0, δf = −0.9, θf = 0.4.

DTOP, and FZs for such quench dynamics. Despite
the non-Hermitian complex energies involved in quench
dynamics, the non-analyticities (sharp cusps) in I(t) in
Fig. 3(a) survive, which can be sharp as in the fully Her-
mitian case [62]. Nevertheless, the periodicity of these
peaks is broken for non-Hermitian quenches due to the
lifting of degeneracies of the FZs, which are present in
the fully Hermitian case. In Fig. 3(d), the FZs for various
curves of different n are shown using the cuts by the hor-
izontal dashed line with these curves over the entire BZ,
which confirms the presence of these non-analyticities at
critical kn±c s.

The imaginary values of these curves w(n, k) at k
(n±)
c s

in Fig. 3(d) are indicated by the vertical lines, and
they represent the critical times tn±c for the DPT. In
Figs. 3(b,c), we show the associated DTOPs, ν±(t), as a
function of time for a quantitative characterization of the
DPT. Both the DTOPs depict a discontinuity precisely
at the critical times and remain constant between two
consecutive non-analyticities in Figs. 3(b,c). The nearly
quantized sharp jumps in the DTOP have been associ-
ated with a dynamical change in the topological character
of the evolving state from the initial ground state with
particular topological features, and the plateaus between
the sharp jumps in the DTOP indicate no change in the
topological nature of the evolving state. For quenches
in fully Hermitian models, kn+c = −kn−c and tn+c = tn−c .
Such degeneracy in kn±c and tn±c is lifted due to a small
but non-zero imaginary part of band energies. The max-
imum imaginary band energy for our particular choice of

Hf is ±0.025i, which is relatively small than real energy
of order of ±2. Thus, the split in |kn±c | and the related
periodicity in time is less. The FZs in Fig. 3(d) show
these splits over the entire BZ for each n, which explains
the jumps in the DTOP calculated for the negative and
positive momentum in Figs. 3(b,c).

B. Topological → Möbius

In this paper, we are mainly interested in studying the
quench dynamics by the non-Hermitian Hf in Möbius
phase, which does not have a Hermitian counterpart. We
here prepare the initial state |ψi,−

k (0)⟩ in the topologi-
cal regime of the Hermitian SSH chain (e.g., δi = 0.9,
θi = 0), and quench it by non-Hermitian Hf with param-
eters, δf = −0.1, θf = 0.4, hosting the Möbius phase.
The Fig. 4(a) shows I(t) with t, which displays peaks in-
dicating non-analyticities at critical time tn+c s. However,
the height of these peaks is relatively low compared to
the previous case in Fig. 3(a), and I(t) increases overall
with time rather than returning closer to zero. The last
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Figure 4. Return rate I(t) in (a), DTOP over negative mo-
mentum ν−(t) in (b), and DTOP over positive momentum
ν+(t) in (c) as a function of time. Fisher zero lines in the
complex plane of w(n, k) over the BZ, k ∈ (−π, π] (for n =
0,1,..4) in (d). Parameters for topological to Möbius quench
are δi = 0.9, θi = 0 ⇒ δf = −0.1, θf = 0.4. Vertical dashed-
dotted grey lines show critical times (tn+

c ) corresponding to
positive critical momenta (kn+

c ). I(t) and DTOPs in the Her-
mitian limit (θf = 0) are depicted by pink dotted lines.

trend throws light on the evolving state |ψi,−
k (t)⟩, which

never returns closer to |ψi,−
k (0)⟩ after such a quench and

moves far away from |ψi,−
k (0)⟩ with progressing time. The

breakdown of TRS and the emergence of PHS† give rise
to a large and purely imaginary band gap (0.5i for our
parameters) at the EPs in the Möbius phase, which leads
to a stronger decay of the initial state in the quench
process. Interestingly, the FZ degeneracy is completely
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lifted in this case. The Fig. 4(d) shows FZs only in
the positive momentum range of the BZ, and there is
no FZ for negative momentum. As discussed earlier in
Sec. II B, this behavior stems from the even and odd
k-dependence of the real and imaginary part of Ep(k),
which values are mostly comparable in the Möbius phase
between the EPs [12, 29]. We present the DTOPs of
Eq. 19 in Figs. 4(b,c), which show the presence (absence)
of sharp jump in ν+(t) (ν−(t)) with time in the presence
(absence) of FZs in the positive (negative) momentum
BZ. While the topological invariant and winding number
are only defined for both the complex bands together in
the Möbius phase, we can draw an analogy here for the
non-Hermitian quenches to the observation for Hermitian
quenches [7] by relating 2∆ω number (which is one) of
DTOP in the entire BZ for a change in winding num-
ber from the topological to Möbius phase as ∆ω = 0.5.
Thus, we assume the winding number for each band in
the Möbius phase being half (see Fig. 2(e)). Similar fea-

tures of I(t) also observed when the initial state |ψi,−
k (0)⟩

is switched to |ψi,+
k (0)⟩ as a filled upper band. However,

the FZs instead appear only in the negative momentum
of the BZ.

