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The existence of bound states induced by local impurities coupled to an insulating host depends
decisively on the global topological properties of the host’s electronic structure. In this context,
we consider magnetic impurities modelled as classical unit-length spins that are exchange-coupled
to the spinful Haldane model on the honeycomb lattice. We investigate the spectral flow of bound
states with the coupling strength J in both the topologically trivial and Chern-insulating phases.
In addition to conventional k-space topology, an additional, spatially local topological feature is
available, based on the space of impurity-spin configurations forming, in case of R impurities, an
R-fold direct product of two-dimensional spheres. Global k-space and local S-space topology are
represented by different topological invariants, the first (k-space) Chern number and the R-th (S-
space) spin-Chern number. We demonstrate that there is a local S-space topological transition as
a function of J associated with a change in the spin Chern number and work out the implications
of this for the J-dependent local electronic structure close to the impurities and, in particular,
for in-gap bound states. The critical exchange couplings’ dependence on the parameters of the
Haldane model, and thus on the k-space topological state, is obtained numerically to construct local
topological phase diagrams for systems with R = 1 and R = 2 impurity spins.

I. INTRODUCTION

One of the central concepts in the theory of topo-
logical insulators [1–7] is the bulk-boundary correspon-
dence. A topologically nontrivial bulk phase enforces the
presence of gapless boundary states, which are protected
against weak symmetry-preserving perturbations or dis-
order. The existence and the number of these bound-
ary modes is determined by topological invariants, and
they are of great importance for the experimental iden-
tification of nontrivial topology. An important question
is whether or not there are also local signatures of the
topology of band insulators, i.e., whether an unambigu-
ous diagnosis of nontrivial topology is possible by observ-
ing the change of the local electronic structure due to a
zero-dimensional point defect.

The extension of the tenfold classification [3, 8, 9]
to defects of different codimensions [4] leads to a gen-
eral bulk-defect correspondence [10, 11], which guaran-
tees zero-energy excitations bound to a defect depend-
ing on the bulk topology. An example, relevant for the
present study, is a zero-dimensional point defect in a two-
dimensional Chern insulator (codimension 2), which is
topologically classified as trivial [10, 11]. Thus for the
topologically nontrivial bulk state there is no reason to
expect a topologically protected mode at zero energy lo-
calized around the defect.

However, this does not rule out the possibility of a
close relation between the presence or absence of lo-
calized impurity modes and the topological properties
of the bulk. In this context, a number of theoretical
studies [12–21] have addressed the electronic structure
in the vicinity of different types of impurities, including

other zero-dimensional defects, and of impurity lattices
for gapped, noninteracting systems in various Altland-
Zirnbauer symmetry classes to study the general condi-
tions under which the eigenenergies of the Hamiltonian
undergo a robust zero-energy crossing or cross the band
gap as a function of external parameters.

For a time-reversal symmetric Z2 quantum-spin-Hall
insulator, as described by the Kane-Mele model [2], the
reaction to a time-reversal symmetric point impurity in
the bulk has been found as to be completely different in
the two topologically distinct phases [12]. In-gap impu-
rity states appear only in the nontrivial quantum spin
Hall but not in the trivial phase. Similarly, for the
time-reversal symmetric Bernevig-Hughes-Zhang (BHZ)
model [22] the electronic structure close to generic non-
magnetic codimension-2 defects has been investigated
[17]. It was suggested that impurity bound states quite
generally can serve as a local signature of the bulk topo-
logical phase.

The spectral response to either a site or a bond impu-
rity in different two-dimensional lattice models of spinless
electrons has been studied in Ref. [21]. For the Haldane
model [23], in particular, in-gap states occur for a strong
impurity potential, if and only if the bulk system is in
a topologically nontrivial state, while for the trivial case
there are no in-gap bound states in the strong-coupling
limit. Importantly, this is not generic, as demonstrated
with several models, where the impurity response can-
not distinguish between topological trivial and nontrivial
phases.

In the present study we consider a magnetic impurity,
modelled by a classical spin S of unit length. This is
coupled via a local exchange interaction Jsi0S with ex-
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change coupling strength J to the local quantum spin si0
at a distinguished impurity site i0 of a two-dimensional
lattice electron model. The latter is chosen as the Hal-
dane model, which is trivially made spinful. For a fixed
orientation of the classical spin, say, along the z axis,
we would just have two independent copies of the non-
magnetic impurity problem, one in the (quantum) spin-
↑ and one in the spin-↓ sector. However, the entire
space of classical-spin configurations is given by a 2-
sphere S2, i.e., a closed manifold. For any Hamiltonian
H = H(S), which smoothly depends on S and which
has non-degenerate, gapped ground states on the S2 pa-
rameter manifold, one can define a first Chern number
that topologically characterizes the corresponding U(1)
ground-state bundle over S2 [24, 25]. This is referred

to as the first spin-Chern number C
(S)
1 . The spin-Chern

number is quantized with possible values in Z, which can
only change in case of a gap closure, i.e., if a ground-state
degeneracy develops on a submanifold of the classical-
spin space at a critical set of model parameters.

One major goal is to exploit this topological “S-
space” characterization in addition to the conventional
“k-space” characterization that relies on the wave vec-
tors k in the Brillouin zone forming a 2-torus (T 2) man-
ifold and that gives rise to the first (k-space) Chern

number C
(k)
1 . S-space and k-space topology provide

rather complementary, namely spatially local vs. non-
local points of view, which should be helpful in case
of an impurity in an otherwise translationally invariant
and infinitely extended system. At least in the strong
exchange-coupling limit, we expect a nontrivial S-space
topology, since for J → ∞ the local physics should be
governed by the magnetic-monopole model [26–28] in the

form Ĥmono = Jsi0S, where the spin-Chern number is

C
(S)
1 = 1, i.e., nonzero. As we will demonstrate for the

full model at finite J , there is a spatially local and non-
trivial topological (S-space) phase diagram with the crit-
ical interaction Jcrit depending on the parameters of the
Haldane model in a way that indeed reflects the (k-space)
topology. Furthermore, one can understand that the J-
spectral flow of the in-gap states bound to the impurity
must be gapless. We will argue that the S-space topol-
ogy also has implications for nonmagnetic local potential
impurities.

The spin-Chern number can be obtained by integrat-
ing the corresponding spin-Berry curvature over S2. The
spin-Berry curvature also relates to the Berry phase ac-
cumulated by the ground state of the electron system
during a closed loop in S2 traversed adiabatically [27].
At the same time it also provides a feedback on the slow
dynamics of the classical spin [29], which has recently
been studied in case of the Haldane model [25].

We extend our study to the case of several impu-
rity spins S0, . . . ,SR−1, i.e., to a multi-impurity Kondo-
Haldane model with localized quantum spins replaced by
classical spins. With this we focus on a regime, where
quantum-spin fluctuations or Kondo-screening effects can

be disregarded. For the case of R impurity spins coupled
to R different sites of the lattice, the spin-configuration
space is an R-fold direct product S2 × · · · × S2. To indi-
cate topologically different phases for a 2R dimensional
base manifold, one can invoke the R-th spin-Chern num-

ber C
(S)
R . At J = 0, we trivially have C

(S)
R = 0, while

C
(S)
R = 1 for J → ∞. We find that the correspond-

ing topological phases are separated by a finite J range,
Jcrit,1 < J < Jcrit,2, where the system is locally gapless.
The critical interactions Jcrit,1, Jcrit,2 strongly depend
on the Haldane-model parameters and are found to be
roughly an order of magnitude larger in the (k-space)
topologically nontrivial compared to the trivial phase.
Systems with R = 2 and R = 3 are studied numerically.
The paper is organized as follows. The next Secs. II

and III introduce the concept of the spin-Chern number
for systems with several classical spins in general, and
for spins coupled to the Haldane model in particular.
Sec. IV presents our results for the low-energy electronic
structure in case of a single spin. The spin-Chern num-
ber in the strong-J limit is discussed in Sec. V and the

local topological transition with a change of C
(S)
1 at a

critical coupling in Sec. VI. Sec. VII provides a discus-
sion how the S-space topological transition is affected by
k-space topology. Our results for two impurity spins in
the k-space trivial and nontrivial phases are presented in
Secs. VIII and IX, respectively. An example of a three-
impurity-spin system is discussed in Sec. X. In Sec. XI
we give a summary with an extended overall discussion
and an outlook.

II. MULTI-IMPURITY KONDO MODEL WITH
CLASSICAL SPINS AND SPIN-CHERN

NUMBER

We consider a system consisting of R classical spins
S0, ...,SR−1 of fixed length |Sm| = 1, which interact via
a local exchange coupling

Ĥint(S0, ...,SR−1) = J

R−1∑
m=0

Smsim , (1)

with the local spins sim at sites im of a non-interacting
system of itinerant electrons specified by a Hamiltonian
Ĥel. With J > 0 we choose an antiferromagnetic cou-
pling. Ĥel is constructed with the help of creation and

annihilation operators c†iσ and ciσ, where i refers to a
site of the given lattice and σ =↑, ↓ to the electron spin
projection. The orthonormal states |i, σ⟩ span the one-
particle Hilbert space. The local spin at a site i is given

by si =
1
2

∑
σσ′ c

†
iστσσ′ciσ′ , where τ = (τx, τy, τz)

T is the
vector of Pauli matrices.
The total Hamiltonian

Ĥ(S0, ...,SR−1) = Ĥel + Ĥint(S0, ...,SR−1) (2)

represents the R-impurity Kondo model with localized
quantum spins replaced by classical spins Sm. It is a
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quantum-classical hybrid with an intrinsic classical pa-
rameter manifold S = S2 × · · · × S2, given by the R-fold
direct product of 2-spheres S2 ∼= {S ∈ R3 | |S| = 1},
i.e., S is the space of all classical spin configurations,
(S0, ...,SR−1) ∈ S and a simply connected and closed
2R-dimensional manifold.

