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Abstract

Motivated by the success of domination games and by a variation of the
coloring game called the indicated coloring game, we introduce a version of
domination games called the indicated domination game. It is played on an
arbitrary graph G by two players, Dominator and Staller, where Dominator
wants to finish the game in as few rounds as possible while Staller wants
just the opposite. In each round, Dominator indicates a vertex u of G that
has not been dominated by previous selections of Staller, which, by the rules
of the game, forces Staller to select a vertex in the closed neighborhood of
u. The game is finished when all vertices of G become dominated by the
vertices selected by Staller. Assuming that both players are playing optimally
according to their goals, the number of selected vertices during the game is
the indicated domination number, γi(G), of G.
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We prove several bounds on the indicated domination number expressed
in terms of other graph invariants. In particular, we find a place of the
new graph invariant in the well-known domination chain, by showing that
γi(G) ≥ Γ(G) for all graphs G, and by showing that the indicated domina-
tion number is incomparable with the game domination number and also with
the upper irredundance number. In connection with the trivial upper bound
γi(G) ≤ n(G)−δ(G), we characterize the class of graphsG attaining the bound
provided that n(G) ≥ 2δ(G) + 2. We prove that in trees, split graphs and
grids the indicated domination number equals the independence number. We
also find a formula for the indicated domination number of powers of paths,
from which we derive that there exist graphs in which the indicated domina-
tion number is arbitrarily larger than the upper irredundance number. We
provide some partial results supporting the statement that γi(G) = n(G)/2 if
G is a cubic bipartite graph, and leave this as an open question.

Keywords: domination game; indicated coloring; independence number; upper
domination number;
AMS Subj. Class. (2020): 05C57

1 Introduction

The coloring game was introduced independently in [15] and [3]. Unlike combinato-
rial games in which a winner is decided, the result of the coloring game gives a graph
invariant, which is based on the assumption that both players are playing optimally
according to their goals. A number of variants of the original game have been intro-
duced, see e.g. [2, 5, 22, 25]. The following version was proposed by Grytczuk and
defined by Grzesik [17].

The indicated coloring game is played on a simple graph G by two players, and a
fixed set C of colors. In each round of the game Ann indicates an uncolored vertex,
and Ben colors it using a color from C, obeying just the proper coloring rule. The
goal of Ann is to achieve a proper coloring of the whole graph, while Ben is trying
to prevent this. The minimum cardinality of the set of colors C for which Ann has
a winning strategy is called the indicated chromatic number, χi(G), of a graph G.

The domination game, as introduced in [8], is played on a graph G by two players:
Dominator and Staller. They alternate taking moves in which they select a vertex of
G. A move is legal if the selected vertex dominates at least one vertex which is not
already dominated by previously played vertices. The game ends when there are no
legal moves, so when the set of played vertices is a dominating set of G. The goal of
Dominator is to finish the game with the minimum number of moves, while the aim
of Staller is to maximize the number of moves. If both players play optimally, then
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the number of moves played on G is an invariant (see [7, 12]). Therefore, as defined
in [8], the game domination number γg(G) is the number of moves on G if Dominator
starts the game. Many variants of the domination game have been introduced; see
a recent monograph [7] and for example papers [4, 9, 10, 11, 12, 14, 16, 19, 23, 24].
Having in mind the indicated coloring game, we propose the following variant of the
domination game.

The indicated domination game is played on a graphG by two players, Dominator
and Staller, who take turns making a move. In each of his moves, Dominator
indicates a vertex v of the graph that has not been dominated in the previous
moves, and Staller chooses (or selects) any vertex from the closed neighborhood of
v, and adds it to a set D that is being built during the game. The game ends when
there is no undominated vertex left, that is, when D is a dominating set. The goal
of Dominator is to minimize the size of D, while Staller wants just the opposite.
Provided that both players are playing optimally with respect to their goals, the
size of the resulting set D is the indicated domination number of G, and is denoted
by γi(G).

In the following section, we establish the notation and present basic definitions,
while in Section 3 we give some preliminary results. In particular, we prove that
Γ(G) ≤ γi(G) ≤ γgr(G), where Γ(G) is the upper domination number and γgr(G) is
the Grundy domination number of a graphG. In Section 4, we prove that for a graph
G with minimum degree δ and order n, where n ≥ 2δ+2, we have γi(G) = n−δ if and
only if G contains a spanning subgraph Kδ,n−δ with an additional property that the
part of the bipartition of size n−δ is an independent set in G. In Section 5, we prove
that in several families of graphs (namely trees, split graphs, grids, and connected
bipartite cubic graphs with at most 12 vertices) the indicated domination number
equals the independence number. On the other hand, the indicated domination
number can be arbitrarily larger than the upper irredundance number (and thus
also the independence number), which is established in Section 6. This is derived
from the formula for the indicated domination number of the k-th power of the path

Pn, which is roughly γi(P
k
n ) = Θ

(

log k
k

n
)

as n → ∞. In Section 7, we propose

several open questions.