In Figs. 4(a-c), we also include the plots of I(t) and
DTOPs by pink dotted lines for the fully Hermitian
quench for such parameter regime by setting θf = 0.
These plots show a topological to trivial quench dynam-
ics for fully Hermitian system because the non-Hermitian
Möbius phase lies at the boundary of the Hermitian triv-
ial phase for our parameters. The critical times for
the Hermitian quench is longer than the related non-
Hermitian quench due to a lower energy gap. The Figs. 4
(b,c) also display the presence of DTOPs in both the pos-
itive and negative momentum of the BZ for a Hermitian
quench. Thus, the non-Hermiticity induces a directional
DTOP, which depends on the choice of initial ground
state. Our results for DTOP in Fig. 4 also confirm non-
trivial topological character of the Möbius phase.

C. Trivial → Topological

Next, we consider a quench from |ψi,−
k (0)⟩ of Hermi-

tian Hi in the trivial phase (e.g., δi = −0.9, θi = 0)
by non-Hermitian Hf in the topological phase for δf =
0.9, θf = 0.4. Similar to those in Subsec. III A, I(t)
again features an excellent return close to the initial state
at shorter times in Fig. 5(a). Nevertheless, the sharp
cusps in I(t) split into two more noticeably than those in
Fig. 3(a). The splittings indicate the breaking of degen-
eracies in the magnitude of critical positive and negative
momentum as shown in Fig. 5(d), and discussed after
Eq. 13. The higher splittings in Fig. 5(a) in comparison
to Fig. 3(a) are due to higher values of contributing real
energies (max. 2.5) of the complex bands (Eq. 14). We
observe that θ → 0 and |δ| → 1 are favorable conditions
to avoid such splittings. Since the change in winding
number between Hi and Hf is one, the FZs in Eq. 12
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Figure 5. Return rate I(t) in (a), DTOP over negative mo-
mentum ν−(t) in (b), and DTOP over positive momentum
ν+(t) in (c) as a function of time. Fisher zero lines in the
complex plane of w(n, k) over the BZ, k ∈ (−π, π] (for n =
0,1,..4) in (d). Parameters for trivial to topological quench
are δi = −0.9, θi = 0 ⇒ δf = 0.9, θf = 0.4. DTOPs in the pos-
itive and negative momentum of the BZ (±) are aligned with
the critical times tn±

c (vertical lines) and the corresponding
critical momenta kn±

c .

sweep through the imaginary axis two times as k goes
through the BZ in Fig. 5(d). Further, the Pancharat-
nam geometric phase (ϕG(k, t)) shows a clear jump of
2π over the negative and positive momentum range of
the BZ in Fig. 1(b), which indicates the appearance of
nearly quantized DTOPs in the negative and positive mo-
mentum range in Figs. 5(b,c) showing a good alignment
with the corresponding critical times tn±c and FZs in Fig.
5(d). The width of the split in the non-analyticities of
I(t) can be controlled by the system parameters, θ, δ.

D. Trivial → Möbius

Since the entire Möbius phase for our choice of pa-
rameters appears in the trivial phase region of the corre-
sponding Hermitian model, a non-trivial quench dynam-
ics from |ψi,−

k (0)⟩ of Hermitian Hi in the trivial phase
(e.g., δi = −0.9, θi = 0) by non-Hermitian Hf in the
Möbius phase boundary for δf = −0.1, θf = 0.4 is
very significant for establishing special topological fea-
tures of the Möbius phase. We remind that there is nei-
ther any non-analyticity in I(t) nor a finite DTOP in
the corresponding fully Hermitian quench as displayed
in Fig. 6 by the pink dotted lines. The above non-
Hermitian quench follows similar trends of the quench
in Subsec. III B from topological to Möbius phase. For
example, I(t) in Fig. 6(a) shows cusps with small heights,
and it moves away from the initial state with longer time
scales similar to Fig. 4(a). The position of these non-
analyticities around the cusps can be determined by the
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Figure 6. Return rate I(t) in (a), DTOP over negative mo-
mentum ν−(t) in (b), and DTOP over positive momentum
ν+(t) in (c) as a function of time. Fisher zero lines in the
complex plane of w(n, k) over the BZ, k ∈ (−π, π] (for n =
0,1,..4) in (d). Parameters for topological to Möbius quench
are δi = −0.9, θi = 0 ⇒ δf = −0.1, θf = 0.4. Vertical lines
indicate critical times tn+

c for critical momenta kn+
c in the BZ

(k ∈ [0, π]). I(t) and DTOPs in the Hermitian limit (θf = 0)
are depicted by pink dotted lines.