Let us assume that the many-electron ground state
|Ψ0(S0, ...,SR−1)⟩ of Ĥ(S0, ...,SR−1) smoothly depends
on (S0, ...,SR−1) and is non-degenerate and gapped on
the entire parameter set S. In this case, the R-th spin-

Chern number C
(S)
R (see below) of the ground-state bun-

dle over S is well defined and must take an integer value

C
(S)
R ∈ Z [24, 25]. C

(S)
R is a topological invariant, i.e.,

it is invariant under continuous deformations of the elec-
tronic Hamiltonian Ĥel + Ĥint(S), as long as there is no
gap closure for any spin configuration in S.

The spin-Chern number is given as

C
(S)
R =

iR

(2π)R
1

R!

∮
S
tr ΩR , (3)

where Ω = dA is the spin-Berry-curvature two-form de-
rived from the one-form A, the spin-Berry connection of
the ground-state bundle. Choosing a parametrization for
a spin configuration (S0(λ), ...,SR−1(λ)) ∈ S in terms
of polar and azimuthal angles λ = (λ0, ..., λ2R−1) ≡
(ϑ0, φ0, ..., ϑR−1, φR−1), we have

C
(S)
R =

iR

(2π)R
1

R!

∑
π

signπ

∫
dλ0 · · · dλ2R−1

∂⟨Ψ0|
∂λπ(0)

∂|Ψ0⟩
∂λπ(1)

· · · ∂⟨Ψ0|
∂λπ(2R−2)

∂|Ψ0⟩
∂λπ(2R−1)

, (4)

where the sum runs over all permutations π. A few more
details are presented in the Appendix A.

III. HALDANE MODEL AND COUPLING TO
IMPURITY SPINS

For the tight-binding electron system we choose the
(spinful) Haldane model [7, 23]. At half-filling this is
a prototypical (k-space) Chern insulator with a k-space

Chern number that can be zero or finite, i.e., C
(k)
1 = 0,±1

(per spin direction), depending on the model parameters.
Choosing the Haldane model allows us to study the im-
pact of a nontrivial (k-space) topological electronic struc-
ture on the S-space topology. Furthermore, this comple-
ments a previous study [25] of the weak-J regime of the
Haldane model coupled to R = 1 and R = 2 impurity
spins, where the spin-Berry curvature has been shown
to play a decisive role in the close-to-adiabatic real-time
dynamics.

The Haldane Hamiltonian is given by

Ĥel = M
∑
iσ

zic
†
iσciσ − t1

∑
⟨ii′⟩,σ

c†iσci′σ

− t2
∑

⟨⟨ii′⟩⟩,σ

eiξii′ c†iσci′σ , (5)

t2e+it2e i

t1 M

+M
unit cell

2
0

2
3 3

0

3 3

M
t2

C(k)
1 = 1 C(k)

1 = + 1

C(k)
1 = 0

FIG. 1: Left: Haldane model. A sites on the honey-
comb lattice are represented by blue dots, on-site potential:
+M . B sites: red dots, potential −M . Nearest-neighbor
hopping t1: black lines. Next-nearest-neighbor hopping t2
with additional Peierls factor e−iξ (eiξ) for hopping in clock-
wise (light-purple) or counterclockwise direction (light-blue
arrows). Right: Phase diagram in the M/t2-ξ plane with triv-

ial (C
(k)
1 = 0, gray) and nontrivial topological phases with k-

space Chern numbers (C
(k)
1 = ±1, light-green/light-orange),

see Ref. [23].

see Fig. 1. Here, i, i′ run over the L sites of the
two-dimensional bipartite honeycomb lattice. M is the
strength of a staggered on-site potential, where the sign
factor zi = +1 for a site i in the A sublattice and zi = −1
for i in the B sublattice. For M ̸= 0 the on-site poten-
tial term induces different occupations on A and B sites.
This Semenoff term breaks inversion symmetry [30]. Fur-
ther, t1 denotes the hopping amplitude between nearest
neighbors ⟨ii′⟩ and sets the energy scale, i.e., we choose
t1 = 1. The next-nearest-neighbor hopping eiξii′ t2 with
real hopping amplitude t2 includes a phase factor, where
ξii′ = −ξ for hopping from i′ to i in clockwise direction
and where ξii′ = ξ for counterclockwise direction. This
term, for t2 ̸= 0 and ξ ̸= 0,±π, breaks time-reversal
symmetry and thus allows for a nonzero (k-space) Chern
number, see the Haldane phase diagram [23] in Fig. 1.
The total flux of the corresponding orbital magnetic field
through a unit cell vanishes. We set t2 = 0.1 throughout
the paper.

Adding the interaction term Ĥint(S0, ...,SR−1) im-
plies that translational symmetries are broken so that
for J ̸= 0 the k-space Chern number is no longer well de-
fined. Furthermore, via Ĥint(S0, ...,SR−1) the classical
spins act as local magnetic fields, and thus time-reversal
symmetry is broken for J ̸= 0 even if t2 = 0. A finite t2
also breaks particle-hole symmetry of the model (except
for ξ = ±π/2). We note that Eq. (5) is the Hamiltonian
of a spinful Haldane model consisting of two identical
copies, one for spin projection σ =↑ and one for σ =↓,
respectively. Spin projections are mixed via the interac-
tion term.

We also add a chemical-potential term −µN̂ to the
Hamiltonian Eq. (5), where N̂ is the total-particle num-
ber. Any value of the chemical potential µ inside the bulk
band gap ensures a half-filled system. Its exact position
within the gap, however, is relevant for the occupation of
in-gap impurity states induced by the exchange interac-
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tion with the classical spins. As the impurity concentra-
tion R/L (here R ≤ 3) is thermodynamically irrelevant,
we set µ to its zero-temperature bulk value, i.e., µ lies
exactly in the center of the bulk band gap. A different
choice of µ will not qualitatively change the phase dia-
grams discussed below.

The total Hamiltonian, Eq. (2), can be cast into the
form

Ĥ(S0, ...,SR−1) =
∑
ii′σσ′

tii′σσ′(S0, ...,SR−1)c
†
iσci′σ′ ,

(6)
where

tii′σσ′(S0, ...,SR−1) = tii′δσσ′ +
1

2
δii′J

R−1∑
m=0

τσσ′Sm (7)

are the elements of the effective hopping matrix
t(S0, ...,SR−1). Here, tii′ are the elements of the hopping
matrix of the Haldane model, and τ is the vector of Pauli
matrices. The one-particle energies εn(S0, ...,SR−1) are
obtained by numerical diagonalization of t(S0, ...,SR−1)
for arbitrary spin configurations. Note that due to the ex-
plicit breaking of translational symmetries, the eigenen-
ergies εn cannot be classified according to the wave vector
k.

IV. LOW-ENERGY ELECTRONIC
STRUCTURE FOR A SINGLE IMPURITY SPIN

We start the discussion with a single impurity spin
(R = 1), and use the notation S ≡ S0 for simplicity. The
low-energy electronic structure of the model as a function
of the local exchange-coupling strength J is obtained by
diagonalization of t(S), see Eq. (7). Calculations have
been performed for a system where the impurity spin is
coupled to an A site i0 of the hexagonal lattice. Due to
periodic boundary conditions, results do not depend on
the choice of the unit cell but will be different in gen-
eral for impurity spins coupled to A or B sites. However,
the roles of A and B sites are interchanged under a sign
change, M → −M , ξ → −ξ, of both, the staggered po-
tential and the phase, respectively.

Fig. 2 displays the energies εn for generic parameters
ξ = π/4, t2 = 0.1 (in units of t1 ≡ 1) in a small en-
ergy window around µ ≈ −0.21, while the widths of the
valence band, Wval ≈ 2.2, and of the conduction band
Wcond ≈ 3.5 are much larger. The total width of the bulk
electronic structure, including the band gap ∆ ≈ 0.37 is
given by W ≈ 6.1. Apart from the (J-independent) bulk
band gap,

∆ = 2|M − 3
√
3t2 sin ξ| = 2|M −Mcrit| , (8)

(for M, t2 > 0 and 0 < ξ < π), and small gaps originating
from the finite system size (L = 2 · 392 = 3042 sites), we
mainly see the J-dependence of various in-gap states.