2 Notation

Let G be a graph. We denote the number of vertices of G by n(G). If S ⊆ V (G),
then the subgraph induced by S is denoted by G[S]. For a vertex v ∈ V (G), the
(open) neighborhood N(v) is the set of neighbors of v, and the closed neighborhood
is N [v] = N(v) ∪ {v}. If S ⊆ V (G), then N [S] =

⋃

v∈S N [v].
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For a vertex x ∈ S, every vertex in N [S]−N [S−{x}] is called a private neighbor
of x with respect to S.1 A set S ⊆ V (G) is an irredundant set if every vertex in S
has a private neighbor with respect to S. The smallest and largest cardinalities of
a maximal irredundant set of G are denoted by ir(G) and IR(G), respectively.

A set S ⊆ V (G) is an independent set in a graph G if the vertices in S are
pairwise nonadjacent. The maximum size of an independent set of G is denoted
by α(G). An edge cover of G is a set F ⊆ E(G) such that every vertex of G is
incident to some edge in F . We denote the minimum size of an edge cover of G by
ρ(G). Note that notation β ′(G) is also used in the literature. Recall that combining
König’s and Gallai’s Theorems gives α(G) = ρ(G) for a bipartite graph G without
isolated vertices.

A vertex v ∈ V (G) dominates itself and its neighbors. A subset of vertices D ⊆
V (G) is a dominating set of G if it dominates all vertices of G, i.e. N [D] = V (G).
This means that every vertex from V (G)−D has a neighbor in D. The minimum
cardinality of a dominating set of G is the domination number, γ(G), of G.

A dominating set D in G is a minimal dominating set if no proper subset of D is
a dominating set. That is, D is a minimal dominating set if and only if every x ∈ D
has a private neighbor with respect to D. The maximum cardinality of a minimal
dominating set is the upper domination number, Γ(G), of G. We recall the following
results.

Theorem 2.1 ([13, Theorem 5]). If G is a bipartite graph, then α(G) = Γ(G) =
IR(G).

Theorem 2.2 ([20, Theorem 9]). If G is a chordal graph, then α(G) = Γ(G) =
IR(G).

Given a graph G, a sequence S = (v1, . . . , vk) of vertices of G is a dominating
sequence if for each i

N [vi]− ∪i−1
j=1N [vj ] 6= ∅ (1)

and the set of vertices from S dominates G. We call the length k of the longest such
sequence S the Grundy domination number, γgr(G), of G. Clearly, γ(G) ≤ γgr(G).

3 Preliminary results

A well known domination chain [18] was extended with the Grundy domination
number in [6]:

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G) ≤ γgr(G) .

1Observe that every vertex isolated in G[S] is viewed as a private neighbor of itself by definition.
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The following proposition explains where indicated domination number fits in this
chain.

Proposition 3.1. If G is a graph, then

Γ(G) ≤ γi(G) ≤ γgr(G) .

In addition, γi is incomparable with both γg and IR.

Proof. Note that the definition of the indicated domination game implies that the
sequence of vertices selected by Staller is a dominating sequence, so γi(G) ≤ γgr(G).

Let D be a minimal dominating set of cardinality Γ(G). We provide a strategy
for Staller that will prove that Γ(G) ≤ γi(G). The basic ingredient of this strategy
is for her to always select a vertex from D. She can do so regardless of which vertex
Dominator indicates. Unless all vertices from D have been selected, there exists
an undominated vertex (a private neighbor of an unselected vertex from D). This
shows that Γ(G) ≤ γi(G).

In the rest of the proof we present infinite families of graphs showing that γi
is incomparable with both γg and IR. Stars K1,n show that γi can be arbitrarily
larger than γg, since γi(K1,n) = n and γg(K1,n) = 1. Second powers of paths (see
Corollary 6.3) show that γi can be arbitrarily larger than IR.

To see that IR can be arbitrarily larger than γi, we consider the following family
of graphs. Let Hn be the graph obtained from two disjoint copies of Kn with
vertices u1, . . . , un and v1, . . . , vn by adding edges uivi for all i ∈ {2, . . . , n}. Notice
that Hn is isomorphic to the graph Kn �K2 with one edge removed. It is easy to
see that IR(Hn) = n− 1 (it is attained for example by the maximal irredundant set
{u2, . . . , un}). On the other hand, we have γi(Hn) ≥ γ(Hn) = 2, and if Dominator
first indicates u1 and then v1, we get γi(Hn) = 2. Note that this also shows that
in general γi(G) and γi(G − e) can be arbitrarily far apart since γi(Kn �K2) ≥
Γ(Kn �K2) = n.

Last, we present a family of graphs for which γg is arbitrarily larger than γi.
Let D1 be a graph obtained from a cycle C9 with vertices x1, . . . , x9 and naturally
defined edges between them by adding edges x1x3, x4x6 and x7x9. Since Dominator
can in turn indicate vertices x2, x5 and x8, he has a strategy that ensures γi(D1) ≤ 3.
Since γi(D1) ≥ γ(D1) = 3, we have γi(D1) = 3. On the other hand, it is easy to
see that γg(D1) = 4. Let Dn be a disjoint union of n copies of the graph D1. Since
γi(Dn) ≥ γ(Dn) = 3n and Dominator can in turn indicate vertices of degree two,
we have γi(Dn) = 3n. But since Staller’s strategy in the domination game on Dn

can be to reply in the same copy of D1 as Dominator played, we get γg(Dn) ≥ 4n
(because under that strategy, in each copy the game ends after an even number, four,
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of moves). Thus γg(Dn) − γi(Dn) ≥ n. Alternatively, we can consider a connected
graph En obtained from C3n by adding edges x1x3, x4x6, . . . , x3n−2x3n. In this case,
γi(En) = n, while γg(En) ≥ n+ n

10
(the last follows by an argument similar as in [21,

Theorem 4.1]).

