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6Departamento de F́ısica Teórica and IPARCOS, Universidad Complutense de Madrid, 28040 Madrid, Spain

The backreaction of quantum fields in their vacuum state results in equilibrium structures that
surpass the Buchdahl compactness limit. Such backreaction is encapsulated in the vacuum expecta-
tion value of the renormalized stress-energy tensor (RSET). In previous works we presented analytic
approximations to the RSET, obtained by dimensional reduction, available in spherical symmetry,
and showed that the backreaction-generated solutions described ultracompact fluid spheres with a
negative mass interior. Here, we derive a novel approximation to the RSET that does not rely on
dimensional reduction, but rather on a reduction of the differential order. This approximation also
leads to regular stars surpassing the Buchdahl limit. We conclude that this is a consequence of the
negative energies associated with the Boulware vacuum which, for sufficiently compact fluid spheres,
make the Misner-Sharp mass negative near the centre of spherical symmetry. Our analysis provides
further cumulative evidence that quantum vacuum polarization is capable of producing new forms of
stellar equilibrium with robust properties accross different analytical approximations to the RSET.

I. INTRODUCTION

The zero-point energies of quantum fields cannot be
entirely renormalized away in curved spacetimes [1–4].
This originates vacuum-driven pressures and energy den-
sities, simply denoted as quantum vacuum polarization
hereafter. Furthermore, during cosmological expansion
and black hole formation, the non-equivalence between
vacuum state definitions at early and late times mani-
fests through the creation of particles [1, 5]. Both vac-
uum polarization and (part of) particle creation phenom-
ena [6] are captured by the renormalized stress-energy
tensor (RSET) of quantum fields [7–9], which contribute
to spacetime curvature as described by the semiclassical
Einstein equations

Gµ
ν = 8π

(
Tµ

ν + ⟨T̂µ
ν⟩
)
. (1)

Here, Tµ
ν is an effectively classical stress-energy tensor

(SET) and ⟨T̂µ
ν⟩ is the renormalized expectation value in

vacuum of the SET operator. As it is conventionally as-
sumed in semiclassical analyses, we consider the classical
and semiclassical SETs to be conserved independently.
This causes both matter sources to affect each other only
by means of their respective influence on the background
spacetime, as dictated by Eqs. (1).

In truly static stellar configurations, the natural vac-
uum for the fields is the Boulware vacuum, which rep-
resents a physical quantum vacuum as opposed to the
“vacuum emptiness” in classical general relativity. The
RSET is generally not zero even in regions in which there
is no classical matter. The aim of our investigations is to
illustrate how, in stellar situations where classical mat-
ter is present, the polarization of the Boulware vacuum is
responsible for the existence of stars in equilibrium that

are much more compact than their classical counterparts.
These efforts are best framed within the ongoing search
for physical mechanisms or modified gravity theories giv-
ing rise to singularity-free alternatives to black holes,
some even capable of mimicking current gravitational-
wave [10–12] and/or very-large-baseline interferometric
observations [13–15]. Among the many proposals exist-
ing in the literature (e.g., [16–21]), the one here presented
does not require any new physics beyond quantum field
theory in curved spacetimes.

Even in spacetimes with spherical symmetry (such
as the stellar spacetimes addressed here), obtaining the
RSET is a computationally expensive task that requires
computing a vast number of field modes with high accu-
racy [22, 23]. Finding self-consistent solutions to Eqs. (1)
requires simultaneously computing the field modes as
well as the spacetime metric which these generate and
propagate onto, which is extremely complex [24]. In con-
sequence, to make significant progress in understanding
this semiclassical backreaction problem, it is customary
to appeal to RSET approximations. One of the most
common approximations in the literature is the Polyakov
approximation [25–33].

In a series of papers [30–33] we have used a regularized
version of the Polyakov approximation to investigate the
set of self-consistent solutions to the backreaction prob-
lem in vacuum, electrovacuum, and stellar situations. We
have found, in agreement with other analyses in the lit-
erature [29, 34–36], that semiclassical gravity produces
non-perturbative corrections in the interior of stars ap-
proaching the Buchdahl limit CR = 2mR/R = 8/9,
where R is the radius of the star and mR = m(R) is the
Misner-Sharp mass [37, 38], m(r), evaluated on the for-
mer. The Buchdahl limit establishes the maximum com-
pactness CR attainable for regular stars in equilibrium
satisfying certain classically reasonable properties [39–
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44]. In particular, Buchdahl’s theorem requires the total
energy density to be a positive, inwards-non-decreasing
function of r. When Eqs. (1) are treated as a modi-
fied theory of gravity and solved self-consistently with a
simple classical matter content (e.g., a perfect fluid with
constant density), we find that the Buchdahl limit disap-
pears. This is caused by the negative energy densities in
the RSET, which grow in negativity as the compactness
CR increases.

Despite its great convenience, the Polyakov approxi-
mation exhibits drawbacks that hinder its use in stel-
lar spacetimes [33]. In this paper, we investigate this
same problem but making use of a novel and completely
different approximation to the RSET. We start from
the Anderson-Hiscock-Samuel [22] approximation for the
RSET of massless scalar fields in spherical symmetry.
Then, we apply an order-reduction method to obtain a
second-order semiclassical system of equations. Finally,
we obtain the solutions to this system of equations in the
same spirit as we would do with the solutions of a modi-
fied gravity theory (see [45] for a review of the modified
gravity approach regarding stellar interiors). Remark-
ably, we find regular ultracompact (i.e., largely surpass-
ing the Buchdahl limit) stellar configurations, that are
qualitatively similar to those found using the regularized
Polyakov method. This provides another independent
evidence of the plausible absence of a Buchdahl limit in
semiclassical gravity. For completeness, let us mention
that this result is in tune with independent analyses of
the impact of modifications of gravity on stellar structure
within the asymptotic safety framework [46, 47].

