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Noncentrosymmetric superconductors can support flat bands of zero-energy surface states in part
of their surface Brillouin zone. This requires that they obey time-reversal symmetry and have a
sufficiently strong triplet-to-singlet-pairing ratio to exhibit nodal lines in the bulk. These bands are
protected by a winding number that relies on chiral symmetry, which is realized as the product of
time-reversal and particle-hole symmetry. We reveal a way to stabilize a flat band in the entire
surface Brillouin zone, while the bulk dispersion is fully gapped. This idea could lead to a robust
platform for quantum computation and represents an alternative route to strongly correlated flat
bands in two dimensions, besides twisted bilayer graphene. The necessary ingredient is an additional
spin-rotation symmetry that forces the direction of the spin-orbit-coupling vector not to depend on
the momentum component normal to the surface. We define a winding number that leads to flat
zero-energy surface bands due to bulk-boundary correspondence. We discuss under which conditions
this winding number is nonzero in the entire surface Brillouin zone and verify the occurrence of zero-
energy surface states by exact numerical diagonalization of the Bogoliubov–de Gennes Hamiltonian
for a slab. In addition, we consider how a weak breaking of the additional symmetry affects the
surface band, employing first-order perturbation theory and a quasiclassical approximation. We
find that the surface states and the bulk gap persist for weak breaking of the additional symmetry
but that the band does not remain perfectly flat. The broadening of the band strongly depends
on the deviation of the spin-orbit-coupling vector from its unperturbed direction as well as on the
spin-orbit-coupling strength and the triplet-pairing amplitude.

I. INTRODUCTION

Noncentrosymmetric superconductors with time-rever-
sal symmetry (TRS) have recently attracted a lot of at-
tention. For sufficiently strong spin-triplet contribution
to the superconducting pairing, these materials posses
nodal lines in their bulk dispersion, which are associated
with a winding number. At their surface, they exhibit
zero-energy Majorana states in the part of the surface
Brillouin zone (sBZ) that is enclosed by the projection
of the nodal lines. The resulting zero-energy flat bands
are topologically protected by the winding number of the
bulk nodal lines [1–6]. These flat bands of Majorana
modes are of particular interest in the context of quan-
tum computation [7–17].
Majorana modes are attractive for quantum compu-

tation on the one hand because qubit states realized
by Majorana modes are topologically protected, which
promises high stability against relaxation and decoher-
ence. On the other hand, quantum gates can be realized
by moving such Majorana modes around each other, i.e.,
by braiding their world lines. There are excellent re-
views covering these ideas [8, 14]. Flat Majorana surface
bands are intriguing in this context because they real-
ize a macroscopic number of localized Majorana modes.
Observation of non-trivial braiding statistics would be
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a smoking-gun experiment for Majorana modes but the
required manipulation of individual Majorana modes is
likely difficult [17].

Another interesting aspect is that the flat bands are
automatically in the strong-coupling regime since their
kinetic energy is zero [16, 18, 19]. A similar situation
with flat bands of Majorana modes within the projec-
tion of nodal lines has also been discussed in the con-
text of inversion-symmetric superconductors, where the
nonzero winding number arises from an orbital degree of
freedom that transforms nontrivially under time reversal
[20]. However, near the boundary of the flat-band region
of the nodal systems, the bulk-state energies come arbi-
trarily close to the surface band due to the gap closing
in the bulk, which could hinder the experimental detec-
tion of the flat band and compromise the robustness of
quantum-computation schemes. Importantly, the wind-
ing number in these systems has to vanish in a finite frac-
tion of the sBZ. For example, due to TRS, the region with
a nonzero winding number never includes the origin. The
reason is that every nodal line has a time-reversed part-
ner. Therefore, if the projection of one of the nodal lines
encloses the origin, the projection of its time-reversed
partner does so as well. The two lines lead to opposite
winding numbers, which compensate each other in the
intersecting region so that the winding number at the
origin is zero. To avoid this problem, one would have to
break TRS. However, the winding number and therefore
the topological protection of the surface states relies on
the presence of a chiral symmetry, which, in these sys-
tems, is realized as the product of TRS and particle-hole
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symmetry (PHS). Since the latter is always present in the
Bogoliubov–de Gennes (BdG) formalism, breaking TRS
destroys the topological protection.

It would be highly desirable to energetically separate
the flat surface band from the bulk states by having a
full bulk gap and a topologically protected zero-energy
flat surface band in the entire sBZ. Even in the presence
of terms that weakly break the symmetries which protect
the zero-energy states, this could still lead to an approxi-
mately flat surface band close to zero energy within a full
bulk gap. One possible route would be a system without
TRS but with a chiral symmetry arising from a sublat-
tice symmetry, i.e., the system can be decomposed into
two sublattices and there only is hopping between these
sublattices and not within them. However, we do not
concentrate on this idea since beyond-nearest-neighbor
hopping terms destroy the chiral symmetry. Another sit-
uation where the occurrence of flat bands in the full sBZ
due to chiral symmetry has been analyzed are crystalline
topological insulators [21]. Here, the protection of the
boundary modes arises from geometric deformations and
leads to a finite polarization of the surface state.