The diagram in Figure 1 shows the relations between the parameters from Propo-
sition 3.1.

ir

γ

i

α

Γ

γi IR γg

γgr

Figure 1: Relations between the domination and independence invariants.

There are several classes of graphs with a transparent structure where the pa-
rameters discussed in Proposition 3.1 coincide. For example, the graphs G below all
have the property Γ(G) = γgr(G) as listed in [1]: hypercubes; complete multipartite
graphs, G = Kn1,...,nk

, such that n1 ≥ · · · ≥ nk, k ≥ 2, and nk−1 ≥ 2; prisms over
complete graphs, G = Kn�K2, for n ≥ 2; large families of Kneser graphs; the class
of (twin-free, connected) cographs. It is also proved in [1] that the join operation
preserves that property. By Proposition 3.1 all the graphs from the above families
have the indicated domination number equal to their upper domination number. By
Theorem 2.1 this in turn implies that the bipartite graphs among the above families
have their indicated domination number equal to their independence number.

However, the difference between the indicated domination number and the in-
dependence number can be arbitrarily large. For example, α(Kn �K2) = 2 and
γi(Kn�K2) = n. Similarly, the difference between the Grundy domination num-
ber and the indicated domination number can be arbitrarily large. For example,
γgr(Pn) = n− 1 and γi(Pn) =

⌈

n
2

⌉

as will be proven in Corollary 5.3.
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4 Upper bound on γi and extremal graphs

Using a bound from Proposition 3.1 combined with [6, Proposition 2.1] we obtain:

γi(G) ≤ γgr(G) ≤ n(G)− δ(G). (2)

In the following theorem we characterize the graphs G that attain the bound
γi(G) = n(G)− δ(G) under the assumption that n(G) ≥ 2δ(G) + 2.

Theorem 4.1. A graph G with minimum degree δ and order n, where n ≥ 2δ + 2,
has γi(G) = n − δ if and only if it contains a spanning subgraph Kδ,n−δ with an
additional property that the part of the bipartition of size n − δ is an independent
set in G.

Proof. Let G be a graph, which has a spanning subgraph Kδ,n−δ and the only edges
of G that are not in Kδ,n−δ, if any, are between two vertices in the part of size δ.
Let the indicated domination game be played on G. Regardless of which vertex is
indicated by Dominator in his first move, Staller selects a vertex from the part of
size n− δ. In this way, all vertices in the part of size δ become dominated after the
first selection of Staller. Therefore, Dominator will in his subsequent moves need to
indicate only vertices in the part of size n − δ, and Staller’s strategy is simply to
select the vertex that Dominator indicated in his move. In this way, Staller ensures
that at least n− δ vertices will be chosen. Thus, γi(G) ≥ n− δ, and combining this
with (2) we get γi(G) = n− δ.

For the converse, let G be a graph on n vertices, where n ≥ 2δ + 2, such that
γi(G) = n − δ. Let the indicated domination game be played on G. If after the
first selection of Staller more than δ + 1 vertices were dominated, then at most
n − δ − 1 vertices will be chosen by Staller when the indicated domination game
ends on G, a contradiction. Therefore, Staller needs to select a vertex of degree δ
in her first move. For the same reason, since γi(G) = n− δ, in all of her subsequent
moves Staller needs to select a vertex that dominates only one vertex that was not
dominated earlier. Let x be the vertex selected in the first move of Staller, and let
NG(x) = {u1, . . . , uδ}. Let R = V (G) − NG[x]. If there existed a vertex v ∈ R
such that v had no neighbors in NG(x), then Dominator’s next move would be to
indicate v, and after Staller selected a vertex that dominates v, at least two new
vertices would become dominated, a contradiction. Therefore, every vertex in R has
at least one neighbor in NG(x).

Now, suppose that there exists a vertex in R, say w0, that has a neighbor in
R, and let w1, . . . , wk be the neighbors of w0 from R. For every vertex wi, where
i ∈ {0, . . . , k}, there exists a vertex uji ∈ NG(x) such that wi is the only neighbor of
uji in R. Indeed, if for some wi such a vertex uji would not exist, then Dominator
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could indicate wi in his second move, and regardless of which vertex Staller would
select in her second move to dominate wi at least two new vertices would become
dominated in that move, which is a contradiction. Since deg(w0) ≥ δ, we infer
that w0 has (at least) δ − k neighbors in NG(x). Clearly, all of the neighbors of w0