We have picked three different mass parameters M to
demonstrate that the in-gap states strongly depend on
the underlying model for the electron system. The bulk
band gap ∆ is the same in all cases. In particular, for
M = −0.5Mcrit and M = +0.5Mcrit (left and middle
panel), we have systems with different local occupations
of the A-impurity site,

ni0 =
∑

σ=↑,↓

c†i0σci0σ , (9)

namely, ⟨ni0⟩ > 1 and ⟨ni0⟩ < 1, respectively. The sys-
tems withM = ±0.5Mcrit andM = 1.5Mcrit (left/middle
and right panel) are in a nontrivial and trivial k-space
topological state, respectively, as characterized by the re-

spective k-space Chern numbers C
(k)
1 = +1 and C

(k)
1 = 0

(see also Fig. 1).
We have computed the spin-Chern number numeri-

cally, see Eqs. (3), (4) and Appendix A. At J = 0, the

first spin-Chern number vanishes in all cases, C
(S)
1 = 0.

This is trivial since the spin manifold S is completely
disconnected from the electron degrees of freedom in this
case, and since the half-filled Haldane model has a non-
degenerate ground state.

As J is increased, we furthermore find that the system
undergoes a spatially local topological transition, indi-
cated by a sudden jump of the spin-Chern number to

C
(S)
1 = 1 at a finite critical exchange coupling Jcrit, and

stays in this phase all the way to the strong-coupling limit
J → ∞. In fact, Jcrit is given as the coupling strength,
where an in-gap state crosses the chemical potential, i.e.,
at a gap closure, where the many-electron ground-state
energy becomes degenerate. Exactly at J = Jcrit and
for a given S, there are two orthogonal many-electron
ground states of the same energy. Since Ĥel + Ĥint(S)
does not contain two-electron interaction terms, these are
antisymmetrized product states, which differ in the occu-
pation of the in-gap one-particle state by ±1. Note that
a different choice of µ, the value of Jcrit would change as
well.

The quantum-classical Hamiltonian in Eq. (2) is SO(3)
symmetric. It is invariant under a global simultaneous
rotation of the classical spins and of the quantum spin
degrees of freedom around an arbitrary axis given by a
unit vector n and a rotation angle φ. In the classical
sector and for a single spin (R = 1), the rotation is
represented by the SO(3) matrix On(φ) = exp(Tnφ)
acting in the spin-configuration space S. Here, T are
real and skewsymmetric 3 × 3 matrices generating the
so(3) with [Tα, Tβ ] =

∑
γ=x,y,z ϵαβγTγ . In the quan-

tum sector, the rotation is represented by the unitary
operator Un(φ) = exp(−istotnφ) with the total electron
spin stot =

∑
i si. An immediate consequence of the in-

variance Un(φ)Ĥ(On(φ)S)U
†
n(φ) = Ĥ(S) is the SO(3)-

induced degeneracy of the eigenenergies: εn(S) = εn,
i.e., the one-particle energies and thus the N -electron
ground-state energy are independent of S.

In particular, the one-electron energy of an in-gap state
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n

M = -0.5Mcrit
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(b)
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J

M = 0.5Mcrit
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J

M = 1.5Mcrit
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FIG. 2: One-electron energies as a function of J , as obtained by diagonalization of the effective hopping matrix Eq. (7) for
a lattice with periodic boundaries consisting of 39 × 39 unit cells, each containing an A and a B site. A single impurity spin
S (R = 1) is coupled to an A orbital at site i0. Calculations for various mass parameters M/Mcrit of the Haldane model as
indicated (Mcrit = 3

√
3t2 sin ξ). M = ±0.5Mcrit: (k-space) topologically nontrivial state; M = 1.5Mcrit: trivial state. Further

parameters: ξ = π/4, t2 = 0.1, t1 = 1. The chemical potential µ ≈ −0.21 is located in the middle of the bulk band gap (thin
black line). Note that only the low-energy electronic structure is displayed with occupied (red) and unoccupied states (blue).
In-gap bound states are labelled by letters (a) – (e). For each of the three considered mass parameters, there is a spatially
local (S-space) topological transition at a critical interaction strength Jcrit, at which an in-gap state, i.e. in-gap state (b), (c),
or (e), respectively, crosses the chemical potential (color change from red to blue or vice versa).

actually represents the energy of all rotated one-particle
states on the whole S2 manifold. Hence, one can as-

sign a (single-electron) spin-Chern number c
(S)
1 to each

in-gap state. As the model (2) is noninteracting, single-
electron spin-Chern numbers are additive, and there is a

nonzero change of the (total) spin-Chern number C
(S)
1 at

Jcrit, when the in-gap state crossing the chemical poten-

tial carries a finite c
(S)
1 ̸= 0.

For increasing J , the change is ∆C
(S)
1 = −c

(S)
1

(∆C
(S)
1 = +c

(S)
1 ), if the in-gap state crosses µ from below

(from above), since the occupation of the state changes
from 1 to 0 (from 0 to 1). For the different in-gap states

in Fig. 2 (see the labels at the in-gap states) c
(S)
1 = +1 for

state (a), c
(S)
1 = −1 for state (b), c

(S)
1 = +1 for state (c),

c
(S)
1 = −1 for state (d), and c

(S)
1 = +1 for state (e). In all

cases this results in ∆C
(S)
1 = +1. An exception, where

there is no crossing at all, is discussed later. Note that a

different choice of µ would not change ∆C
(S)
1 : For a suf-

ficiently lower µ, for example, state (d) with c
(S)
1 = −1

(middle panel) would cross µ from below, while state (c)

with c
(S)
1 = +1 would remain unoccupied rather than

crossing µ from above, such that still ∆C
(S)
1 = +1.

V. STRONG-J LIMIT AND MAGNETIC
MONOPOLE MODEL

With increasing J , there is a local spin moment ⟨s2i0⟩
forming in the electron system at site i0. This more and
more becomes the moment of a rigid quantum spin-1/2,
i.e., ⟨s2i0⟩ → 3/4, and, at the same time, gets more and
more polarized. As a consequence, the occupation ni0 =∑

σ=↑,↓ c
†
i0σ

ci0σ of the A site i0 must approach half-filling,

ni0 → 1, in the strong-J limit.
Right below the respective critical coupling, J → Jcrit,

J < Jcrit, we find ⟨si0z⟩ = −0.46 and ⟨ni0⟩ = 0.99 for
M = −0.5Mcrit (Fig. 2, left panel, Jcrit ≈ 12.9), ⟨si0z⟩ =
−0.50 and ⟨ni0⟩ = 1.00 for M = 0.5Mcrit (middle, Jcrit ≈
94.8), and ⟨si0z⟩ = −0.40 and ⟨ni0⟩ = 0.92 for M =
1.5Mcrit (right, Jcrit ≈ 8.2). In all three cases, this is
already close to the J → ∞ saturation values.

In the extreme limit J → ∞, hopping of electrons from
and to the site i0 is dynamically suppressed, and the
local physics at i0 is perfectly described by the effective
Hamiltonian

Ĥmono = JSsi0 (10)

with a rigid quantum spin si0 with spin quantum number
s = 1/2. This model, a spin 1/2 in an external field (here
given by JS), is well known and has served as a paradig-
matic model of a magnetic monopole [26–28]. The spin-
Berry curvature of the monopole model is computed eas-
ily [27].

In this context, we would like to emphasize a helpful
analogy with magnetostatics [27, 28]: We note that for
R = 1 the spin-Berry curvature can be seen as a three-
component vector field which is obtained as the curl of
the spin-Berry connection. The latter takes the form of
the vector potentialA(r) of a magnetic point charge qmag

located at the origin r = 0,

ρmag(r) = qmagδ(r) , (11)

and the Berry curvature takes the form of the magnetic
field B(r) induced by that point charge. This analogy
to magnetostatics with hypothetical magnetic charges or
magnetic charge densities ρmag(r) but without currents,
i.e., divB(r) = µ0ρmag(r) and curl B(r) = 0, can be
strengthened by using the notation

r ≡ JS , (12)
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with r ∈ R3, such that Ĥmono = Ĥmono(r) = si0r.
With this, the spin-Berry curvature B is a vector field

on r space and, for r ̸= 0, is obtained via

B(r) = ∇r ×A(r) (13)

from the spin-Berry connection A(r) = i⟨Ψ(r)|∇r|Ψ(r)⟩
of the U(1) bundle of ground states |Ψ(r)⟩ of the
monopole model, and one finds

B(r) =
µ0

4π
qmag

r

|r|3
. (14)

The spin-Chern number is obtained as the total magnetic
flux through a two-dimensional surface in r space enclos-
ing the magnetic charge, e.g., through a sphere of radius
r0. We get

C
(S)
1 =

1

2π

∮
|r|=r0

B(r)r2 dr̂ = 1 , (15)

if we set qmag = 2π/µ0. The analogy with magnetostatics

will be helpful below. Note that we also get C
(S)
1 = 1 from

Eq. (3) numerically.
In the J → ∞ limit, the rest of the system, i.e., the

Haldane model without a single site i0, does not cou-
ple to the impurity-spin manifold S at all and thus has

spin-Chern number C
(S)
1,rest = 0. We conclude that the

spin-Chern number of the full model, Eq. (2), can be
computed analytically for a single impurity spin in the
limit J → ∞. The magnetic-monopole model Eq. (10)

applies, and yields C
(S)
1 = 1. Together with the fact that

C
(S)
1 = 0 at J = 0 in the full model, this explains the ne-

cessity of a spatially local topological transition and thus
of a gap closure at some intermediate J = Jcrit, which
must be realized by an in-gap state crossing µ.