This paper is organized as follows. In Section II, we in-
troduce the order-reduction method for the RSET of min-
imally coupled fields, both in vacuum and in the presence
of matter. In Section III we obtain complete numerical
solutions to Eqs. (1), finding solutions describing fluid
spheres surpassing the Buchdahl limit. We also discuss
their behaviour upon crossing this compactness thresh-
old and the similarities with previous results obtained
in the Polyakov approximation, which are presented in
Section IV. In Section V we provide further evidence for
the absence of a Buchdahl limit in semiclassical gravity,
focusing on the Anderson-Hiscock-Samuel RSET prior
application of the order reduction procedure. We finish
with some conclusions and further discussion in Sec. VI.

II. REDUCING THE ORDER OF THE
AHS-RSET IN THE PRESENCE OF MATTER

A. The AHS-RSET and stellar spacetimes

For simplicity, for the quantum matter sector, we will
restrict our discussion to a single massless minimally cou-
pled quantum scalar field, while the classical sector is de-
scribed by a perfect fluid of constant density and isotropic
pressures. We consider spherically symmetric spacetimes

of the form

ds2 = −f(r)dt2 + h(r)dr2 + r2dΩ2, (2)

where dΩ2 is the line element of the unit sphere, f(r) is
the redshift function and C(r) ≡ 2m(r)/r = 1− h(r)−1

is the compactness function and m(r) the Misner-Sharp
mass.

Regarding the classical SET, we will consider an
isotropic perfect fluid,

Tµ
ν = (ρ+ p)uµuν + pδµν , (3)

with p and ρ denoting the pressure and energy density
measured by an observer comoving with the fluid with
4-velocity uµ. Covariant conservation of the SET (3)
imposes the relation

∇νT
µ
r) = p′ +

f ′

2f
(ρ+ p) = 0, (4)

where primed quantities are differentiated with respect
to r. Additionally, we need to impose an equation of
state for the fluid. For simplicity, we assume a constant
density equation of state

ρ(r) ≡ ρ, (5)

which is conveniently simple and saturates the conditions
of the Buchdahl compactness bound [39, 43].

A result that is essential for the discussion below is
that the exact RSET obtained in [22] in spherical symme-
try naturally splits into independently conserved analytic
(AHS-RSET hereafter) and numeric parts:

⟨T̂µ
ν⟩ren = ⟨T̂µ

ν⟩AHS + ⟨T̂µ
ν⟩num. (6)

This complete RSET is not suitable for an analytic ex-
ploration of self-consistent solutions to the semiclassical
Einstein equations. However, the conserved nature of
⟨T̂µ

ν⟩AHS makes it a suitable candidate for an analytical
approximation to this problem, although with specific
technical issues such as its higher-derivative nature.

One strategy to simplify the backreaction problem is
to take only the analytic portion in Eq. (6), which we
call in the following AHS-RSET, as an approximation to
the exact RSET. For a massless field, it has been shown
that the analytic part is indeed a great qualitative ap-
proximation in the Schwarzschild spacetime [48, 49] that
captures the irregular behaviour of the Boulware state
at event horizons [50]. Therefore, the elimination of the
numerical part is a working hypothesis of the qualitative
approximation scheme we are using; whether this numer-
ical portion is indeed small will require its computation
in stellar spacetimes, which, to the knowledge of the au-
thors, has not been attained.

The AHS-RSET is of higher order in derivatives due to
the quasi-local nature of covariant renormalization [22,
51] (explicit expressions are displayed in Appendix A),
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thus making Eqs. (1) a system of higher-derivative dif-
ferential equations, from which it is unclear how to ex-
tract physically meaningful solutions without resorting
to further approximations [1, 52–54], in particular order
reduction as explained below.

Order reduction provides a general algorithm to elim-
inate runaway solutions in systems with time deriva-
tives of higher than second order, such as the Abraham-
Lorentz equation [55]. In the context of semiclassi-
cal gravity, it was first used to prove the stability of
Minkowski spacetime [52, 56], reinforcing the idea that
not every solution to the semiclassical equations is phys-
ically meaningful. Later, the same method was applied
to cosmological spacetimes [57], and its extension to fluid
spheres was also suggested. This procedure leads to the
conservative viewpoint in which non-perturbative solu-
tions are discarded as plainly non-physical, thus restrict-
ing semiclassical effects to mere perturbative corrections.
Albeit this is perfectly consistent both from conceptual
and formal perspectives, we are interested in modelling
non-perturbative semiclassical effects that arise in the in-
terior of stars approaching the Buchdahl limit (by non-
perturbative, we mean that the RSET becomes compa-
rable in magnitude to the classical SET, see Sec. V). As
discussed below, in static situations it is possible to con-
sider the system obtained by order reduction as a self-
consistent set of equations that provide an alternative
version of the semiclassical Einstein equations. We will
then analyze in complete detail the solutions of this sys-
tem of equations, in the same spirit as in modified gravity
theories.