in NG(x) are distinct from vertices uji, where i ∈ [k], which implies that w0 has
exactly δ−k neighbors in NG(x). In addition, k ≤ δ−1, since all vertices uji, where
i ∈ {0, 1, . . . , k}, are pairwise distinct. Therefore, since n > 2δ+1 ≥ |NG[x]|+k+1,
we infer that there exists a vertex z ∈ R − {w0, . . . , wk}. If z has a neighbor in R,
then, by the same reason as earlier, there exists a vertex u′ in NG(x) such that z is
the only neighbor of u′ from R. However, every vertex in NG(x) has a neighbor in
{w0, . . . , wk}, therefore z cannot be adjacent to any vertex in R. Since deg(z) ≥ δ,
we infer NG(z) = NG(x), which is again a contradiction, since each uji ∈ NG(x)
has only one neighbor in R. The assumption that there exists an edge between two
vertices in R led us to a contradiction, therefore R∪{x} is independent, and Kδ,n−δ

is a spanning subgraph of G with the part of the bipartition of size n − δ being
independent.

Note that a graph G with minimum degree δ and order n, where n ≥ 2δ+2 and
γi(G) = n− δ, can equivalently be described as being the join of an independent set
of size n− δ and any graph of order δ.

5 Graphs with γi = α

In this section, we present several classes of graphs whose indicated domination
number equals their independence number. Naturally, due to Proposition 3.1, the
independence number of any of these graphs is equal to the upper domination num-
ber.

Recall that a graph is split if its vertex set can be partitioned into a clique and
an independent set. A split partition of a split graph G is a pair (K, I) such that K
is a clique, I is an independent set, K ∪ I = V (G) and K ∩ I = ∅. It was proven
in [6] that if G is a split graph with split partition (K, I), then

γgr(G) =

{

α(G), if every two vertices in K have a common neighbor in I;
α(G) + 1, otherwise.

We next show that the second line in the above equation never appears if γgr is
replaced with γi.

Proposition 5.1. If G is a split graph, then γi(G) = α(G).
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Proof. Let (K, I) be the split partition of G. We can assume that I is a maximum
independent set, and thus every vertex in K has a neighbor in I. Dominator’s
strategy in each of his moves is to indicate a vertex x from I that has not been
dominated by the vertices previously chosen by Staller. After all vertices from I
have been dominated by Staller’s selected vertices, the vertices in K have also been
dominated since K is a clique and each vertex from K has a neighbor in I. Hence
at most |I| = α(G) vertices were chosen by Staller, and we infer that γi(G) ≤ α(G).
The reverse inequality follows from Proposition 3.1.

To see that trees enjoy the equality considered in this section is a bit less straight-
forward.

Theorem 5.2. If T is a tree, then γi(T ) = α(T ).

Proof. Let F be a minimum edge cover of the tree T . Since T is bipartite, |F | =
ρ(G) = α(T ). Choose a leaf r of T and consider T as a rooted tree with r as its
root, by which the notions of parent and child can be used in T . Let an indicated
domination game be played in T . We will present a strategy of Dominator, which
ensures that at most α(T ) vertices will be selected during the game.

In the first move, Dominator indicates vertex r, which forces Staller to dominate
both r and its child s. Note that rs ∈ F , and that after the first move of Staller both
endvertices of this edge from F become dominated. We will say that an edge f ∈ F
is saturated if both of its endvertices are dominated. We claim that Dominator
can ensure that after every move of Staller, a new edge from F becomes saturated.
In other words, after the ith move of Staller, Dominator can ensure that at least
i edges from F are saturated. This is clearly true after the first move of Staller.
In the subsequent moves, as long as there are still some undominated vertices left,
Dominator considers the vertex of T which is the closest to r among all undominated
vertices. Let this vertex be denoted by u, and let uv ∈ F for a neighbor v of u. Now,
we consider several possibilities that need to be reflected in Dominator’s strategy.
With this, Dominator will achieve that a new edge of F becomes saturated after
every move of Staller, and, in addition, that the set of dominated vertices induces
a connected subgraph of T (there is one exception case to this property, in which
case Dominator can achieve that after the subsequent move of Staller the set of
dominated vertices again induces a connected subgraph of T ).

If v is the parent of u, then it is clear, by how u is defined, that v has been
dominated in some of the previous moves. In this case, the strategy of Dominator
is to indicate u. In this way, u will become dominated after the following move of
Staller, and so the edge uv becomes saturated, by which the number of saturated
edges from F increases by one. Additionally, the set of dominated vertices still
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induces a connected subgraph. Next, assume that u is the parent of v. It may
happen that v is already dominated. (This is the case when the set of dominated
vertices does not induce a tree, and how this happens will be explained in the next
case.) If this is indeed so, then Dominator indicates u, and in the following move
of Staller, u will become dominated and uv ∈ F will thus become saturated. The
remaining possibility is that v is not dominated. By the strategy of Dominator, we
can argue that all children of v are undominated at this point. Dominator’s strategy
in this case is to indicate v. If v or u is selected by Staller in the next move, then
uv ∈ F becomes saturated and the set of dominated vertices is connected, as desired.
Otherwise, a child x of v is selected by Staller, and let xy be the edge of F , which
covers x. Note that either y = v or y is a child of x. In either case, the edge xy ∈ F
becomes saturated. In this case (that is, when a child x of v is selected by Staller),
we are in the situation when the set of dominated vertices is not connected, but, as
explained earlier, Dominator’s next move is to indicate u. In this way, u becomes
dominated, and since v was dominated in the preceding move, the edge uv ∈ F
becomes saturated. Thus, after these two consecutive moves, the set of vertices in
D that are dominated induces a connected subgraph again.