VI. TOPOLOGICAL TRANSITION AT Jcrit

The simple monopole model Eq. (10) predicts C
(S)
1 = 1

for all J > 0 and an undefined spin-Chern number at
J = 0 due to the two-fold degenerate ground state of
Ĥmono. In the full model, however, the gap closure at
the topological transition takes place at a finite critical
exchange coupling Jcrit > 0. Furthermore, at J = Jcrit
the gap does not close at a single point in r space but
actually simultaneously on the whole surface |r| = SJcrit.
This infinite degeneracy of the ground-state energy at
Jcrit is caused by the SO(3) rotation symmetry of the
total Hamiltonian Eq. (2) and the resulting degeneracy
of the eigenenergies, εn(S) = εn, and thus of the many-
electron ground-state energy. For J = Jcrit and at each
fixed S ∈ S2, there is a twofold degeneracy of the ground-
states energies in the N and the N +1 (or N −1) sectors
of the Fock space. This degeneracy is also protected by
particle-number conservation.

For the magnetostatics analogy [27, 28] this implies
that the magnetic charge qmag is uniformly distributed

over the 2-sphere in r space with radius JcritS, i.e.,

ρmag(r) = σmagδ(r − JcritS) (16)

with the magnetic surface charge density

σmag =
qmag

4πJ2
critS

2
. (17)

Solving divB(r) = µ0ρmag(r) with the help of the diver-
gence theorem and the SO(3) symmetry, yields the Berry
curvature,

B(r) =
µ0

4π
qmag

r

|r|3
Θ(r − JcritS) , (18)

where Θ is the Heavyside step function. Since r = JS,
we have Θ(r − JcritS) = Θ(J − Jcrit). Hence, the field
B(r) vanishes in the interior of the critical sphere, J <
Jcrit, while it takes the same value as for a magnetic point
charge, if J > Jcrit, i.e., outside the critical sphere.
The magnetic flux through the sphere with radius JS,

divided by 2π, is the spin-Chern number:

C
(S)
1 =

1

2π

∮
|r|=JS

B(r)r2 dr̂ = Θ(J − Jcrit) . (19)

It jumps from C
(S)
1 = 0 for J < Jcrit to C

(S)
1 = 1 for

J > Jcrit.
The explicit expression for the Berry connection cor-

responding to the curvature Eq. (18) is given by [26]

A(r) =
1

2r2
e× r

1 + er/r
, (20)

for J > Jcrit, and A(r) = 0 for J < Jcrit. One easily
verifies B(r) = curl A(r) = 1

2r/r
3. The unit vector e is

arbitrary. There is a Dirac string singularity at r = −re,
i.e., on the negative e axis for |z| > JcritS, which can
be moved (but not removed) by gauge transformations
A(r) 7→ A(r) + grad Λ(r) with an arbitrary scalar field
Λ. Inside the critical sphere we have curl A(r) = 0, and
thus there is a gauge such thatA(r) = 0. The connection
is discontinuous on the critical sphere and along the Dirac
string stretching from a point on the critical sphere to
infinity.

VII. RELATION TO k-SPACE TOPOLOGY

The transition is driven by the local electronic struc-
ture in the vicinity of the impurity spin. The latter acts
like a local magnetic field JS, which locally spin-polarizes
the electron system. This local Zeeman effect lifts the de-
generacy of the total-spin multiplets present in the spin-
SU(2) symmetric model at J = 0.
As a result, two states with high excitation energies

are formed: Irrespective of the parameters of the elec-
tronic system, a spin-↓ state, moving down in energy
with increasing J , splits off from the lower edge of the
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valence band at a coupling strength that is roughly given
by the valence band width Wval. Vice versa, a spin-↑
state, moving up in energy, splits off from the upper edge
of the conduction band for J ∼ Wcond. Here, we have as-
sumed that the impurity spin is oriented in +z direction.
Note that these two states are not visible in Fig. 2, where
only the low-energy electronic structure is shown. Both
high-energy states are bound states and exponentially lo-
calized in the vicinity of i0. They get fully localized at
the site i0 only in the J → ∞ limit and then constitute
the magnetic-monopole model Eq. (10).

The physical cause of the low-energy localized states
within the bulk band gap is more intricate. We find that
these very much depend on the k-space topological phase
of the electron system characterized by the first k-space

Chern number C
(k)
1 . In case of a topologically nontrivial

electron system with C
(k)
1 = ±1, we always find two in-

gap states for sufficiently strong J , see the states (a),
(b) and (c), (d) in Fig. 2. They do not merge with the
bulk continuum and stay within the gap. Ultimately, for
J → ∞, their energies become degenerate.

For C
(k)
1 = 0, on the other hand, there is a single in-

gap state, which fully crosses the gap as function of J .
This merges with the conduction or valence-band bulk
continuum at a finite J , such that there is no in-gap state
left in the J → ∞ limit. State (e) in the right panel of
Fig. 2 (M/Mcrit = 1.5) provides an example.

For infinite J , an impurity spin coupled to i0 induces a
hard zero-dimensional defect in both, the spin-↑ and the
spin-↓ copy of Haldane model. According to the ten-fold
way classification, a codimension-2 defect in a (spatially)
two-dimensional model in Altland-Zirnbauer class A is
topologically classified as trivial [10, 11]. Hence, with
reference to the bulk-defect correspondence, there is no
reason to expect a topologically protected defect mode

localized around i0 for the C
(k)
1 = ±1 nontrivial phase.

On the other hand, for a soft defect with finite im-
purity strength, it is well known that impurity bound
states can serve as a local signature of the bulk topolog-
ical phase. This has been demonstrated explicitly, e.g.,
for codimension-2 defects in two-dimensional Z2 insula-
tors [12, 17].

For the present case of a magnetic point impurity in
a Chern insulator, one may anticipate a close relation
between the bulk Chern number and the existence of in-
gap impurity bound states as well. Indeed, such states
were observed for the Haldane model with various types
of spinless local impurity potentials [21], and their exis-
tence or absence was found to be related to the k-space
topology of the bulk system.

Here, we provide numerical evidence and a quite intu-
itive understanding that in the strong-J limit there must
be a spin-↑ and a spin-↓ in-gap state localized around the
impurity, predominantly on the nearest-neighbor sites of
i0, if and only if the bulk electronic structure is topolog-
ically nontrivial.

To start the discussion, we note that in the infinite-J

limit, the low-energy electronic structure on the energy
scale set by t1 and t2, is exactly given by the (spinful)
Haldane model with a hole at i0. Let us now consider
a hole with a macroscopically large radius rh (see also
Ref. [15]). Its edge is one-dimensional and, according
to the bulk-boundary correspondence, necessarily carry-
ing a single dispersive chiral mode (per spin projection),

which bridges the bulk band gap, if C
(k)
1 = ±1. Due to

its dispersion, the number of in-gap states qNedge, local-
ized in the vicinity of the edge of the hole and forming
the mode, is given by a finite fraction q of the total num-
ber of edge sites Nedge ∝ 2πrh. Shrinking the hole to a
single lattice site essentially means increasing discretiza-
tion of the edge in real space and, consequently, increas-
ing thinning of the dispersive edge-mode spectrum until
ultimately only a single impurity bound state (per spin
projection) remains.

At infinite J , the spin-↑ and the spin-↓ bound states
have the same energy, as the classical spin only couples to
the system at i0, i.e. “inside the hole”, such that there
cannot be any spin splitting in the rest of the system.
At finite but strong J , one may invoke a perturbative
argument: The correction of the bound-state energies via
second-order virtual-hopping processes onto the impurity
site i0 and back is of the order of t21/J . In fact, the
energies of the in-gap states (a), (b) and of (c), (d) in
Fig. 2 are nearly proportional to 1/J for strong J , and
the correction is negative (positive) for spin-↑ (spin-↓)
states.

The thinning of the dispersive edge-mode spectrum is
demonstrated with Fig. 3. We have performed calcu-
lations for the Haldane model, where the sites within a
small cluster centered around i0 have been removed. The
cluster includes the site i0 and all sites linked to i0 by r
or less nearest-neighbor hops on the honeycomb lattice,
such that r, with respect to the honeycomb metric, is the
radius of the hole.

The low-energy electronic structure of the Haldane
model with a hole is identical with the low-energy elec-
tronic structure of the Haldane model with classical spins
coupled to each of the hole sites with an infinitely strong
local exchange interaction J → ∞. The hole degrees of
freedom are dynamically decoupled from the low-energy
sector.

