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The obstruction to constructing localized degrees of freedom is a signature of several interesting
condensed matter phases. We introduce a localization renormalization procedure that harnesses this
property, and apply our method to distinguish between topological and trivial phases in quantum
Hall and Chern insulators. By iteratively removing a fraction of maximally-localized orthogonal
basis states, we find that the localization length in the residual Hilbert space exhibits a power-law
divergence as the fraction of remaining states approaches zero, with an exponent of ν = 0.5. In
sharp contrast, the localization length converges to a system-size-independent constant in the trivial
phase. We verify this scaling using a variety of algorithms to truncate the Hilbert space, and show
that it corresponds to a statistically self-similar expansion of the real-space projector. This result
accords with a renormalization group picture and motivates the use of localization renormalization
as a versatile numerical diagnostic for quantum Hall systems.

I. INTRODUCTION

Renormalization group (RG) approaches are widely
employed to distill the essential information from com-
plex configurations and are an invaluable tool for study-
ing the universal properties of systems close to critical-
ity1–5. Generally, when scaling relations indicate that
a correlation length is the only relevant length scale
close to a phase transition, we can leverage the sta-
tistical self-similarity of fluctuations up to this correla-
tion scale, by gradually eliminating correlated degrees
of freedom at all microscopic lengths. This is the ba-
sis of Kadanoff-Wilson RG, which is ubiquitous across
a diverse body of research6. In recent years, a spe-
cific class of phase transitions, distinguished by the di-
vergence or saturation of a characteristic localization
length, which we call “localization transitions”, has at-
tracted renewed interest. Examples include transitions
arising from the topology-localization dichotomy, such
as the plateau transition7–10, and those related to ex-
otic localization phenomena, such as the thermal-MBL
crossover11–14. In these systems, it is natural to construct
a renormalization procedure based explicitly on the lo-
calization length to describe the critical phenomena. In
analogy to traditional RG, when scaling relations indi-
cate that the localization length is the pertinent length
scale close to a phase transition, we can renormalize the
system by gradually eliminating localized degrees of free-
dom, which has analogous implications on the statistical
self-similarity of the localized removal basis. In light of
current research11,15–19, there is motivation to leverage
the localization properties of critical systems in numer-
ical methods, and apply such a procedure to study the
growing array of localization transitions.
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In this paper, we introduce a localization renormal-
ization formalism and apply it to a selection of single-
particle examples. Specifically, we focus on phase transi-
tions resulting from the topology-localization dichotomy
in quantum Hall systems. By iteratively removing the
maximally-localized states from distinct sites in the sys-
tem, we can induce a localization transition with a scaling
given by the power-law divergence limρ→0,L→∞ ξ(ρ) ∼
ρ−0.5, where ξ is the localization length in the residual
Hilbert space, ρ is the fraction of states remaining, and
L is the linear system size. In contrast, the localization
length converges to a system-size-independent constant
in the trivial phase. We show that this scaling holds ir-
respective of the model used to describe the system, the
metric used to quantify the localization length, and the
way in which states are removed. Furthermore, we ex-
amine the expansion of the projector corresponding to
the elimination of an orthogonal subset of maximally-
localized states. Here, we reveal a direct correspon-
dence between the power-law divergence of the localiza-
tion length and a statistically self-similar expansion of
the projector in real space. These results accord with an
RG picture, where the effective length scale per state is
increased by a factor of ρ−1/2 on each step, and topo-
logical phases are identified by the presence of a phase
transition. Apart from shedding additional light on the
properties of integer quantum Hall systems, localization
renormalization may be utilized as a numerical tool to
characterize a wide variety of localization-delocalization
transitions, including those in topologically trivial sys-
tems.

The structure of this paper is as follows. In Sec. II, we
define the localization renormalization procedure, and in
Sec. III, we apply it to single-particle case studies, rep-
resenting continuous and discrete quantum Hall systems.
In Sec. IV, we then discuss the interpretations and scope
of our results and finally, in Sec. V, we summarize the
conclusions and outlook.
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II. LOCALIZATION RENORMALIZATION

We consider a d-dimensional quantum system, with
single-particle Hilbert space H, occupying a real-space
region A ∈ Rd of linear extent L. To simply illustrate
the steps, we focus on single-component single-particle
orbitals residing in an isolated band.

We start by identifying a complete basis of wavefunc-
tions for a given band {|ψ⟩}. These single-particle or-
bitals are confined to regions surrounding points in space
or sites on a lattice, and are maximally-localized accord-
ing to a real-space metric — conventionally, the distance-
squared metric20. We emphasize that this basis does not
need to be exponentially-localized, as this is not always
possible, such as for quantum Hall systems21.

We then define a family of projectors Pρ : ρ ∈ [0, 1],
which remove a fraction 1− ρ of the maximally-localized
single-particle basis, such that

Pρ = Pband −
∑

i∈Lρ

|ψ̃i⟩ ⟨ψ̃i| , (1)

where Pband is a projector onto the relevant
single-particle band, and |ψ̃i⟩ is the symmetrically-
orthogonalized wavefunction at site i in the removal
subregion Lρ, which satisfies |Lρ| ≤ |L0| ≤ |A|.22 We
note that although the states in the basis are generally
linearly independent, they are not mutually orthogonal,
and so we first need to symmetrically orthogonalize the
removal states, such that {|ψ⟩} → {|ψ̃⟩}. Details of
the symmetric orthogonalization procedure are given
in Sec. SI of the Supplementary Material. Crucially,
since the quasilocal projector |ψ̃i⟩ ⟨ψ̃i| corresponds to
the number operator ni for the single-particle orbital
at site i ∈ Lρ, the overall projector Pρ restricts the
system to a Hilbert space in which these operators
have a fixed (zero) eigenvalue. Hence, by eliminating a
maximally-localized orthogonal subset of states in the
basis, we truncate the Hilbert space H → H′.

Provided the family of projectors Pρ are statistically
self-similar under this decimation, we can relate the trun-
cated system H̄(r) = PρH(r)Pρ to the original sys-
tem H(r) by a rescaling r′ = br and renormalization
H ′(r′) = ζ−1H̄(r′). In this way, we can consider the
ground state of H ′(r′) as the new ground state defined
on the space of states23. We then iterate this process to
construct a renormalization flow, based on the removal
of maximally-localized single-particle orbitals, which we
call “localization renormalization”.

For the case of quantum Hall systems, we deduce the
rescaling and renormalization factors to be b = ρ−1/2

and ζ = ρ, respectively. In particular, we observe a di-
vergence of the localization length in the ρ → 0, L → ∞
limits, governed by a universal scaling exponent ν ∼ 1/2
for topological bands, whereas we observe convergence to
a system-size-independent constant in the trivial phase.
This holds independently of how the single-particle states
are removed and how the localization length is defined.

III. QUANTUM HALL EXAMPLES

In this section, we demonstrate the localization renor-
malization procedure through the use of two examples,
based on the integer quantum Hall effect. In Sec IIIA,
we examine continuous systems in the form of Landau
levels, and in Sec. III B, we examine discrete systems in
the form of Chern insulators.

A. Landau Levels

To begin, we focus on Landau levels. In Sec. III A 1,
we summarize the Landau level Hamiltonian and prop-
erties of coherent states, in Sec. IIIA 2, we explain the
state removal algorithm, and in Sec. III A 3, we present
numerical results for the localization renormalization.

1. Model

We consider a free spinless electron of mass me and
charge −e, confined to the xy-plane, in the presence of a
perpendicular magnetic field B = Bêz. The Hamiltonian
is given as HLL = π2/2me, where π = p− eA is the dy-
namical momentum, p is the canonical momentum, and
A is the vector potential. Since πx and πy are canonical
conjugates, this Hamiltonian has the same structure as a
harmonic oscillator, such that HLL = ℏωc(a

†a + 1/2),
where ωc is the cyclotron frequency and a(†) are the
ladder operators hopping between energy levels. The
eigenspectrum is composed of evenly-spaced and highly-
degenerate Landau levels at energies En = ℏωc(n+1/2),
where n is the Landau level index. Using symmetric
gauge, we may simply express the angular momentum op-
erator as Lz = ℏ(a†a−b†b), where we have introduced the
ladder operators b(†), defined using center coordinates R
conjugate to π, governing the angular momentum quan-
tum number m. Hence, the Landau level states are con-
ventionally indexed as |n,m⟩24,25.