In this paper, we instead present an approach to re-
alize a similar type of winding number as in the nodal
system—but in the entire sBZ—by introducing an addi-
tional symmetry. Specifically, we require the existence
of a spin component that commutes with the Hamil-
tonian. This requires the direction of the spin-orbit-
coupling (SOC) vector not to depend on the momen-
tum component normal to the surface and allows us to
bring the Hamiltonian into block-diagonal form. The
most straightforward possibility is for the SOC vector to
point in a single direction for all momenta. We find that
for all point groups except for the three low-symmetry
groups C1, C2, and Cs, this is the only possibility, if
we restrict ourselves to the lowest-order expansion of the
SOC vector. The resulting spin-up and spin-down blocks
no longer obey TRS and PHS separately, which are both
present in the BdG Hamiltonian of the full system. How-
ever, the chiral symmetry persists in the spin blocks,
i.e., there are unitary matrices that anticommute with
the spin-up and spin-down blocks. Hence, the individ-
ual blocks are in symmetry class AIII [4, 22–24]. Rely-
ing on the chiral symmetry, we can derive a momentum-
dependent winding number in the sBZ for both the spin-
up and the spin-down block. Each of these winding num-
bers protects a flat band of zero-energy surface states,
leading to a twofold degenerate flat surface band in the
entire sBZ, while the bulk is fully gapped.

We discuss the conditions under which these winding
numbers are nonzero and verify our results numerically
through exact diagonalization of the BdG Hamiltonian of
a slab. Moreover, we consider the effects of a weak break-
ing of the spin-component symmetry, i.e., an only approx-
imately unidirectional SOC vector. We use a quasiclassi-
cal approximation for the surface states in the direction
orthogonal to the surface and derive the first-order cor-
rection to the flat-band energy within perturbation the-

ory. We compare the results to exact diagonalization of
the BdG Hamiltonian.

The remainder of this paper is organized as follows:
In Sec. II, we introduce a model Hamiltonian, discuss its
symmetries, and derive the winding number. We discuss
the necessary conditions for a nonzero winding number
that protects surface states at zero energy. In Sec. III,
we list the crystallographic point groups which can in
principle satisfy all necessary symmetries. Moreover, we
determine the parameter regime that allows for a nonzero
winding number in the entire sBZ. We demonstrate the
occurrence of zero-energy flat bands for one exemplary
system. In Sec. IV, we consider the implications of an
imperfectly unidirectional SOC vector. Finally, in Sec. V,
we summarize our findings and draw conclusions.

II. MODEL SYSTEM

We consider a three-dimensional noncentrosymmet-
ric time-reversal-symmetric single-band superconductor
modeled by a Hamiltonian

H =
1

2

∑
k

Ψ†
kH(k)Ψk, (1)

with Ψk = (ck,↑, ck,↓, c
†
−k,↑, c

†
−k,↓)

T , where c†kσ (ckσ) is

the creation (annihilation) operator of an electron with
wave vector k and spin σ ∈ {↑, ↓}, and the BdG Hamil-
tonian

H(k) =

(
h(k) ∆(k)

∆†(k) −hT (−k)

)
. (2)

The matrix h(k) is the normal-state Hamiltonian

h(k) = ϵkσ0 + gk · σ, (3)

where the spin-independent part ϵk is an even function of
momentum k, while the SOC vector gk is odd in k, and
σ and σ0 represent the vector of Pauli matrices and the
2 × 2 identity matrix, respectively. Due to the breaking
of inversion symmetry in the normal state, the supercon-
ducting pairing matrix ∆(k) generically contains both
a singlet component, which is even in k, and a triplet
component, which is odd in k, giving

∆(k) = (∆s
kσ0 + dk · σ) iσy, (4)

where ∆s
k is the singlet pairing amplitude and dk is the

triplet pairing vector. In the following, we will assume
dk ∥ gk as this state is known to be the most stable in the
absence of interband pairing [2, 25]. We thus write dk =
∆t

klk and gk = λlk with the triplet pairing amplitude ∆t
k

and the SOC strength λ. In this paper, we consider pair-
ing that does not break the lattice symmetry, i.e., that
transforms according to the trivial irreducible represen-
tation of the point group. This requires ∆s

k and ∆t
k to

have the full symmetry of the normal-state Hamiltonian.
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We are interested in superconductors with a full bulk
gap. The simplest fully gapped state is realized for (s+p)-
wave pairing with ∆s = const and ∆t = const, which we
will assume for our numerical calculations. However, our
theory applies whenever there is a full bulk gap. Con-
versely, if the bulk gap has nodes, the winding number
that we will introduce in Sec. II B is ill defined at the
projections of these nodes into the sBZ.