Since after each move of Staller, the number of saturated edges from F increased,
we infer that at most |F | = α(T ) vertices are chosen by Staller when the game ends.
Since γi(T ) ≥ α(T ) by Proposition 3.1, the stated equality is proved.

Corollary 5.3. If n ≥ 1, then γi(Pn) =
⌈

n
2

⌉

.

In the next result, we prove for yet another family of graphs, namely the grids,
that their indicated domination number equals the independence number.

Theorem 5.4. If m,n ≥ 1, then γi(Pm�Pn) = α(Pm�Pn) =
⌈

mn
2

⌉

.

Proof. Let V (Pm) = {x1, . . . , xm} and V (Pn) = {y1, . . . , yn}. We divide the proof
into two cases, depending on whether both m and n are odd or not.

First, assume that at least one of m and n is an even integer, and, by symmetry,
we may assume with no loss of generality that m is even. Consider the partition of
V (Pm�Pn) into pairs of adjacent columns. Namely, let Ci = {x2i−1, x2i} × V (Pn),
for all i ∈ [m/2]. The strategy of Dominator, to achieve his goal that at most
mn/2 vertices will be selected during the indicated domination game on Pm�Pn,
is divided into two phases. In the first phase, he deals with each of the sets Ci,
proceeding in their natural order, while in the process some of the vertices of Ci,
for all i ∈ [m/2], may be left undominated. In the second phase, he indicates the
vertices that were left undominated in the first phase one by one.

Let us first present the strategy of Dominator in C1. Whenever Dominator
indicates a vertex of C1, that vertex is in the column {x2}× V (Pn). Dominator can
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start by indicating an arbitrary vertex of that column, say (x2, y1), and then proceeds
by indicating vertices of that column by obeying only one rule, which we explain
next. At a given point in the game we say that the pair {(x2i−1, yj), (x2i, yj)}, where
i ∈ [m/2] and j ∈ [n], is empty if neither vertex in the pair has been dominated up
to that point in the game. The strategy of Dominator while dealing with the set C1

in the first phase is to find an arbitrary empty pair {(x1, yj), (x2, yj)}, if it exists,
and indicate (x2, yj), as long as there exists an empty pair in C1. Thus, in her next
move, Staller has to dominate (x2, yj). She can do this by choosing either (x2, yj)
or one of its neighbors. In either case, the pair {(x1, yj), (x2, yj)} is no longer empty
after her move. Clearly, if the move of Staller is to choose (x1, yj), (x2, yj−1), (x2, yj)
or (x2, yj+1), then it may happen that additional pairs of C1 become non-empty. In
this case, regardless of which of the vertices (x1, yj), (x2, yj−1), (x2, yj) or (x2, yj+1) is
chosen by Staller, the chosen vertex is the first vertex of its corresponding pair that
was chosen during the game, and since its neighboring pairs have become non-empty
(if they were not already non-empty before that move), the other vertex of the pair
in which the chosen vertex lies will never be selected by Staller during the first phase
of the game. It is also possible, that Staller chooses (x3, yj) to dominate (x2, yj).
In this case, (x2, yj) becomes dominated and the pair {(x1, yj), (x2, yj)} becomes
non-empty, yet the move of Staller choosing (x3, yj) will be considered when dealing
with C2. The first step of the game in the first phase, dealing with C1, ends when
all pairs of C1 have become non-empty. Note that by the strategy of Dominator, in
each pair {(x1, yj), (x2, yj)} at most one of the vertices has been chosen by Staller,
and since all pairs in C1 have become non-empty, at most one of the vertices in
each pair remains undominated. Clearly, if a vertex from a pair was chosen, then
in the corresponding pair both vertices have been dominated. We summarize these
observations as follows: after dealing with C1 in the first phase, ℓ1 vertices of C1

have been chosen, and at most n− ℓ1 vertices from C1 have been left undominated.
Dominator proceeds by dealing with C2, and the only difference from the initial

case when dealing with C1 is that some vertices (x3, yj) may have already been chosen
by Staller. More generally, when Dominator starts to deal with Ci, where 2 ≤ i ≤
m/2, some vertices (x2i−1, yj) may have already been chosen by Staller while dealing
with Ci−1. This also implies that the corresponding pairs {(x2i−1, yj), (x2i, yj)}, and
their eventual neighboring pairs, {(x2i−1, yj−1), (x2i, yj−1)} and {(x2i−1, yj+1), (x2i, yj+1)},
are already non-empty when Dominator starts to deal with Ci. The strategy of Dom-
inator is the same as when dealing with C1. Notably, Dominator finds an arbitrary
empty pair {(x2i−1, yj), (x2i, yj)}, if it exists, and indicates (x2i, yj), as long as there
exists an empty pair in Ci. By using the same arguments as in the previous para-
graph, Dominator can ensure that after dealing with Ci in the first phase, ℓi vertices
of Ci have been chosen, and at most n− ℓi vertices from Ci have been left undom-
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inated. The first phase is over after Dominator deals with Cm/2. By that time,