Below we extend the perturbative order reduction
method first presented in [58], where it was applied to
the vacuum semiclassical equations, to situations where
the classical SET is non-zero. We will discuss how con-
servation of the RSET can be reinstated after applica-
tion of the order-reduction procedure by introducing ad-
equate angular components. Applying this method to
the AHS-RSET, we will construct a new RSET approx-
imation that provides an alternative to the regularized
Polyakov RSET that is still of second order in deriva-
tives, while being however regular at r = 0 (a charac-
teristic absent in the standard Polyakov approximation).
Despite restricting our discussion to fluids obeying the
equation of state (5), this prescription can be general-
ized to any situation where the classical SET obeys a
barotropic equation of state of the form ρ ≡ ρ(p). The
method is also valid for anisotropic perfect fluids, but
we consider this extension to be out of the scope of this
paper.

B. The Matter-Order-Reduced RSET

The order-reduction procedure is outlined as follows,
following the same steps described in [58]. The first
step consists in taking the tt and rr components in the
semiclassical Einstein equations (1) and neglect terms of

O(h̄), such that

h(1− h)− rh′

h2
=− Ω+ O(h̄), (7)

rf ′ + f − fh

fh
=P + O(h̄), (8)

where the dimensionless variables P = 8πr2p and
Ω = 8πr2ρ have been chosen to simplify future expres-
sions. Now, we solve Eqs. (7, 8) for h′ and f ′, respec-
tively, and differentiate them with respect to the radial
coordinate r. In doing so, we derive relations between
derivatives of f, h, Ω and P . For barotropic equations
of state, we can specify Ω in terms of P , and use the
conservation equation (4) to further translate derivatives
of P into derivatives of f . At this stage, it is straightfor-
ward to show that Eqs. (7, 8) can be combined to obtain
relations between derivatives of any order of h and f and
the functions f, h, Ω and P .

Note that, in strict terms, it is only safe to neglect
terms of O(h̄) in Eqs. (7, 8) as long as the AHS-RSET
is sub-leading with respect to the classical SET. That
this condition is not satisfied indicates the failure of the
reduction of order and, also, of the semiclassical approxi-
mation as a whole. Nonetheless, since we treat the semi-
classical equations as a modified gravity, we consider the
order reduced equations as just a low-differential order
set of modified equations.

The procedure above can be particularized to constant
density fluids, for which all derivatives of ρ vanish, which
results in the following relations:

rh′ =h [1 + (Ω− 1)h] ,

r2h′′ =2h2
[
2Ω− 1 + (Ω− 1)

2
h
]
,

r3h(3) =2h2
[
4Ω + 3 (Ω− 1) (3Ω− 1)h+ 3 (Ω− 1)

3
h2
]
,

rf ′ =− f [1− (P + 1)h] ,

2r2f ′′ =f
[
4 + (Ω + P − 4)h+ (Ω + P ) (P + 1)h2

]
,

4r3f (3) =− f [24− (Ω + 9P + 24)h

−3 (Ω + P ) (Ω + 3P − 2)h2

−3 (Ω + P ) (Ω− 1) (P + 1)h3
]
,

8r4f (4) =f [192 + (7Ω− 57P − 192)h

+(Ω + P ) (26Ω + 63P + 33)h2

+3 (Ω + P ) (Ω− 1) (5Ω + 22P − 3)h3

+15 (Ω + P ) (Ω− 1)
2
(P + 1)h4

]
. (9)

The expressions above can be inserted in the ⟨T̂ t
t⟩AHS

and ⟨T̂ r
r⟩AHS components of the AHS-RSET (A1,A2),

thus transforming them into quantities with no deriva-
tives of the metric functions and hence reducing their
differential order. The angular pressures of this order-
reduced RSET are fixed by imposing its covariant con-
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servation [58], namely

∇µ⟨T̂µ
r⟩ = ∂r⟨T̂ r

r⟩+
2

r

(
⟨T̂ r

r⟩ − ⟨T̂ θ
θ⟩
)

+
f ′

2f

(
⟨T̂ r

r⟩ − ⟨T̂ t
t⟩
)
= 0. (10)

The resulting quantity will be denoted as the Matter-
Order-Reduced RSET (or MOR-RSET, hereafter) in the
rest of the paper.

Note that this procedure is not unique without further
considerations. Had we inserted Eq. (9) in the angular
components (A3) of the AHS-RSET as well, we would
have obtained a quantity that does not satisfy (10). This

implies it is possible to reduce the order of the ⟨T̂ t
t⟩ and

⟨T̂ θ
θ⟩ components, or of the ⟨T̂ r

r⟩ and ⟨T̂ θ
θ⟩ ones, instead

of the pair we have selected above (⟨T̂ t
t⟩ and ⟨T̂ r

r⟩). In

the first case, specifying ⟨T̂ r
r⟩ would require to integrate

Eq. (10), which is not possible in general. In the sec-

ond case, the ⟨T̂ t
t⟩ component would end up containing

derivatives of the metric functions. Thus, reducing the
order of the components ⟨T̂ t

t⟩ and ⟨T̂ r
r⟩ results in the

lowest-order RSET which is covariantly conserved.