A. Symmetries

A fully gapped Hamiltonian of the form described
above belongs to the symmetry class DIII of the tenfold-
way classification [4, 6, 22–24] as it obeys both TRS T
with T 2 = −1 and PHS C with C2 = +1. Specifically,
the BdG formalism enforces C = KUC with UC = σx⊗σ0

such that

UCH(−k)TU†
C = −H(k). (5)

TRS can be written as T = KUT with UT = σ0 ⊗ iσy

such that

UTH(−k)TU†
T = +H(k). (6)

The combination of these two antiunitary symmetries
gives the so-called chiral symmetry

U†
SH(k)US = −H(k), (7)

i.e., there is a unitary matrix US = iUTUC = −σx ⊗ σy

that anticommutes with the Hamiltonian. Note that half
of the eigenvalues of US are equal to +1 and the other
half to −1.
In addition to TRS, PHS, and chiral symmetry, we re-

quire the crystal structure to belong to a noncentrosym-
metric point group. Every element of the point group
represented by a 3 × 3 orthogonal matrix R leads to a
relation [4]

UR̃H(R−1k)U†
R̃
= H(k) (8)

satisfied by the Hamiltonian, where R̃ = R/det(R) =

det(R)R, i.e., R̃ describes a proper rotation by an an-
gle θ about an axis denoted by a unit vector n, and
UR̃ = diag(uR̃, u

∗
R̃
) with the spinor representation uR̃ =

exp[−iθ(n · σ)/2] of R̃. This leads to the restrictions

lk = R̃ lR−1k, (9)

ϵk = ϵR−1k, (10)

∆s
k = ∆s

R−1k. (11)

We will need to fix a surface orientation, which gives
one direction k⊥ in the Brillouin zone that is orthogonal
to the surface and a vector kq that parameterizes the two
directions of the sBZ so that each point k in the three-
dimensional Brillouin zone can be identified by some pair
(k⊥,kq).

We now introduce an additional symmetry for the
Hamiltonian H(k). This symmetry is the main ingre-
dient that will enable us to define a winding number and
obtain protected zero-energy surface bands. As the new
symmetry, we require that for each point kq in the sBZ,
there is a spin component Σnkq

in some direction nkq that

commutes with the Hamiltonian for all momenta k⊥ in
the orthogonal direction, i.e.,

[H(k⊥,kq),Σnkq
] = 0 ∀k⊥ ∈ [−π, π), (12)

where Σnkq
is defined as

Σnkq
=

(
nkq · σ 0

0 −n−kq · σ∗

)
, (13)

with a unit vector nkq = (nx
kq
, ny

kq
, nz

kq
)T . While the

condition in Eq. (12) does not impose any additional con-
straints on ϵk and ∆s

k, it does require the SOC vector to
be parallel to the vector nkq , i.e.,

lk = l(k)nkq = l(k⊥,kq)nkq ∀k⊥ ∈ [−π, π), (14)

with a real-valued function l(k). While l(k) is odd in k,
nkq does not depend on the component k⊥ and is thus
even in k⊥. Hence, l(k⊥,kq) has to be odd in k⊥. Note
that l(k) is not the norm of l(k). Since nkq must now be
even, Eq. (13) can be written as

Σnkq
=

(
nkq · σ 0

0 −nkq · σ∗

)
. (15)

To ensure uniqueness, we choose the sign of l(k) such
that nz

kq
≥ 0.

While the occurrence of Eq. (12) as an exact physical
symmetry is unlikely as it is not imposed by any point
group, the equation can still be satisfied approximately.
We will discuss in Sec. III for which point groups this
can be expected to occur. In the present section, we
assume the exact validity of Eq. (12). The effects of small
deviations from this symmetry are treated in Sec. IV.
As the matrix Σnkq

has the two eigenvalues ±1 that

are both twofold degenerate the HamiltonianH(k) can be
brought into block-diagonal form via the transformation

H̃(k) =

(
H↑(k) 0

0 H↓(k)

)
= WΣ(kq)H(k)W †

Σ(kq), (16)

where WΣ(kq) is the matrix that diagonalizes Σnkq
as

WΣ(kq)Σnkq
W †

Σ(kq) = σz ⊗ σ0. (17)

Note that σ ∈ {↑, ↓} in Hσ refers to the spin orientation
relative to the quantization axis nkq . Performing the
diagonalization and using ||nkq ||2 = 1, we obtain
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WΣ(kq) =



nx
kq

+iny
kq√

2−2nz
kq

√
1−nz

kq
2 0 0

0 0 −
nx
kq

−iny
kq√

2nz
kq

+2

√
nz
kq

+1

2

−
nx
kq

+iny
kq√

2nz
kq

+2

√
nz
kq

+1

2 0 0

0 0
nx
kq

−iny
kq√

2−2nz
kq

√
1−nz

kq
2


(18)

for nz
kq

̸= 1, i.e., for a SOC vector which is not parallel

to the z-axis. For the special case of nkq = ẑ, Eq. (18) is
not well defined and we instead get

WΣ(kq) =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 . (19)

This leads to the spin-up and spin-down blocks

Hσ(k)

=

(
ϵk + σλl(k) σe

iϕnkq [∆s
k + σ∆t

kl(k)]

σe
−iϕnkq [∆s

k + σ∆t
kl(k)] −ϵk − σλl(k)

)
,

(20)

where σ = ↑ (↓) is understood to have the numerical
value +1 (−1) and we have introduced the phase factor

e
iϕnkq =


nx
kq

+ iny
kq√

(nx
kq
)2 + (ny

kq
)2

for nz
kq

̸= 1,

1 for nz
kq

= 1.

