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The ground-state superfluid behavior of ultracold atomic Fermi gases with a short-range attractive interaction
in a quasi-two-dimensional Lieb lattice is studied using BCS mean-field theory, within the context of BCS-BEC
crossover. We find that the flat band leads to nontrivial exotic effects. As the Fermi level enters the flat band,
both the pairing gap and the in-plane superfluid density exhibit an unusual power law as a function of interaction,
with strongly enhanced quantum geometric effects, in addition to a dramatic increase of compressibility as the
interaction approaches the BCS limit. As the Fermi level crosses the van Hove singularities, the character of
pairing changes from particle-like to hole-like or vice versa. We present the computed phase diagram, in which
a pair density wave state emerges at high densities with relatively strong interaction strength.

I. INTRODUCTION

Ultracold atomic Fermi gases in optical lattices have be-
come an ideal platform for quantum simulation and quantum
engineering and thus have enormous potential for exploring
difficult condensed matter problems and new quantum physics
[1–5], due to their multiple adjustable parameters, including
interaction strength, lattice depth, dimensionality, population
imbalance, and lattice geometry, etc [6–10]. In particular,
crossover from a BCS type of superfluidity to Bose–Einstein
condensation (BEC) of fermion pairs in an attractive Hubbard
model can be realized in an optical lattice using atomic Fermi
gases in an optical lattice [11]. Such a BCS-BEC crossover
has been realized by tuning the effective interaction strength
through a Feshbach resonance in trapped atomic Fermi gases
[12]. Such studies can help to elucidate the underlying physics
of the widespread pseudogap phenomena in cuprate supercon-
ductors [13], which is of central importance in understanding
the mechanism of high-temperature superconductivity [14].

Recently, models with a flat band have attracted great inter-
est, because of the associated high density of states (DOS) and
possible quantum geometric effect associated with multiband
of such systems. It has been reported that flat band and quan-
tum geometric effect may enhance the superconducting transi-
tion temperature with an on-site attractive interaction and may
give rise to quantum Hall states with a nonzero Chern number
[15–20]. Flat bands have been studied in bipartite lattices,
e.g., Lieb lattice, magic-angle graphene moiré lattices, as well
as perovskite, kagome and honeycomb lattices [15, 21–24].

Particularly, Lieb lattices have been realized in optical lat-
tices of ultracold atoms [25, 26]. With line centers on a square,
a Lieb lattice contains a central flat band, which touches an
upper and a lower band at the Dirac points at the Brillouin
zone corners [27]. There have been a number of theoreti-
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cal and experimental studies on Lieb lattices, including lattice
preparation [25, 26, 28] and associated aspects such as Chern
semimetals with three spinless fermion species [29], ferro-
magnetic and antiferromagnetic states in a repulsive Hubbard
model at half filling [30–32], strain-induced superconductor-
insulator transition [33], competition between pairing and
charge density wave at half filling using determinant quantum
Monte Carlo [34], as well as topologically nontrivial quantum
spin Hall effect with extra interactions [19, 35–37]. Such rich
physics warrants the investigation of the important superfluid-
ity and pairing phenomenon of ultracold Fermi gases in a Lieb
lattice, in order to uncover possible exotic and interesting new
quantum phenomena in the presence of a flat band.

In this Letter, we investigate the flat band effects on the
ground-state superfluid behaviors of ultracold atomic Fermi
gases in a quasi-two-dimensional Lieb lattice with a short-
range attractive interaction, with the nearest neighbor hopping
only, which leads to a zero Chern number [38]. We find that
the flat band, as well as the van Hove singularities (VHS),
leads to exotic phenomena in the superfluid behavior. When
the Fermi level enters the flat band, the fermion pairing gap
∆ changes from an exponential dependence into an unusual
power law, as a function of the interaction strength |g|, with
an enormous compressibility κ in the BCS limit. The super-
fluid density also exhibits a power law behavior, in contrast to
being a constant in 3D free space. For a lower number density
n slightly above 1 fermion per unit cell, the fermion chem-
ical potential µ varies nonmonotonically with the interaction
strength in the weak interaction region, and reaches a maxi-
mum when it crosses the VHS, signaling a change of pairing
character from particle-like at strong interactions to hole-like
at weak interactions. At the same time, κ rises in the weak
coupling region as the Fermi level gets closer to the VHS. In
the BEC regime, µ shows an asymptotic linear dependence on
the interaction g, leading to a density-independent κ = −2/g,
with the pairing gap ∆ ∼ |µ| ∼ |g|, which is qualitatively
similar to the 3D lattice case [39]. Finally, the phase diagram
reveals that a pair density wave (PDW) ground state emerges
at intermediate pairing strength for relatively large densities,
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Figure 1. Structure of a quasi-2D Lieb lattice. Site A represents
the site in a simple square lattice, while sites B and C sit at the line
centers of the square in each 2D plane. The solid lines represent
nearest-neighbor hopping integral t between site A and sites B and
C. The dashed lines denote the inter-layer coupling tz .