For simplicity, and with the purposes of establishing a
comparison with the results presented in Sec. IV using
the regularized Polyakov approximation, we only include
here the expressions of the MOR-RSET in the Boul-
ware vacuum state for the minimally coupled case (i.e.
κ = 0, ξ = 0 in the notation from [22]). The components
of the MOR-RSET (with h̄ = 1) take the form

23040π2r4h2⟨T̂µ
ν⟩MOR = Sµ

ν + T µ
ν log

(
λ2f

)
, (11)

where λ is a dimensionless arbitrary parameter that cap-
tures local ambiguities associated with the renormaliza-
tion procedure, and the diagonal tensors Sµ

ν and T µ
ν have

components

St
t =249− 4 (17Ω + 63P + 105)h

+ 2 [Ω (117Ω + 188) + 6P (105Ω + 148P + 53)]h2

− 4 (P + 1)
2
(77Ω + 135P − 3)h3 + 33 (P + 1)

4
h4,

T t
t =(Ω + P )

[
60h− 30 (Ω + 13P + 4)h2

+60 (P + 1)
2
h3
]
,

Sr
r =− 75− (54Ω + 382P − 84)h

− [6Ω (5Ω + 6) + 4P (30Ω− 93P − 100)− 46]h2

+ 2 (P + 1)
2
(45Ω + 57P − 22)h3 − 11 (P + 1)

4
h4,

T r
r =(Ω + P )

[
66h− 6 (3Ω + 5P + 6)h2

−30 (P + 1)
2
h3
]
,

Sθ
θ =(fh)

−1 ×
{
75rfh′

−{81rf ′ − [r (27Ω + 191P − 42)h′ + 75] f}h
+ [6r(22Ω + 16P + 21)f ′ − 84f ]h2

−
{
r [Ω(45Ω + 221)

+3P (175Ω + 184P + 59) + 20] f ′

−
[
r(45Ω + 57P − 22)(P + 1)2h′

−2
(
15Ω2 + 60ΩP − 186P 2 + 23

)]
f
}
h3

− (P + 1)
{
r
[
45Ω2 − 78Ω

+P (46Ω− 63P − 128) + 14] f ′

+
[
11r (P + 1)

3
h′

−4P (45Ω + 57P − 11)− 44
]
f
}
h4

+11 (P + 1)
3
[r (Ω− 1) f ′ − (3P − 1) f ]h5

}
,

T θ
θ =(fh)

−1 ×
{
(Ω + P )

(
−33rfhh′ − 15rh2f ′

+3
{
5r (Ω + 7P + 2) f ′

−
[
5r (P + 1)

2
h′ + 6Ω + 10P

]
f
}
h3

+15 (P + 1) [r (Ω− 1) f ′ − 4Pf ]h4
)}

. (12)

The MOR-RSET is finite at the center of regular stel-
lar spacetimes, and reduces to the OR-RSET derived
in [58] in vacuum (Ω = P = 0), for which the depen-
dence in λ disappears. It also coincides with the AHS-
RSET when evaluated in the classical constant-density
solution (20). The MOR-RSET depends on the arbi-
trary parameter λ. In general, the value of the latter is
unconstrained and must be fixed experimentally. How-
ever, for constant-density stars its value is univocally de-
termined in terms of the remaining parameters. Indeed,
upon matching the exterior vacuum geometry with the
surface of a constant density fluid sphere, we must im-
pose continuity of the redshift function at the surface,
which is a necessary condition for the absence of dis-
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tributional components in the stress-energy tensor [59].
For constant-density stars, there is a jump in Ω from
Ω(r > R) = 0 to ΩR ≡ Ω(R) = 8πR2ρ at r = R, where
r = R is the star surface, which translates into a disconti-
nuity in ⟨T̂ r

r⟩MOR at the surface via Eqs. (1). There is an

analogous discontinuity in ⟨T̂ t
t⟩MOR, but this translates

into a jump in h′, already present in the classical theory
and leading to no distributional sources. Hence, to guar-
antee that f ′ is continuous at r = R so that the matching
between interior and exterior geometries is smooth, we
require

⟨T̂ r
r⟩MOR

∣∣∣
r=R

= ⟨T̂ r
r⟩OR

∣∣∣
r=R

, (13)

where OR stands for Order-Reduced, and ⟨T̂ r
r⟩OR follows

from taking Ω = P = 0 in the components (12). Eq. (13)
is satisfied for the following choice of renormalization pa-
rameter

log
[
λ2f(R)

]
=

h(R) [15h(R)− 5ΩR − 6]− 9

h(R) [5h(R) + 3ΩR + 6]− 11
. (14)

The quantities h(R), f(R) and ΩR are the boundary con-
ditions which, together with P (R) = 0, specify a unique
interior solution. The values of h(R) and f(R) are ob-
tained by integrating the vacuum semiclassical equations
with the OR-RSET from radial infinity inwards for some
positive Arnowitt-Deser-Misner (ADM) mass M . We re-
fer the reader to [58] for details on this exterior solution,
and restrict our discussion here to interior solutions only.

As long as the classical SET satisfies a barotropic equa-
tion of state, we can apply the order-reduction algorithm
to the AHS-RSET to obtain a tensor whose radial compo-
nent contains no derivatives. Hence, since it is reasonable
to expect the classical energy density ρ to be discontin-
uous at the surface (and, consequently, Ω), the renor-
malization parameter λ must always be fixed through a
relation similar to (14) to ensure a smooth matching be-
tween interior and exterior spacetimes. The parameter
space for the case of minimal coupling and constant den-
sity is comprised by the ADM mass M , the star radius
R, and the parameter ΩR.

III. STELLAR SOLUTIONS

A. Numerical integrations

Having derived an analytical RSET which can be im-
plemented to study backreaction in stellar spacetimes,
we proceed to integrate the order-reduced semiclassical
equations, searching for regular stars that surpass the
Buchdahl limit.