The coordinate representation of a Landau level wave-
function may be obtained by solving the differential
equation a |0,m⟩ = b |n, 0⟩ = 0 in an appropriate ba-
sis, and can be subsequently translated through a dis-
tance δ using the magnetic translation operator t(δ) =
exp(−iδ ·K/ℏ), whereK = p−eA+eB×r is the pseudo-
momentum, which commutes with the Hamiltonian. In
symmetric gauge, the Landau level states take the form
of a Gaussian, modulated by Laguerre polynomial and
monomial prefactors24. From the eigenspectrum of the
angular momentum operator, we can see that the most-
localized Landau level states are obtained at n = m with
second moment ⟨n, n|r2|n, n⟩ = 2(2n+1)ℓ2, where ℓ is the
magnetic length. For example, the most-localized state
in the lowest Landau level (LLL) is given in a coordinate
representation as ϕ0,0(r) ∼ exp

(
−r2/4ℓ2

)
with a second

moment ⟨0, 0|r2|0, 0⟩ = 2ℓ2.
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In this section, we focus our attention on coherent
states, which are non-dispersive wavepackets that satu-
rate the uncertainty principle and correspond to classical
observable evolution. Formally, these states are defined
as eigenstates of the lowering operator. Since we restrict
ourselves to a single Landau level, we consider the eigen-
states of b |β⟩ = β |β⟩, where |β⟩ is a coherent state with
corresponding eigenvalue β. Coherent states have several
important properties for this study. In particular, since
the ladder operators b(†) = 1√

2
(X + iY )(†) are defined

using the center coordinates R, saturating the Heisen-
berg uncertainty principle corresponds to ∆X∆Y = ℏ/2.
Hence, a coherent state in a Landau level is necessarily
a maximally-localized state and so may be obtained by
magnetically translating the n = m Landau level states,
described above26. Removing maximally-localized states
in Landau levels is the main step of our Hilbert space
truncation algorithm, outlined in Sec. III A 2.

Finally, we note that coherent states trivially form
an overcomplete basis for a given Landau level, since
they are enumerated by an uncountable set, whereas
the orthogonal basis of angular momentum eigenstates
is countable. Therefore, it is desirable to truncate the
set of coherent states to obtain a complete basis. Indeed,
it has been shown that we can form a critical basis set
by restricting coherent states to the sites of a grid in the
XY -plane of unit cell area S = 2π, and an overcomplete
set with S < 2π27,28,29. By removing just one state from
the critical set, we can make the set exactly complete.
However, näıvely attempting to symmetrically orthogo-
nalize such a complete set of coherent states in a Landau
level compromises locality. It has been shown that the
resulting states have a high overlap with Gaussian states
at short distances from the origin, but an oscillating
power-law decay at long distances with a diverging sec-
ond moment21. This highlights the topology-localization
dichotomy: it is impossible to construct exponentially-
localized Wannier functions in a topological system.

2. Method

Having shown that a critical set of maximally-localized
Landau level states may be obtained using a grid of co-
herent states in the XY -plane with a unit cell area of 2π,
we can utilize this in our Hilbert space truncation algo-
rithm. In this procedure, we simultaneously remove the
most-localized states on the sites of a square grid, con-
verging from an arbitrarily large unit cell area to the unit
cell area corresponding to this critical set. However, we
note that the results hold independently of the truncation
algorithm and removal grid geometry, as demonstrated in
Secs. SII and SIII of the Supplementary Material. The
method is as follows.

We work in a Landau level |n,m⟩ defined on a continu-
ous disc of radius R, centered at the origin. In each Lan-
dau level n, we use a truncated angular momentum basis
m ∈ {0, 1, . . . , 34R2}. The basis cut-off is chosen based

FIG. 1. Removal lattice for Landau levels. Convergence
of the removal lattice Lρ in Landau levels, sketched for three
values of ρ. The area of the Lρ unit cell a2ρ = 2π/(1 − ρ) is
shaded pink, and the disc radius R is marked with an arrow.

on empirical convergence, such that the critical grid of
wavepackets on the disc is approximately homogeneous,
and not distorted by the boundary. Next, we introduce
a removal lattice Lρ with sites on a square grid

rij = aρ((i− 1/2)êx + (j − 1/2)êy), (2)

where aρ =
√

2π/(1− ρ) is the lattice constant and i, j ∈
Z, as sketched in Fig. 1. The quantity ρ is the fraction
of states remaining relative to L0, defined as ρ = 1 −
A0/Aρ ∈ [0, 1]. For each lattice site rij ∈ Lρ, we then
find the maximally-localized state |ψij⟩, which in this
case is given by the Landau level coherent state.
This defines the set of maximally-localized states in a

Landau level for each ρ. However, although these states
are generally linearly independent, they are not mutually
orthogonal. Therefore, in order to project these states
out of the Hilbert space, we first need to orthogonalize
the subspace. To this end, we use the symmetric orthog-
onalization procedure to transform {|ψ⟩} → {|ψ̃⟩}. We
can then apply the projector

PLL
ρ = PnLL −

∑

i,j∈Lρ

|ψ̃ij⟩ ⟨ψ̃ij | , (3)

where PnLL is the projector to the nth Landau level.
Finally, on each removal iteration we record the lo-

calization length of the system ξ. Note that we have
offset the removal lattice from the origin, as shown in
Eq. (2), so that we can use this as our reference site for
the most-localized state in the system. The origin is also
furthest away from the boundary of the disc and hence
least susceptible to finite-size effects. Although there are
many metrics for quantifying the localization length, we
choose the minimum eigenvalue of the distance-squared
matrix20, such that D2 = PLL

ρ r2PLL
ρ . A discussion of

metrics for the localization length is presented in Sec. SIV
of the Supplementary Material.
In summary, we identify the maximally-localized states

{|ψ⟩} at sites rij ∈ Lρ, after which we symmetrically or-

thogonalize the states {|ψ⟩} → {|ψ̃⟩}, project them out of
the system using PLL

ρ , and subsequently compute the lo-
calization length ξ, corresponding to the second moment
of the maximally-localized state at the origin. We start
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FIG. 2. Localization scaling in Landau levels. (left) Lo-
calization length ξ(ρ) obtained by the simultaneous elimina-
tion of a lattice of localized states in the (a) n = 0, (b) n = 1,
and (c) n = 2 Landau levels. The system size R is depicted in
different colors. At small ρ and large system sizes, the rela-
tionship is linear indicating power-law behavior in the thermo-
dynamic limit. (right) The quality function of data collapse
d(ν) for the (a) n = 0, (b) n = 1, and (c) n = 2 Landau levels;
optimization of the quality function results in critical expo-
nents of (a) ν0LL = 0.500 ± 0.005, (b) ν1LL = 0.500 ± 0.006,
and (c) ν2LL = 0.500± 0.006.

at ρ ≲ 1 and then repeat for decreasing ρ, taking the
limit ρ → 0, which corresponds to eliminating a critical
basis of states and hence a localization length divergence.

3. Results

After iteratively performing this state removal, we can
plot the behavior of ξ as a function of ρ in each case. In
the left panels of Fig. 2, we show the scaling of ξ(ρ) at
various system sizes R, in the (a) n = 0, (b) n = 1, and
(c) n = 2 Landau levels. From the figures, we can see
a divergence of the localization length in the ρ → 0 and
R → ∞ limits.30 In order to quantify this divergence,
we perform a finite-size scaling analysis. By finding a
dimensionless scaling function g, which satisfies

ξ(ρ)/ξ∞(ρ) = g(R/ξ∞(ρ)), (4)

where ξ∞ is the extrapolated localization length in the
thermodynamic limit, we can verify the power-law diver-
gence limρ→0 ξ(ρ) ∼ ρ−ν . Furthermore, by quantifying
how well the data from Eq. (4) collapse onto the same
curve, we can compute the scaling exponent ν31. Mini-
mizing a quality metric of data collapse d(ν)32, yields the
scaling exponent in each case, as shown in the right pan-
els of Fig. 2. The computed values, ν0LL = 0.500±0.005,
ν1LL = 0.500 ± 0.006, and ν2LL = 0.500 ± 0.006, accord
precisely with a scaling exponent of ν = 0.5 in each case,
with only minor discrepancies due to numerical impreci-
sion. Here, the error bars are given as the 1% fluctuations
of the quality metric about the minimum, computed us-
ing the Hessian d′′(ν). Further details on the finite-size
scaling analysis are given in Sec. SV of the Supplemen-
tary Material.