due to strong inter-pair repulsive interactions and relatively
large pair size at intermediate pairing strength, which is also
found in dipolar Fermi gases [40] and Fermi gases in 2D opti-
cal lattices with one continuum dimension [41, 42] within the
pairing fluctuation theory.

II. THEORETICAL FORMALISM

The non-interacting Hamiltonian of a Lieb lattice can be
written as

H0 =
∑
kσ

ĉ†kσĤkĉkσ,

where ĉkσ = [CAkσ, CBkσ, CCkσ]
T . The subscript A denotes

the site in a standard square lattice with B and C located on
the side center of the square, as shown in Fig. 1. This leads to
the Hamiltonian in momentum space for free fermions

Ĥk =

dk ak bk
ak dk 0
bk 0 dk

 ,

where ak = 2t[1 − cos(kx/2)], bk = 2t[1 − cos(ky/2)] and
dk = 2tz(1− cos kz)− µ represent the hopping in the x and
y directions, and the dispersion in the out-of-plane ẑ direc-
tion, respectively, with t and tz being the in-plane and out-of-
plane hopping integral, respectively. We take tz/t = 0.01 for
the quasi-two dimensionality, set the lattice constant a = 1,
and measure energy relative to the bottom of the lower en-
ergy band. Diagonalizing Ĥk leads to three bands with dis-
persions ξαk = α

√
2t
√
2 + cos kx + cos ky+2

√
2t+2tz(1−

cos kz) − µ, where α = ±, 0 denotes the upper, lower and
flat band, respectively. This yields in the band representation

H0 =
∑
kασ

ξαk c
†
kασckασ , where ckασ is the annihilation opera-

tor in band α.
The interaction Hamiltonian in the band representation is

given by

Hint =
∑

kk′qαβ

Ukk′αβc
†
k+ q

2α↑
c†−k+ q

2α↓
c−k′+ q

2 β↓
ck′+ q

2 β↑
,

with band indices α, β = ±, 0. The full Hamiltonian is thus
H = H0 + Hint. We find that with only on-site interac-
tions, the pairing gap often varies strongly from site to site
[43], which necessarily leads to a large kinetic energy for
the pairing field, and thus may not be energetically favorable
in the superfluid state. Since the nearest-neighbor hopping
hybridizes different orbitals, and to be compatible with the
conventional superconductivity with electron-phonon interac-
tion induced pairing, we find it reasonable to assume a uni-
form short-range intra- and inter-orbital interaction, Uij = U ,
where i, j = {A,B,C} are the orbital indices. Through a uni-
tary transformation, this leads naturally to uniform matrix ele-
ments of the interaction in momentum space across all bands,
with Ukk′αβ = g < 0. (See Appendix A for details). This in
turn gives rise to a uniform order parameter ∆α = ∆ in the
mean field approximation [44]. We emphasize that, despite
the short interaction range, fermion hopping enables pairing
between sites across a large distance.

Using the BCS mean-field theory at zero temperature, the
bare and full Green’s functions are given by

G0(K) =
θ(|k| − kF)

ω − Ĥk + i0+
+

θ(kF − |k|)
ω − Ĥk − i0+

,

G−1(K) = G−1
0 (K)− Σ(K), Σ(K) = −∆2GT

0 (−K) ,

respectively, with four momentum K ≡ (ω,k), and θ(x) is
the step function.

