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Abstract

We perform a general analysis of thin-wall Q-balls in AdS space. We provide numeric solutions

and highly accurate analytic approximations over much of the parameter space. These analytic

solutions show that AdS Q-balls exhibit significant differences from the corresponding flat space

solitons. This includes having a maximum radius beyond which the Q-balls are unstable to a new

type of state where the Q-ball coexists with a gas of massive particles. The phase transition to this

novel state is found to be a zero-temperature third-order transition. This, through the AdS/CFT

correspondence, has implications for a scalar condensate in the boundary theory.
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I. INTRODUCTION

The AdS/CFT correspondence [1], which relates a theory in an anti-de-Sitter (AdS) space

in D + 1 dimensions with a conformal field theory in D dimensions, has been the subject

of intense study for many years now. Any observable quantity in the gravitational theory

(sometimes called the bulk theory) has a corresponding quantity in the boundary theory

e.g. the correlation functions of the field theory are in one-to-one correspondence with the

boundary-to-boundary propagators in the bulk theory. The original correspondence of [2]

has since been generalized to many other theories.

When the field theory is at nonzero temperature, it can exhibit phase transitions. In

the bulk theory, these often correspond to a formation or alteration of bound states. For

example, when the temperature of the field theory is increased, there is a deconfinement

phase transition; this is believed to correspond to the formation of a black hole [3]. AdS

can also support other solitons such as boson stars, compact objects made of scalar fields

with gravitational (and potentially gauge) interactions [4–11]. These solitons exhibit yet

other types of phenomena; for instance, if one considers charged boson stars, one can find a

zero-temperature second order phase transition between two types of boson stars [12].

In this work we consider a different type of soliton in AdS. Q-balls are configurations of

complex scalars ϕ that are bound together by self-interactions [13] (Q-balls can also carry a

U(1) gauge charge, but here we consider Q-balls whose binding energy is dominated by the

scalar attraction). They are stable over a large range of parameter space, and are hence an

example of a nontopological soliton.

As Q-balls are solitons in a scalar field theory, their profiles are the solutions to a nonlinear

differential equation. While this differential equation is difficult to solve exactly, extremely

accurate approximation methods have been found for Q-balls with thin-wall configurations

in [14]. These methods produce excellent analytic approximations to the charge and energy

of both global [14] and gauged Q-balls [15] and Q-shells [16, 17], as well as the radial

excitations of global Q-balls [18].

Here we extend these methods to study Q-balls in AdS (some previous work on this

subject is [9, 19, 20]). We ignore backreaction on the spacetime and hence the AdS space is

taken to be a fixed background for the scalar field. We find solutions both numerically and by

an extension of the methods of [14], and show excellent agreement between the approximate
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analytical functions and the exact numerical solutions in several different spatial dimensions.

These methods agree in showing that there is generically a maximal radius for Q-balls in

AdS, except for a special class of scalar potentials such as those studied in [19]. Beyond

the corresponding maximal charge, we find an unexpected phase of the theory, where the

Q-ball coexists with a gas of noninteracting massive particles (a similar phenomenon has

been found for Kerr black holes in AdS [21]).

We also examine the consequences of the Q-ball physics for the dual theory on the bound-

ary. We find an intricate phase diagram with zero-temperature phase transitions that can

be either second-order, or surprisingly, even third order. These high order phase transitions

are found to be generic for a large class of potentials, as long as they admit Q-ball solutions.

These results are seen to hold for dual theories in several dimensions.

In the next section we review the action for Q-balls in AdS and find the equations satisfied

by a spherical Q-balls. We show that thermodynamic relation dE = ωdQ between the energy

and charge holds for AdS solitons. We then apply approximation techniques to find a relation

between the radius of the Q-ball and the parameters of the theory in Sec. III. In Sec. IV we

compare with numerical results, showing remarkable agreement for thin-wall solitons. The

numerical results also confirm the analytic prediction that, unlike in flat space, there are

soliton solutions with ω > mϕ. The consequences of our analytic understanding of Q-balls

are further explored in Secs. V and VI with particular interest given to soliton instabilities

and that, in contrast to flat space, the AdS Q-balls often have a maximum allowed radius.

The implications of these results for the holographic theory on the boundary are discussed

in Sec. VII. In Sec. VIII we show that the results obtained for 3-dimensional AdS are easily

extended to higher and lower dimensions. We close with a discussion of our results.

II. Q-BALLS IN ANTI-DE SITTER

We consider a complex scalar field propagating in a fixed Anti-de Sitter background. The

AdS geometry is parameterized as

ds2 = a(r)dt2 − b(r)dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (1)

with

a(r) = 1 +
r2

ℓ2
, b(r) =

1

1 + r2

ℓ2

, (2)
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where ℓ =
√
− 3

Λ
is a scale that sets the size of the AdS space.

The action for a scalar field propagating in this geometry is

S =

∫
d4x

√
−g [(∇µΦ)

∗ (∇µΦ)− U(ΦΦ∗)] , (3)

The complex scalar field Φ is subject to a potential U(ΦΦ∗) that preserves a global U(1)

symmetry and thereby leads to a conserved particle number, denoted by Q

Q = i

∫
d3x

√
−g

(
Φ∗∂tΦ− Φ∂tΦ∗) . (4)

The energy stored in the field

E =

∫
d3x

√
−g T t

t , (5)

is given in terms of the energy-momentum tensor

Tµν = (∇µΦ)
∗ (∇νΦ) + (∇νΦ)

∗ (∇µΦ)− gµν [(∇µΦ)
∗ (∇µΦ)− U(ΦΦ∗)] . (6)

The equation for Φ is

∇µ∇µΦ = − ∂U

∂Φ∗ = −Φ
dU

d(ΦΦ∗)
. (7)