We numerically integrate the semiclassical equations
with the MOR-RSET in Eq. (11) as the source, impos-
ing boundary conditions in the asymptotically flat re-
gion. We take a positive ADM mass M , which we fix
to M = 5 in the numerical solutions here presented,

and integrate inwards. Note that, due to backreaction,
the Misner-Sharp mass m(r) is no longer constant in
the exterior spacetime. In particular, we always find
mR > M , indicating that the OR-RSET adds a negative
mass contribution outside the star. Next, we take a fluid
sphere of surface radius R, which specifies its compact-
ness CR = 2mR/R, and obtain λ via Eq. (14). The only
parameter left to fix is ΩR (or, equivalently, ρ), whose
value determines the regular or singular character of the
interior solution. We vary ΩR through several orders of
magnitude seeking for solutions that are regular up to
the center of the star. In practice, since the point r = 0
is numerically unstable, we match the numerical solution
with an analytic solution found from expanding the semi-
classical equations in the small r limit. We joint these
two at a radius at least five orders of magnitude smaller
than R, finding that the metric functions and curvature
invariants are everywhere bounded.
The set of semiclassical stellar solutions is involved,

containing both regular and singular solutions (see [32]
for an exhaustive analysis of the corresponding solutions
using the regularized Polyakov approximation). Despite
our subject of study being the regular subset of solu-
tions, let us briefly discuss some distinct features of the
complete solution set. We find three regimes of solutions
depending on whether ΩR is below or above a critical
value ΩR,crit:

1. Sub-critical solutions with ΩR < ΩR,crit. These so-
lutions exhibit the same naked curvature singular-
ity present in the exterior vacuum solution [49] with
Ω = 0 (which is just a particular case within this
regime). At the singularity, pressure can either di-
verge towards positive infinity or remain bounded,
depending on the value of ΩR. By increasing ΩR,
the radius where this naked singularity appears is
pushed towards smaller r.

2. Critical solutions with ΩR = ΩR,crit. This solu-
tion corresponds to the star with the lowest value
of ΩR that is regular. It also exhibits the largest
classical pressures at r = 0, where p has a global
maximum. The numerical integrations depicted in
Subsec. III B correspond to critical solutions.

3. Super-critical solutions with ΩR > ΩR,crit. In this
regime we also find regular solutions, but with a
classical pressure at r = 0 that has a local mini-
mum. Solutions with ΩR ≫ ΩR,crit can even dis-
play negative classical pressures at the center.

From here on, we focus just on the critical solutions,
i.e., those with ΩR = ΩR,crit. Below the classical Buch-
dahl limit CR = 8/9, we obtain regular stars whose to-
tal energy density (the sum of classical and semiclassical
contributions) is nearly constant. The surface density
ΩR,crit receives a small and positive correction over the
classical value Ω clas

R,crit = 3CR. In other words, by com-
paring a classical constant-density star with its semiclas-
sical counterpart such that ΩR,crit = Ω clas

R,crit, their total
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Misner-Sharp masses satisfy mR < mclas
R , this difference

being related to the magnitude and sign of the RSET
inside the semiclassical solution. Since, for stars well-
below the classical Buchdahl limit, the RSET amounts
to a perturbative correction (i.e. there is no scale that
compensates for its suppression of the order of the Planck
scale) the correction to Ω clas

R,crit reflects this perturbative
character as well. In previous works using the regularized
Polyakov RSET [33], this implied that, on average, the
semiclassical energy density is contributing negatively to
the total energy density of the star. A similar result ap-
plies here, as we discuss next.

B. Physical properties

Figure 1 shows the Misner-Sharp mass and classical
pressure of a family of stars surpassing the Buchdahl
limit. The Misner-Sharp mass includes contributions
from the MOR-RSET that make it reach negative in-
terior values. The region of negative mass increases in
width and depth as compactness increases, but is always
surrounded by an exterior layer of positive mass where
the classical energy density dominates, so the total mass
of the star is always positive. The pressure grows mono-
tonically from the surface to the center, where the darker
curves correspond to greater values of CR. These large
(yet finite) central pressures translate into small values
of the redshift function f , according to the conservation
equation (4).

Figure 2 shows the temporal, radial, and angular com-
ponents of the MOR-RSET. Their magnitudes visibly
grow as the compactness increases. The top-left panel
of Fig. 2 shows the semiclassical energy density, which
is positive near the surface and large and negative in
the central region. Hence, in the innermost regions of
the star, the total energy density is negative, thus vi-
olating the condition that the energy density must be
non-decreasing inwards, which is necessary for the Buch-
dahl limit to hold [39–42]. The top-right panel in Fig. 2
shows the semiclassical radial pressure, which is positive
and maximal at the center of the star, behaving in a
similar way as the classical pressure but being slightly
smaller in magnitude. The angular pressures, shown in
the bottom-left panel in Fig. 2, are negative everywhere
except near the center, where they change sign to match
the values of the radial pressure at r = 0, as required by
regularity. From Figs. 1 and 2 it is straightforward to
reconstruct the full SET. It can be checked that the vio-
lations of the energy conditions present in the total SET
are coming from the MOR-RSET, and that the classical
SET satisfies all of them.