The number constraint n = 2
∑

K TrG(K) leads to the
number equation

n =
∑
k

∑
α=0,±

(
1− ξαk

Eα
k

)
, (1)

where
∑

K ≡
∑

ω

∑
k, and Eα

k =
√

(ξαk )
2 +∆2 is the Bo-

goliubov quasiparticle dispersion for band α = ±, 0 with en-
ergy gap ∆. The gap equation is given by [44]

0 =
1

g
+

∑
k

∑
α=0,±

1

2Eα
k

. (2)

Equations (1) and (2) form a closed set of self-consistent
equations , which can be solved for (µ, ∆) as a function of g in
the superfluid phase. The solution for (µ, ∆) in the superfluid
phase should satisfy the stability condition that the Cooper
pair energy should be nonnegative. To this end, we extract
the pair dispersion using the fluctuating pair propagator, as
given in the pairing fluctuation theory which was previously
developed for the pseudogap physics in the cuprates [14],
and extended to address the BCS-BEC crossover in atomic
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Fermi gases [1]. To be compatible [45] with the BCS-Leggett
ground state, the pair susceptibility in the T -matrix t−1

pg (Q) =

1/g+χ(Q) is given by χ(Q) =
∑

K Tr [G(K)GT
0 (Q−K)],

with Q ≡ (Ω,q), which leads to t−1
pg (Ω,q) ≈ a0(Ω − Ωq),

with pair dispersion Ωq = 2B(2−cos qx−cos qy)+2Bz(1−
cos qz). Here B and Bz correspond to the effective pair hop-
ping integral in the xy plane and in the z direction, respec-
tively. The expressions for the coefficients a0, B and Bz can
be readily derived during the Taylor expansion. The non-
negativeness of the pair dispersion requires that the pairing
correlation length (squared) ξ2 = a0B and ξ2z = a0Bz be
positive.

Superfluid density (ns/m) is an important transport prop-
erty; its dependence on the interaction often reflects the pair-
ing symmetry. It takes the average of the inverse band mass
in a lattice, in contrast with the 3D continuum case where it
is always given by n/m at T = 0 in BCS theory. More-
over, the in-plane component of (ns/m) can be divided into
a conventional and a geometric part, due to the presence of
the flat band, where the geometric term is associated with the
interband contributions, which are proportional to a quantum
metric tensor.

The expressions for the superfluid density (ns/m) are de-
rived using the linear response theory within the BCS frame-
work [46, 47], which is applied to the multi-band system
[48][49]. Similar to Ref. [48], the in-plane superfluid den-
sity (ns/m)∥ contains a conventional term (ns/m)conv∥ and a
geometric term (ns/m)geom∥ , i.e.,

(ns

m

)
∥
=

(ns

m

)conv

∥
+
(ns

m

)geom

∥
, (3)

where(ns

m

)conv

∥
=
t2

4

∑
k

∑
α=±

∆2

(Eα
k )

3

sin2 kx + sin2 ky
2 + cos kx + cos ky

, (4)

(ns

m

)geom

∥
=∆2

∑
k

[(
1

E+
k

− 1

Ek

)
ξk − ξ+k
ξk + ξ+k

+(
1

E−
k

− 1

Ek

)
ξk − ξ−k
ξk + ξ−k

]
(gxx + gyy) . (5)

Here gµν = Re (∂µ⟨+|)(1 − |+⟩⟨+|)∂ν |+⟩ is the quantum
metric tensor of the upper or lower band, where |±⟩ is the
eigenvector of Ĥk, associated with the upper and lower bands,
respectively. The out-of-plane component reads

(ns

m

)
z
= 2t2z

∑
k

∑
α=0,±

∆2

(Eα
k )

3 sin2 kz . (6)

Note that, without using the mean-field approximated Hamil-
tonian, we do not find the extra contributions to ns/m asso-
ciated with the derivative of ∆ with respect to the magnetic
field vector potential, unlike Ref. [50].

Compressibility κ is an important quantity in thermody-
namics, which must be positive to maintain mechanical sta-

0 0.2 0.4 0.6 0.8 1

-g/t

0

0.2

0.4

0.6

0.8

1

∆
/t

1.9

1.95

2

2.1

2.7

-3 -2 -1 0 1 2 3

ε-2√
_
2t

0

1

2

D
O

S

n

n =

Figure 2. ∆ as a function of −g for various n in the weak coupling
BCS regime, with µ close to or inside the flat band. Shown in the
inset is the DOS for strict 2D, where the (red) arrow denotes the flat
band.

bility. For the ground state [51], we obtain

κ =
∂n

∂µ
=

(
∂n

∂µ

)
∆

+

(
∂n

∂∆

)
µ

∂∆

∂µ

=
∑
kα

∆2

(Eα
k )

3
+

[∑
kα ξαk/(E

α
k )

3
]2∑

kα 1/(Eα
k )

3
. (7)

One can tell that κ reflects the property of density of state
(DOS). In the weak coupling regime, a larger DOS at the
Fermi level corresponds to a higher κ. Especially, κ reduces
to the DOS in the noninteracting limit.