Staller has chosen
∑m/2

i=1 ℓi vertices, while at most

m/2
∑

i=1

(n− ℓi) =
mn

2
−

m/2
∑

i=1

ℓi

vertices of Pm�Pn have been left undominated. Now, the second phase begins, in
which Dominator indicates the remaining undominated vertices one by one, in any
order. Hence, Staller will additionally select at most mn

2
−

∑m/2
i=1 ℓi vertices, which

together with vertices selected in the first phase contributes to at most mn
2

chosen
vertices during the entire game. Hence, γi(Pm�Pn) ≤ mn

2
= α(Pm�Pn), which

combined with Proposition 3.1 implies the stated result.
Second, consider the case when both m and n are odd. In this case, partition

V (Pm�Pn) into
m+1
2

sets, namely C0 = {x1}×V (Pn) and Ci = {x2i, x2i+1}×V (Pn),
where 1 ≤ i ≤ m−1

2
. The proof is similar to the proof of the previous case in which

m was even; the only difference is in the first step, where Dominator deals with the
first column C0, which we explain next.

Dominator uses the following strategy when dealing with C0, which lasts as
long as there is an undominated vertex left in C0. The strategy consists of two
phases. In the first phase, Dominator starts by indicating (x1, y1), and then, in
every further step, he indicates the vertex (x1, yi+2) if i is the largest index such
that (x1, yi) is dominated and i ≤ n − 2. By the choices of Staller, a vertex of
C0 becomes dominated by itself or one of its neighbors (possibly it is dominated
by a neighbor from C1, which will then be considered when dealing with C1). If
Staller chose (x1, yi+3) in one of her moves, then after the first phase is over, vertex
(x1, yi+1) remains undominated. Now, note that vertices chosen by Staller together
with vertices that are not yet dominated after the first phase form an independent
set of the path induced by the first column. In the second phase, Dominator selects
vertices of C0 that have not been dominated in the first phase (if any) one by one,
and in this way all vertices of C0 become dominated. By the previous observation,
Staller has chosen at most α(Pn) =

n+1
2

vertices in C0.
The rest of the strategy of Dominator is exactly the same as in the previous case.

Hence we conclude that Dominator can ensure that at most (m−1)n
2

vertices will be
selected to dominate the vertices in C1 ∪ · · · ∪ Cm−1

2

. Together with the bound on

the number of vertices from C0 selected in the first step of the game, we infer that
at most

n+ 1

2
+

(m− 1)n

2
=

mn + 1

2
=

⌈mn

2

⌉

vertices will be selected during the game on Pm�Pn. We readily infer that γi(Pm�Pn) =
⌈

mn
2

⌉

.
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The next family of graphs G for which we suspect that γi(G) = α(G) are cubic
bipartite graphs. We checked by computer that the equality holds for all (cubic)
bipartite graphs G with n(G) ≤ 10. Next, we extend this result to n(G) ≤ 12.

Proposition 5.5. If G is a connected, cubic bipartite graph of order at most 12,
then γi(G) = n(G)

2
= α(G).

Proof. By the observations preceding the proposition, it remains to consider the
case when n(G) = 12. Let A = {a1, . . . , a6} and B = {b1, . . . , b6} be the partite
sets of G. For j ≥ 1, we let sj denote the vertex chosen by Staller on her jth

move and let Sj = {s1, . . . , sj}. In addition, di will denote the vertex indicated
by Dominator in his ith move, for i ≥ 2. We provide a strategy for Dominator
that will ensure at most 6 vertices are chosen by Staller. Without loss of generality
s1 = a1 and N(a1) = {b1, b2, b3}. Dominator indicates d2 = b4. If s2 = b4, then
|N [S2]| = 8, which leaves four undominated vertices. At most four more vertices
will be chosen by Staller. Otherwise, s2 ∈ N(b4) ∩ (A − {a1}). Reindexing if
necessary we assume s2 = a2. If {b5, b6} ⊆ N(a2), then S2 dominates eight vertices
and thus at most six vertices will be chosen by Staller. If a2 is adjacent to only
one, say b5, of b5 or b6, then Dominator points to b6. Now, regardless of which
vertex Staller chooses from {b6, a3, a4, a5, a6} it is easy to see that |N [S3]| ≥ 9,
which implies that Staller will choose at most 6 vertices. Therefore, we may assume
that N(s2) ∩ {b4, b5, b6} = {b4}, and this implies that |N(a2) ∩ {b1, b2, b3}| = 2.
Note that we now have (N(b5)∪N(b6)) ⊆ {a3, a4, a5, a6}. Dominator then points to
d3 = b5. If s3 = b5, then |N [S3]| = 10 which implies that Staller can choose at most
five vertices when the game has ended. Thus, we may assume that Staller chooses
s3 ∈ N(b5) ∩ {a3, a4, a5, a6}. By reindexing if necessary we assume that s3 = a3.
Similar to the above argument, if a3b6 ∈ E(G), then Staller can choose at most
six vertices when the game has ended. Hence, we may assume that b6 /∈ N(a3).
Dominator now indicates d4 = b6. Staller must choose s4 ∈ {b6, a4, a5, a6}, and it
follows that |V (G) − N [S4]| ≤ 2. Therefore, γi(G) ≤ 6. The reverse inequality
follows by Proposition 3.1.