To gain further insight on the nature of this scaling,
we examine the projector PLL

ρ at each step, as sketched
in Fig. 3(i). In the left panels of Fig. 3(ii), we show
the magnitude of the projector in real space, relative
to the origin, |P (r,0)| = | ⟨r|PLL

ρ |0⟩ | in the (a) n = 0,
(b) n = 1, and (c) n = 2 Landau levels. Starting with
the inset of Fig. 3(ii)(a), we present the normalized pro-

jector |P̂ | ∼ ρ−1|P | for various ρ in the smallest system
size R = 20. At ρ = 1, we start with the Gaussian
state at the origin, and on each removal iteration the
projector expands, continuing until the edge of the sys-
tem (r = 20) is reached at ρ ≈ 1.5−9. This corresponds
to the value of ρ where the linear scaling breaks down
in Fig. 2(a). We note also that there are slight oscilla-

tions in the amplitude of P̂ with length scale a0 =
√
2π,

corresponding to the modulation of the removal lattice
L0. Crucially, in the right panel of Fig. 3(ii)(a), we plot
the localization length quantified via the second moment
of the projector against ρ, and show that we can recover
the same scaling exponent. In the inset of the right panel
of Fig. 3(ii)(a), we further show that this scaling rela-
tion is not only recovered from the second moment but
also for higher moments, γ ≲ 1033. This indicates that
the projector is self-similar in a statistical sense34. Fur-
ther details of the moment computations are provided in
Sec. SVI of the Supplementary Material. Finally, to eluci-
date this statistical self-similarity, we can rescale the fam-
ily of projectors PLL

ρ to show that they collapse onto the
same curve. In the left panel of Fig. 3(ii)(a), we present
the translationally- and rotationally-averaged normalized
projector P̂av, which eliminates any artifacts specific to
the removal lattice, and we plot this using the rescaled
spatial coordinates r′ = ρ−1/2r. Here, we clearly ob-
serve that the projectors collapse onto the initial Gaus-
sian. In higher Landau levels, this picture also holds,
albeit slightly obscured by the complexity of our initial

coherent state | ⟨r|0nLL⟩ | ∼ e−r2/4|Ln(r
2/2)|, where Ln

is the nth Laguerre polynomial. Again, we find that the
second moment of the expanding projector can be used
as a proxy for the localization to extract the scaling ex-
ponent, as shown in the right panels of Figs. 3(ii)(b,c).
Moreover, the projector is statistically self-similar up to
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FIG. 3. Projector expansion in Landau levels.
(i) Sketch of the averaged real-space projector expansion as
ρ → 0 in the LLL. (ii) (left) Real-space radial profile of
the projector P (r,0) = ⟨r|PLL

ρ |0⟩. The rotationally- and
translationally-averaged projector, normalized with respect to
the initial value, P̂av, is shown in the main plot. The original
unaveraged projector, normalized with respect to the maxi-
mum value, P̂ , is shown inset. The projectors are presented
for the (a) n = 0, (b) n = 1, and (c) n = 2 Landau levels, at
a system size of R = 40 in the main plot and R = 20 in the
inset, with ρ0 = 1.5. The boundary of the system at r = 20
in the inset is marked with a dashed line. Note that the pro-
jectors are plotted in reverse order, such that the κ = 0 line is
on top. (ii) (right) Finite-size scaling of the second moment
of the projector for the (a) n = 0, (b) n = 1, and (c) n = 2
Landau levels. The lines of best fit, for the linear region of the
largest system size, are overlaid in black. The corresponding
higher moments, ξγ = ⟨rγ⟩, are shown inset for R = 20.

high moments γ ≲ 10, as shown in the insets. Rescaling
the projector, as before, we find that the curves approx-
imately collapse onto a single Gaussian, as shown in the
left panels of Figs. 3(ii)(b,c), however this is now more
difficult to discern visually due to the Laguerre polyno-
mial modulation in the initial coherent state. In all cases,

we obtain a scaling exponent ν ≃ 0.5 from the self-similar
projector expansion. Although this is numerically more
challenging to extract for higher Landau levels, all three
computed values agree within error bars.

B. Chern Insulators

To complement this analysis, we now focus on Chern
insulators. In Sec. III B 1, we define the tight-binding
model, in Sec. III B 2, we outline the truncation algorithm
for discrete systems, and in Sec. III B 3, we present results
for the scaling exponent.

1. Model

We consider a free spinless electron confined to a lat-
tice on the xy-plane. One of the most well-understood
examples of a Chern insulator is the Haldane model35,
defined on the honeycomb lattice as

HCI = −t1
∑

⟨ij⟩
c†i cj − t2

∑

⟨⟨ij⟩⟩
e±iϕc†i cj

+M
∑

i

(nA,i − nB,i) + H.c.,
(5)

where t1 and t2 are the amplitudes corresponding to
nearest- (⟨ij⟩) and next-nearest-neighbor (⟨⟨ij⟩⟩) hop-
pings, c(†) are the spinless fermion creation(annihilation)
operators, e±iϕ is the next-nearest-neighbor complex
phase factor, M is the staggered chemical potential, and
nA(B) is the density operator on sublattice A(B). The
sign of the complex phase is determined by the direction
of the next-nearest-neighbor hopping. The phase is pos-
itive clockwise around a minimal down-pointing triangle
of the A sublattice and anti-clockwise around a minimal
down-pointing triangle of the B sublattice. By carefully
selecting the parameters in the Haldane model, we can
tune between a topological and trivial phase.

For consistency with our state removal algorithm de-
fined for Landau levels in Sec. III A 2, we map the Hal-
dane model onto a square lattice with orthogonal basis
vectors a1 · a2 = 0, as depicted in Fig. 4(a). Although
the geometry of the model changes under this mapping,
with nearest- and next-nearest neighbors no longer pre-
served, the topology is unchanged36. Specifically, we ob-
tain the same Haldane lobe phase diagram in the M/t2
against ϕ parameter plane. The Haldane Hamiltonian
yields a two-band eigenspectrum, where the bottom band
has Chern number C1 = −1 for |M/t2| ≤ 3

√
3 sin(ϕ)

with ϕ ∈ (−π, 0), C1 = 1 for |M/t2| ≤ 3
√
3 sin(ϕ) with

ϕ ∈ (0, π), and C1 = 0 elsewhere. In this section, we re-
strict ourselves to the physics of the lowest band and
study three configurations, ta (topological), tb (topo-
logical), and tc (trivial), as shown in Fig. 4(b). Fur-
ther details on the choice of parameters are discussed in
Sec. SVII of the Supplementary Material. We note that
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FIG. 4. Haldane model on a square lattice. (a) Map-
ping of the Haldane model onto a square lattice. The basis
vectors {a1,a2} are given in units of the lattice constant and
the unit cell is shaded gray. The t1 hoppings are colored green,
and the t2 hoppings are colored red(blue) according to their
A(B) sublattice, with the direction of the arrows correspond-
ing to a positive complex phase. (b) Phase diagram for the
Haldane model, as a function of complex phase ϕ and chem-
ical potential M , colored according to the sign of the Chern
number for the lowest band C1. The three selected parameter
sets are at ta = {t2 = 0.1,M = 0}, tb = {t2 = 0.2,M = 0.1},
and tc = {t2 = 0.1,M = 1}. For all parameter sets, ϕ = π/2,
and in all cases, we set t1 = 1.

the localization renormalization described in this section
works for any choice of Chern insulator. We choose the
Haldane model due to its popularity; motivated particu-
larly by recent realizations in moiré materials37 and the-
oretical studies of its topological phase transitions19.

2. Method

The method is similar to the procedure described for
Landau levels in Sec. IIIA 2. However, there are a few
technical nuances specific to discrete systems, that in-
crease the complexity in this case. As before, the renor-
malization is independent of the details of the algorithm,
as shown in Secs. SII and SIII of the Supplementary Ma-
terial. The method is as follows.