The asymptotic behavior in the BEC limit can be solved an-
alytically with large negative µ → −∞. The gap and number
equations yield

µ =
(3− n)g

2
+ 2

√
2t , ∆ =

√
9

4
g2 − µ2 , (8)

respectively, with a scaling behavior qualitatively similar to
∆ ∼ |µ| ∼ |g| for 3D lattice. Thus, we obtain for all densities
the BEC asymptote

κ = −2

g
. (9)

III. NUMERICAL RESULTS AND DISCUSSIONS

We first investigate the flat band effects on the pairing gap
behavior, when the Fermi level is close to or within the flat
band. Due to the particle-hole symmetry, we restrict ourselves
to n ≤ 3, and the Fermi level enters the flat band for n ≥ 2
in the noninteracting limit. Plotted in Fig. 2 is ∆ versus −g
(in units of t) for various densities near n ≲ 2 and n ∈ [2, 3]
in the weak coupling BCS regime. Shown in the inset is the
DOS for the strict 2D case, where the (red) vertical arrow de-
notes the flat band, along with two VHS’s in the upper and
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lower bands, corresponding to n = 1 and 5, respectively. For
n < 2, including n = 1.95, ∆ exhibits an exponentially acti-
vated behavior in the weak coupling regime, similar to that in
3D continuum and 3D cubic lattices. This is expected in BCS
theory, assuming a roughly constant DOS near the Fermi sur-
face. However, as the density n goes above 2, the Fermi level
enters the flat band with the lower band fully filled, and the
gap ∆(g) as a function of the interaction exhibits an unusual
power law, which can be attributed to the breakdown of the
constant DOS approximation. Similar behavior has also been
predicted within the dynamical mean-field theory in a quasi
2D repulsive Lieb lattice, where the magnetism as a func-
tion of the interaction g changes from exponential to power
law behavior at half filling [31]. The behavior of ∆ over a
broad range is shown in the inset of Fig. 3(b) on a log-log
scale for a lower density, n = 0.6. Indeed, the numerical
result (black solid line) approaches its analytical BEC asymp-
tote (red dashed line) in the deep BEC regime, as given by
Eq. (8).

This unusual power-law behavior of ∆ versus g can be
explained following Ref. [31], despite the different signs of
the interaction. Using the normalized, dimensionless nota-
tion X ≡ X/W , where W = 4

√
2t + 4tz is the band-

width, the rescaled, dimensionless DOS can be simplified as
ρ(ε) ≡ Wρ(ε) = 4θ(1/2− |ε− 1/2|) + 2δ(ε− 1/2), where
the δ function represents the flat band.

For n > 2, using ρ(ε) in the integral in the gap equation
(2), we obtain from the gap equation (2)

∆ =
n− 2

8
/W(

n− 2

8
exp(

1

4|g|
)),

where W is the Lambert W-function, which is the inverse
function of f(W) = W exp(W) (See Appendix B for a
derivation). For x ≫ 1, W(x) ≈ ln(x) − ln(ln(x)). To
leading order, this yields ∆ ≈ n−2

2 |g| for weak interactions.
At low n < 2, the δ-function term in ρ(ε) becomes irrelevant,
so that we recover the ordinary exponential BCS behavior.

Next we show in Fig. 3 the behaviors of µ as a function
of g for various densities n, so that the Fermi level changes
from (a) the lower band below (n = 0.6) and around the VHS
(0.9 ≤ n ≤ 1.2) to (b) near (n = 1.9, 1.95) or inside the flat
band (n = 2, 2.3, 2.7). As shown in the inset of Fig. 3(a), −µ
(black solid line, for n = 0.6) approaches its BEC asymp-
totic behavior (red dashed line) for −g/t > 10. For n ≤ 1
in Fig. 3(a), the chemical potential µ decreases monotoni-
cally as the pairing interaction becomes stronger, similar to
that in a regular one-band model below half filling. How-
ever, for n = 1.1, 1.2, µ becomes remarkably nonmonotonic
in the weak coupling regime; µ increases first with |g|, and
then starts to decrease after passing a maximum. Such non-
monotonicity is also found in a 2D optical lattice with a strong
lattice effect, which is comprised of two lattice and one con-
tinuum dimensions [41, 42]. In a quasi-2D Lieb lattice, the
lower band has two VHS’s, at ε = (2

√
2 − 2)t ≈ 0.8284t

and ε = (2
√
2 − 2)t + 4tz ≈ 0.8684t. For n = 1.1, 1.2,

µ > 0.8684t for small |g|, i.e., the Fermi level sits slightly
above the VHS’s for small |g|, where the DOS ρ(ε) has a neg-
ative slope, so that the pairing becomes hole-like, for which
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Figure 3. Evolution of µ as a function of −g/t for (a) small 0.6 ≤
n ≤ 1.2 and (b) large 1.9 ≤ n ≤ 2.7, as labeled. In the insets, the
full numerical solution (black solid) for n = 0.6 is compared with
the analytical BEC asymptotic behavior (red dashed curves) for −µ
and ∆, respectively, as a function of −g/t on a log-log scale.