(21)

The blocks Hσ do not have BdG form—in a BdG Hamil-
tonian, the lower right component would have to equal
−[ϵ−k + σλl(−k)] = −ϵk + σλl(k) since l(k) is odd. The
blocks thus break PHS. They also break TRS separately
since TRS maps H↑ onto H↓ and vice versa.
Each of the blocks Hσ retains a chiral symmetry, i.e.,

there are unitary matrices US,σ(kq) such that

U†
S,σ(kq)Hσ(k)US,σ(kq) = −Hσ(k), (22)

where US,↑(kq) [US,↓(kq)] is the upper (lower) diagonal

2× 2 block of ŨS(kq) = WΣ(kq)USW
†
Σ(kq), i.e.,

US,σ(kq) = σ



(
0 ie

iϕnkq

−ie
−iϕnkq 0

)
for nz

kq
̸= 1,(

0 i

−i 0

)
for nz

kq
= 1.

(23)
Thus each of the two blocks Hσ is in class AIII [4, 22–24].

B. Winding number

The well-established way [1, 3, 4, 6] to define a kq-de-
pendent one-dimensional winding number is to bring the
Hamiltonian H(k) into block-off-diagonal form via the
transformation

WSH(k)W †
S =

(
0 D(k)

D†(k) 0

)
≡ H(k), (24)

where WS diagonalizes US such that

WSUSW
†
S = σz ⊗ σ0. (25)

One can now adiabatically deform H(k) into a flat-
band Hamiltonian, which amounts to replacing the diag-
onal matrix ΣD(k) in the singular-value decomposition

D(k) = U†
D(k)ΣD(k)VD(k) by the unit matrix. The re-

sulting off-diagonal block qD(k) = U†
D(k)VD(k) can be

used to define a winding number

WD(kq) =
1

2πi

∫
k⊥

dk⊥ Tr[q†D(k)∂k⊥qD(k)]. (26)

As the matrices U†
D(k) and VD(k) and thus also qD(k)

are unitary, the winding number can be transformed to

WD(kq) =
1

2πi

∫
k⊥

dk⊥ ∂k⊥ [ln det qD(k)]

=
1

2πi

∫
k⊥

dk⊥ ∂k⊥

(
ln |det qD(k)|+ i arg[det qD(k)]

)
=

1

2π

∫
k⊥

dk⊥ ∂k⊥ arg[det qD(k)]. (27)

One can now use

arg[det qD(k)] = arg[detU†
D(k) detVD(k)]

= arg[detU†
D(k) detΣD(k) detVD(k)/detΣD(k)]

= arg[detD(k)]− arg[detΣD(k)]

= arg[detD(k)], (28)

where the contribution of arg[detΣD(k)] drops out if all
singular values of D(k) are nonzero. Points kq where
D(k) has at least one singular value equal to zero coincide
with points where detD(k) = 0, i.e., gap nodes. At such
kq, the winding number is ill defined. For all other kq,
we can write

WD(kq) =
1

2π

∫
k⊥

dk⊥ ∂k⊥ arg[detD(k)], (29)

i.e., the winding number describes how many times the
complex function detD(k⊥,kq) winds around the origin
when k⊥ traverses the Brillouin zone once.

We now review the case of noncentrosymmetric su-
perconductors. For such systems, the winding number
WD(kq) can only be nonzero if the triplet-to-singlet ra-
tio is sufficiently large to ensure that nodal lines occur on
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one of the helicity Fermi surfaces [4]. The dispersion rela-
tions of the positive-helicity and negative-helicity bands,
ξ±(k) = ϵk±λ|lk|, are given by the two eigenvalues of the
normal-state Hamiltonian h(k). Note that the decompo-
sition into the two helicity bands is different from the
block diagonalization performed in Sec. IIA since l(k) ̸=
|lk|. We recall that l(k) is odd in k, whereas |lk| is even.
The gaps on the corresponding two helicity Fermi sur-

faces are ∆±(k) = ∆s
k ± ∆t

k|lk|. In these systems,
WD(kq) is nonzero for surface momenta kq that lie in-
side the projection of the nodal lines into the sBZ. As
noted in Sec. I, there is always a region outside of the
projection of the nodal lines that is topologically trivial
and does not support zero-energy surface states. In par-
ticular, the winding number at the origin kq = 0 always
vanishes.
A system that avoids this problem would therefore

have to break TRS while still preserving chiral symmetry,
i.e., the anticommutation of the Hamiltonian with a uni-
tary matrix of which half the eigenvalues are +1 and the
other half are −1. The usual BdG Hamiltonian in Eq. (2)
cannot satisfy both conditions because its construction
requires it to have PHS. However, we have shown in Sec.
IIA that it is possible to construct models with TRS
and PHS that decompose into blocks Hσ(k) that break
both symmetries but retain chiral symmetry. It remains
to show that such models allow for a nonzero winding
number.
To this end, we define a winding number analogous to