We look for spherical Q-ball solutions; this implies that we take the scalar field to be of the

form

Φ =
ϕ0√
2
f(r)e−iωt , (8)

where ϕ0/
√
2 is the value of the nontrivial minimum of U(ΦΦ∗)/(ΦΦ∗). To make connection

with the typical flat space characterization of Q-balls we also define

ω2
0 ≡ U(ΦΦ∗)

ΦΦ∗

∣∣∣∣
Φ=ϕ0/

√
2

. (9)

The dimensionless function f(r) is referred to as the profile of the field configuration. The

equation of motion for the field can then be written as an equation to determine this profile

d2f

dr2
+

2

r

1 + 2r2/ℓ2

1 + r2/ℓ2
df

dr
=

f

1 + r2/ℓ2

(
dU

d(ΦΦ∗)
− ω2

1 + r2/ℓ2

)
. (10)

Note that as ℓ → ∞ this becomes the usual flat space equation for f [13].
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In general, the equation for f cannot be solved analytically. In this study we focus,

following [14], on a sextic potential

U(|ϕ|) = m2
ϕ|ϕ|2 − β|ϕ|4 + ξ

m2
ϕ

|ϕ|6 . (11)

While a specific choice, this potential captures the qualities of many potentials that give rise

to Q-balls [22]. In particular, we expect that any potential that gives rise to thin-wall Q-balls

will have qualitatively similar results. In this potential we have used the mass of the scalar

field to determine the estimated scaling of higher dimension operators. Our assumption of

the scalar field not back reacting on the spacetime is essentially that mϕ and ϕ0 are much

smaller than the Planck scale. We also assume that cosmological constant Λ is much smaller

than mϕ to ensure that ℓ2|ϕ|6 contributions to the potential are subleading. This leads to

the constraint ℓmϕ ≫ 1.

The potential parameters given above are mapped to the Q-ball parameters ϕ0 and ω0

by

ϕ0 = mϕ

√
β

ξ
, ω0 = mϕ

√
1− β2

4ξ
. (12)

It is convenient for both numerical analyses and in determining how various quantities

depend on the parameters of the theory to define the dimensionless quantities

Φ0 =
ϕ0√

m2
ϕ − ω2

0

, Ω(0) =
ω(0)√

m2
ϕ − ω2

0

, ρ = r
√

m2
ϕ − ω2

0 , λ = ℓ
√

m2
ϕ − ω2

0 . (13)

We see that our ℓmϕ ≫ 1 constraint becomes λ ≫ 1. The f equation can then be written

as

f ′′ +
2

ρ

1 + 2ρ2/λ2

1 + ρ2/λ2
f ′ =

f

1 + ρ2/λ2

[
1− Ω2

1 + ρ2/λ2
+ Ω2

0 − 4f 2 + 3f 4

]
, (14)

while the charge is

Q = 4πΦ2
0Ω

∫ ∞

0

dρρ2
f 2

1 + ρ2/λ2
, (15)

and the energy is

E =
√

m2
ϕ − ω2

02πΦ
2
0

∫ ∞

0

dρρ2
(

Ω2f 2

1 + ρ2/λ2
+ f ′2(1 + ρ2λ2) + f 2(1− f 2)2 + Ω2

0f
2

)
=ωQ− L , (16)
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where the Lagrangian is given by

L =
√
m2

ϕ − ω2
02πΦ

2
0

∫ ∞

0

dρρ2
(

Ω2f 2

1 + ρ2/λ2
− f ′2(1 + ρ2λ2)− f 2(1− f 2)2 − Ω2

0f
2

)
. (17)

Using the Lagrangian, one finds that field configurations that satisfy the equations of

motion also satisfy

dL

dω
= Q , (18)

as in flat space. A straightforward calculation produces

dE

dω
= Q+ ω

dQ

dω
− dL

dω
= ω

dQ

dω
, (19)

implying that

dE

dQ
= ω . (20)

We emphasize that although we have chosen a specific potential, this differential relation

relating the energy and charge holds for all potentials. This result also gives ω a simple

interpretation as a chemical potential, describing how the energy changes as the particle

number changes.

III. THIN-WALL Q-BALLS

Following Coleman [13], we can treat Eq. (14) above as describing a particle rolling in a

potential V (f, ρ) defined as

V (f, ρ) =
f 2

2 (1 + ρ2/λ2)

[
Ω2

1 + ρ2/λ2
− Ω2

0 − (1− f 2)2
]

, (21)

where the ρ coordinate is treated as an effective time. Since the potential depends on ρ,

the physics is of a particle rolling in a time dependent potential. In flat space and in AdS

the coefficient of the f ′ term decreases with increasing ρ, which is interpreted as a friction

that decreases with time. In flat space, thin-wall trajectories are those in which the particle

starts rolling from rest near a maximum in the potential but does not complete the large

field change, rolling down the hill, until the friction term has become somewhat small. This

leads to a fast transition, or a thin-wall for the soliton. All of the Q-ball trajectories end at

f = 0 to ensure a field configuration that is localized in space.
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FIG. 1: On left: Numerical Q-ball profile for λ = 500 and Ω0 = 1/
√
2 , Ω = 0.99. On right:

effective potential V (f, ρ) for the same parameters and various values of ρ, where the blue dots

indicate the location of the field value.

An example of thin-wall Q-balls in AdS, where the field stays at the false minimum of

U at f = f+ for a long time before making a quick transition to the true minimum of U at

f = 0, is shown in Fig. 1. The left panel shows the Q-ball profile found numerically using

collocation algorithms implemented by SciPy [23]. On the right panel, we have shown the

effective potential V (f, ρ) as a function of f for several values of ρ. The field value at specific

value of ρ is shown as a dot.