µ increases as the pairing becomes stronger, as in a 3D cubic
lattice above half filling. Indeed, in the weak coupling limit,
there is generally an approximate particle-hole symmetry at
the VHS, as the DOS in the vicinity of the VHS’s dominates.
As |g| increases further, the contribution of the DOS below
the VHS’s comes in, so that µ starts to decrease again. As n
increases and approaches n = 2, the flat band gradually af-
fects the behaviors of µ in the BCS regime. For n = 1.9, 1.95
in Fig. 3(b), µ remains nearly a constant before decreasing
with |g| in the BCS regime. For 2 ≤ n ≤ 3, µ enters the
flat band, and starts to decrease from roughly the same non-
interacting limit µ0 ≈ 2

√
2t. While the nearly constant µ for

n = 1.9, 1.95 is in accord with the exponentially small gap
in the BCS regime (Fig. 2), a power-law decrease in µ can be
readily seen for n ∈ [2, 3], commensurate with the power-law
increase of ∆ as a function of −g.

Shown in Fig. 4 are the in-plane (left column) and out-of-
plane (right column) superfluid density, from top to bottom,
for n = 0.6, 2 and 2.7, respectively, as well as the conven-
tional (ns/m)conv∥ (blue) and geometric part (ns/m)geom∥ (red
curves) of (ns/m)∥. For n = 0.6, both the in-plane (ns/m)∥
and the out-of-plane (ns/m)z , as well as the conventional
(ns/m)conv∥ , are roughly constant for weak coupling, simi-
lar to the constant superfluid density ns/m = n/m in 3D
continuum. On the contrary, the geometric part (ns/m)geom∥
vanishes in the noninteracting limit g → 0. Commensurate
with the evolution of ∆ versus −g, as n increases to n ≥ 2,
the behaviors of both (ns/m)conv∥ and (ns/m)geom∥ , as well as
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n = 2

n =2.7

Figure 4. Behavior of the in-plane superfluid density (ns/m)∥ (black
curves) along with its conventional (blue curves) and geometric parts
(red curves), as a function of −g/t, for (a) n = 0.6, (b) 2, (c) 2.7.
Plotted in (d-f) are the corresponding out-of-plane superfluid density
(ns/m)z . Shown in the inset of panel (f) is (ns/m)z in the weak
interaction regime for a series of n ≳ 2.

(ns/m)∥, evolve into power laws as a function of −g. More
importantly, (ns/m)conv∥ now approaches zero as g → 0, un-
like in a simple cubic lattice. This can be attributed to a few
reasons. (i) Without the out-of-plane contribution, the DOS
from the upper and lower band is zero when µ falls inside the
flat band. (ii) There is a perfect particle-hole symmetry at this
µ so that the contributions from particles and holes cancel out
in (ns/m)∥; the pairing is neither particle-like nor hole-like.
(iii) The quantum geometric contribution relies on a finite gap
∆, and hence vanishes in the zero g limit. (iv) The flat band
does not contribute to superfluidity without the quantum ge-
ometric effect. As µ moves away from the flat band with in-
creasing |g|, the particle-hole cancellation breaks down, lead-
ing to a rising (ns/m)∥. As |g| increases further toward the
BEC regime, (ns/m)∥ starts to decrease due to the lattice ef-
fects. Without a geometric contribution, the out-of-plane su-
perfluid density (ns/m)z exhibits a behavior similar to that
of (ns/m)conv∥ in the weak coupling regime for n = 0.6 and
2. However, difference appears as µ enters the flat band. As
shown in the inset of Fig. 4(f), when n becomes slightly higher
than 2, (ns/m)z starts to increase as g → 0. At n = 2.7,
shown in Fig. 4(f), this increase is so dramatic that (ns/m)z
becomes monotonically decreasing with |g|. This distinct be-
havior of (ns/m)z , compared to (ns/m)conv∥ , results from the
broadening of the flat band due to the small out-of-plane dis-
persion.