WD(kq) in Eq. (26) for Hσ(k), i.e.,

W⊥,σ(kq) =
1

2π

∫
k⊥

dk⊥∂k⊥ arg[Dσ(k)], (30)

where

Dσ(k) = −{ϵk + σλl(k) + i [∆s
k + σ∆t

kl(k)]} (31)

are the off-diagonal entries of the matrices

Hσ(k) =

(
0 Dσ(k)

D∗
σ(k) 0

)
= WS,σ(kq)Hσ(k)W

†
S,σ(kq) (32)

and

WS,σ(kq) =
1√
2




−iσ(nx

kq
−iny

kq
)√

(nx
kq

)2+(ny
kq

)2
1

iσ(nx
kq

−iny
kq

)√
(nx

kq
)2+(ny

kq
)2

1

 for nz
kq

̸= 1,

(
−iσ 1

iσ 1

)
for nz

kq
= 1

(33)
diagonalizes US,σ(kq) such that

WS,σ(kq)US,σ(kq)W
†
S,σ(kq) = σz. (34)

We thus have

W⊥,σ(kq) =
1

2π

∫
k⊥

dk⊥ ∂k⊥

× arg
(
ϵk + σλl(k) + i [∆s

k + σ∆t
kl(k)]

)
.

(35)

We note that due to l(k) being odd in k the winding
numbers of the ↑ and ↓ blocks are related by

W⊥,↑(kq) = −W⊥,↓(−kq) (36)

for the case of (s+ p)-wave pairing with ∆s = const and
∆t = const, which we have assumed in our calculations.
This result still holds true as long as the admixtures of
higher-moment contributions are sufficiently small and
the quasiparticle energies in the bulk, i.e, the eigenvalues
of the bulk BdG Hamiltonian, do not have nodes. It
is therefore sufficient to consider only one of them, e.g.,
W⊥,↑(kq), from now on.
We now assume a sufficiently weak SOC strength λ and

a dispersion ϵk⊥,kq that is sufficiently flat in the kq direc-
tions such that for every kq there is exactly one positive
and one negative solution k⊥ for

ξ±k⊥,kq
= ϵk⊥,kq ± λ|lk⊥,kq | = 0, (37)

This means that the Fermi surface for each helicity± con-
sists of a corrugated sheet with k⊥ ∈ (0, π) and another
sheet with k⊥ ∈ (−π, 0). We denote the perpendicular
components of the k points on the positive-helicity Fermi

surface, i.e., the solutions k⊥ of ξ+k⊥,kq
= 0, by k

(1)
⊥ > 0

and k
(2)
⊥ < 0 and the solutions for the negative-helicity

Fermi surface by k
(3)
⊥ > 0 and k

(4)
⊥ < 0.

The resulting conditions for nonzero winding numbers
in the entire sBZ read as

sgn
(
∆+

k
(1)
⊥ ,kq

)
= −sgn

(
∆−

k
(4)
⊥ ,kq

)
, (38)

sgn
(
∆+

k
(2)
⊥ ,kq

)
= −sgn

(
∆−

k
(3)
⊥ ,kq

)
, (39)

where ∆±(k) = ∆s
k ± ∆t

k|lk|. A detailed derivation is
given in Appendix A. Since ∆+ is always positive for
∆s,∆t > 0 this means that ∆− must be negative every-
where on the negative-helicity Fermi surface, which re-
quires a sufficiently small singlet-to-triplet ratio ∆s/∆t <
min |l(k−

F )|.

III. IDEAL SYSTEM

A. Crystallographic point groups

In this section, we determine for which point groups
one can find parameter regimes where the winding num-
ber W⊥,σ(kq) in Eq. (35) is nonzero for all momenta kq
in the sBZ for some surface orientation. As shown in
Sec. II B, this requires the matrices H(k) and Σnkq

to
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commute. This is equivalent to the requirement that a
unit vector nkq independent of k⊥ exists such that the
vectors gk⊥,kq and dk⊥,kq and hence lk⊥,kq are parallel
to nkq . There is no point group that guarantees this re-
lation but there are several point groups for which one
can at least fine tune the parameters in such a way that
the symmetry holds. Point groups with inversion sym-
metry can be excluded since they are incompatible with
a nonzero SOC vector lk⊥,kq . Of the 32 crystallographic
point groups, the 21 groups C1, C2, C3, C4, C6, D2, D3,
D4, D6, C2v, C3v, C4v, C6v, D2d, Cs, C3h, D3h, S4, T , O,
and Td are noncentrosymmetric. T , O, and Td, cannot
satisfy the symmetry in Eq. (12), even approximately.
This can be seen from the fact that, for any surface ori-
entation, Eq. (9) requires the existence of a vector nkq

for every point kq in the corresponding sBZ such that

nkq = αkqRnR−1kq (40)

for some real number αkq and every element R of the
point group. However, all the cubic groups contain the
four C3 axes of a regular tetrahedron. For a threefold
rotation, Eq. (40) can only be satisfied if the vector nkq

is parallel to the axis of rotation. It would thus have
to be parallel to all the four C3 axes at once, which is
impossible.