imaginary intercept of the FZs (in Eq. 12) for different
n imprinted in Fig. 6(d). Resembling the topological-
Möbius quench, the Fisher zero lines cut imaginary axis
only in the momentum k ∈ [0, π] in Fig. 6(d). The corre-
sponding DTOPs in this range are presented in Fig. 6(c),
and there is no DTOP in Fig. 6(b) for the negative mo-
mentum of the BZ due to the absence of FZs.

These DTOPs are reminiscent of ϕG(k, t) in Fig. 1(a)
showing 2π jump only at one side of the BZ. The other
DTOP appears for negative momentum for a quench from
an initial state in the upper energy band due to the sym-
metry constraints on the complex energy bands’ real and
imaginary parts as discussed in Subsec. III B. Comparing
the plots of I(t) and DTOP between the Hermitian and
non-Hermitian quenches in Fig. 6, we argue that non-
Hermiticity gives rise to the Möbius phase with exciting
dynamical topological features in the non-equilibrium se-
tups due to spontaneous breaking of TRS and emergence
of PHS† [12, 29]. It should be further noted that there is
no significant difference obtained in I(t) and DTOPs be-
tween the topological-Möbius quench and trivial-Möbius
quench. The last is due to the PBC employed in these
studies, which reminds us of the fully Hermitian case
where a symmetric trivial-topological and a topological-
trivial quench are not differentiable for PBC [63].

IV. SUMMARY AND OUTLOOK

In this work, we have shown new dynamical properties
of the recently discovered composite Möbius phase of sub-

lattice symmetric non-Hermitian models to confirm the
unique topological character of the phase. One of the
main findings is the appearance of DTOP in quench dy-
namics by the non-Hermitian SSH Hamiltonian in the
Möbius phase indicating topological differences of the
Möbius phase from the other two phases (namely, trivial
and topological phase) of the non-Hermitian SSH model.
Moreover, the DTOP appears only at one side of the BZ
for any particular choice of the initial state, which is a
dynamical signature of different symmetry constraints on
the real and imaginary part of the complex bands in the
Möbius phase. The above features of DTOP are signif-
icantly different for the other two non-Hermitian topo-
logical phases (trivial and non-trivial) with Hermitian
counterparts, where the presence of a large complex band
gap ensures two DTOPs in the BZ for quenches between
these distinct topological phases differed by one winding
number. The experiments on the dynamical studies of
these new non-Hermitian topological phases could lead
to a deeper connection between these topological states’
robustness [64].

We have employed the time-evolution of bi-orthogonal
states given in Eqs. 17-18 following the Schrödinger equa-
tion and by normalizing it at each instant. This is an ap-
proximate scheme for non-Hermitian systems. Neverthe-
less, other schemes, such as, the metric method [65, 66]
can be tested for such dynamical studies. We believe
that the position of non-analyticities of I(t) at the FZs
would not change for a different scheme. Further, while
the conventional quantum phase transitions are accom-
panied by an emergence of a local order parameter due
to spontaneous symmetry breaking in one phase, no such
local order parameter or spontaneous symmetry breaking
is associated with topological phase transition in equilib-
rium [41]. The topological phase transitions in Hermitian
systems are instead classified by topological invariants.
However, the topological changes in non-Hermitian sys-
tems are also in some cases accompanied by spontaneous
symmetry breaking although without emergence of a lo-
cal order parameter. The signatures of dynamical quan-
tum phase transitions, e.g., the non-analyticities of I(t),
seem similar to those for dynamical topological phase
transitions. Thus, both these dynamical phase transi-
tions have been unified in out-of-equilibrium systems.