The effective potential is found to have extrema at f = 0 and at

f 2
± ≡ 2

3
± 1

3

√
1 +

3Ω2

1 + ρ2/λ2
− 3Ω2

0 . (22)

We note that f+ can take real values while f− does not when

Ω2 ≥
(
1 +

ρ2

λ2

)(
1 + Ω2

0

)
. (23)

Within those restrictions we find that f+ corresponds to a maximum and f− to a minimum.

A more restrictive constraint on Q-ball profiles is that if the “particle” is to roll down a slope

that ends at the f+ maximum then that maximum must have positive energy, or V (f, ρ) > 0,

for the particle trajectory to overcome the residual friction and end at f = 0. However, we

find that V (f+(ρ), ρ) = 0 for

ρ2 = λ2Ω
2 − Ω2

0

Ω2
0

. (24)

Trajectories that have not already rolled to near the f = 0 maximum by this value of ρ

cannot produce a localized soliton configuration. This limits the radius of thin-wall AdS
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Q-balls to

Rthin-wall ≲ λ

√
Ω2 − Ω2

0

Ω0

. (25)

For flat-space Q-balls the extremum at f = 0 is always a maximum because Ω2 −Ω2
0 < 1

for Q-ball configurations. In an AdS background, as we see below, this restriction does not

apply. Thus, we find that

d2V

df 2

∣∣∣∣
f=0

=
Ω2 −

(
1 + ρ2/λ2

) (
1 + Ω2

0

)
(1 + ρ2/λ2)2

. (26)

can lead to a minimum at f = 0, at least until ρ becomes sufficiently large. Note that this is

exactly the same condition for the minimum at f− to not exist. In this case the maximum

at f+ rolls directly to the minimum at f = 0. This behavior gives rise to a class of AdS

Q-balls with no flat space analogue.

We take the large field transition to occurs at ρ = R ≫ 1. This implies that for ρ ≪ R,

we should take the solution to be approximately f = f+(ρ). This is not an exact solution

to the equations, because the derivatives of f+(ρ) are nonzero, but f ′
+/f+ is of order 1

λ
, so

for λ ≫ 1 the corrections to this solution are small.

On the other hand, when ρ ∼ R the field transitions between the two vacua, and the

derivatives are not small. To analyze this region, we define an energy-like quantity

W =
1

2
f ′2 + V (f, ρ) , (27)

to analyze the transition region of the Q-ball. For a thin-wall transition we expect this

“energy” to be approximately conserved, so W is constant. Note that as ρ → ∞ that

W → 0 because the particle comes to rest at V (0,∞) = 0. In this approximation we can

neglect the contributions to f ′ away from the radius of the soliton, which we define by

f ′′(R) = 0. The equation is then

df

dρ
=

√
−2V (f,R) =

f√
1 +R2/λ2

√
(1− f 2)2 − Ω2

1 +R2/λ2
+ Ω2

0 . (28)

Finally, we expect this equation to be most correct when the particle rolls with the least

amount of friction. This would be for cases that come as close as possible to saturating the

bound in Eq. (25). In this case the differential equation is

df

dρ
=

f√
1 +R2/λ2

(1− f 2) , (29)
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which leads to the transition profile

ft(ρ) =
1√

1 + 2e2(ρ−R)/
√

1+R2/λ2

. (30)

To match the interior solution we multiply by f+(ρ). So, our approximate thin-wall profile

is

fT (ρ) =
f+(ρ)√

1 + 2e2(ρ−R)/
√

1+R2/λ2

. (31)

This transition function allows us to capture the leading order effects of friction of the

particle trajectories. Using the equations of motion for f we find

dW

dρ
= −2

ρ

1 + 2ρ2/λ2

1 + ρ2/λ2
f ′2 +

ρf 2

λ2 (1 + ρ2/λ2)2

[
Ω2

0 −
2Ω2

1 + ρ2/λ2
+
(
1− f 2

)2]
(32)

By integrating from ρ = R− z0 to ρ = ∞ we find

W∞ −WR−z0 =− 2

∫ ∞

R−z0

dρ

ρ

1 + 2ρ2/λ2

1 + ρ2/λ2
f ′2

+

∫ ∞

R−z0

dρ
ρf 2

λ2 (1 + ρ2/λ2)2

[
Ω2

0 −
2Ω2

1 + ρ2/λ2
+
(
1− f 2

)2]
(33)

We find the leading effect from the friction by evaluating these integrals using the transition

function defined in Eq. (31), similar to the analysis done in [14]. Equation (33) then yields

the relation

Ω2
0 −

Ω2

1 + R2

λ2

=
λ2R2(Ω2 ln 4− 5)− 2λ4 − 3R4

2Rλ(λ2 +R2)3/2
. (34)

This relation for a more general n-dimensional AdS background is derived in more detail in

Appendix A.

IV. NUMERICS

We begin by verifying that our analytic understanding of Q-balls in AdS agrees with

numerical solutions. Solutions to the profile equation (14) were obtained numerically through

the use of SciPy [23]. We consider two benchmark points, corresponding to (a) λ = 500, Ω0 =

1/
√
2 and (b) λ = 100, Ω0 = 1/10. For each benchmark point, solutions were generated for

various choices of Ω.
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FIG. 2: Numerical calculations (red dashed) compared to analytic predictions (blue) for

λ = 500, Ω0 = 1/
√
2. Left panel: Q-ball radius R as a function of ω. Right panel: Both Q-ball

profiles for Ω = 0.99.