For the other noncentrosymmetric point groups, those
including a three-, four-, or sixfold rotation axis, i.e., C3,
C4, C6, D3, D4, D6, C3v, C4v, C6v, C3h, and D3h, as
well as S4, which contains a fourfold rotation-reflection
axis, and D2d, which has three orthogonal C2 axes and
two mirror planes containing one of the axes, the same
equation leads to the restriction that the SOC vector
must be parallel to the principal axis, which we will define
as the z-axis. For the groups D2 and C2v, Eq. (40) would
allow for the SOC vector to be parallel to any of the
three coordinate axes x, y, or z. Continuity then forces
it to be unidirectional in the entire sBZ. For the point
groups C2, which contains only one twofold rotation axis
z, and Cs, which contains the mirror plane xy, the SOC
vector may either be parallel to the z-axis or have an
arbitrary orientation within the xy plane. The C1 point
group does not imply any restrictions on the orientation
of nkq . Hence, only the groups C2, Cs, and C1 allow for
the orientation of the SOC vector to vary as a function of
kq. In this work, we assume a unidirectional SOC vector
and leave potential effects due to its kq for C2, Cs, and
C1 for the future.
To find out which of these point groups are the most

promising to obtain a unidirectional SOC vector and
therefore have a nonzero winding number in the entire
sBZ for some surface orientation, we consider the lowest-
order expansion of the SOC vector. Taking the periodic-
ity of the lattice into account, this can be done by writing

lk =
∑
j,k,l

cj,k,l sin[k · (jg1 + kg2 + lg3)], (41)

with lattice vectors g1, g2, g3 and vector-valued coeffi-
cients cj,k,l that respect the lattice symmetries [26, 27].

We expect the dominant contribution in lk to come from
nearest-neighbor terms. For a nonzero winding number,
we not only need to write the SOC vector as lk = l(k)nkq

but we also require l(k) not to be even in k⊥. If l(k) were
even in k⊥ the image of the function Dσ(k) in Eq. (31) as
a function of k⊥ would be a curve in the complex plane
that does not enclose any area and therefore cannot lead
to a nonzero winding number. It is therefore necessary
that l(k) is not even in k⊥.

Equation (41) shows that the point groups C2, C3, C4,
C6, D2, D3, D4, andD6 lead to a unidirectional SOC vec-
tor with k⊥ = kz if only the coefficients of terms parallel
to ẑ are nonzero. This corresponds to a SOC vector pro-
portional to sin kz ẑ to first order. For the point group
D2, one can alternatively also set k⊥ = kx if the SOC
vector is proportional to sin kx x̂ or k⊥ = ky if the SOC
vector is proportional to sin ky ŷ to first order. For the
point groups C2 and Cs, the three surface orientations
(100), (010), and (001), i.e., k⊥ ∈ {kx, ky, kz} can all
lead to a first-order approximation l(k) = sin k⊥ and a
nonzero winding number in the full sBZ. In these cases,
the SOC vector is oriented normal to the corresponding
surface. In principle, higher-index surfaces containing
the z-axis are also permitted since the SOC vector may
point in any direction in the xy plane. However, this
leads to backfolding of the sBZ and is thus incompatible
with the special shape of the normal-state Fermi surface
assumed in our model.

For the point group C2v, the most general form of the
SOC vector on an orthorhombic lattice is

lk =

∞∑
j,k,l=0

cxj,k,l cos(jkx) sin(kky) cos(lkz)

cyj,k,l sin(jkx) cos(kky) cos(lkz)

czj,k,l sin(jkx) sin(kky) sin(lkz)


= (cx0,1,0 sin ky + . . . ) x̂+ (cy1,0,0 sin kx + . . . ) ŷ

+ (cz1,1,1 sin kx sin ky sin kz + . . . ) ẑ, (42)

with real coefficients cxj,k,l, c
y
j,k,l, and czj,k,l. This can be

derived from Eq. (41) by expanding sin(jkx + kky + lkz)
and using the symmetries to derive conditions for the
coefficients cj,k,l. For example, for the z-component of
the SOC vector, the two-fold rotation symmetry leads
to lzkx,ky,kz

= lz−kx,−ky,kz
, from which we can conclude

czj,k,l = cz−j,−k,l, and the two mirror planes lead to

lzkx,ky,kz
= lzkx,−ky,kz

(xz-plane) and lzkx,ky,kz
= lz−kx,ky,kz

(yz-plane), i.e., czj,k,l = czj,−k,l = cz−j,k,l. Combining these

conditions, rewriting the sum in Eq. (41) such that j, k,
and l are positive, and redefining czj,k,l to absorb all con-

stant prefactors leads to the z-component in Eq. (42).
We therefore again find the options k⊥ ∈ {kx, ky} for

lk = sin kx[(c
y
1,0,0 + cy1,1,0 cos ky + cy1,0,1 cos kz

+ cy1,1,1 cos ky cos kz)ŷ + sin ky sin kz ẑ] (43)

and

lk = sin ky[(c
x
1,0,0 + cx1,1,0 cos kx + cx1,0,1 cos kz
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+ cx1,1,1 cos kx cos kz)x̂+ sin kx sin kz ẑ] (44)