We start with an underlying square lattice for the Hal-
dane model LH, with lattice constant a = 1, dimen-
sions L × L, and periodic boundary conditions. Here,
the simple translational symmetry and toroidal topology
are expedient for numerical simulations. Next, we intro-
duce a square removal lattice Lρ, with lattice constant

aρ =
√

1/(1− ρ), symmetrically offset from a chosen
“origin” site of LH, analogously to how Lρ was offset on

FIG. 5. Removal lattice for the Haldane model. Con-
vergence of the removal lattice Lρ for the square-lattice Hal-
dane model, sketched for three values of ρ. The area of the
L unit cell a2 = 1 is shaded gray, the area of the Lρ unit cell
a2ρ = 1/(1− ρ) is shaded pink, and the linear system size L is
marked with an arrow.

the disc in Eq. (2), as sketched in Fig. 5. For each site of
the removal lattice rij ∈ Lρ, we then find the correspond-
ing most-localized state |ψij⟩ in the LH basis. In contrast
to the continuous case, since LH and Lρ are incommensu-
rate lattices, we can no longer exploit conventional trans-
lation operators to simplify the computations. Instead,
we compute the most-localized state at each rij ∈ Lρ, by
extracting the minimum-eigenvalue state of the distance-
squared matrix D2

ij = PLB(r−rij)
2PLB, where PLB is the

projector to the lowest band. Furthermore, care needs
to be taken when rij falls on an axis of LH, since this
can result in a 2- or 4-fold degeneracy for the minimum
localization length. In these cases, we break the degen-
eracy to avoid any linear dependencies by selecting the
state that has the smallest overlap with the previously
selected states {|ψ⟩}. Finally, due to the incommensura-
bility of LH and Lρ, coupled with the periodic boundary
conditions, we need to ensure that Lρ does not have any
overlapping regions.
Now that we have defined the set of maximally-

localized states in our Chern insulator for each removal
iteration ρ, we can proceed to remove these states from
the system. As before, we note that although the most-
localized states corresponding to our removal lattice Lρ

are generally linearly independent, they are not mutually
orthogonal. Hence, we first symmetrically orthogonalize
the set of maximally-localized states {|ψ⟩} → {|ψ̃⟩} and
then project them out of the system, using

PCI
ρ = PLB −

∑

i,j∈Lρ

|ψ̃ij⟩ ⟨ψ̃ij | . (6)

Note that this has the same form as the projector in
Eq. (3)38. Finally, we record the localization length,
which we quantify as the minimum eigenvalue of the
distance-squared operator, with respect to the origin
D2 = PCI

ρ r2PCI
ρ . In this case, care needs to be taken

to ensure that we are minimizing distances on the torus.
As before, we have designed our system such that the
reference “origin” site hosts the most-localized remain-
ing state and is least-susceptible to numerical artifacts.
We start with a large lattice constant with ρ ≲ 1, and
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FIG. 6. Localization scaling in the Haldane model.
(left) Localization length ξ(ρ) obtained by the simultaneous
elimination of a lattice of localized degrees of freedom, ap-
plied to the Haldane model with parameters (a) ta, (b) tb,
and (c) tc. The system size L is depicted in different col-
ors. (right) The quality function of data collapse d(ν) for
systems in the topological Haldane model with parameters
(a) ta and (b) tb; optimization of the quality function re-
sults in critical exponents of (a) νta = 0.503 ± 0.011 and
(b) νtb = 0.499± 0.012.

then symmetrically shrink the lattice by taking the limit
ρ→ 0. In this limit, the LH and Lρ interpenetrating lat-
tices have the same lattice constant, which corresponds
to the removal of a complete basis of states and hence
a divergence of the localization length for a topological
phase, in general39.

3. Results

As before, we can plot the localization length ξ as a
function of ρ under this iterative state removal. In Fig. 6,
we present the localization scaling for our three param-
eter sets: ta, tb, and tc. Starting with the topological
configurations shown in Figs. 6(a,b), we find a scaling re-
lation similar to that observed for Landau levels in Fig. 2.
That is, the localization length ξ exhibits a power-law di-
vergence as the fraction of states remaining tends to zero
ρ → 0 in the thermodynamic limit L → ∞, as shown
in the left panels of Figs. 6(a,b). Furthermore, using a
finite-size scaling ansatz, we can accurately compute the
scaling exponent by minimizing a quality metric of data
collapse, as shown in the right panels of Figs. 6(a,b).

Here, we obtain scaling exponents of νta = 0.503± 0.011
and νtb = 0.499 ± 0.012, where the error bars are given
by 1% deviations with respect to the quality metric d(ν).
As before, the scaling exponents take a value of ν ≃ 0.5
in each case. Although the precision is reduced due to
the discrete nature of the systems, all computed values of
ν from continuous and discrete topological systems agree
within errors. In contrast, for the trivial configuration
tc, shown in Fig. 6(c), we find that as we decrease ρ, the
localization length ξ quickly and abruptly converges to
an L-independent constant40. This shows a sharp distinc-
tion to the behavior in topological phases, which supports
the use of localization renormalization as an efficient nu-
merical diagnostic for quantum Hall systems.

To gain further insight into the distinct scaling be-
havior in topological and trivial systems, we examine
the expansion of the projector in real space. In the left
panels of Fig. 7, we show the magnitude of the projec-
tor |P (r,0)| = | ⟨r|PCI

ρ |0⟩ | at each removal iteration ρ.
Starting with the insets in the left panels of Figs. 7(a,b),
we can see that in the topological phases of the Haldane
model, the normalized projector |P̂ | ∼ ρ−1|P | behaves
analogously to the projector in the LLL, shown in the
left inset of Fig. 3(ii)(a). We note that, in this case,

the modulation of the normalized projector P̂ due to L0,
with length scale a0 = 1, is exacerbated by the presence
of the underlying lattice LH. Starting with a Gaussian
initial state at ρ = 1, we observe an expansion of the
projector at each removal iteration, until the edge of the
system (r = 10) is reached at ρ ≈ 1.5−9. This corre-
sponds to where the power-law scaling of the L = 20
curves breaks down in the left panels of Figs. 6(a,b). As
before, in the right panels of Figs. 7(a,b), we show that
the second moment of the projector can be used as a
proxy for the localization. From this data, we can extract
the scaling exponents, which agree with those found in
Fig. 6, albeit with larger errors due to the indirect na-
ture of the computation. As for Landau levels, we find
that this scaling holds not only for the second moment
of the projector but also for higher moments, γ ≲ 10,
indicating statistical self-similarity, as shown in the right
insets of Figs. 7(a,b). To elucidate this self-similarity, we
plot the translationally- and rotationally-averaged nor-
malized projector P̂av, which eliminates any lattice arti-
facts, using rescaled coordinates r′ = ρ−1/2r in the left
panels of Figs. 7(a,b). Here, we observe that the fam-
ily of projectors approximately collapse onto the initial
Gaussian state. Although this collapse is not as clear as
for the LLL case in the left panel of Fig. 3(ii)(a), due
to the spatial discretization, the statistical agreement, in
terms of moments, is comparable. In contrast, for the
trivial phase of the Haldane model, shown in Fig. 7(c),
we do not observe a self-similar expansion of the projec-
tor in the left inset. Instead, the projector quickly and
abruptly converges to a fixed position as we decrease ρ.
Attempting to extract the localization length via the sec-
ond moment, as shown in the right panel, we obtain a
convergence to an L-independent constant in agreement
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FIG. 7. Projector expansion in the Haldane model.
(left) Real-space radial profile of the projector P (r,0) =
⟨r|PCI

ρ |0⟩. The rotationally- and translationally-averaged

projector, normalized with respect to the initial value, P̂av,
is shown in the main plot. The original unaveraged projector,
normalized with respect to the maximum value, P̂ , is shown
inset. The projectors are presented for the (a) ta, (b) tb, and
(c) tc phases of the Haldane model, at a system size of L = 28
in the main plot and L = 20 in the inset, with ρ0 = 1.5. The
boundary of the system at r = 10 in the inset is marked with
a dashed line. Note that the projectors are plotted in reverse
order, such that the κ = 0 line is on top. (right) Finite-size
scaling of the second moment of the projector for the (a) ta,
(b) tb, and (c) tc phases of the Haldane model. The lines
of best fit, for the linear region of the largest system size,
are overlaid in black. The corresponding higher moments,
ξγ = ⟨rγ⟩, are shown inset for L = 20.

with Fig. 6(c). This demonstrates the difference between
topological and trivial phases at the level of the projec-
tor. Just as localization length divergence in topological
phases corresponds to self-similar projector expansion,
the convergence of the localization length in trivial phases
corresponds to projector convergence in real space.

IV. DISCUSSION

Following these results, in this section we discuss the
scaling exponent. In particular, we comment on the RG
framework of the truncation procedure in Sec. IVA, its

analogy with the plateau transition in Sec. IVB, and its
utility in diagnosing topological phases in Sec. IVC.