The bottom-right panel in Fig. 2 shows the Ricci scalar

R =
2

r2

(
1− 1

h

)
+

2

hr

(
h′

h
− f ′

f
+

rf ′h′

4fh

)
+

1

2h

[(
f ′

f

)2

− 2f ′′

f

]
, (15)

which is negative and has near-Planckian values. The
Kretschmann scalar,

K =RµνρσR
µνρσ =

4

r4

(
1− 1

h

)2

+
2

h2r2

[(
h′

h

)2

+

(
f ′

f

)2
]

+
1

4f4h4

{
ff ′h′ + h

[
(f ′)

2 − 2ff ′′
]}2

, (16)

which is a positive definite curvature invariant, is shown
in Fig. 3. Both the Ricci and Kretschmann invariants
have been rescaled by the Planck length to show that they
stay well below Planckian values. Let us stress that we
are not considering a large separation of scales between
h̄ and R from a numerical perspective; we checked that
the main aspects discussed above do not change when
considering a broader separation of scales, in particular
that the RSET regularizes the curvature singularity (e.g.
divergent Ricci and Kretschmann scalars) that would be
present at r = 0 for classical stars at the Buchdahl limit.

Let us make clear that, due to the limitations of the
AHS-RSET to perform self-consistent analysis, strictly
speaking we cannot guarantee that our results using the
MOR-RSET would be reproduced using the AHS-RSET
(in any case the comparison would be only qualitative).
Nonetheless, again our attitude here towards semiclas-
sical theories of gravity is heuristic: we use semiclassi-
cal ideas to guide the construction of modified theories
of gravity and then analyze their content without im-
posing constraints coming from their possible embedding
in more complete frameworks (which is the same logic
generally applied to the Einstein field equations). The
main motivation behind this approach is to understand
whether there are robust features in the space of solutions
across different approximations. From this perspective,
the results presented here, together with previous works,
provide a clear indication of the plausibility that stellar
structures could largely surpass the Buchdahl compact-
ness limit. In all cases, a similar mechanism arises, which
generates an effective negative energy core to support the
beyond-Buchdahl stellar structure.

The metric functions obtained in this paper can be
used to calculate a number of quantities. As an example,
the crossing time that a null ray emitted from the surface
needs to be reflected at r = 0 and reach r = R is

τR = 2

∫ R

0

(h/f)
1/2

dr′. (17)
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Figure 1. Misner-Sharp mass (left panel) and classical pressure (right panel) of semiclassical
stars sourced by the MOR-RSET with ADM mass M = 5 and, from lighter to darker shades,
(CR,ΩR, ρ) ∈ {(0.89, 2.720, 0.008), (0.91, 3.18, 0.0011), (0.93, 3.92, 0.0013), (0.96, 6.15, 0.0022), (0.98, 11.57, 0.0044)}. The
Misner-Sharp mass becomes more negative in the interior while central pressures grow as CR increases. The similarities with
Fig. 5, which summarizes the results obtained previously in the regularized Polyakov approximation, are manifest.
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Figure 2. Numerical solutions of stars with ADM mass M = 5 and, from lighter to darker shades,
(CR,ΩR, ρ) ∈ {(0.89, 2.720, 0.008), (0.91, 3.18, 0.0011), (0.93, 3.92, 0.0013), (0.96, 6.15, 0.0022), (0.98, 11.57, 0.0044)}. Top left,
top right, bottom left, and bottom right panels display the semiclassical energy density, radial pressure, tangential pressure,
and the Ricci scalar, respectively. The energy density and Ricci scalar R (multiplied by l2P = 1/16π) are large and negative
in the interior, which is essential to allow these structures to surpass the Buchdahl limit. The semiclassical radial pressure is
positive everywhere, while tangential pressures are negative in the bulk and positive at the center.
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Figure 3. Plot of the Kretschmann scalar (multiplied
by l4P = 1/256π2 of stars with ADM mass M =
5 and, from lighter to darker shades, (CR,ΩR, ρ) ∈
{(0.89, 2.720, 0.008), (0.91, 3.18, 0.0011), (0.93, 3.92, 0.0013),
(0.96, 6.15, 0.0022), (0.98, 11.57, 0.0044)}. The Kretschmann
invariant remains bounded and below Planckian values
throughout the whole stellar interior, being maximal at r = 0.
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Figure 4. Plot of the crossing time needed for a null ray to
travel from the surface of a star to its center and back, in
terms of the surface compactness. The vertical dashed line
indicates the Buchdahl limit CR = 8/9. The orange and blue
curves are the crossing times of the classical and semiclassical
constant-density solutions, respectively. The crossing time of
the former diverges in the Buchdahl limit, while that of the
latter remains finite.

Fig. 4 shows how this crossing time for classical and
semiclassical stars scales with CR. We observe that the
crossing time for semiclassical stars is finite upon cross-
ing the Buchdahl threshold, contrary to what happens in
the classical solution. Due to the characteristics of the
exterior solution (whose details are in [58]), the crossing
time stays finite in the CR → 1 limit. Hence, these ob-
jects are appealing from a phenomenological point of view
due to their capability of mimicking black holes, while
also leading to potentially observable signatures such as
gravitational-wave echoes [60, 61] or additional rings in
shadows [62, 63].

IV. STELLAR EQUILIBRIUM IN THE
REGULARIZED POLYAKOV APPROXIMATION

Since estimating the backreaction effects of quantum
vacuum polarization in an exact way proves to be an
intractable problem, we have followed several simplifica-
tions to obtain an analytic RSET of low derivative or-
der that allows to find self-consistent solutions to the
semiclassical equations. To show whether our simplified
model is adequately capturing the main physical ingre-
dients, we will show how an entirely unrelated RSET
approximation, the regularized Polyakov RSET, leads to
qualitatively similar conclusions.