For the largest considered hole radius r = 9 (last
panel), the inside of the hole consists of 136 (removed)
sites (green circles) while the first outer shell (violet cir-
cles) at distance r = 10 from i0 is formed by 3r = 30
sites, all belonging to sublattice A (full circles). We see
that for any mass parameter with −Mcrit < M < Mcrit

(light orange in Fig. 3), i.e., in the nontrivial phase, there
are states inside the M -dependent band gap at almost
equidistant energies. The equidistance corresponds to
the fact that the boundary mode in the Haldane model
has an nearly linear dispersion. In the r → ∞ limit, the
states would densely fill the band gap. For smaller r,
e.g., for r = 2 (second last panel), there is no qualita-
tive change of the spectral flow with M , except for the
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n r = 0
n r = 1

n r = 2

2 1 0 1 2
M / Mcrit

n r = 9

FIG. 3: One-particle energies as function of the mass pa-
rameter M (left panels) for the Haldane model with a “hole”
centered around site i0 with radius r = 0, 1, 2, 9 (panels from
top to bottom). See text for precise definition of r. The hole
(right panels) is generated by cutting the hopping to and re-
moving “hole sites” (green). Violet sites: The first shell out-
side the hole. Full/pale circles: A/B sites. Parameters as in
Fig. 2. Straight red and blue lines indicate the M -dependent
bulk band gap. Note that energies εn are twofold spin degen-
erate.

fact that the number of in-gap states is reduced with the
lesser number of edge sites.

The overwhelming weight of an in-gap state is right
on the edge, i.e., on the first outer shell (violet sites),
while the rest of the weight is small and further decreases
exponentially with increasing r. Due to the bipartiteness
of the honeycomb lattice, the edge consists only of A (B)
sites for even (odd) r. This implies that the in-gap state
energies must almost linearly increase (decrease) with M
for even (odd) r. As is seen in the figure, this is nicely
verified by the calculations.

Shrinking the hole, we finally get a single (spin-
degenerate) impurity mode mainly localized on the three
nearest neighbors of i0, see top panel of Fig. 3. This is
the in-gap mode that is seen in Fig. 2 (left and middle)
for strong J , where it is slightly spin-split, see states (a),
(b) and states (c), (d). As described, it is the remnant of
the topologically protected chiral mode localized on the
one-dimensional boundary of a hypothetical defect, the
big hole with infinite r. It is thus rooted in the topolog-
ical state of the bulk system, and in the bulk-boundary
correspondence for a codimension-1 defect.

On the other hand, it cannot be understood within the
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FIG. 4: Critical interaction Jcrit (color code) for the spatially

local topological transition from the C
(S)
1 = 0 phase at weak

J to the C
(S)
1 = 1 phase at strong J , depending on M and ξ.

Results for a single classical spin (R = 1). Further parameters
as in Fig. 2.

ten-fold way classification as the topologically protected
defect mode localized at the real zero-dimensional defect,
the small hole at i0 of radius r = 0. The latter interpre-
tation would necessarily imply that the mode resides at
µ. As is seen in Fig. 3 (top), however, its energy changes
with M . This is consistent with the bulk-defect corre-
spondence [10, 11] for codimension-2 defects, i.e., with
the absence of such a topological mode.

Finally, we briefly discuss the topologically trivial case,

C
(k)
1 = 0. Here, no in-gap state centered around i0 is

found for strong J , see the ranges M < −Mcrit and M >
Mcrit in Fig. 3. This corresponds to the absence of a
dispersive edge mode at the one-dimensional boundary
of a Chern insulator. The necessary change of the spin-

Chern number from C
(S)
1 = 1 at J = ∞ to C

(S)
1 = 0

at J = 0, however, enforces the existence of an in-gap
state in some intermediate coupling-strength range with
an energy bridging the band gap as function of J , see
state (e) in Fig. 2, right. This state is localized in the
vicinity of i0 but has much less weight right at i0 as
compared to the high-energy bound states.

The critical interaction Jcrit, at which the spin-Chern

number jumps from C
(S)
1 = 0 to C

(S)
1 = 1, i.e., from its

weak- to its strong-J value, is determined by the in-gap
states and their J dependence and thus by the details
of the bulk electronic structure of the host system. We

have numerically determined C
(S)
1 as a function of J on a

fine grid in the ξ-M space of model parameters, keeping
the next-nearest-neighbor hopping fixed at t2 = 0.1. The
critical coupling Jcrit is displayed in Fig. 4, see the color
code.

The asymmetry of the phase diagram with respect to
M solely stems from the positioning of the impurity. If
the impurity spin were coupled to a B site, the same
phase diagram would result, but mirrored on the M = 0
axis.

Generally, the local topological transition to a finite



9

J

0.6

0.4

0.2

0.0

0.2

n

M = 1.5Mcrit, = 0

(a) (b)

J

M = 1.5Mcrit, = 3 /4

(a) (b)

0 5 10 15 20 25 30 35 40
J

0.6

0.4

0.2

0.0

0.2

n

M = 0.5Mcrit, = 0

(c)(d)

(e)
(f)

0 5 10 15 20 25 30 35 40
J

M = 0.5Mcrit, = /4

(c)(d))

(e)
(f)

FIG. 5: Low-energy spectrum of one-electron energies as a function of J as in Fig. 2 but for two impurity spins S0 and S1

coupled to next-nearest-neighbor sites on the honeycomb lattice (both A sites). Calculations for various mass parameters and
angles ϑ enclosed by S0 and S1 as indicated. Further parameters: ξ = π/4, t2 = 0.1, t1 = 1, 39 × 39 unit cells, µ ≈ −0.21
(thin black line). In-gap bound states are labelled by letters (a) – (e). State (f) belongs to the bulk continuum. In the k-space
trivial phase, states (a) and (b) fully cross the gap within a finite J range. Their energy splitting shrinks with increasing ϑ
and vanishes for ϑ = π. In the k-space nontrivial phase, states (c) and (d) as well as states (e) and (f) form Zeeman-split pairs
with degenerate energies for J → ∞.

spin-Chern number requires a strong exchange coupling,
roughly of the order of the band width or stronger.
From the preceding discussion, however, one would ex-
pect that Jcrit is typically stronger if the host system is in
a (k-space) topologically nontrivial phase, since the pres-
ence of the spin-split in-gap states is understood within
a strong-coupling picture opposed to the in-gap state
present in the (k-space) topologically trivial phase, which
typically bridges the bulk gap in some intermediate-J
regime. This expectation is in fact supported by the
results shown in Fig. 4, where the k-space topological
phase-transition line of the pure Haldane model is indi-
cated by the thick gray lines (see also Fig. 1). In fact,
Jcrit is typically about an order of magnitude larger in
the Chern insulating phase.

For certain parameters, Jcrit even becomes infinite,
see the one-dimensional curve of white pixels in the ξ-
M plane in Fig. 4. On this curve, the Zeeman pair of
spin-↑ and spin-↓ in-gap states that appears for strong
J in the (k-space) topological phase is symmetrically lo-
cated around the chemical potential, such that both in-
gap states do not cross µ as a function of J . At the point
ξ = π/2 and M = 0, for example, this can be easily seen:
Here, particle-hole symmetry requires µ = 0 and a sym-
metric spin splitting of the in-gap states around µ, which
implies Jcrit = ∞. For ξ ̸= π/2, there is a unique finite
M such that the in-gap states do not cross µ.

VIII. TWO IMPURITY SPINS AND (k-SPACE)
TRIVIAL PHASE

For R = 2 classical spins the parameter manifold S =
S2×S2 is four dimensional. We use a parametrization of
S with two pairs of polar and azimuthal angles specifying
the positions of the two impurity spins S0 and S1 on
the respective 2-spheres. The second spin-Chern number

C
(S)
2 is then obtained from Eq. (3) (see also the Appendix

A).

C
(S)
2 must vanish for J = 0, since the manifold of spin

configurations S is completely decoupled from the elec-
tron degrees of freedom. For J → ∞, on the other hand,
the local physics at the two sites i0 and i1, where S0 and
S1 are coupled to, is captured by

Ĥ2−mono = JS0si0 + JS1si1 . (21)

The rest of the system, a Haldane model with two holes

at i0 and i1, does not connect to S, and hence C
(S)
2,rest = 0.

The second spin-Chern number of the two isolated mag-
netic monopoles, Eq. (21), is easily computed and is
seen to factorize into the product of the two respec-
tive first spin-Chern numbers associated with the isolated
monopoles. Hence, for J → ∞

C
(S)
2 =

(
C

(S)
1

)2

= 1 (22)

is the second spin-Chern number of the entire system.
We conclude that there must be a transition between two
topologically different local phases as a function of J . We
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also note that the same factorization takes place at finite
J in the infinite-distance limit, where the two-impurity
problem decouples into two single-impurity problems.

For the numerical calculations, parameters are chosen
as in the single-spin (R = 1) case, see Fig. 2. For i0 and
i1 we choose two second-nearest-neighbor sites, both on
the A sublattice. The resulting low-energy spectrum of
one-particle energies εn around µ ≈ −0.21 as a function
of J is shown in Fig. 5 for two different mass parameters
M . For M = 1.5Mcrit (top panels), results for two differ-
ent spin configurations with ϑ = 0 (left) and ϑ = 3π/4
(right) are displayed, while ϑ = 0 (left) and ϑ = π/4
(right) are considered for M = 0.5Mcrit (bottom). Here,
ϑ is the angle enclosed by S0 and S1. Due to the SO(3)
symmetry of the Hamiltonian, the energies are invariant
under independent rotations of S0 and S1, which leave
S0S1 = cosϑ constant, i.e., , εn(S0,S1) = εn(ϑ). This
invariance can also be exploited for a simplified evalua-
tion of the integration in Eq. (A11) of the Appendix.