We could not extend the above reasoning to graphs of larger order. Thus it
remains open whether γi(G) = n(G)

2
holds for all cubic bipartite graph G.

6 Graphs with γi larger than Γ

In this section, we present a class of graphs whose indicated domination numbers
exceed their upper irredundance numbers (and therefore also the independence num-
ber) by an arbitrarily large amount.
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Recall that the kth power Gk of a graph G has V (Gk) = V (G), and uv ∈ E(Gk)
if and only if dG(u, v) ≤ k, where dG is the standard (shortest paths) distance in G.

Theorem 6.1. For every n ≥ k ≥ 2, the kth powers P k
n of paths satisfy

γi(P
k
n ) = Θ

( log k

k
n
)

as n → ∞. More explicitly,

(⌈log(k + 1)⌉+ 1)
⌊ n

4k

⌋

≤ γi(P
k
n ) ≤

⌈log(k + 1)⌉+ 2

2k + 2
n+ ⌈log(k + 1)⌉+ 2

where log means logarithm of base 2.

Proof. For the lower bound we may assume without loss of generality that n is a
multiple of 4k. We divide P k

n into n
4k

sections of 4k consecutive vertices. Staller’s
strategy is to consider each section separately. Denote the vertices in one such
section S by v1, . . . , v4k. Note that the “middle” subsection S− formed by the
vertices vk+1, . . . , v3k can only be dominated by vertices within S. Let us also use
the notation S ′ for the “left” half v1, . . . , v2k of S, and write S ′′ for its “right” half
v2k+1, . . . , v4k.

The first time Dominator indicates a vertex in S, with no loss of generality it
is one of the vertices from S ′. Staller then selects vk. This selection dominates the
entire S−∩S ′, but leaves the k vertices of S−∩S ′′ undominated. More generally, no
matter what happened during the game before this move, the set U of undominated
vertices inside S is a set {vi, vi+1, . . . , vj} of consecutive vertices (or just a singleton
{vi}), because only some vertices at the right end of S ′′ may possibly be dominated
by a selection from the successor section of S. Here j > 3k may occur, but Staller’s
strategy will handle this situation as if j ≤ 3k held. So, attention will be restricted
to U ′ = {vi, vi+1, . . . , vj′} where j′ = min(j, 3k); hence 2k + 1 ≤ i ≤ j′ ≤ 3k. The
crucial point is:

(*) If |U ′| ≥ 2s, for an integer s ≥ 0, then Staller can achieve that at least s + 1
steps are needed to make the entire U ′ dominated during the rest of the game.

We prove this by induction on s, the case of s = 0 being trivial. Once (*) is proved,
it follows that the S− subsection inside each of the n

4k
sections S requires at least

⌈log (k + 1)⌉+ 1 moves under a properly chosen strategy of Staller, hence implying
the claimed lower bound.

In a general move of the game when at least one selection has already been made
in S, assume that the set of undominated vertices inside S is U ⊆ S ′′ (also allowing
U 6⊂ S−, but U ′ ⊂ S− will hold by definition), and let Dominator indicate vertex vℓ
from U .
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(a) If ℓ > 3k (i.e., vℓ ∈ U \U ′), then Staller imagines as if Dominator has indicated
ℓ = 3k and proceeds as in case (c) below.

(b) If ℓ ≤ 3k and ℓ− i < j − ℓ, then Staller selects vℓ−k.

(c) If ℓ ≤ 3k and ℓ− i ≥ j − ℓ, then Staller selects vℓ+k.

In either case, Staller’s selection is inside S, hence it has no influence on the
middle subsection of any section other than S. Moreover, in case (a) the selected
vertex is v4k, therefore it dominates vℓ. Finally, the number of vertices in U ′ that
become dominated by Staller’s selection is at most ⌈1

2
|U ′|⌉. Consequently, if |U ′| ≥

2s, then at least 2s−1 vertices remain undominated inside S− after this move. This
implies (*) by induction, and completes the proof of the lower bound.

As a preparation to the proof of the upper bound, we observe the following.

(**) If U = {vi, vi+1, . . . , vj} is a set of consecutive undominated vertices, and
j − i + 1 ≤ 2k + 1, then Dominator can achieve in at most ⌈log (j − i + 2)⌉
moves that the entire U becomes dominated.

The strategy is simple:

1. Indicate vℓ, where ℓ = ⌊1
2
(i+ j)⌋.

2. Depending on Staller’s selection, update U to its part that remains undomi-
nated.

3. Return to step 1 as long as U is non-empty.

To verify that this strategy proves (**), it suffices to observe that the undomi-
nated vertices of U remain consecutive after each move—this is because j − i+ 1 ≤
2k + 1 has been assumed—and that their number gets halved in each move.