The regularized Polyakov approximation is obtained
when ignoring angular fluctuations of quantum fields
propagating on a spherically symmetric geometry, imple-
menting a dimensional reduction to an effectively 2D ge-
ometry. Moreover, the wave equation for the s-wave com-
ponent of massless fields acquires, near the Schwarzschild
radius, the form of the 2D wave equation [64], which is
conformally invariant by construction. In 2D, the wave
equation admits analytic solutions and point-splitting
renormalization is much simpler than in 4D, resulting in
an analytic RSET [8] of second order in derivatives, both
features being absent in the 4D counterpart (6). This
2D RSET can be used to construct a 4D quantity, the
(regularized) Polyakov RSET, upon multiplying it by a
free radial function and imposing covariant conservation,
resulting in the following components:

⟨T̂ t
t⟩P =

F

96πh

[
2f ′h′

fh
+ 3

(
f ′

f

)2

− 4f ′′

f

]
,

⟨T̂ r
r⟩P =− F

96πh

(
f ′

f

)2

,

⟨T̂ θ
θ⟩P =− (2F + rF ′)

192πh

(
f ′

f

)2

, (18)

where F = F (r) is a regularizing function that must
be introduced to avoid a singularity at r = 0 coming
from dimensional reduction, the specific functional form
of which remains to be fixed.

Within the regularized Polyakov approximation we
found families of radial functions F that generate solu-
tions to Eq. (1) describing regular stellar configurations
surpassing the Buchdahl compactness limit [33] with sim-
ilar qualitative features as the ones obtained with the
MOR-RSET and shown in Fig 1. A few example solu-
tions are displayed in Fig. 5, where F is chosen such that

F (r) =1/r2, r > rcore,

F (r) =Freg(r), r ≤ rcore, (19)

and Freg is found by reverse-engineering the semiclassical
equations assuming an analytical, regular pressure ansatz
(details in [33]) and rcore < R. Regular stars surpassing
the Buchdahl limit are found for any rcore, all having in
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common the presence of a negative mass interior with
positive classical pressures. This regular, negative mass
interior is possible thanks to the negative energy densities
characteristic of the regularized Polyakov RSET.

The arbitrariness in specifying the behavior of the reg-
ularized Polyakov RSET at r = 0, due to ambiguities in
F , motivated the consideration of other approximations
that could be critically compared with the former. This
provided the main motivation behind deriving the MOR-
RSET which, being four-dimensional from the start, is
well-defined at r = 0. Both the regularized Polyakov
RSET and the MOR-RSET have resulted in regular stars
that surpass the Buchdahl limit and display similar in-
teriors, i.e., geometries with negative Misner-Sharp mass
and small values of the redshift function. These analy-
ses serve as independent confirmations of the existence
of stars surpassing the Buchdahl limit due to vacuum
polarization effects.

V. BEHAVIOR OF THE AHS-RSET IN THE
BUCHDAHL LIMIT

While an analysis of the space of solutions using the
AHS-RSET instead of the MOR-RSET is out of the scope
of this paper, we can still highlight some features of the
AHS-RSET with the goal of stimulating further research.
The arising of beyond-Buchdahl structures supported by
the MOR-RSET stems from its growth in magnitude
when the Buchdahl limit is approached. We can check
whether a similar growth is displayed by the AHS-RSET
when calculated in fixed stellar backgrounds on the verge
of reaching the Buchdahl limit. To study this in complete
generality, in this section we extend the analysis to non-
minimally coupled fields. Let us consider the spacetime
of a uniform-density star and evaluate the AHS-RSET
over it. Taking ρ = 3CR/8πR

2 (a necessary condition
for the regularity of the metric at r = 0 [32]), the corre-
sponding interior line element [65] is

ds2 =− 1

4

(
3
√
1− CR −

√
1− r2CR/R2

)2
dt2

+
(
1− r2CR/R

2
)−1

dr2 + r2dΩ2. (20)

Now, focusing on a stellar solution whose compactness
approaches the Buchdahl limit, i.e.,

CR =
8

9
− ϵ, ϵ → 0+, (21)

we evaluate the AHS-RSET, whose components are avail-
able in Appendix A, at r = 0 (6) in the metric (20) and
in the limit defined in Eq. (21). The result is

⟨T̂ t
t⟩AHS|r=0 =− l2P

R4

(
ξ − 1

6

)2
log ϵ

ϵ2
+O

(
ϵ−2
)
,

⟨T̂ r
r⟩AHS|r=0 =⟨T̂ θ

θ⟩AHS|r=0 =
1

3
⟨T̂ t

t⟩AHS|r=0, (22)

with l2P = 16/729π2 and ξ is the coupling of the field to
the Ricci scalar. In view of the above, the semiclassi-
cal energy density and pressure diverge towards negative
and positive infinity, respectively, following a ρ = −3p
relation. It is remarkable that this leading behavior is
independent of the parameters controlling the renormal-
ization parameter λ and the coupling ξ.
Also, it is straightforward to check that the semiclas-

sical energy density in Eq. (22) becomes comparable in
magnitude to the classical energy density approximately
when

ϵ ≃ O
[(

lP
R

)
log

(
R

lP

)]
, with R ≫ lP. (23)

Hence, the leading-order terms in the AHS-RSET show
a universal build-up of negative energy density at the
center of the star when its compactness is close to the
Buchdahl limit, namely when ϵ satisfies Eq. (23).
Therefore, even though we have not used the AHS-