Figure 2 shows the comparison between the numerical calculations (red dashed) and an-

alytic predictions (blue) for the benchmark point λ = 500,Ω0 = 1/
√
2. The left panel shows

the obtained numeric values for the Q-ball radius R as a function of ω with a comparison to

the analytic predictions from Eq. (34). The difference between the numerical and analytical

results is negligible. The vertical dashed line is ω = mϕ or Ω =
√
1 + Ω2

0. In flat space

there are no Q-ball solutions beyond this point, but we find both numerical and theoretical

evidence for these solitons in AdS space. The red dot indicates the E = mQ instability

point which is described below. Soliton solutions to the right of this point on the curve are

unstable to dissociation.

The right panel of Fig. 2 compares the numerical and analytic predictions (as predicted

by (31)) for the two Q-ball profiles for the same parameters λ = 500, Ω0 = 1/
√
2 and

Ω = 0.99. The two different solutions for R lead to two different profile functions of very

different radius. Once again, the difference between the numerical and analytical results is

negligible for both profiles.

Figure 3 is similar to Fig. 2, except that the benchmark point is λ = 100,Ω0 = 1/10. As

with the previous plot the difference between the numeric and analytic results regarding the

radius of the Q-balls is completely negligible. It is in principle possible to modify our radius

prediction to obtain better accuracy for even larger AdS curvature. Any miscalculation of

the radius feeds into the profile prediction and, in fact, is the largest source of error for near

thin-wall profiles. As seen in the right panel of Fig. 3 when we correct for the radius the

functional form of the analytic thin-wall profile remains impressively accurate. The profile
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FIG. 3: As in Fig. 2, but for the benchmark point λ = 100, Ω0 = 1/10. Red dashed curves are

numerical results, blue curves are the analytic predictions.

FIG. 4: Plot of radius vs ω/mϕ for λ = 500 (black), 100 (red), and 10 (blue). The theoretical

predictions for the radius are shown in solid lines while the numerical data are show as dashed

lines.

with smaller radius is not fit well by our analytic profile. This is because our calculation

assumed the particle begins rolling from the maximum of the potential, but for these profiles

the particle begins rolling some way downhill of the maximum.

As can be seen, there is overall an excellent match between the analytical predictions

from the previous section and the numerical results near the thin-wall limit. Away from the

thin-wall limit the analytic approximations do not provide a good fit to the profile. It is

likely that this fit could be improved by making a more carful analysis of profiles that do
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not begin near the maximum of the potential.

In Fig. 4 we plot the predicted (solid) and numerical (dashed) radius for AdS Q-balls for

λ = 500 (black), 100 (read), and 10 (blue). A few general characteristics of the solution

space are evident. For larger and larger λ we approach the flat space limit, in which the

upper branch of solutions is pushed to infinite radius. As the λ is increased the value of

ω at which the upper branch begins becomes larger, leading to a smaller radius at which

ω = mϕ. We also see that the lower branch Q-balls near ω = mϕ with increasing radius are

seemingly pulled out of the solution space as λ increases.

These observations are quite similar to what has been demonstrated for gauged Q-balls in

flat space [24]. In that case, increasing the gauge coupling has a similar effect to increasing

λ [25]. This can be understood by the mapping of global Q-balls into the gauged Q-ball

solution space [15, 17], which suggests that even though flat-space gauged Q-balls differ

significantly from global AdS Q-balls that a similar mapping from the flat space global

solution to the global AdS solution space can also be defined.

We emphasize that from the figures, unlike in flat space [13], there are AdS Q-balls for

ω > mϕ. We have shown this for the three benchmarks in Fig. 4, but it seems to apply

quite generally. As discussed in the previous section, in the full profile equation (14), the

term proportional to Ω is itself suppressed at large ρ, and so we can have solutions that are

localized, even if ω > mϕ. This might appear to suggest that these AdS Q-balls have an

arbitrarily large radius. The following sections, however, argue that this is not the case.

V. INSTABILITIES

In this section we discuss two different instabilities related to global Q-balls. The first is

familiar from flat-space solitons, but the second is new to the AdS case.

(a) There exist solutions to the field equation with E/Q > mϕ and dE
dQ

< mϕ, where E is

the energy, andQ is the global charge, for both flat-space and AdS Q-balls. At these points in

parameter space a Q-ball is unstable to dissociation into Q individual, independent particles

of mass mϕ. The emission of just a few particles does not stabilize the soliton because

dE
dQ

= ω < mϕ, so shedding individual charged particles makes E/Q even larger. Therefore,

any soliton of this type completely falls apart. Thus, the lowest energy state with this charge

is expected to be a gas of free particles without any soliton contribution.
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(b) In AdS, though not in flat space, we can have dE
dQ

> mϕ. In this case, removing

a particle from the Q-ball decreases the energy of the system, as the energy required to

remove the particle is more than compensated by the binding energy. Such a Q-ball will

therefore radiate particles until it reaches a state with dE
dQ

= mϕ, with an additional gas of

free particles of mass mϕ. From the relation dE
dQ

= ω, we find that if for a global charge Q

the Q-ball solution has ω < mϕ it remains a pure Q-ball solution. Conversely, if for a fixed

charge Q the soliton solution has ω > mϕ it sheds particles leading to a field configuration

with a Q-ball plus additional unbound particles.

These instability points are marked for the benchmark points in Figs. 2 and 3. The red

dot indicates the point at which E = mϕQ; to the right of this point, the lower branch

becomes unstable to a state completely composed of free particles. We have also shown the

line ω = mϕ. To the right of this line we have dE
dQ

> mϕ and the upper branch becomes

unstable to a soliton of smaller charge surrounded by a gas of free particles.

The implication is that in AdS generically, there is, first, a minimum charge Qmin for

Q-balls below which E = mϕQ and the soliton dissolves into particles. Second, a maximum

charge Qmax for Q-balls where ω = mϕ, and beyond which a gas of particles forms around

the Q-ball. Third, the two branches of solutions as function of ω shows that there is a charge

Q where the frequency ω is minimized to some value ωmin.