Plotted in Fig. 5 is the compressibility κ versus g for (a)
small n below and around the VHS and (b) large n near and
in the flat band. Figure 5(a) indicates that the noninteracting
value of κ reaches a local maximum at the VHS n = 1 as a
function of n, since this value is given by the DOS. Further-

0

1

2

3

κ
t

0.6 = n
0.9
1
1.1
1.2

0 0.5 1 1.5 2 2.5
-g/t

0

1

2

κ
t

1.9 = n
1.95
2
2.05
2.1

1 10 100 1000

-g/t

0.001

0.01

0.1

1

κ
t

numerical

analytical

(a)

(b)

n = 0.6

Figure 5. κ versus −g for (a) small n below (n = 0.6) and close
to the VHS’s around n = 1 and (b) large n ≃ 2 near the flat band
bottom. Shown in the inset is the full numerical solution of κ(g)
(black solid), compared with its BEC asymptotic expression κ =
−2/g (red dashed curve) for n = 0.6 on a log-log scale.

more, for n ∈ [0.9, 1.2], κ varies nonmonotonically with g,
largely related to the nonmonotonic behavior of µ(g). As |g|
increases into the BEC regime, all fermions pair up and the
two-body binding energy dominates µ. Consequently, κ de-
creases and approaches the same n-independent BEC asymp-
tote. Indeed, as shown in the inset for n = 0.6, κ ap-
proaches nicely the n-independent analytical BEC asymptote
when −g/t > 10. The nearly constant κ for n = 1.9 and 1.95
in Fig. 5(b) is clearly associated with the constant behavior
of µ in the BCS regime shown in Fig. 3(b). For n ≥ 2, κ in-
creases sharply as g → 0. Here the Fermi level falls within the
flat band, and thus the noninteracting κ is given by the huge
DOS. Therefore, there is a jump of κ(g = 0) as n crosses the
n = 2 boundary, as shown in Fig. 5(b).

Finally, we present in Fig. 6 the ground-state phase dia-
gram in the n – g plane. Here the positivity of ξ2 = a0B and
ξ2z = a0B

2
z constitutes two stability conditions for the super-

fluid phase. The (black dot-dashed) µ = 0 curve separates the
fermionic superfluid regime on the upper left from the bosonic
superfluid regime on the lower right. A PDW ground state
with negative ξ2 < 0 and/or ξ2z < 0 emerges in the grey
shaded region, enclosed inside the (red) B = 0 and (blue)
Bz = 0 curves. Note that the upper branch of B = 0 overlaps
nearly precisely with Bz = 0, and both are close to but falls
slightly inside the fermionic side of the µ = 0 line. The PDW
state at intermediate and strong coupling for relatively large n
is associated with the strong repulsive inter-pair interaction U
and relatively low kinetic energy of the pairs, T , which leads
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Figure 6. Ground-state phase diagram in the n − g plane. The
(black dot-dashed) µ = 0 curve divides the plane into fermionic
and bosonic superfluid regimes. Enclosed within the (red) B = 0
and (blue) Bz = 0 lines is a PDW ground state (gray shaded region).

naturally to Wigner crystallization. Indeed, for N pairs, the
inter-pair interaction energy EP scales as N2U/2 whereas the
kinetic energy EK scales as NT , allowing EP > EK with a
large U and lattice suppressed T . Technically, the sign of ξ2

(or ξ2z ) becomes negative between the B = 0 (or Bz = 0)
branches, where the pair dispersion Ω̃q reaches a minimum at
a finite q ̸= 0, with the crystallization wave vector in the xy
plane (or in the z direction). The PDW state has been observed
in experiments [52], but it is still unclear whether it can sus-
tain superfluidity and thus becomes a supersolid, which will
be left to a future study. A similar PDW ground state has been
found in 3D lattices at high density [39], 2D optical lattices
with strong lattice effect [41, 42], optical lattices in mixed di-
mensions [53], and in dipolar Fermi gases [40].