A. Real-space RG framework

As mentioned in Sec. II, in order for localization renor-
malization to hold, it is a necessary condition that we
can construct a renormalized system {H ′, |ψ′⟩} from the
original system {H, |ψ⟩}. In the single-particle case, one
way of demonstrating this is to show that the family of
projectors Pρ, defined in Eq. (1), is self-similar, which
implies that the truncated system can be related to the
original system under a coarse-graining, rescaling, and
renormalization. By analyzing the expansion of real-
space projectors on each ρ iteration, we have demon-
strated that we can consolidate our state removal proce-
dure into such an RG framework41. Each step of remov-
ing the most-localized states in the system is analogous
to coarse-graining the Hamiltonian to an effective system
of remaining states H̄(r) = PρH(r)Pρ. Subsequently, we
have shown, by studying the projectors in Figs. 3 and 7,
that the system is statistically self-similar under a rescal-
ing r′ = ρ−1/2r and renormalization H ′(r′) = ρ−1H̄(r′).
Although the projectors do not exhibit an exact self-
similarity in our examples, they are statistically self-
similar to a high degree — approximately up to the tenth
moment in the configurations that we study. Moreover,
since the localization length is conventionally defined via
the second moment of displacement, it can be viewed as
a self-similar property of the family of projectors Pρ and
localization renormalization may be applied.

B. Quantum Hall plateau transition

The most famous example of a localization transi-
tion induced by the topology-localization dichotomy in
quantum Hall systems is the plateau transition, and so
it is natural to ask whether an analogy can be made
with the localization scaling studied in this paper. Al-
though these two concepts are fundamentally different,
with the plateau transition yielding a universal scaling
exponent of νp ≃ 2.59,42–47, there are certain qualita-
tive comparisons that can be drawn. In localization
renormalization, we induce a phase transition by ex-
plicitly projecting out the most-localized states at in-
dividual points in space. On the other hand, in the
plateau transition, we induce a phase transition by tun-
ing the Fermi energy with respect to a disorder potential
landscape. Loosely speaking, there is a correspondence
between maximally-localized states and states that are
trapped around extrema in a disorder landscape. In this
language, localization renormalization equates to trap-
ping isolated states using equal-amplitude Dirac delta ex-
trema in a fictitious potential, whereas the plateau tran-
sition equates to trapping eigenstates of a real disorder
potential V (r) ≈∑i Viδ(r−ri), where Vi is a random am-



9

plitude at position ri. Although localization renormal-
ization is a numerical algorithm and does not correspond
to a physically-motivated phase transition, it would be
interesting to explore this analogy in future work18,19.

C. Topological phase diagnosis

The broad scope of the localization renormalization
procedure is to classify a variety of condensed mat-
ter phases using universal scaling exponents. Based on
our results, we conjecture that ν ∼ 1/2 for all two-
dimensional class A topological insulators, and we gener-
ally expect different scaling exponents in other symmetry
classes and dimensions, e.g. ν ∼ 1/d. However, although
the procedure is designed as a numerical tool to study a
diverse selection of localization transitions, the examples
shown in this paper are all centered on the topology-
localization dichotomy, and so the method doubles as a
technique for diagnosing topological and trivial phases.
This has a number of advantages compared to conven-
tional approaches, such as computing edge modes or the
Chern number. For example, the algorithm is spectrum
independent and so may be used to diagnose topology in
disordered systems, provided the disorder is sufficiently
weak so as to not mix the bands. Moreover, the method
is numerically inexpensive, with a clear power-law diver-
gence and scaling exponent reported after only the first
few removal iterations48. These advantages can prove
particularly useful in cases where the phase diagram is
unknown or traditional methods for computing the Chern
number fail, such as in fractal lattices49, hyperbolic lat-
tices50, and quasicrystals51, as well as in systems with
other symmetry classes or higher dimensions.

V. CONCLUSION

We have introduced the localization renormalization
formalism as a way of analyzing a diverse range of local-

ization transitions, which we demonstrated numerically
using integer quantum Hall examples. By iteratively
removing an orthogonal subset of maximally-localized
states from distinct sites, we can induce quantum Hall
breakdown transitions with a localization length diver-
gence of limρ→0,L→∞ ξ(ρ) ∼ ρ−ν with ν = 0.5 in
topological systems, and convergence to a system-size-
independent constant in the trivial case. The scaling
exponent in these topological systems is universal, and
therefore independent of the model used to describe the
system, the metric used to define the localization length,
and the details of the state removal algorithm. More-
over, by analyzing the expansion of real-space projectors
on each iteration, we find that the scaling exponent is a
self-similar property of the family of projectors Pρ, which
accords with an RG picture. This motivates the use
of localization renormalization as a versatile diagnostic
tool for quantum Hall systems, in cases where traditional
methods of diagnosing band topology are inadequate, as
well as in topologically trivial systems and beyond.
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SI. SYMMETRIC ORTHOGONALIZATION

In this section, we describe the symmetric orthogonalization procedure, also known as Löwdin orthogonalizationS1.
Given a set of linearly independent, but not necessarily orthonormal, vectors {|ψ⟩}, we form the operator S whose

matrix elements (indexed by the same set that indexes the input vectors {|ψ⟩}) are given by the overlaps Sij = ⟨ψi|ψj⟩.
The operator S is Hermitian and is known as the Gram matrix of the spanning set {|ψ⟩}. The eigenvalues of Gram
matrices are non-negative by construction. Furthermore, since we posit that the set {|ψ⟩} is linearly independent, we

can show that the eigenvalues of S are positive. We can then form the orthogonal set {|ψ̃⟩} as

|ψ̃j⟩ =
∑

i

S
−1/2
ij |ψi⟩ . (S1)

As opposed to iterative methods, such as Gram-Schmidt orthogonalization, the symmetric orthogonalization treats
each input vector on an equal footing. In fact, it can be shown that when using the symmetric orthogonalization, the
resulting functions |ψ̃j⟩ are closest to the input vectors in a least-squares sense, that is the quantity

∑
j || |ψ̃j⟩−|ψj⟩ ||2

is minimizedS2,S3.

SII. ALTERNATIVE METHODS TO TRUNCATE THE SINGLE-PARTICLE BASIS

In this section, we present two alternative procedures for Hilbert space truncation, based on the simultaneous
removal of states centered on sublattices in Sec. SIIA, and the sequential removal of individual states in Sec. SII B.
In both cases, we find that the localization scaling exponent ν agrees with the main text.
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FIG. S1. Lattice decomposition. An illustration of the decomposition of the underlying lattice (less the origin) L =⊕
n=0 Ln, centered at the origin. L0, L1, L2, and L3 are depicted in black, green, blue, and red, respectively. Each subsequent

sublattice Li has growing lattice constant an =
√
2an−1 and is rotated by π/4 with respect to the previous sublattice.

A. Sequential elimination of sublattices of maximally-localized states

1. Method

For this procedure, we introduce a square lattice L of lattice spacing a =
√
A, where A is the real-space area

occupied per state. In Landau levels, we introduce L such that the origin of the lattice lies at the origin of the
plane, whereas in the Haldane model, we simply take L to be the lattice in the real-space definition of the model.
Moreover, we introduce a decomposition of the lattice (less the origin) L =

⊕
n=0 Ln. Each subsequent sublattice in

the decomposition Ln has growing lattice spacing an =
√
2n+1a, and is translated and rotated such that it is disjoint

from the other sublattices and the origin. The sublattices Ln are illustrated in Fig. S1.
This construction decomposes H as a direct sum H =

⊕
n=0 Hn, where each subspace Hn has a mutually orthogonal

basis of states {|ψ̃n⟩} and each state is localized in real space about points rij in the nth sublattice Ln. Each subsequent
Hilbert space is therefore approximately half the dimension of its predecessor, i.e. dim(H0) ≃ N/2, dim(H1) ≃ N/4,
etc. Given a projection operator P = P0 onto the occupied states, we now detail an iterative procedure for finding
and eliminating the basis {|ψ̃n⟩}. Beginning with n = 0:

1. For each site rij in the nth sublattice Ln, we define the state |ψn,ij⟩ as the eigenvector corresponding to the
minimum non-zero eigenvalue of the projected distance-squared operator D2

n,ij = Pn(r− rij)
2Pn.

2. We perform a symmetric orthogonalization of the states {|ψn⟩} → {|ψ̃n⟩} following the procedure in Sec. SI.

3. We remove the selected states from the projection operator for the next iteration, that is Pn+1 = Pn −∑
i,j∈Ln

|ψ̃n,ij⟩ ⟨ψ̃n,ij |. If the rank of Pn+1 is not zero, then we perform another iteration with n → n + 1.
Otherwise, we have exhausted H.