to lowest order. Focusing only on nearest-neighbor terms,
this leads to lk ∝ sin kxŷ for k⊥ = kx and lk ∝ sin kyx̂
for k⊥ = ky. For this point group, the choice nkq = ẑ
cannot lead to W⊥,σ(kq) ̸= 0 for all kq, because even
if the prefactors of sin ky x̂ and sin kx ŷ are arbitrarily
small compared to the coefficients czj,k,l the SOC vector
rotates from an orientation parallel to ẑ to one parallel
to ŷ or x̂ in a sufficiently small neighborhood of kx →
0 or ky → 0, respectively, so that the spin symmetry is
broken there.
An analogous problem occurs for nkq = ẑ for the point

groups C3v, C4v, C6v, D2d, C3h, D3h, and S4. All of these
groups include more than just twofold rotation symme-
tries or a single mirror plane so that the z-axis is the
only orientation of a unidirectional SOC vector that is
not forbidden by Eq. (40). However, like for C2v, nkq =
ẑ cannot lead to a nonzero winding number in the full
sBZ. Therefore, one cannot get a nonzero winding num-
ber in the whole sBZ for any surface orientation for these
point groups.

This leaves the eleven point groups C1, C2, C3, C4,
C6, D2, D3, D4, D6, C2v, and Cs which can all lead to a
nonzero winding number in the whole sBZ if the param-
eters in the SOC vector are fine-tuned appropriately. A
detailed list of the possible options can be found in Ta-
ble I in Appendix B. Superconductors belonging to sev-
eral of these point groups exist, e.g., Ir2Ga9 [28], Rh2Ga9
[28], and Y3Pt4Ge13 [29] in Cs, BiPd [30–32] and UIr un-
der pressure [33–35] in C2, LaNiC2 [36, 37] and ThCoC2

[38] in C2v, as well as (Ta,Nb)Rh2B2 [39, 40] with C3. To
our knowledge, the triplet-to-singlet pairing ratio, which
needs to be large for our scenario, is unknown for these
compounds. The possible exception is (Ta,Nb)Rh2B2,
which might have line nodes [40], suggesting a sizable
triplet component. However, the presence of line nodes
of course precludes our scenario.

B. Results

For the eleven point groups C1, C2, C3, C4, C6, D2,
D3, D4, D6, C2v, and Cs, there is at least one surface ori-
entation k⊥ ∈ {kx, ky, kz} such that the nearest-neighbor
approximation for the SOC vector is

lk = sin k⊥ n, (45)

with a unit vector n = nkq .
In this section, we will assume that the parameters are

chosen such that there is a vector n which is exactly par-

allel to lk⊥,kq for all k. The experimentally more realistic
case, in which this condition is only approximately sat-
isfied, is discussed in Sec. IV. In order to get a nonzero
winding number, it is also necessary that the gaps on
the positive-helicity and negative-helicity Fermi surfaces
have opposite signs. The gap ∆+

k+
F

on the positive-helicity

Fermi surface always has positive sign if we assume ∆s
k =

Figure 1. Parameter regime which ensures a nonzero wind-
ing number in the entire sBZ for the model of Sec. III B.
The boundary of the region in the three-dimensional space
(µ̃, λ̃,∆s/(cz∆

t)) where this is possible is shown in semi-
transparent gray. The colored planes show the maximal pos-
sible value of t̃xy such that the winding number is still nonzero
everywhere in the sBZ.

∆s > 0 and ∆t
k = ∆t > 0 so that this is equivalent to

requiring the gap ∆−
k−
F

to be negative. Here, we use the

definition of the Fermi momenta k±
F = (k

(i)
⊥ ,kq) from

Sec. II B, where they were given as the solutions k of
ξ±k = ϵk ± λ|lk| = 0. This means that the projection of
the Fermi surfaces has to cover the entire sBZ in order
to get solutions k

(i)
⊥ for all kq in the sBZ. We assume a

SOC vector lk⊥,kq ∥ n with l(k) = cz sin kz and k⊥ = kz.
For the dispersion ϵk, we choose a model with C4 point-
group symmetry on a tetragonal lattice. We assume a
nearest-neighbor hopping amplitude tz in the z direction
and a hopping amplitude txy in the x and y directions as
well as a chemical potential µ, i.e.,

ϵk = −µ− 2tz cos kz − 2txy(cos kx + cos ky). (46)

Changing the dispersion, e.g., to account for a different
point group, does not qualitatively alter the following re-
sults, and calculations for different directions of n and k⊥
can be done analogously and also lead to similar results.