In our earlier work [12], we have extended the research
on sublattice symmetric non-Hermitian SSH models by
going beyond bi-partite models to tripartite and quadri-
partite models with three and four sublattice sites per
unit cell, respectively. Such extension generates various
non-Hermitian topological insulating and metallic com-
posite phases with non-trivial topology like the Penrose
triangle. It would be exciting to explore quench dy-
namics by final Hamiltonian in such composite phases to
understand the dynamical properties of such topological
phases. While there are many experimental realizations
of PT symmetric non-Hermitian models in engineered
photonic, cold atomic, phononic, and electrical systems,
the nonreciprocal hopping for sublattice symmetric non-
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Hermitian models is only recently realized [13, 67]. Thus,
these non-Hermitian models can be explored to experi-
mentally probe I(t) and DTOPs following the implemen-

tation in the Hermitian settings [51–53, 56, 57, 61, 68].

V. ACKNOWLEDGMENTS

We thank Kiran Estake for many useful discussions.

[1] D. Thouless, Topological Quantum Numbers in Nonrela-
tivistic Physics (World Scientific, 1998).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and
M. den Nijs, Quantized Hall conductance in a two-
dimensional periodic potential, Phys. Rev. Lett. 49, 405
(1982).

[3] D. J. Thouless, Quantization of particle transport, Phys.
Rev. B 27, 6083 (1983).

[4] R. D. King-Smith and D. Vanderbilt, Theory of polariza-
tion of crystalline solids, Phys. Rev. B 47, 1651 (1993).

[5] A. Y. Kitaev, Unpaired Majorana fermions in quantum
wires, Physics-Uspekhi 44, 131 (2001).

[6] J. C. Budich and M. Heyl, Dynamical topological or-
der parameters far from equilibrium, Phys. Rev. B 93,
085416 (2016).
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rical meaning of winding number and its characteriza-
tion of topological phases in one-dimensional chiral non-
Hermitian systems, Phys. Rev. A 97, 052115 (2018).

[34] H. Shen, B. Zhen, and L. Fu, Topological Band Theory
for Non-Hermitian Hamiltonians, Phys. Rev. Lett. 120,
146402 (2018).

[35] X. Qiu, T.-S. Deng, Y. Hu, P. Xue, and W. Yi,
Fixed points and dynamic topological phenomena in a
parity-time-symmetric quantum quench, iScience 20, 392
(2019).

https://books.google.co.in/books?id=6XC_PBEXnAEC
https://books.google.co.in/books?id=6XC_PBEXnAEC
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.100.224307
https://doi.org/10.1103/PhysRevB.100.224307
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.88.020502
https://doi.org/10.1103/PhysRevB.99.214514
https://doi.org/10.1103/PhysRevB.103.075441
https://doi.org/10.1103/PhysRevB.105.195407
https://doi.org/10.1103/PhysRevB.105.195407
https://doi.org/10.1103/PhysRevB.107.085426
https://doi.org/10.1103/PhysRevB.107.085426
https://doi.org/10.1103/PhysRevA.96.032103
https://doi.org/10.1103/PhysRevA.96.032103
https://doi.org/10.1103/PhysRevB.92.094204
https://doi.org/10.1103/PhysRevB.92.094204
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1364/OL.449733
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1103/PhysRevA.79.053408
https://doi.org/10.1103/PhysRevA.79.053408
https://doi.org/10.1038/nature18604
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevB.103.205205
https://doi.org/10.1038/s41586-021-03848-x
https://doi.org/10.1038/s41586-021-03848-x
https://doi.org/10.1103/PhysRevLett.126.010401
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/41/24/244010
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1038/s41467-018-08254-y
https://doi.org/10.1038/s41467-018-08254-y
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1038/s42254-022-00516-5
https://doi.org/10.1038/s42254-022-00516-5
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/https://doi.org/10.1016/j.isci.2019.09.037
https://doi.org/https://doi.org/10.1016/j.isci.2019.09.037


x

[36] J.-C. Tang, S.-P. Kou, and G. Sun, Dynamical scaling
of Loschmidt echo in non-hermitian systems, EPL 137,
40001 (2022).

[37] S. Longhi, Loschmidt echo and fidelity decay near an ex-
ceptional point, Ann. Phys. (Berl.) 531, 1900054 (2019).

[38] L. Zhou and Q. Du, Non-hermitian topological phases
and dynamical quantum phase transitions: a generic con-
nection, New J. Phys. 23, 063041 (2021).

[39] D. Mondal and T. Nag, Anomaly in the dynamical quan-
tum phase transition in a non-Hermitian system with ex-
tended gapless phases, Phys. Rev. B 106, 054308 (2022).

[40] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton ex-
citations in polyacetylene, Phys. Rev. B 22, 2099 (1980).
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