After each iteration of removing a sublattice of localized degrees of freedom, we analyze the remaining localized
degrees of freedom. We associate to the projector Pn the density parameter ρn = 2−n, which represents the fraction
of the original Hilbert space dimension supported by Pn.

The origin of L, due to the symmetry of the procedure, is the most isolated lattice point at any given step. We
therefore expect that from the remaining degrees of freedom, we may construct a maximally-localized degree of
freedom about the originS4. At the nth step, we find the eigenstate |0ρn⟩ satisfying Pnr

2Pn = ξ2(ρn) |0ρn⟩, where, in
analogy with the main text, ξ2(ρn) is the smallest non-zero eigenvalue of the projected distance-squared operator.

2. Results

a. LLL We choose the lattice L to be square with lattice vectors aligned with êx and êy, such that the origin of
the plane is coincident with the origin of the lattice.
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(a) LLL

(b) Haldane model

FIG. S2. Sequential elimination of sublattices of maximally-localized states. (left) Localization length ξ(ρ) obtained
for (a) the LLL, and (b) the Haldane model with (i) ta, (ii) tb, and (iii) tc, using the sublattice elimination procedure described
in Sec. SIIA 1. The system size L is depicted in different colors. (right) The quality function of data collapse d(ν) for the
data depicted on the left. Optimization of the quality function results in critical exponents of (a) νLLL = 0.483 ± 0.036,
(b)(i) νta = 0.495± 0.010, and (b)(ii) νtb = 0.472± 0.049.

We perform the procedure for various domain radii R. In particular, the domains considered support between
N = 450 and 2450 states. For each initial dimension N , we perform iterations until the Hilbert space is exhausted.
Using this procedure, each system size can now access only the discrete set of values ρn = 2−n, and a system of
dimension N can access up to n ≃ log2(N). The length ξ(ρ) for various N is plotted in the left panel of Fig. S2(a)
and diverges with a truncated power law, as expected.

We again perform optimization of the collapse quality function d(ν) with respect to the localization length exponent
ν. The right panel of Fig. S2(a) depicts the quality function of collapse over a range of ν, again indicating optimal
ν ≃ 0.5. Optimization was performed using the Nelder-Mead descent method determining νLLL = 0.483± 0.036.

b. Haldane model When applying the sublattice elimination procedure to the Haldane model, we limit ourselves
to system sizes N = L×L, where L is a power of two, in our case L = 16, 32, 64 (or equivalently, N = 256, 1024, 4096).
If L is not a power of two, each subsequent sublattice Ln+1 in the decomposition will eventually fail to comprise half
of the states of Ln. Moreover, the symmetry of the origin site will be broken at this point, potentially invalidating
our assumption that after any given iteration a maximally-localized remaining degree of freedom can be found there.
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The ξ(ρ) data for the parameters within the topological phase, ta and tb, are shown in the left panels of
Figs. S2(b)(i,ii). Again we see that in the topological phase, the localization lengths ξ diverge as a power law.
Optimization of data collapse, depicted in the right panels of Figs. S2(b)(i,ii), results in νta = 0.495 ± 0.010 and
νtb = 0.472± 0.049.

The effective localization lengths ξ(ρ) for the Haldane model at tc within the trivial phase are shown in
Fig. S2(b)(iii). The length ξ(ρ) quickly saturates to an N -independent value and does not exhibit a power-law
divergence as ρ→ 0.

3. Discussion

The data from this procedure closely resemble that presented in the main text. As expected, the trivial system
shows no singular behavior in ξ, and the topological systems yield ν ≃ 0.5 within their respective uncertainty intervals.

It may be intuitively deduced that the elimination of states on expanding sublattices described in this section should
produce the same exponent ν as in the main text. Each iteration of this sublattice elimination procedure is equivalent
to the simultaneous elimination procedure with ρ1 = 1/2, and each subsequent iteration can be interpreted as
performing the simultaneous elimination procedure but replacing the ‘original/underlying’ system after each iteration
with the current effective system. The fact that these two methods are quantitatively consistent suggests that the
exponent ν ≃ 0.5 is universal across all intermediate effective systems derived using Pρ.

The sublattice structure intrinsic to this elimination procedure provides a natural picture of how the localization
properties of each effective system evolve as ρ → 0. In our original system, each state occupies a real-space area A.
When we eliminate a localized degree of freedom centered at some r, we can consider that the effective Hilbert space
no longer supports a localized function centered within an area A around r. After removing half of the degrees of
freedom, the distances between potential centers for localized degrees of freedom increase by a factor

√
2, precisely

the growth of ξ that we observed. This suggests that removing the most-localized degrees of freedom screens the
remaining effective localized degrees of freedom, so that their decay is similar to the states of the original system in
some scaled coordinates r′ =

√
2r.

B. Sequential elimination of individual maximally-localized states

1. Method

As in Sec. SIIA, we introduce a square lattice L of lattice spacing a =
√
A, where A is the real-space area occupied

per state.

Given a projection operator P = P0 onto the space of occupied states (of dimension N), we now detail a procedure
to iteratively eliminate the single most-localized state. Since we are now eliminating one state at a time, after step n
the fraction of remaining states ρn is ρn = 1− n/N . Beginning with n = 0:

1. For each site rij in L, we define the state |ψn,ij⟩ as the eigenvector corresponding to the minimum non-zero
eigenvalue ξ2ij(ρn) of the projected distance-squared operator D2

n,ij = Pn(r− rij)
2Pn.

2. We select the state |ψn,IJ⟩ corresponding to the site with the minimum second moment, that is

ξ2IJ(ρn) = min
ij

{
ξ2ij(ρn)

}
. (S2)

If there is a degenerate minimum, we freely choose any such IJ .

3. We remove the selected state from the projection operator for the next iteration, that is Pn+1 = Pn −
|ψn,IJ⟩ ⟨ψn,IJ |. If the rank of Pn+1 is not zero, then we perform another iteration with n → n + 1. Oth-
erwise, we have exhausted H.

In contrast to the previous procedures, which were symmetric about the origin, this procedure does not guarantee
symmetry. At each step n, we can associate the minimum second central moment (as defined in Eq. (S2)) ξ(ρn)
(= ξIJ(ρn)) with the density ρn.
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(a) LLL

(b) Haldane model

FIG. S3. Sequential elimination of individual maximally-localized states. (left) Localization length ξ(ρ) obtained
for (a) the LLL, and (b) the Haldane model with (i) ta, (ii) tb, and (iii) tc, using the state elimination procedure described
in Sec. SII B 1. The system size L is depicted in different colors. (right) The quality function of data collapse d(ν) for the
data depicted on the left. Optimization of the quality function results in critical exponents of (a) νLLL = 0.487 ± 0.049,
(b)(i) νta = 0.483± 0.069, and (b)(ii) νtb = 0.478± 0.045.

2. Results

a. LLL We perform the procedure for various circular domains, comprising systems of dimension between N =
200 and 900 states. These system sizes are smaller than the ones used for the procedures discussed in the main text
and Sec. SIIA because this iterative process is more computationally expensive.

For each system dimension N , we iteratively eliminate the state with the minimum localization length from the
system. It is numerically infeasible to perform this minimization in the space of normalized functions. Instead we
introduce a lattice L of unit cell area 2π of candidate function centers, and find the maximally-localized function with
respect to each of these centers. We then approximate the global minimum to be the minimum of functions centered
on this lattice. The minimal localization lengths ξ(ρ) for various N are plotted in the left panel of Fig. S3(a).

We again perform optimization of d(ν) with respect to the localization length exponent ν. The right panel of
Fig. S3(a) depicts the quality function of collapse over a range of ν, again indicating optimal ν ≃ 0.5. Optimization
was performed using the Nelder-Mead descent method determining νLLL = 0.487± 0.049.
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FIG. S4. Scaling for non-square removal lattices. Localization length ξ(ρ) obtained for the LLL, with ρ = ρ−κ
0 , κ ∈ N,

and ρ0 = 1.5, using a parallelogram lattice to remove states. The scaling is shown for (a) oblique lattices with an opening angle
2θ, (b) anisotropic lattices with an anisotropy parameter η = a2/a1, and (c) a combination of the two. The results are also
presented with respect to system size R, and the line of best fit is drawn for R = 40, through the linear region.

b. Haldane model We perform the single-state elimination procedure for square systems with periodic boundary
conditions, of dimension N = L× L between L = 16 and 30 (or equivalently, between N = 256 and 900).