IV. CONCLUSIONS

In summary, we have studied the ground-state superfluid
properties of ultracold Fermi gases in a quasi-2D Lieb lattice
in the context of BCS-BEC crossover, whose BEC asymptotic
solution is derived analytically. We find that the flat band,
together with van Hove singularities, have extraordinary ef-
fects on the superfluid behavior. When the Fermi level falls
within the flat band, the pairing gap and the in-plane superfluid
density exhibit an unusual power law in the weak coupling
regime as a function of the interaction strength |g|. Mean-
while, the compressibility increases sharply in the noninter-
acting limit. As the chemical potential increases across the
VHS’s in the lower band, the pairing becomes hole-like for
weak interactions, leading to a nonmonotonic behavior of the
chemical potential as a function of interaction strength. A
PDW ground state emerges for intermediate and strong pair-
ing strength with relatively large density. These findings for
the Lieb lattice are very different from that for pure 3D con-
tinua and 3D cubic lattices and should be tested in future ex-

periments.
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Appendix A: Motivation of uniform interaction across the
energy bands

The attractive Hubbard model, often written in a single-
band form, has been used as a formulation for superconduc-
tors in both the weak and strong coupling regimes. For a typ-
ical conventional superconductor with a pairing interaction of
the electron-phonon origin, the pairing “glue” was mediated
via the retarded ionic lattice deformation, causing electrons
in the vicinity of the Fermi surface to form Cooper pairs of
nearly zero center-of-mass momentum. This effective pairing
interaction, originated from the Coulomb potential induced by
nonzero net charge at the deformed ion sites, necessarily prop-
agates over a large distance, allowing for large Cooper pairs in
real space. Clearly, such a Coulomb force does not distinguish
between different sublattice sites in the multi-orbital situation,
such as the Lieb lattice. While the simplest one-band Hubbard
model usually considers only on-site interactions, the fact that
the order parameter is spatially uniform in a conventional su-
perconductor allows one to obtain the correct result by assum-
ing local on-site pairing, even if the electron-phonon interac-
tion is in fact effective across a distance.

However, such a picture may breakdown for a multi-orbital
model, if one considers on-site attraction only. Indeed, this
would lead to orbital selective pairing interaction, which may
not necessarily be equal to each other. Therefore, the order
parameter necessarily varies from site to site. An example can
be seen from Ref. [43]. This implies a high kinetic energy
for the pairing field Ψ, associated with the |∇Ψ|2 term in the
Ginzburg-Landau free energy. This is clearly not energetically
favorable for forming a uniform superfluid. It suggests that for
a conventional superconductor, one needs to consider inter-
orbital pairing interaction as well. Given the large Cooper pair
size, there is essentially no real-space local on-site pairing.
Thus to make the multi-orbital Hubbard model work for weak
attractions, it is desirable to assume a uniform inter-orbital and
on-site interaction. (Here the “on-site” should be replaced by
“intra-orbital”). Therefore, we argue that it is appropriate to
use a uniform pairing interaction that does not distinguish be-
tween intra- and inter-orbitals. This in return leads to a uni-
form pairing interaction across all energy bands. This can be
readily seen as the band representation and the orbital repre-
sentation are related via a simple unitary basis transformation.

We also note that with the nearest neighbor approximation,
fermion hopping occurs between different sublattice sites.
Therefore, the orbital index is not a good quantum number.
It is in the band index that the (bare) Hamiltonian is diagonal-
ized. It is thus not ideal to define the order parameter in terms
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of the orbitals. The BCS pairing couples fermions of (nearly)
opposite momenta near the Fermi level, irrespective their or-
bital origin. This necessarily mixes different orbitals, as the
three band dispersions clearly differ dramatically from those
of each orbital alone.

The fermion creation/annihilation operators are in the band
and orbital representations are related via a unitary transfor-
mation, Ckiσ =

∑
α Siα(k)Ckασ , where i = A,B,C refers

to the orbitals, and α = ±, 0 is the band index. For the simple
Lieb lattice, the transform matrix S(k) = S(−k) = S†(k) is
real, satisfying S†(k)S(k) = 1.

With a short-range interaction that does not distinguish be-
tween inter- and intra-orbitals, namely Uij = Uii = U , we
readily write down the two-body interaction matrix element
in the momentum space in the center-of-mass reference frame,
in terms of the orbitals,

H int
kk′ =U

∑
ij

C†
ki↑C

†
−ki↓C−k′j↓Ck′j↑

=U
[ ∑
α3α4i

Siα4(k)Siα3(k)C
†
kα4↑C

†
−kα3↓

]
×
[ ∑
α1α2j

Sjα1
(k′)Sjα2

(k′)C−k′α1↑Ck′α2↓

]
=U

( ∑
α3α4

δα3α4
C†

kα4↑C
†
−kα3↓

)( ∑
α1α2

δα1α2
C−k′α1↑Ck′α2↓

)
=U

∑
αβ

C†
kβ↑C

†
−kβ↓C−k′α↓Ck′α↑,

which has been transformed into the band representation in
the last line with a uniform interaction across all bands. Here
k′ and k are the relative momentum (divided by 2) for the
incoming and outgoing scattering fermions, respectively.