Now we provide a strategy for Dominator, who will proceed from left to right in
P k
n . The situation before each move can be described with an alternating sequence of

sections that we call “gaps” Ui, consisting of consecutive undominated vertices, and
“intervals” Di, consisting of consecutive dominated vertices. At the beginning we
have no intervals, and just one gap U1 = {v1, . . . , vn}. Let Dominator play according
to the following rules.

1. While vn is undominated and the last gap has at least 2k + 2 vertices:

(a) Identify the first vertex vg of the gap that contains vn.
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(b) Indicate the vertex vℓ, where ℓ = g + 2k + 1.

(c) Depending on Staller’s selection, update the alternating sequence U1, D1,
U2, D2, . . . of gaps and intervals.

2. In each of the gaps U1, U2, . . . , apply the strategy described above for (**).

After the first phase, for the sake of a more transparent computation, we split
the gap-interval vertex partition into blocks B1 = (U1, D1), B2 = (U2, D2), . . . ,
Bm = (Um, Dm). If vn remains undominated before the second phase, i.e. vn ∈ Um,
we artificially define Dm as the emptyset. Observe that except for the last block Bm,
each gap Ui has at least 1 and at most 2k + 1 vertices, and each interval Di has
exactly 2k+1 vertices. In particular, also the first block begins with a gap, as v1 is
undominated.

Consider any Bi with i < m. If 2s ≤ |Ui| < 2s+1, (**) guarantees that Dominator
can achieve that Ui becomes dominated within s + 1 ≤ ⌈log (2k + 2)⌉ moves (and,
according to (*), that is the best he can do). Moreover, Di was dominated in just
one step. Since |Ui∪Di| ≥ 2k+1+2s ≥ 2k+2 whenever i < m, the average number
of moves required to dominate one vertex in Bi is

s + 2

|Ui|+ |Di|
≤

⌈log (2k + 2)⌉+ 1

2k + 2

because s is an integer and 2s ≤ |Ui| ≤ 2k + 1. This upper bound is valid for all
vertices in the whole B1 ∪ · · · ∪ Bm−1.

To complete the proof of the theorem, it suffices to note that Um becomes dom-
inated in at most ⌈log (2k + 2)⌉ = ⌈log (k + 1)⌉+1 moves and Dm in just one move
(or none if it is empty).

Let us state the particular case k = 2 of the general lower bound separately, as
it already has important consequences.

Corollary 6.2. If n ≥ 2, then γi(P
2
n) ≥ 3⌊n

8
⌋

Since all P 2
n are chordal graphs, we have IR(P 2

n) = Γ(P 2
n) = α(P 2

n) =
⌈

n
3

⌉

≤ n+2
3

by Theorem 2.2. Together with Corollary 6.2, noting also that 3⌊n
8
⌋ ≥ 3

8
n− 21

8
, we

get γi(P
2
n)− IR(P 2

n) ≥
n−79
24

, which can be arbitrarily large when n grows.

Corollary 6.3. There exist graphs G such that γi(G)− IR(G) is arbitrarily large.

The above corollary also implies that there exist graphs G such that γi(G)−Γ(G)
is arbitrarily large.
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7 Concluding remarks

In Section 4 we characterized the graphs G with minimum degree δ and order n ≥
2δ + 2, that satisfy the extremal value γi(G) = n − δ. It would be interesting to
extend the characterization to graphs of smaller order relative to δ.

Question 7.1. For which graphs G of order n and minimum degree δ such that
n < 2δ + 2 does γi(G) = n− δ hold?

In Section 5, we proved for two important families of bipartite graphs (namely
trees and grids) that the indicated domination number equals their independence
number. In addition, computer check confirmed this to hold for all (bipartite) graphs
of order at most 10. We could not find any bipartite graph that would not have this
property, so we pose this as an open problem:

Question 7.2. Is it true that for every bipartite graph G we have γi(G) = α(G)?

In the same section we also proved that connected, cubic bipartite graphs G
of order at most 12 satisfy γi(G) = n(G)

2
= α(G). We think this result could be

generalized to all connected, cubic bipartite graphs, but we were unable to prove it.
Therefore we pose the following question.

Question 7.3. Is it true that γi(G) = n(G)
2

for any cubic bipartite graph G?

It would also be interesting to find whether there is an upper bound on the indi-
cated domination number in the class of all connected cubic graphs. In particular,
is there a constant C < 1 such that γi(G) ≤ C · n holds for all connected cubic
graphs G? Note that C ≥ 1

2
due to the 3-cube and the Petersen graph, as checked

by computer.
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[21] G. Košmrlj, Realizations of the game domination number, J. Comb. Optim. 28
(2014) 447–461.

[22] T. Mahoney, G.J. Puleo, D.B. West, Online sum-paintability: the slow-coloring
game, Discrete Math. 341 (2018) 1084–1093.

[23] K. Xu, X. Li, On domination game stable graphs and domination game edge-
critical graphs, Discrete Appl. Math., 250 (2018) 47–56.
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