The ξ(ρ) data for the parameters within the topological phase, ta and tb, are shown in the left panels of
Figs. S3(b)(i,ii). Again we see that in the topological phase, the localization lengths ξ diverge as a power law.
Optimization of data collapse, depicted in the right panels of Figs. S3(b)(i,ii), results in νta = 0.483 ± 0.069 and
νtb = 0.478± 0.045.

The effective localization lengths ξ(ρ) for the Haldane model at tc within the trivial phase are shown in
Fig. S3(b)(iii). Within the trivial phase, ξ(ρ) again quickly saturates to an N -independent value and, as expected,
does not exhibit a power-law divergence as ρ→ 0.

3. Discussion

As before, the single-state removal procedure results in ν ≃ 0.5 for each topological system we considered. Näıvely,
this procedure may appear closer to emulating a plateau transition, as compared to the other more symmetric
procedures. However, in the thermodynamic limit, removing a single state iteratively is not well defined. If we instead
interpret this method as removing a fraction 1/N of the maximally-localized states, we see that each iteration of this
method is equivalent to the simultaneous elimination procedures. It is therefore unsurprising that we again find ν
consistent with the previous methods.

SIII. ALTERNATIVE REMOVAL LATTICES FOR THE TRUNCATION ALGORITHM

In the main text, we stated that we can choose a square lattice to remove localized states without loss of generality.
In this section, we explicitly show that the scaling relation and scaling exponent ν ≃ 0.5 does not depend on the



7

geometry of the removal lattice Lρ. To this end, we consider, as an example, the scaling for the LLL corresponding
to the square lattice in Fig. 2(a) of the main text. We proceed to perform the Hilbert space truncation procedure for
this system, described in the main text, using a generic parallelogram lattice. In analogy to the square lattice with
basis vectors a1 = aêx,a2 = aêy satisfying a1 · a2 = 0, the parallelogram lattice has basis vectors a1 = aêx,a2 =
ηa(cos(2θ)êx+sin(2θ)êy) satisfying a1 ·a2 = ηa2 cos(2θ), where η is the anisotropy parameter. Hence, the obliqueness
of the lattice is quantified by the opening angle 2θ and the anisotropy is given by the ratio of basis vector lengths. In
the case of a square lattice, we removed states on a disc of radius R, with coordinates satisfying x2 + y2 < R2, and
so analogously we now remove states on an ellipse, with coordinates satisfying x̃2 + (ỹ/η)2 < R2. Moreover, in order

to preserve the unit cell area of 2π, the lattice constant now takes the general form aρ =
√

2π/((1− ρ)η sin(2θ)).
In Fig. S4, we show the scaling corresponding to Fig. 2(a) using a parallelogram lattice with various values for the
obliqueness and anisotropy. These results show that, even with modest system sizes, the scaling relation is recovered
in each case and so the exponent does not depend on lattice geometry. We note, however, that for highly distorted
lattices (cf. the right panel of Fig. S4(c)), the scaling relation does not hold as well for large values of ρ, and so it is
advantageous to use a square lattice in numerical simulations.

SIV. ALTERNATIVE METHODS TO COMPUTE THE LOCALIZATION LENGTH

In addition to the three methods studied to truncate the Hilbert space, detailed in the main text, Sec. SIIA, and
Sec. SII B, there are also a number of ways to compute the scaling exponent ν. Throughout this paper, we have
computed the localization length by defining ξ2 as the minimum eigenvalue of the PρD

2Pρ matrix. However, we may
equivalently define the localization length via a matrix element, for example via ξ2 = ⟨0|PρD

2Pρ|0⟩, where |0⟩ denotes
the origin. Alternatively, as we saw in Secs. III A 3 and III B 3 of the main text, we may extract the localization
length from the moments of the projector, such that ξγ = ⟨rγ⟩, where r is the radius, and the expectation value is
taken with respect to the projector probability distribution. All of these methods are consistent and yield the same
value for the scaling exponent ν in the ρ→ 0 and N → ∞ limits.

In the case of higher Landau levels, we note that the origin |0⟩ does not correspond to the closest state to the origin
|0ξ⟩ and so care is needed when defining the projector. Specifically, in these cases we define the projector Pρ = Pρ,LLL,
where the LLL subscript denotes that we are using the LLL origin |0LLL⟩ in the projector definition, which coincides
with the closest state to the origin |0ξ⟩ for all Landau levels. In this way, we can define ξ2 as the minimum eigenvalue
of Pρ,LLLD

2
nLLPρ,LLL, or via ⟨0nLL|Pρ,LLLD

2
nLLPρ,LLL|0nLL⟩. Note that if we use Pρ,nLL for defining the localization

length then the scaling exponent ν is still recovered, however only asymptotically in the large system-size and ρ→ 0
limits, and so it is more difficult to extract.

SV. FINITE-SIZE SCALING

Experimental and numerical studies of critical phenomena are subject to finite-size effects. As one approaches
a critical point in the thermodynamic limit, the universal power-law divergences of certain quantities, such as the
localization length, is expected. However, in studies of finite systems these divergences are modified as the localization
length may not exceed the system size. Using data from multiple finite system sizes to extract the universal behavior
in the thermodynamic limit is known as the theory of finite-size scaling.
The theory of finite-size scaling was introduced in the context of critical phenomena within films of finite thickness

by Fisher and Barber in Ref. S5. For a more developed perspective, including the field theoretic justification for the
finite-size scaling ansatz, we refer the interested reader to the book by PrivmanS6. In this section, we review the
motivation, techniques, and aspects of the theoryS7 that we use in Sec. III of the main text.

A. Finite-size scaling ansatz

We consider a system parameterized by some dimensionless parameter ρ, which undergoes a critical transition
at ρc = 0. Critical phenomena are characterized by a localization length ξ, which diverges as a power law with
exponent ν, such that ξ∞(ρ) ∝ |ρ|−ν , in the thermodynamic limit, where the size of the system L → ∞. Various
other quantities, depending on the system definition, may also exhibit singular behavior near the critical point in the
thermodynamic limit. As an example, we take a quantity A, which diverges in the thermodynamic limit with some
exponent γ, so that A∞(ρ) ∝ |ρ|−γ . By rearranging these two power laws, we can write the divergence of A∞ in

terms of ξ∞ as A∞ ∝ ξ
γ/ν
∞ .
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Given the limitations of experimental and numerical data, we are not able to access infinite systems and therefore
the above power-law divergences are not exactly realized. In order to extrapolate data from finite-size systems to
infer critical exponents of infinite systems, we review the finite-size scaling ansatzS7. Consider the data obtained for
some ρ in a finite system of linear dimension L. If ξ∞(ρ) ≪ L, then we expect AL(ρ) ≃ A∞(ρ). On the other hand, if
L≪ ξ∞(ρ), we expect the localization length to get cut off at the system size ξL(ρ) ≃ L, and similarly AL(ρ) ≃ Lγ/ν .
These considerations motivate the finite-size scaling ansatz for the scaling of the singular quantity A as

AL = ξγ/ν∞ f(L/ξ∞), (S3)

where f is some dimensionless scaling function, which satisfies

f(L/ξ∞) ∝
{
constant, L≫ ξ∞
(L/ξ∞)

γ/ν
, ξ∞ ≫ L

, (S4)

and smoothly connects these regimes in the intermediate region where L ∼ ξ∞(ρ). More commonly used is the

rescaled function f̃(x) = x−γf(xν), so that Eq. (S3) may be rewritten explicitly in terms of the parameter ρ, such
that

AL(ρ) = Lγ/ν f̃(L1/νρ). (S5)

B. Recovery of critical exponents via data collapse

Given data for a singular quantity AL(ρ) at various L and ρ, we now discuss how we can use the finite-size scaling
ansatz, in the form of Eq. (S5), to recover the critical exponents γ and ν. We scale our parameters

ρ→ ρ̃ = L1/νρ (S6)

and measurements

AL(ρ) → ÃL(ρ) = L−γ/νAL(ρ). (S7)

Plotting Ã against ρ̃ should then result in data across all system sizes L collapsing onto the curve f̃ . However, for the
collapse to be successful, the scaling in Eqs. (S6) and (S7) must use the critical exponents γ and ν. By varying trial
exponents and quantifying the degree of data collapse, we can extract the values of the scaling exponents ν and γ.