In Fig. 5 we illustrate the phase diagram of AdS Q-balls as a function of the total charge

Q and ω0 for the benchmark value of λ = 100. The phase of a free gas of unbound particles

is largely the same as for flat space Q-balls. However, the phase on the right of the diagram

cannot occur in flat space.

VI. COMMENTS ON LARGE RADIUS ADS Q-BALLS

It is interesting to note that in AdS space, the thin-wall Q-balls must have a maximal

radius. This is easily seen by using the language of a particle rolling in a potential. In the

thin-wall approximation, the field stays at the second maximum till it transitions. However,

for extremely large R, the energy of the second maximum drops below the energy at f = 0,

and the transition can no longer occur. There is therefore a maximum possible radius.

There are two possible avenues to having stable AdS Q-balls with large radii. First,

one could consider non-thin-wall solutions where the Q-ball profile rolls slowly between the
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FIG. 5: Phase diagram of the theory as a function of ω0 and the total charge Q̄ ≡ Q/4πϕ2
0 for

λ = 100. The phase on the right (red) appears for Q-balls in the AdS background, but not in flat

space.

two maxima. These solutions cannot be treated analytically using our methods, and so the

formula (34) does not apply. However, the general argument of the previous paragraph still

applies; as ρ increases, the entire potential drops, and eventually the field does not have the

energy to return to the final field value at f = 0.

The other possibility is to consider an entirely different class of potential. The effective

potential for the particle is of the form

V (f, ρ) =
Ω2f 2(
1 + ρ2

λ2

)2 − U(f)

1 + ρ2

λ2

. (35)

For large ρ, the first term is additionally suppressed, and in our case, we recover similar

dynamics to the original sextic potential, where the second maximum is below the maximum

at f = 0. However, we can consider a potential where the first term is always dominant

at large f ; this can happen if U(f) grows slower than f 2 at large f . An example is the

exponential potential considered in [19], where the potential goes to a constant at large

f . In this model, the authors of [19] indeed found Q-balls of arbitrarily large radius and

charge. We therefore find that the existence of large Q-balls in AdS is possible, but requires
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a specific form of potential. We leave this issue for future consideration.

VII. IMPLICATIONS IN THE DUAL THEORY

From the AdS/CFT correspondence, we expect our results to have an interpretation in

a dual three-dimensional field theory. While the precise nature of this field theory is not

determined, we note that the scalar field in the AdS bulk must map to a scalar field operator

in the dual boundary theory. This operator is typically a composite of the fundamental fields

of the theory. We leave the nature of the fundamental theory unspecified, but assume that

it has a low energy limit or sector which is dominated by the interactions of this scalar

operator. One intriguing possibility is that the AdS Q-balls are dual to scar states [26, 27].

These states have been tied to nontopological AdS soliton states without horizons [28], such

as boson stars and oscillons, though the connections to Q-balls has not been established.

In any case, the bulk potential determines certain properties of the scalar operator, and in

particular, the dimension of this operator is [1]

∆ =
d

2
+

√
d2

4
+ ℓ2m2

ϕ , (36)

where d is the dimension of the space and ℓ is the AdS radius.

The charge of the U(1) scalar field in AdS maps to a U(1) charge on the boundary. More

precisely, by weakly gauging the U(1) global symmetry of bulk theory (so that the gauge

field does not affect the structure of the Q-ball) this symmetry would be dual to a global

U(1) symmetry on the boundary. By construction, the scalar field operator on the boundary

carries a charge under this global U(1), and states created by the action of this operator

also carry this global charge.

We can understand the dynamics of this sector, and in particular the structure of the

ground state of the theory as a function of the charge Q, using the bulk Q-ball solution.

Small charge: From the bulk description, we see that for very small charges, the solution

is a gas of free particles. The energy increases proportionally to Q as E = mϕQ (here mϕ is

related to the operator dimension by 36).

Intermediate charge: As we increase the charge, there is a critical value (corresponding

to Qmin) at which the ground state becomes a condensate carrying charge Q. The Q-

ball is localized in the interior of the AdS space, and has a nontrivial dependence on the r
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coordinate. This indicates that the three dimensional field theory condensate has a nontrivial

dependence on scale.

At the transition point, the condensate has an energy E = mϕQ. The transition therefore

does not lead to a discontinuous jump in the energy. However, the condensate has an energy

dependence of the form dE
dQ

= ω, in contrast to the free gas which has the relation dE
dQ

= mϕ.

Since the transition occurs at a value ω which is not equal to mϕ (as seen in Figs. 2 and 3),

we see that there is a discontinuity in dE
dQ

. This is therefore a second order phase transition.

As the charge increases further, the condensate becomes increasingly bound till the binding

energy per particle reaches a maximum value of mϕ − ωmin.

Large charge: As we continue increasing the charge, the binding energy begins to de-

crease, and vanishes at Qmax. Beyond this point, additional charge is not absorbed into

the condensate. However, the condensate does not evaporate; instead the condensate is

surrounded by a gas of free particles. More precisely, the condensate carries a charge Qmax,

and the remaining charge Q−Qmax is in free particles.

As mentioned above, the condensate has an energy dependence of the form dE
dQ

= ω. Since

the transition occurs exactly at ω = mϕ, the energy dependence is dE
dQ

= mϕ. This is equal

to the change in energy when we add a free particle. This implies that dE
dQ

is continuous.

However, for the gas around the Q-ball, d2E
dQ2 = 0, while for the Q-ball d2E

dQ2 = dω
dQ

. Hence d2E
dQ2

is discontinuous, which implies that this is a third-order phase transition.