RSET for the self-consistent integrations, it appears that
its effect when approaching the Buchdahl limit is intro-
ducing a negative energy core in the configuration which,
based on our previous discussion using the MOR-RSET
(and also the regularized Polyakov approximation in pre-
vious papers), might allow the existence of ultracompact
configurations.
While this observation applies to the analytical piece

in Eq. (6), it would also be interesting to understand
the behavior of the numerical piece in the latter equa-
tion. The numerical piece is also independent of λ but
one would need to compute it to exactly determine the
leading-order divergence in the complete RSET. Also, it
is important to stress that our analysis in this section has
made the reasonable assumption that the larger values of
the RSET would appear at the center of the configura-
tion. That is the place in which we are able to obtain
a robust analysis of the behaviour of the RSET compo-
nents.
In summary, we can conclude that stellar configura-

tions approaching the Buchdahl limit will likely develop
negative energy densities at their central regions that will
be comparable in magnitude to the classical energy den-
sity itself when using the AHS-RSET. As happens with
the MOR-RSET (and the regularized Polyakov RSET),
this can lead to an entire disappearance of the Buchdahl
limit when the backreaction effects of the RSET are in-
cluded.

VI. CONCLUSIONS

The Buchdahl limit in general relativity imposes an
upper bound to the compactness of fluid spheres in equi-
librium, as long as their density is non-decreasing from
the surface towards the center, among other conditions.
We have shown that this limit disappears when incorpo-
rating the self-consistent backreaction of the RSET of a
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Figure 5. Misner-Sharp mass (left panel) and classical pressure (right panel) of stars obtained in the regularized Polyakov
approximation. These solutions have CR = 0.96, R = 10 and ρ ≃ 0.0025. Continuous lines correspond to the solution with
F = 1/r2, while the dashed curves represent the region where F = Freg for different rcore values.

massless, minimally coupled scalar field. To be able to
solve the semiclassical backreaction problem, we have de-
rived a novel order-reduced RSET approximation that is
well defined in stellar spacetimes.

Our integrations show that the Buchdahl limit disap-
pears due to the build-up of negative energy densities in
the interior of the star. While the approximation con-
structed here presents some renormalization ambiguities
controlled by a parameter λ, we have been able to remove
these ambiguities for a specific equation of state and by
imposing the absence of distributional SETs at the star’s
surface. Within the range of parameters explored in this
work, we conclude that there is no trace of the Buchdahl
limit once vacuum backreaction is incorporated. The as-
tonishing similarity between the solutions discussed here
and those derived through the regularized Polyakov ap-
proximation [33] is a strong indication of the robustness
of this result.

Despite the ambiguities in the renormalization proce-
dure and the different possible approximations that can
be considered to find an analytical RSET, it is clear that,
if quantum vacuum polarization behaves in the way de-
scribed here, ultracompact stars should have a negative-
energy core and an external (thin) layer where mass
quickly regains positive values at the surface to smoothly
match the vacuum exterior. These ultracompact stars
might be formed as the final equilibrium configuration re-
sulting from a modified collapse process with regularized
singularities and evanescent trapping horizons [66–68].

In summary, our results here motivate further research
on analytical approximations able to capture the back-
reaction of quantum vacuum polarization, with the aim
of gaining a better understanding of the robustness and
generality of the resulting stellar solutions.
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Appendix A: The Anderson-Hiscock-Samuel RSET

Below we show the components of the AHS-RSET for
a massless field with arbitrary coupling ξ in the Boulware
state.
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2
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+
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4
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3
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3
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2
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2

32f2h4
− 3f ′′ (f ′)

2
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2
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2
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2
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+
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+

1
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(
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+
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+
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3
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+
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2
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+
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2
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and

⟨T̂φ
φ ⟩AHS = ⟨T̂ θ

θ ⟩AHS. (A4)
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[58] J. Arrechea, C. Barceló, R. Carballo-Rubio, and L. J.
Garay, Asymptotically flat vacuum solutions in
order-reduced semiclassical gravity, Phys. Rev. D 107
(2023), no. 8 085005, [arXiv:2212.09375].

[59] W. Israel, Singular hypersurfaces and thin shells in
general relativity, Nuovo Cim. B 44S10 (1966) 1.
[Erratum: Nuovo Cim.B 48, 463 (1967)].

[60] V. Cardoso, E. Franzin, and P. Pani, Is the
gravitational-wave ringdown a probe of the event
horizon?, Phys. Rev. Lett. 116 (2016), no. 17 171101,
[arXiv:1602.07309]. [Erratum: Phys.Rev.Lett. 117,
089902 (2016)].

[61] V. Cardoso and P. Pani, Tests for the existence of black
holes through gravitational wave echoes, Nat. Astron. 1
(2017), no. 1 586–591, [arXiv:1707.03021].

[62] R. Carballo-Rubio, V. Cardoso, and Z. Younsi, Toward
very large baseline interferometry observations of black
hole structure, Phys. Rev. D 106 (2022), no. 8 084038,
[arXiv:2208.00704].

[63] A. Eichhorn, R. Gold, and A. Held, Horizonless
Spacetimes As Seen by Present and Next-generation
Event Horizon Telescope Arrays, Astrophys. J. 950
(2023), no. 2 117, [arXiv:2205.14883].

[64] A. Fabbri and J. Navarro-Salas, Modeling Black Hole
Evaporation. Imperial College Press, 2005.

[65] K. Schwarzschild, On the gravitational field of a sphere
of incompressible fluid according to Einstein’s theory,
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)
1916 (1916) 424–434, [physics/9912033].
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