In this paper, we use a measure of the quality of data collapse developed in Ref. S8, which we review here. We
work with a set of measurements ALj

(ρij ), where j ∈ {1, 2, . . . , J} indexes a system size Lj ∈ {L1, L2, . . . , LJ} and
ij ∈ {0, 1, 2, . . . , Ij} indexes the parameter ρ of a particular measurement at system size Lj . For each system size Lj ,

we numerically construct a function gj(L
1/νρ) which interpolates between the scaled measurements L−γ/νALj

(ρij )
with a domain bounded by the set of measurements at Lj , that is

L
1/ν
j min({ρij}) ≤ L1/νρ ≤ L

1/ν
j max({ρij}). (S8)

The quality metric d(ν, γ) is then defined as

d(ν, γ) =


 1

N
∑

j ̸=k

∑

ik,over

|L−γ/ν
k ALk

(ρik)− gj(L
1/ν
k ρik)|q



1/q

, (S9)

where the first sum is over pairs of distinct system sizes indexed by j and k, the second sum is over ik for ρik in the
domain of gj defined in Eq. (S8), N is the total number of terms in the sum, and q is an integer, which we take to be
q = 2. The quality function of collapse d(ν, γ) measures the sum of mutual residuals between the scaled data at any
two distinct system sizes. Since the scaled parameters L1/νρ for different system sizes need not align, the interpolation
functions gj allow us to approximate the residual.

By minimizing Eq. (S9) with respect to ν and γ, we will attain the scaled data with the minimal mutual residuals,
i.e. the best data collapse. We use the Nelder-Mead algorithm to minimize dS9. Using any optimization method, one
should be careful to scan a large region of ν-γ space to ensure the minimum one finds is not a local minimum. Once
the critical exponents ν and γ have been estimated through minimization, we determine the uncertainties ∆ν and ∆γ
by evaluating the inverse of the Hessian ∂2d(ν, γ) at the minimum.

We note that other measures of the quality of data collapse have been developed in Refs. S10, S11, and S12, but
are qualitatively equivalent and all correspond to estimating mutual residuals between sets of scaled data.
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SVI. STATISTICAL MOMENTS METHOD FOR COMPUTING THE LOCALIZATION LENGTH

In Secs. III A 3 and III B 3, we compare the characteristic localization lengths obtained using the minimum
eigenvalue of the distance-squared matrix D2 = Pρr

2Pρ, with those obtained using statistical moments of the real-
space projector P (r,0) = ⟨r|Pρ|0⟩. In both cases, we recover the same scaling exponent ν ≃ 0.5, as illustrated in
Fig. 3 and Figs. 7(a,b), and in the trivial regime, the localization length does not diverge as ρ → 0, as shown in
Fig. 7(c). However, despite the close connection between these two metrics, they do not yield identical values of ξ. In
this section, we explain how the statistical moments are computed, in order to shed light on this discrepancy.

The localization lengths computed using the minimum eigenvalue of the distance-squared matrix are precisely
defined via the eigenbasis of D2 = Pρr

2Pρ, and they yield a linear scaling regime with a significantly larger correlation
coefficient, compared to the projector moments method, where ξγ = ⟨rγ⟩. This can be seen visually by comparing
the left panels of Fig. 6 with the right panels of Fig. 7, for example. On the other hand, the statistical moments of
the projector yield a more approximate estimate of the localization length, since they are computed directly from the
real-space projector plots, shown in the left panels of Figs. 3 and 7.

The real-space projector is plotted with a certain spatial resolution, and hence we can denote the projector as a
discrete function f(xi), where {x} is the set of positions at which f is evaluated. In this notation, the localization
length from the γth moment of the projector is

ξ =

[∑

i

p(xi)x
γ
i −

(∑

i

p(xi)xi

)γ] 1
γ

, (S10)

where the probability p(xi) = f(xi)/
∑

i f(xi). In Figs. 3 and 7, the spatial resolution of the projectors is ∆r = 0.5
and so it is clear that appreciable sampling error is introduced by this method. Moreover, due to numerical effects, the
plotted projectors are not always precisely symmetric about r = 0, which may lead to a non-zero mean

∑
i p(xi)xi ̸= 0

that can affect the estimate of ξ.
Nevertheless, despite inherent differences between the two approaches, as well as the crude method of extracting

the moments, the values of ξ generally agree within ∼ 20% for Landau levels and ∼ 40% for the Haldane model.
The values extracted for Landau levels in Fig. 3 show closer agreement than those extracted for the Haldane model
in Fig. 7, since the Haldane model additionally suffers from lattice effects. The trivial regime comparison between
Fig. 6(c) and Fig. 7(c) shows a notably larger discrepancy, where the moments method yields a limρ→0 ξ value ∼ 2.5
times larger than the distance-squared matrix method. In this case, the unusually large difference stems from the
irregular form of the projector under this renormalization procedure, which exacerbates numerical errors.

SVII. PARAMETER DEPENDENCE OF LOCALIZATION SCALING IN CHERN INSULATORS

In Sec. III B, we study the localization scaling for the Haldane model at three different points in the phase diagram,
{ta, tb, tc}, depicted in Fig. 4(b). Our motivation for selecting these parameters sets is twofold. First, we choose
points that are diverse, i.e. we pick two points in the topological phase (ta with M = 0 and tb with M ̸= 0, such that
t2,a ̸= t2,b), and one point in the trivial phase (tc). With this selection, we can verify that the localization scaling
holds in the topological phase at different values of (t2,M), and also contrast this with behavior in the trivial regime.
Second, we choose points deep in their respective phases, such that we can obtain an accurate estimate for the scaling
exponent ν at low numerical cost. As we move towards a topological phase transition, the required system size to
recover ν ≃ 0.5 with high precision increases, and so we select parameters that facilitate an efficient convergence of
ν, using system sizes comparable to Sec. III A.

In Fig. S5, we show the localization scaling at five distinct values of M/t2 = 0, 1/2, 2, 3, 4, in the topological

phase, which gradually approach the boundary at M/t2 = 3
√
3. For comparison with the main text, we set t1 = 1

and ϕ = π/2 throughout, and compare the systems sizes L = 12, 16, 24, 28, 32. Figures S5(a,b) correspond to the
parameter sets ta and tb, whereas Figs. S5(c–e) maintain t2 = 0.2, in correspondence with tb. In contrast to the main
text, however, we do not obtain ν from a finite-size scaling collapse, since this leverages all system-size data. Instead,
we approximate ν from the gradients of trend lines in our left plots, for each L individually. Moreover, since the
scaling exponent is only recovered asymptotically in the ρ→ 0 limit, we consider the ρ domain corresponding to the
six smallest values in the Lmax linear regions of (a,b) to construct our lines of best fit. Although this method does
not yield precise estimates for ν, it does show how ν converges relative to L, for each M/t2.

From Fig. S5, we can see that ν converges most quickly for parameters deep in the topological phase, ta and tb,
which supports our choice in the main text. In these cases, we can recover an accurate estimate of ν = 0.5 using only
our chosen range of L. As we increase the value of M/t2, however, this convergence becomes more expensive. In the
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FIG. S5. Scaling for different parameter values in the Haldane model. (left) Localization length ξ(ρ) obtained for
the Haldane model, using the minimum eigenvalues of the distance-squared matrix, as described in Sec. III B 2. The scaling is
shown for a variety of parameter sets, with t1 = 1 and ϕ = π/2 corresponding to Fig. 4(b), and ρ0 = 1.5. The parameters are
chosen such that we have five distinct values of M/t2 in the topological phase, which approach the boundary at M/t2 = 3

√
3.

(a) corresponds to ta with {t2 = 0.1,M = 0}, (b) corresponds to tb with {t2 = 0.2,M = 0.1}, and the (c–e) maintain t2 = 0.2
while increasing M . (right) Scaling exponent ν from limρ→0 ξ(ρ) ∼ ρ−ν , approximated using lines of best fit in the left plots.
The lines of best fit are constructed using the ρ domain corresponding to the six smallest values in the linear regions of the
L = 32 curves in (a,b), which is shaded gray.

right panels of Figs. S5(c–e), we can see that the slope becomes mellower and therefore the convergence to ν ≃ 0.5
is slower. Moreover, the estimates of ν from small system-size data become significantly worse, where for the L = 12
curves, the absolute deviation from ν = 0.5 grows monotonically as M/t2 increases. Extrapolating the ν-L curves
for higher M/t2 values shows that we can recover the same high-precision scaling exponent at larger system sizes,
as expected. However, reaching the system sizes needed to verify the scaling exponent for parameter sets close to a
topological phase transition, is numerically inaccessible, using our current approach.
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