VIII. Q-BALLS IN N-DIMENSIONAL ANTI-DE SITTER

The above analysis has assumed a 3+1 AdS space which maps to a 2+1 CFT. In this

section we outline how our results generalize to (n− 1)+1 AdS spaces related to (n− 2)+1

CFTs. The AdS geometry in n-dimensions is parameterized as

ds2 = a(r)dt2 − b(r)dr2 − r2dΩ2
n−2 , (37)

with

a(r) = 1 +
r2

ℓ2n
, b(r) =

1

1 + r2

ℓ2n

, (38)
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where ℓn =
√

− (n−2)(n−1)
Λ

and dΩ2
n−2 is the measure on the (n − 2)-sphere. Assuming a

spherically symmetric solution as before, the action becomes

S = Sn−2ϕ
2
0

∫
dt dr r(n−2)

[
1

2

ω2f 2

1 + r2/ℓ2n
− 1

2
f ′2(1 + r2/ℓ2n)− U(ϕ2

0f
2/2)

]
, (39)

where

U =
1

2
(m2

ϕ − ω2
0)f

2(1− f 2)2 +
ω2
0

2
f 2. (40)

We can then consider f to be a particle rolling in a time dependent potential, as before,

with Lagrangian

L = r(n−2)

[
1

2

ω2f 2

1 + r2/ℓ2n
− 1

2
f ′2(1 + r2/ℓ2n)−

1

2
(m2

ϕ − ω2
0)f

2(1− f 2)2 − ω2
0

2
f 2

]
. (41)

Transforming to dimensionless parameters ρ, Ω, Ω0, and λn = ℓn
√

m2
ϕ − ω2

0, the Lagrangian

can be written as

L =
ρ(n−2)

(m2
ϕ − ω2

0)
n−3

[
1

2

Ω2f 2

1 + ρ2/λ2
n

− 1

2
(f ′)2(1 + ρ2/λ2

n)−
1

2
f 2(1− f 2)2 − Ω2

0

2
f 2

]
. (42)

The equation of motion for f(ρ) is

f ′′ +
n− 2

ρ

1 + ( n
n−2

)(ρ2/λ2
n)

1 + ρ2/λ2
n

f ′

=
f

1 + ρ2/λ2
n

[
1 + Ω2

0 −
Ω2

1 + ρ2/λ2
n

− 4f 2 + 3f 4

]
≡ −∂V

∂f
, (43)

where V (f, ρ) is the effective potential, given explicitly by

V (f, ρ) =
f 2

2 (1 + ρ2/λ2
n)

[
Ω2

1 + ρ2/λ2
n

− Ω2
0 − (1− f 2)2

]
(44)

after imposing V (0,∞) = 0. The effective potential is unchanged from the n = 4 case aside

from the substitution λ → λn. Defining the energy-like quantity W as in Eq. (27), we find

W is approximately conserved for the thin-wall solutions, and the approximate thin-wall

profile for the n-dimensional case is then given by

fT,n(ρ) =
f+,n(ρ)√

1 + 2e2(ρ−R)/
√

1+R2/λ2
n

, (45)

with

f+,n(ρ) ≡
2

3
+

1

3

√
1 +

3Ω2

1 + ρ2/λ2
n

− 3Ω2
0. (46)
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FIG. 6: Numerical calculations (red dashed) compared to analytic predictions (blue) for

λn = 500, Ω0 = 1/
√
2. Left panel: Q-ball radius R as a function of ω for n = 3. Right panel:

Q-ball radius R as a function of ω for n = 5.

Using the equations of motion for f , Eq. (43), we find

dW

dρ
= −(n− 2)

ρ

1 + ( n
n−2

)ρ2/λ2
n

1 + ρ2/λ2
n

f ′2 +
ρf 2

λ2
n (1 + ρ2/λ2

n)
2

[
Ω2

0 −
2Ω2

1 + ρ2/λ2
n

+
(
1− f 2

)2]
.(47)

By integrating from ρ = R− z0 to ρ = ∞ we find

W∞ −WR−z0 =− (n− 2)

∫ ∞

R−z0

dρ

ρ

1 + ( n
n−2

)ρ2/λ2
n

1 + ρ2/λ2
n

f ′2

+

∫ ∞

R−z0

dρ
ρf 2

λ2
n (1 + ρ2/λ2

n)
2

[
Ω2

0 −
2Ω2

1 + ρ2/λ2
n

+
(
1− f 2

)2]
. (48)

Once again, we compute the leading order effect of the friction by evaluating these integrals

using the transition function defined in Eq. (45), this results in the relation

Ω2
0 −

Ω2

1 + R2

λ2
n

=
λ2
nR

2(Ω2 ln(4)− 2n+ 3)− (n− 2)λ4
n − (n− 1)R4

2Rλn(λ2
n +R2)3/2

. (49)

This relation is derived in more detail in Appendix A. Note that this relation exactly matches

the previous implicit equation for R, Eq. (34), for n = 4. Fig. 6 shows the numerical and

predicted Q-ball radius as a function of ω for n = 3 and n = 5, with λn = 500 and

Ω0 = 1/
√
2 for both cases. These results show that AdS Q-balls can be constructed in

various dimensions by these methods. Consequently, the qualitative analysis of their dual

CFTs follows, including similar looking phase diagrams to what was shown in the previous

section.
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IX. DISCUSSION AND CONCLUSION

In this article we have studied Q-balls in a fixed AdS background, with particular focus

on thin-wall Q-balls. The scalar field is subject to a sextic potential (which also supports

Q-balls in a flat background), but the general features are expected to apply most, if not

all, potentials that support thin-wall solitons. We have shown that the AdS background

significantly modifies the physics of these Q-balls, even if gravity is not dynamical. In

particular, Q-balls have a maximal radius in AdS, unless the potential is of a very special

type.