We first discuss the (k-space) trivial phase of the host

system, C
(k)
1 = 0, see the upper panels for M = 1.5Mcrit.

Opposed to the case of a single impurity spin, we now
find two in-gap states, which as function of J fully bridge
the bulk band gap, see states (a) and (b) in Fig. 5. For
ϑ = 0, these states cross the chemical potential at criti-
cal couplings J1(ϑ = 0) ≈ 6.0 and J2(ϑ = 0) ≈ 12.3, re-
spectively. With increasing ϑ, see the upper right panel
in Fig. 5 for ϑ = 3π/4, the critical coupling J1(ϑ) in-
creases while J2(ϑ) decreases, until at ϑ = π they coin-
cide, J1(π) = J2(π).

The latter observation can be understood as follows:
For ϑ = π the impurity spins are collinear. Hence, the z-
component of the total electron spin stot,z is conserved,
and the two impurity bound states have a well-defined
and in fact opposite spin-projection quantum numbers.
This prevents hybridization of the bound states, and
since the states can be mapped onto each other by a
symmetry transformation of the system, namely the com-
bination of spin flip ↑↔↓ and mirroring at an axis per-
pendicular to and in the middle of the connecting line
between the impurities, their energies must be degener-
ate for any J , which implies that they cross µ at the same
critical J . For smaller ϑ, the hybridization is nonzero and
the strongest for ϑ = 0, where the difference between J2
and J1 is the largest.

The ϑ dependence of the critical couplings is displayed
in the upper panel of Fig. 6. We see that within that crit-
ical range Jcrit,1 < J < Jcrit,2, given by Jcrit,1 = J1(ϑ =
0) ≈ 6.0 and Jcrit,2 = J2(ϑ = 0) ≈ 12.3, the system is
gapless and that the second spin-Chern number remains
undefined. This gapless phase separates the trivial phase

at J < Jcrit,1 ≈ 6.0 with C
(S)
2 = 0 and the nontrivial

phase at J > Jcrit,2 ≈ 12.3 with C
(S)
2 = 1.

The gapless phase is located on the J axis around the
critical coupling Jcrit of the R = 1 single-impurity sys-
tem, as is obvious by comparing the upper panels in Fig.
5 with the right panel of Fig. 2. This is easily under-

FIG. 6: Boundaries between colored areas: critical ex-
change couplings J1(ϑ) and J2(ϑ), at which the two in-gap
states cross µ, as function of the angle ϑ enclosed by S0 and
S1. Upper panel: M/Mcrit = 1.5 (trivial k-space topology).

C
(S)
2 = 0 for J < Jcrit,1 ≈ 6.0 (green line), C

(S)
2 = 1 for

J > Jcrit,2 ≈ 12.3 (red line). Lower panel: M/Mcrit = 0.5

(nontrivial). C
(S)
2 = 0 for J < Jcrit,1 ≈ 14.2 (green line),

C
(S)
2 = 1 for J > Jcrit,2 ≈ 20.3 (red line).

stood as a consequence of the infinite-distance limit of
the R = 2 system: With increasing distance between the
sites i0 and i1, the local electronic structure around the
two impurities disentangles at any J , the J-dependent
energies of the two in-gap states become degenerate, and
the gap-closure position becomes independent of ϑ.

IX. TWO IMPURITY SPINS, k-SPACE
NONTRIVIAL PHASE

Let us now turn to the (k-space) topologically nontriv-
ial case. In the infinite-distance limit, there are four in-
gap states in the strong-J regime, i.e., two slightly spin-
split states localized around i0 and two localized around
i1. Both spin pairs represent the remnants of topologi-
cally protected chiral modes localized at the boundaries
of two big holes, as discussed above. The energies of the
in-gap states localized around different positions i0 and
i1 are degenerate in this limit.
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FIG. 7: Lower critical interaction Jcrit,1 (color code) for the

spatially local topological transition from the trivial C
(S)
2 = 0

phase at weak J to the gapless phase with undefined spin-
Chern number at intermediate J . Calculation on a ξ-M grid
for a smaller system consisting of 9× 9 unit cells. R = 2.

With decreasing distance and increasing overlap be-
tween the in-gap states, this degeneracy is lifted by form-
ing bonding and antibonding linear combinations, such
that two spin pairs of in-gap states at different ener-
gies reside in the bulk gap at strong J . When i0 and
i1 are nearest neighbors on the honeycomb lattice, they
are rather forming a single two-site hole. As can be seen
from Fig. 3, there is a single in-gap state in case for a
four-site hole (r = 1) at M/Mcrit = 0.5. Hence, in case
of a nearest-neighbor two-site hole, one would also expect
a single pair of in-gap states. This implies that upon de-
creasing the distance, one pair must have merged with
the continuum of delocalized bulk states.

The case of next-nearest neighbors is on the brink. As
is seen in the lower panels of Fig. 5, one can identify three
in-gap states for large but finite J : For both spin config-
urations, ϑ = 0 and ϑ = π/4 (lower left and right), states
(c), (d) form a Zeeman-split pair, and their energies stay
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FIG. 8: Upper critical interaction Jcrit,2 (color code) for the
spatially local topological transition from the gapless phase

at intermediate J to the nontrivial C
(S)
2 = 1 phase at strong

J . Calculation for 9 × 9 unit cells as in Fig. 7 but using a
different color code. R = 2.

in the gap and become degenerate for J → ∞. On the
other hand, state (e) lies inside the gap but approaches
its partner state (f) in the bulk continuum for J → ∞.
For weaker couplings J ≲ 30 and for ϑ = 0, only the
spin-↑ state (d) and the spin-↓ state (e) of the first and
of the second pair remain in the gap and with decreasing
J move down and up in energy, respectively. For collinear
(non-collinear) spin configuration with ϑ = 0 (ϑ = π/4),
we observe a crossing (avoided crossing) as function of J
around J ≈ 16 (left and right lower panels).
As in the (k-space) topologically trivial case, there

must be a gap closure in a critical-J range on the
spin-configuration manifold S to realize the transition

from the phase with spin-Chern number C
(S)
2 = 1 at

J → ∞ to the one with C
(S)
2 = 0 at J = 0. As

is shown in Fig. 6 (lower panel), there is a gap clo-
sure for J = Jcrit,2 = J2(ϑ = 0) ≈ 20.3. Decreas-
ing J further, the gap closes at J2(ϑ) < J2(0) for in-
creasing angle ϑ = arccos(S0S1) until the angle reaches
ϑ ≈ 0.11π. For still smaller J , as described by the func-
tion J1(ϑ), the gap closure on S moves back to ϑ = 0
at J = Jcrit,1 = J1(ϑ = 0) ≈ 14.2. Note that due to
the SO(3) symmetry and for a coupling J in the range
between Jcrit,1 and Jcrit,2, a gap closure takes place on
the whole three-dimensional submanifold of S = S2×S2

determined by a (J-dependent) critical ϑ. Summarizing,
within the critical range Jcrit,1 < J < Jcrit,2, given by
Jcrit,1 = J1(ϑ = 0) ≈ 14.2 and Jcrit,2 = J2(ϑ = 0) ≈ 20.3,
the system is gapless. The nontrivial phase is found for
J > Jcrit,2, while the trivial one is realized for J < Jcrit,1.
The dependencies of the critical couplings Jcrit,1 and

Jcrit,2 on the Haldane model parameters ξ and M are
displayed in Figs. 7 and 8, respectively. Calculations
have been done for a smaller lattice with 9× 9 unit cells.
Similarly to the single-impurity case, for the (k-space)
topologically nontrivial case, the topological transition
characterized by the second spin-Chern number typically
takes place at stronger exchange couplings J .

X. THREE IMPURITY SPINS

The discussion of the system with R = 3 impurity
spins very much follows along the lines of the R = 2
case. The third spin-Chern number in the strong-J limit

factorizes, C
(S)
3 = (C

(S)
1 )3. Since the magnetic monopole

model Eq. (10) applies to the individual impurity spins

in that limit and yields C
(S)
1 = 1, we get C

(S)
3 = 1 for

J → ∞. For J = 0, on the other hand, C
(S)
3 = 0 and,

hence, there must be a local topological phase transition
as a function of J .

The base manifold S = S2 × S2 × S2 is six dimen-
sional. Due to the SO(3) symmetry of the model, there
is an SO(3)-induced degeneracy of the one-particle ener-
gies. Concretely, this means εn(S0,S1,S2) = εn for all
spin configurations that can be mapped onto each other
via global SO(3) rotations of all three spins. They form
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FIG. 9: Boundaries between colored areas: exchange cou-
plings J1(ϑ, ϑ

′, φ′) (blue → light purple) and J2(ϑ, ϑ
′, φ′)

(light purple → ocher) and J3(ϑ, ϑ
′, φ′) (ocher → yellow),

at which in-gap states cross µ. Calculation for a system with
R = 3 impurity spins on the A sites of a hexagon of the hexag-
onal lattice with 27 × 27 unit cells. Calculation for ξ = π/4,
M = 1.5Mcrit (k-space trivial phase). Each panel in the two-
dimensional array refers to a pair (ϑ, J), where ϑ is the angle
enclosed by S0 and S1 and runs from ϑ = 0 to ϑ = π. In
each individual panel, the horizontal axis refers to φ′ and the
vertical one to ϑ′, where φ′ ∈ [0, 2π] and ϑ′ ∈ [0, π] are the az-
imuthal and polar angles fixing the position of S2 relative to
S0 and S1 (see text). Above the red line (J > Jcrit,2 ≈ 24.5):

C
(S)
3 = 1. Below the green line (J < Jcrit,1 ≈ 5.5): C

(S)
3 = 0.