Now with the uniform pairing interaction across bands,
Ukk′αβ = g < 0, and defining in the band representation
the order parameter

∆α
k = −

∑
βk′

Ukk′αβ ⟨c−kβ↓ckβ↑⟩

= −g
∑
βk′

⟨c−k′β↓ck′β↑⟩ = ∆,

one readily arrives at a uniform order parameter, ∆α
k = ∆,

independent of the band index. A uniform order parameter
across all bands has also been considered in Ref. [44].

In fact, in the weak coupling regime, only the gap near the
Fermi level matters quantitatively. For the Lieb lattice, the
Fermi level crosses only one of the three bands. In the oppo-
site strong pairing regime, two-body physics becomes dom-
inant so that the gap becomes quantitatively less important.
This further justifies the adoption of a band-uniform pairing
interaction, as a leading order approximation.

For the electron gas in a solid, there is no natural way to
create an on-site attractive interaction, unlike the Coulomb
repulsion in a repulsive Hubbard model. For the electron-
phonon interaction, one may conceive that the attraction be-
tween neighboring sites is the strongest. This suggests that

one may use a short-range interaction as an approximation.
While the optical lattice with cold atoms may see more flexi-
bility, one eventually needs to find a way to simulate the real
solid as well.

While one certainly can consider tunable inter- and intra-
band interactions (possibly via tuning the inter-orbital and
intra-orbital interaction), it is reasonable to consider a uniform
interaction as a first step. Indeed, in other contexts, effects of
tunable inter- and intra-band interactions have been studied
for multiband systems in the literature [54–57]. It should be
noted, however, that in a typical multiband superconductor,
such as MgB2 [58], iron pnictides and iron selenides [59], the
multibands are often associated with multiple topologically
disconnected Fermi surface sheets that are present simultane-
ously. This is very different from the Lieb lattice we consider.
For these multi-Fermi surface cases, band selective pairing in-
teractions, and hence band dependent pairing gaps, are more
appropriate, as observed in ARPES measurements [59, 60].

Finally, we note that the “orbital” in the Lieb lattice refers
to the sublattice sites, which is different from the electronic
orbital states of the same atoms, such as the dxy and dxz or-
bitals of Fe in iron-based superconductors. Nevertheless, both
types of “multi-orbitals” lead to multi-bands.

Appendix B: Derivation of the ∆(g) relation for n > 2,
expressed in terms of the Lambert W function

For n > 2, we substitute the (over) simplified model of ρ(ε)
into the gap equation, and get

1

|g|
=

∫ 1

0

dε
ρ(ε)

2

√
(ε− µ)2 +∆

2

= 8

∫ 0

− 1
2

dε
1

2

√
ε2 +∆

2
+ (n− 2)

1

2∆

= 4 sinh−1

(
1

2∆

)
+ (n− 2)

1

2∆

≈ 4 ln

(
1

∆

)
+ (n− 2)

1

2∆
(B1)

Here µ = 1/2 and the second term on the right hand side
comes from the fermion occupation in the flat band, given by
n − 2. We have assumed a small ∆ in the weak coupling
regime. Therefore,

n− 2

8
e1/4|g| =

n− 2

8∆
e

n−2

8∆ .

Using the definition of the Lambert function, x =
W(x)eW(x), finally we obtain

n− 2

8∆
= W

(
n− 2

8
e1/4|g|

)
,

namely,

∆ =
(n− 2)/8

W(n−2
8 exp( 1

4|g| ))
.
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For small |x| ≤ 1/e, the principal branch can be Taylor ex-
panded as [61]

W(x) =

∞∑
n=1

(−n)n−1

n!
xn ≈ x− x2 +

3

2
x3 .

Relevant to our study is the large x limit, which corresponds to
small ∆. In this case, W(x) ≈ ln(x)− ln(ln(x)). Therefore,
to leading order, we have ∆ ≈ n−2

2 |g| for n > 2 in the weak

interaction regime.
Note that for n < 2, the 2nd term in Eq. (B1) is absent,

and µ = n/4 based on the simplified model of ρ(ε). Then we
obtain

∆ ≈
√
n(1− n/4) e−1/4|g|,

which recovers the conventional exponential BCS behavior.
At n = 2, it connects smoothly with the solution of Eq. (B1).
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