We have also found new phases of the scalar field that composes the Q-balls which do

not exist in flat space. Specifically, for large charges, the lowest energy field configuration is

a Q-ball surrounded by a gas of massive particles, while in flat space, the ground state for

larger charge is just a Q-ball with larger mass and radius.

The transitions between the states are also of a novel type. At low charges, as the

charge is increased, there is a zero-temperature second order phase transition to a Q-ball

state, similar to flat space systems. Curiously, at high charges, there is a third-order phase

transition to the mixed Q-ball scalar gas state mentioned above. This phase transition has

no flat space analogue. These results imply that the dual boundary theory must also have

similar transitions. It would be quite interesting to explore whether scar states, similar to

those related to other non-topological solitons in AdS, can be related to AdS Q-balls. If so,

then one should be able to understand this third order phase transition in the context of

scar states.

In this work we have ignored backreaction on the geometry. This implies that the gravita-

tional interactions of order 1
Mpl

have been dropped, while keeping the curvature scale of the

AdS constant. In terms of the original AdS/CFT correspondence, this amounts to taking

the N of the dual gauge group to infinity while keeping the t’Hooft coupling g2N fixed.

Including dynamical gravity on the AdS side would be an important next step to see if

these novel phase transitions survive the inclusion of gravity. It would also be interesting

to connect these solutions to the known boson star solutions. Finally, there is cosmologi-

cally motivation to extend these solutions to a full characterization of Q-balls in de Sitter

space [29]. We leave these and other questions for future work.
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Appendix A: Derivation of Q-Ball Radius Formula

In order to derive Eq. (49), we must evaluate

W∞ −WR−z0 =− (n− 2)

∫ ∞

R−z0

dρ

ρ

1 + ( n
n−2

)ρ2/λ2
n

1 + ρ2/λ2
n

f ′2

+

∫ ∞

R−z0

dρ
ρf 2

λ2
n (1 + ρ2/λ2

n)
2

[
Ω2

0 −
2Ω2

1 + ρ2/λ2
n

+
(
1− f 2

)2]
. (A1)

We assume R ≫ λn. The first integral on the right hand side can be approximated by noting

that the dominant contribution occurs about the transition between minima at ρ = R.

Define the function ft,n(ρ) as

ft,n(ρ) =
1√

1 + 2e2(ρ−R)/
√

1+R2/λ2
n

, (A2)

so that f(ρ) = f+,n(ρ)ft,n(ρ). Around ρ = R, we have f ′(ρ) ≈ f+,n(ρ)f
′
t,n(ρ). Since the

integrand is exponentially suppressed below ρ = R, we can integrate from ρ = 0 to ∞ rather

than from R − z0 to ∞. This integral can be performed analytically, and after dropping

another exponentially suppressed term in the result it yields:

(n− 2)

∫ ∞

R−z0

dρ

ρ

1 + ( n
n−2

)ρ2/λ2
n

1 + ρ2/λ2
n

f ′2 ≈ −
λn

(
λ2
n(n− 2) + nR2

) (
2 +

√
1 + 3λ2

nΩ
2

λ2
n+R2 − 3Ω2

0

)
12R(λ2

n +R2)3/2
.

(A3)

The second integral in Eq. (A1) can be evaluated by expanding the integrand about ρ = R

to first order in ρ−R (except the exponential piece in ft,n(ρ) since its series expansion does

not converge; however, we will be able to do these integrals analytically still while including

this exponential piece). The resulting expression will be very large and have a dependence

on z, but this dependence will match exactly with the z dependence on the left hand side

of Eq. (A1) and cancel out.

On the left hand side we need to expand W (ρ), given by Eq. (27), about ρ = R − z;

the W∞ piece is simply zero since the profile and potential vanish at infinity. It will be
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convenient to instead write ρ = R(1 − a) where a = z/R and expand about a = 0. Once

again, we do not expand the exponential part of ft,n(ρ) since this does not converge, but

we will find this just leads to extra exponentially suppressed terms which can be dropped.

After doing this substitution and expansion, we can send a → z/R and then expand the

resulting expression about z = 0. Once again, this results in a very large expression with

some z dependence.

Noting W∞ = 0, we can rewrite Eq. (A1) as

WR−z0 − (n− 2)

∫ ∞

R−z0

dρ

ρ

1 + ( n
n−2

)ρ2/λ2
n

1 + ρ2/λ2
n

f ′2

+

∫ ∞

R−z0

dρ
ρf 2

λ2
n (1 + ρ2/λ2

n)
2

[
Ω2

0 −
2Ω2

1 + ρ2/λ2
n

+
(
1− f 2

)2]
= 0. (A4)

Plugging in our expressions for each term and expanding in powers of z, we will find that

the z dependence exactly cancels out to second order. To find an implicit expression for the

Q-ball radius to leading order in 1/R, we first rewrite λn in terms of a new free parameter

σ via λn = σR. We then search for an equation of the form

Ω2
0 −

Ω2

1 + σ−2
= f0(n, σ) +

1

R
f1(n, σ), (A5)

which mirrors the form of the radius relation in [14] with 1/R corrections. Enforcing this

relation on Eq. (A4) we find

f0(n, σ) = 0, f1(n, σ) =
1 + 2σ4 − n(1 + σ2)2 + σ2(3 + Ω2 ln(4))

2σ(1 + σ2)3/2
. (A6)

Plugging these results into Eq. (A5) and sending σ → λn/R reproduce Eq. (49).

[1] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories,

string theory and gravity,” Phys. Rept. 323 (2000) 183–386, [hep-th/9905111].

[2] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,”

Adv. Theor. Math. Phys. 2 (1998) 231–252, [hep-th/9711200].

[3] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge

theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, [hep-th/9803131].

[4] D. Astefanesei and E. Radu, “Boson stars with negative cosmological constant,” Nucl. Phys.