C
(S)
3 is undefined in between.

a class of “equivalent” spin configurations. If there is
a gap closure, it must take place on the entire three-
dimensional submanifold of S consisting of equivalent
configurations. Within a class, one can choose the config-
uration, where the spin S0 points into the +z direction
and where the spin S1 lies in the y-z plane, and take
this as a representative of the class. Representative spin
configurations from different classes differ by the angle ϑ
enclosed by S0 and S1, or by the polar or the azimuthal
angles ϑ′ and φ′ fixing the position of S2 relative to S0

and S1.
As an example, we consider a model where the three

classical spins are coupled to the A sites of a single
hexagon of the honeycomb lattice. Furthermore, we focus
on the (k-space) topologically trivial case. Very similar
to the case of two impurity spins, the gapped weak- and
the strong-coupling phases are separated on the J axis
by a gapless phase with undefined spin-Chern number.

This is demonstrated with Fig. 9 for Haldane model
parameters in the k-space trivial phase (ξ = π/4, M =

1.5Mcrit). We find C
(S)
3 = 1 for J > Jcrit,2 ≈ 24.5,

and C
(S)
3 = 0 for J < Jcrit,1 ≈ 5.5. In the range

Jcrit,1 < J < Jcrit,2, the third spin-Chern number is un-
defined since the system is gapless. For any fixed J in
that range, represented in Fig. 9 by a set of panels ar-
ranged horizontally, one can find at least one angle ϑ (on

the big horizontal axis), for which there is a color change
in the corresponding panel (ϑ, J), i.e., where there is at
least a single point on the 2-sphere (φ′, ϑ′), at which the
gap closes. Note that for J = 12, in particular, there is
a gap closure at ϑ = 2π/3 (last panel in the row), which
is hardly visible in the figure.
Another observation that can be made for the k-space

trivial phase from Fig. 9 is that for any fixed spin config-
uration (ϑ, ϑ′, φ′) there are exactly three modes crossing
the chemical potential as a function of J , i.e., along an
arbitrary set of panels arranged vertically, where for all
panels the same but arbitrary point (φ′, ϑ′) is considered,
there are exactly three color changes.
Again this is in line the the corresponding observa-

tions for R = 1, where a single mode must cross µ as
function of J (see Fig. 2, right panel), and for R = 2,
where two modes are found (Fig. 5, lower panels). The
appearance of three modes crossing the band gap can be
understood by starting from the infinite distance limit,
where each mode is bound to its respective impurity site.
Upon decreasing the distance the degeneracy is lifted due
to increasing overlap between the in-gap states.

XI. SUMMARIZING DISCUSSION

Our study has confirmed essential conclusions of ear-
lier work for a single impurity in spinless models [12, 17,
18, 21]. As proposed by Slager et al. [17], the spectral re-
sponse to a local impurity and the appearance of in-gap
states in particular, can serve as diagnostic for the topo-
logical state of the bulk system. Similar to their results
for the nontrivial Z2 insulating phase of the BHZ model,
we find for the nontrivial Z Chern-insulating phase of the
(spinful) Haldane model that a (magnetic) impurity in-
duces an in-gap state, whenever the impurity potential
is sufficiently strong. With decreasing impurity strength,
it exists down to a weak but finite value where it merges
with the bulk continuum. For the magnetic impurity
considered here, the in-gap state is generally spin-split,
except in the J → ∞ limit.
On the other hand, for the topologically trivial bulk

phase of the BHZ [17] and of the Haldane model, an im-
purity state is observed in a finite range of the impurity
strengths only and fully bridges the band gap. It is ab-
sent, in particular, in the J → ∞ limit. For the spinful
model considered here, the state has a well defined spin
projection. Our results for a magnetic impurity coupling
to a single orbital in the unit cell are also in line with
those obtained for a (spinless) impurity coupling to both
orbitals in the unit cell of the (spinless) Haldane model
[21], inasmuch as the gap is fully bridged within a finite
J range.

It has been proposed [17] that the impurity potential
can be controlled experimentally by locally applying a
tunable gate voltage and that the presence or absence
of in-gap states, and thereby the bulk topology, can be
probed via scanning tunnelling spectroscopy. This ap-
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plies to spin-resolved STM techniques as well [31]. Other
experimental ways to realize and to control local impuri-
ties have been discussed in in Ref. [21].

We note that the in-gap impurity mode appearing in
the topologically nontrivial phase of the Haldane model
at strong J carries a chiral current flowing around the im-
purity site. Chiral currents have been studied in Ref. [18]
for bound states of a long-range 1/r Coulomb-potential
impurity in the Haldane model. The current is due to
the explicit breaking of time-reversal symmetry via the
orbital magnetic field in the Haldane model. Its very
presence is thus not indicative of any topological prop-
erties. However, it was found that the current response
due to the impurity has a qualitatively different r depen-
dence, depending on the bulk topology.

Diop et al. [21] pointed out that, strictly speaking, an
unambiguous detection of global topological properties
using local probes is actually not possible for fundamen-
tal reasons. In fact, they could demonstrate that for bulk
Hamiltonians breaking lattice symmetries via anisotropic
or modulated hopping, the proposed diagnostic delivers
false positive results. The great practical interest to de-
velop local indicators for topological states of matter,
however, calls for further case studies.

For the case of magnetic impurities in the spinful Hal-
dane model considered here, there are quite a few impor-
tant results, which can be summarized as follows:

As the configuration space of a single magnetic impu-
rity forms a 2-sphere, robust results emerge as a con-
sequence of the existence of an additional topological

invariant, the first spin-Chern number C
(S)
1 ∈ Z. Op-

posed to the first k-space Chern number that is related
to global bulk topology, the spin-Chern number addresses
(spatially) local topological properties.

We have shown that there must be a spatially local
topological transition as a function of the exchange cou-

pling J , since C
(S)
1 = 0 at J = 0 and C

(S)
1 = 1 for J → ∞.

With slight complications, this also holds for the case of
R > 1 impurities, when replacing the first by the R-th

spin-Chern number C
(S)
R . The latter is obtained by in-

tegrating over the 2R-dimensional manifold given by the
R-fold direct product S = S2 × · · · × S2.

For a single impurity, the immediate consequence of
the topological transition is that there must be a single-
electron in-gap state with energy εloc crossing the chemi-
cal potential µ located in the bulk band gap. In terms of
many-electron states this implies a gap closure between
an N - and an (N±1)-electron state at a critical coupling
strength Jcrit. As the Hamiltonian is invariant under si-
multaneous SO(3) rotations of the classical impurity spin
S and of the quantum-spin degrees of freedom, the re-
lated “magnetic charge” inducing the spin-Berry curva-
ture is distributed uniformly on the 2-sphere Jcrit|S| = 1
embedded in the space R3 ∋ JS.
The necessary presence of an in-gap state with energy

εloc = µ for some critical coupling Jcrit holds for both,
the (k-space) topologically trivial and nontrivial phase,
as it is a consequence of the local S2-based topology.

Note that this also holds for any choice of µ within the
band gap with a generally µ-dependent critical coupling
Jcrit = Jcrit(µ). Hence, J 7→ µcrit(J) maps onto the full
range of in-gap energies Emin < µ < Emax, where Emin

(Emax) is the J-independent valence-band maximum (the
conduction-band minimum). This implies that the in-gap
state energy εloc = εloc(J) must fully bridge the band
gap for 0 < J < ∞ or within a finite J range. Fig. 2
(right) gives an example for the (k-space) topologically
trivial phase. For the (k-space) topologically nontrivial
phase, Fig. 2 (left, middle) demonstrates another pos-
sibility. Here, a pair of two in-gap states εloc,↑(J) and
εloc,↓(J) fully bridges the gap.

The main impact of k-space topology on the in-gap
states shows up in the strong-coupling limit. For J → ∞,
we could numerically verify an intuitive though not strict
argument based on k-space topology: Replacing the sin-
gle local impurity by a macroscopically extended im-
purity potential of infinite strength within an approx-
imately circular region or radius r, for example, gen-
erates a hole such that the remaining truncated Hal-
dane model has a one-dimensional boundary. The bulk-
boundary correspondence then enforces the presence of
a spin-degenerate boundary mode bridging the bulk gap
in case of a nontrivial k-space topology. Shrinking the
hole to a single lattice site essentially means an increas-
ing thinning of the dispersive edge-mode spectrum until
ultimately only a single spin-degenerate impurity state
remains. For the trivial case, on the other hand, the
Haldane model features no boundary mode (even though
this absence is not topologically enforced).