B 665 (2003) 594–622, [gr-qc/0309131].

22

http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a3
http://arxiv.org/abs/hep-th/9803131
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
http://arxiv.org/abs/gr-qc/0309131


[5] A. Prikas, “Q stars in anti-de Sitter space-time,” Gen. Rel. Grav. 36 (2004) 1841–1869,

[hep-th/0403019].

[6] F. Nogueira, “Extremal Surfaces in Asymptotically AdS Charged Boson Stars Backgrounds,”

Phys. Rev. D 87 (2013) 106006, [1301.4316].

[7] Y. Brihaye, B. Hartmann, and S. Tojiev, “Stability of charged solitons and formation of

boson stars in 5-dimensional Anti-de Sitter space-time,” Class. Quant. Grav. 30 (2013)

115009, [1301.2452].

[8] A. Buchel, S. L. Liebling, and L. Lehner, “Boson stars in AdS spacetime,” Phys. Rev. D 87

no. 12, (2013) 123006, [1304.4166].

[9] O. Kichakova, J. Kunz, and E. Radu, “Spinning gauged boson stars in anti-de Sitter

spacetime,” Phys. Lett. B 728 (2014) 328–335, [1310.5434].

[10] S. Kumar, U. Kulshreshtha, and D. S. Kulshreshtha, “Charged compact boson stars and

shells in the presence of a cosmological constant,” Phys. Rev. D 94 no. 12, (2016) 125023,

[1709.09449].

[11] Y. Brihaye, F. Console, and B. Hartmann, “Charged and radially excited boson stars (in

Anti-de Sitter),” Phys. Rev. D 106 no. 10, (2022) 104058, [2209.07978].

[12] S. Hu, J. T. Liu, and L. A. Pando Zayas, “Charged Boson Stars in AdS and a Zero

Temperature Phase Transition,” [1209.2378].

[13] S. R. Coleman, “Q Balls,” Nucl. Phys. B262 (1985) 263. [Erratum: Nucl. Phys. B269, 744

(1986)].

[14] J. Heeck, A. Rajaraman, R. Riley, and C. B. Verhaaren, “Understanding Q-Balls Beyond the

Thin-Wall Limit,” Phys. Rev. D 103 no. 4, (2021) 045008, [2009.08462].

[15] J. Heeck, A. Rajaraman, R. Riley, and C. B. Verhaaren, “Mapping Gauged Q-Balls,” Phys.

Rev. D 103 no. 11, (2021) 116004, [2103.06905].

[16] J. Heeck, A. Rajaraman, R. Riley, and C. B. Verhaaren, “Proca Q-balls and Q-shells,” JHEP

10 (2021) 103, [2107.10280].

[17] J. Heeck, A. Rajaraman, and C. B. Verhaaren, “Ubiquity of gauged Q-shells,” Phys. Rev. D

104 no. 1, (2021) 016030, [2105.02893].

[18] Y. Almumin, J. Heeck, A. Rajaraman, and C. B. Verhaaren, “Excited Q-balls,” Eur. Phys. J.

C 82 no. 9, (2022) 801, [2112.00657].

[19] B. Hartmann and J. Riedel, “Glueball condensates as holographic duals of supersymmetric

23

http://dx.doi.org/10.1023/B:GERG.0000035955.07614.0d
http://arxiv.org/abs/hep-th/0403019
http://dx.doi.org/10.1103/PhysRevD.87.106006
http://arxiv.org/abs/1301.4316
http://dx.doi.org/10.1088/0264-9381/30/11/115009
http://dx.doi.org/10.1088/0264-9381/30/11/115009
http://arxiv.org/abs/1301.2452
http://dx.doi.org/10.1103/PhysRevD.87.123006
http://dx.doi.org/10.1103/PhysRevD.87.123006
http://arxiv.org/abs/1304.4166
http://dx.doi.org/10.1016/j.physletb.2013.11.061
http://arxiv.org/abs/1310.5434
http://dx.doi.org/10.1103/PhysRevD.94.125023
http://arxiv.org/abs/1709.09449
http://dx.doi.org/10.1103/PhysRevD.106.104058
http://arxiv.org/abs/2209.07978
http://arxiv.org/abs/1209.2378
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://dx.doi.org/10.1103/PhysRevD.103.045008
http://arxiv.org/abs/2009.08462
http://dx.doi.org/10.1103/PhysRevD.103.116004
http://dx.doi.org/10.1103/PhysRevD.103.116004
http://arxiv.org/abs/2103.06905
http://dx.doi.org/10.1007/JHEP10(2021)103
http://dx.doi.org/10.1007/JHEP10(2021)103
http://arxiv.org/abs/2107.10280
http://dx.doi.org/10.1103/PhysRevD.104.016030
http://dx.doi.org/10.1103/PhysRevD.104.016030
http://arxiv.org/abs/2105.02893
http://dx.doi.org/10.1140/epjc/s10052-022-10772-5
http://dx.doi.org/10.1140/epjc/s10052-022-10772-5
http://arxiv.org/abs/2112.00657


Q-balls and boson stars,” Phys. Rev. D 86 (2012) 104008, [1204.6239].

[20] B. Hartmann, B. Kleihaus, J. Kunz, and I. Schaffer, “Compact (A)dS Boson Stars and

Shells,” Phys. Rev. D 88 no. 12, (2013) 124033, [1310.3632].

[21] S. Kim, S. Kundu, E. Lee, J. Lee, S. Minwalla, and C. Patel, “’Grey Galaxies’ as an

endpoint of the Kerr-AdS superradiant instability,” [2305.08922].

[22] J. Heeck and M. Sokhashvili, “Q-balls in polynomial potentials,” Phys. Rev. D 107 no. 1,

(2023) 016006, [2211.00021].

[23] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
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