With this additional argument one can conclude for
the k-space topologically trivial case that the in-gap state
must fully bridge the gap and is absent for J → ∞. On
the contrary, in the nontrivial case there must be an in-
gap state in the strong-J limit representing the remnant
of the topologically protected chiral mode of a hypothet-
ical codimension-1 defect.

For the SO(3) symmetric Hamiltonian, the J-spectral
flow of the single-electron energies εn(J) must be SO(3)
invariant as well, i.e., it is S independent. Hence, at
Jcrit the spectral flow is necessarily gapless for a fixed
S pointing, say, in z direction. This implies a gapless
spectral flow for, e.g., the spin-↑ copy of the Haldane
model in the full range −∞ < J < ∞, which translates
into a gapless J-spectral flow for the spinless Haldane
model with a spinless potential impurity of strength J .
It is remarkable that in the spinless case a gap closure for
some critical impurity strength is topologically enforced
due to a change of the spin-Chern number referring to a
virtual S2 base manifold.

For the case of R = 2 and R = 3 impurity spins, we
find qualitatively similar results. The (k-space) topolog-
ically nontrivial case is distinguished by the presence of
at least a single or more spin pairs of in-gap states in
the strong-J limit. These are slightly spin-split, become
spin-degenerate in the J → ∞ limit, and are understood
as remnants of topologically protected chiral modes of
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hypothetical codimension-1 defects. Generally, the num-
ber of Zeeman pairs depends on details of the electronic
structure, if the sites to which the impurity spins cou-
ple are close. Only at larger distances there are exactly
R pairs, and in the infinite-distance limit, as their hy-
bridization vanishes, these become degenerate.

For the trivial phase, we find R in-gap modes fully
bridging the bulk band gap in some intermediate-J range.
Again, this is enforced by S-space topology, since the R-

th spin-Chern number must change from C
(S)
R = 0 at

J = 0 to C
(S)
R = 1, because we trivially have C

(S)
R =(

C
(S)
1

)R

= 1 in the J → ∞ limit. To see this, suppose

that, starting from J = 0, we first crank up the exchange
coupling J (0) of the first impurity spin from J (0) = 0
to J (0) = ∞ while keeping J (1) = · · · = J (R−1) = 0
fixed, thereby producing a magnetic monopole at i0. The
corresponding first spin-Chern number changes from zero
to one, and a single in-gap state fully crosses the band
gap. Subsequently, we crank up the second coupling J (1)

etc. until finally the R-th coupling is sent to infinity. In
total, R monopoles are created, the R corresponding first
spin-Chern numbers all change from zero to one, and thus
the whole adiabatic process generates exactly R in-gap
states crossing the gap.

Phase diagrams for the local topological transition

from C
(S)
R = 0 to C

(S)
R = 1 have been computed nu-

merically for a chemical potential in the middle of the
bulk band gap and for R = 1 and R = 2 impurity spins.
For the (k-space) topologically trivial case, we find that
the transition roughly takes place at a critical coupling
J = Jcrit (with J = J (0) = · · · = J (R)) of the order of
the band width. For the nontrivial case, Jcrit is typically
stronger since the presence of the in-gap states is under-
stood within a strong-coupling picture. In an exceptional
case, namely if the spin-split in-gap states are located ex-
actly at µ for J → ∞, there is no transition at all, i.e.,
Jcrit = ∞. This scenario, however, requires fine tuning
of parameters.

Opposed to R = 1, for R ≥ 2 the transition generically
takes place in a finite range of couplings, Jcrit,1 < J <
Jcrit,2. In this J range the system is gapless on some
(J-dependent) manifold of spin configuration in S. The
nontrivial phase is found for J > Jcrit,2, while the trivial
one is realized for J < Jcrit,1. In the transition range,
the R-th spin-Chern number remains undefined. We also
note that the gap closures at Jcrit,1 and Jcrit,2 take place
for high-symmetry ferro/antiferromagnetic spin configu-
rations.

There are various open problems and directions worth
pursuing in future studies: We have seen that (k-space)
topology of the bulk system has a decisive effect on the
local (S-space) topological phase diagram. This suggests
to consider systems with a bulk topology characterized

by higher Chern numbers |C(k)
1 | > 1 as well as Z2 topo-

logical insulators and topological superconductors. Sys-
tems with a large number R ≫ 1 of classical impurity
spins and finally Kondo-lattice-type systems (R ∼ L) are

interesting as well. These pose the question of the signif-
icance of topological states characterized by high-order

spin-Chern numbers C
(S)
R and practical means for their

computation. Even for a few classical-spin impurities or
for a single one, there are interesting variations worth
studying, such as impurities with spin-anisotropic cou-
pling reducing the symmetry of the gap-closure subman-

ifold of S. Higher spin-Chern numbers C
(S)
R > 1 could

be realized via impurity spins with short-range but non-
local exchange couplings. Finally, methodical develop-
ments are necessary to address bound states induced by
quantum-spin impurities or impurities in correlated sys-
tems, including interacting topological insulators [32, 33].
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Appendix A: Spin-Chern number

For a unique and gapped ground state |Ψ0⟩ ≡
|Ψ0(S0, ...,SR−1)⟩, the (abelian) Berry connection and
curvature are given by

A = ⟨Ψ0|d|Ψ0⟩ =
∑
µ

Aµ dSµ (A1)

and

Ω = dA =
∑
µ<ν

Ωµ,ν dSµ ∧ dSν , (A2)

respectively, where

Ωµ,ν =
∂Aν

∂Sµ
− ∂Aµ

∂Sν
. (A3)

For R impurity spins, µ and ν run over the 3R compo-
nents of (S0, ...,SR−1). Following Ref. [27], we rewrite
Ωµ,ν in a Lehmann-type representation:

Ωµ,ν = 2iℑ
∑
m ̸=0

⟨Ψ0| ∂Ĥ∂Sµ
|Ψm⟩⟨Ψm| ∂Ĥ∂Sν

|Ψ0⟩
(Em − E0)2

, (A4)

where |Ψm⟩ ≡ |Ψm(S0, ...,SR−1)⟩ denotes the m-th ex-
cited eigenstate of the Hamiltonian Eq. (2). With Eq.

(1), we immeditately have ∂Ĥ/∂Sµ = Jsµ.
The 2R-dimensional manifold of spin configurations

S = S2 × · · · × S2 can be parameterized, for ex-
ample, by a set of polar and azimuthal angles λ ≡
(ϑ0, φ0, ..., ϑR−1, φR−1) ∈ Λ, i.e., we have a single map,

M : Λ ⊂ R2R → S , λ 7→ M(λ) , (A5)
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that covers S once, so that∫
S
ΩR =

∫
Λ

M∗ΩR , (A6)

where ΩR = Ω∧· · ·∧Ω, and whereM∗ is the pushforward
of M . To evaluate

M∗Ω =
∑
µ<ν

(Ωµ,ν ◦M)(λ) dMµ ∧ dMν (A7)

we identify for the coefficients

Ωµ,ν ◦M =
∂Aν

∂Mµ
− ∂Aµ

∂Mν

=
∑
j1,j2

∂λj1

∂Mµ

∂λj2

∂Mν

(
∂Aj2

∂λj1

− ∂Aj1

∂λj2

)
.

(A8)

Then Eq. (A7) can be rewritten as

M∗Ω =
∑
ν,µ
j1,j2
i1i2

∂λj1

∂Mµ

∂λj2

∂Mν

∂Mµ

∂λi1

∂Mν

∂λi2

∂Aλj2

∂λj1

dλi1 ∧ dλi2

=
∑
i1,i2

∂Aλi2

∂λi1

dλi1 ∧ dλi2 =
∑
i1<i2

Ωi1,i2 dλi1 ∧ dλi2 .

(A9)
With the relation f∗(ξ ∧ ω) = (f∗ξ)∧ (f∗ω) for pushfor-
wards and since Ωi1,i2 = −Ωi2,i1 , one finds for the R-th

power of M∗Ω:

1

R!
M∗ΩR = Pf(Ω) dλ1 ∧ · · · ∧ dλ2R = Pf(Ω) dV , (A10)

where Pf denotes the Pfaffian. Finally, this leads to the
definition of the R-th Chern number, by which we denote
the integral of the R-th Chern character:

C
(S)
R =

1

R!

(
i

2π

)R ∫
S
ΩR =

1

R!

(
i

2π

)R ∫
Λ

M∗ΩR

=

(
i

2π

)R ∫
Λ

Pf(Ω) dV .

(A11)

For the numerical evaluation of Eq. (A11), we diag-
onalize the effective hopping matrix Eq. (7) to obtain
the one-electron energies and the one-electron states and
thus the N -electron states in the Lehmann-type repre-
sentation Eq. (A4). Note that there is also a direct rep-
resentation of Ωµ,ν in terms of one-particle quantities,
see Ref. [25]. Finally, for the numerical integration nec-

essary to compute C
(S)
R via Eq. (A11), the Pfaffian Pf(Ω)

is expressed as a function of polar and azimuthal angles
λ = (ϑ0, φ0, ..., ϑR−1, φR−1).

We note that for Chern characters a tensor-product
bundle E⊗F , with fibers E and F over some base man-
ifold factorizes: ch(E ⊗ F ) = ch(E) ∧ ch(F ). As a con-
sequence, Eq. (22) trivially follows.
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