For every point kq in the sBZ, the two solutions k
(3),(4)
⊥

of the equation ϵk−λ|l(kz)| = 0, i.e., the negative-helicity
Fermi momenta, can be calculated, yielding

k
(3),(4)
⊥ = 2arctan

λ̃±
√

4 + λ̃2 −
[
−µ̃− 2t̃xy (cos kx + cos ky)

]2
2 +

[
−µ̃− 2t̃xy (cos kx + cos ky)

] (47)



8

if 4+ λ̃2−
[
µ̃+ 2t̃xy (cos kx + cos ky)

]2
> 0, where we have introduced the dimensionless parameters t̃xy = txy/tz, µ̃ =

µ/tz, and λ̃ = czλ/tz. We therefore get a nonzero winding number if lmin < ∆s/(cz∆
t) < lmax with

lmin = max

0,max
kx,ky

λ̃
[
−µ̃− 2t̃xy (cos kx + cos ky)

]
− 2

√
4 + λ̃2 −

[
−µ̃− 2t̃xy (cos kx + cos ky)

]2
4 + λ̃2

 , (48)

lmax = min
kx,ky

λ̃
[
−µ̃− 2t̃xy (cos kx + cos ky)

]
+ 2

√
4 + λ̃2 −

[
−µ̃− 2t̃xy (cos kx + cos ky)

]2
4 + λ̃2

. (49)

This means that the winding number is nonzero in the
entire sBZ for a subset of nonzero measure of the pa-
rameter space (µ̃, λ̃,∆s/(cz∆

t), t̃xy). Figure 1 shows the
boundary of the projection of this region into the three-
dimensional parameter space (µ̃, λ̃,∆s/(cz∆

t)) in gray.
The colored planes in this region indicate below which
maximal value of t̃xy a nonzero winding number at that

point (µ̃, λ̃,∆s/(cz∆
t)) is still ensured in the whole sBZ.

Figure 1 shows that the dispersion ϵk must be sufficiently
flat in the kq direction, i.e., t̃xy must be sufficiently small,
and that ∆s/(cz∆

t) must be sufficiently small, i.e., the
spin-triplet component of the pairing must be sufficiently
strong compared to the spin-singlet pairing.
As an example, Fig. 2 shows the energy and inverse

participation ratio (IPR) of the surface state and of the
bulk state with the lowest energy at given kq = (kx, ky)
for a system with tz = 1, txy = 0.1, µ = −1, λ = 0.1,
∆s = 0.1, ∆t = 0.2, and cz = 1 calculated by exact
diagonalization of the BdG Hamiltonian on a slab with
Z = 500 layers. The derivation of the specific matrix
that has to be diagonalized is presented in Appendix C.
The IPR

I[Ψ(zi, kq)] =
∑
zi

|Ψ(zi, kq)|4, (50)

where Ψ is the normalized wave function, measures the
localization of a state, i.e., a localized surface state has
a higher IPR than a delocalized bulk state. Figure 2(a)
shows the energies of both states, which illustrates that
the bulk is indeed fully gapped. Here, the bulk state
with the lowest energy refers to the eigenstate of the slab
Hamiltonian at given kq = (kx, ky) that has the minimal
positive eigenenergy among those states that are not lo-
calized at the surface, as inferred from the IPR. In Figs.
2(b) and 2(c), we plot the energy of the bulk state and
the corresponding IPR, respectively. Figure 2(d) shows
the energy of the surface state, which is an almost flat
band very close to zero energy. The IPR of the surface
state is plotted in Fig. 2(e). When comparing the IPR
of the surface state and of the bulk state, note that the
same color scheme was used for different orders of magni-
tude. It is obvious from the comparison of Figs. 2(c) and
2(e) that the IPR of the surface state is much higher than
the IPR of the bulk state because the former is localized
at the surfaces of the slab, while the latter is spread out
over all layers.

Figure 3 demonstrates that for sufficiently small
∆s/∆t, the energy of the surface state indeed decreases
exponentially with increasing thickness Z. The finite en-
ergy of this state within the parameter region with a
nonzero winding number is therefore a consequence of
the finite thickness. Outside of this parameter region,
the energy approaches a constant nonzero value for Z →
∞. This transition from nonzero to zero winding number
can be seen in the inset, where the former corresponds
to the lines with negative curvature while the latter cor-
responds to lines with positive curvature. The transition
is marked by the red line in Fig. 3, which has been de-
termined by calculating ∆t = ∆s/(czlmax) where lmax is
given by Eq. (49). This leads to a value of ∆t ≈ 0.1335,
which has been used to obtain the red line.

IV. NON-IDEAL SYSTEMS

In this section, we consider terms in the Hamiltonian
that break the symmetries described in Sec. III. By con-
struction, PHS is always present in the BdG formalism.
Therefore, chiral symmetry and time-reversal symmetry
are equivalent. These symmetries could for example be
broken by introducing an exchange field at the surface
of the slab [12, 17, 41], which would couple to the spin
polarization of the surface states. In the case where the
spin-rotation symmetry is still preserved, i.e., the field
points along the spin axis, this leads to a shift of the flat
bands in energy. The shift depends on the (very small)
range of the exchange field and on the decay length of
the surface state into the bulk, i.e., on its localization at
the surface. If the exchange field breaks not only TRS
but also spin-rotation symmetry, i.e., if the field is not
parallel to the spin-rotation-symmetry axis, the leading
energy correction still comes from the field component
that couples to the spin polarization of the unperturbed
system. Only if the field is orthogonal to the spin rota-
tion axis the leading term in perturbation theory is of
quadratic order in the field.

However, in real physical systems, the idealized situa-
tion described in Sec. III is unlikely to occur even in the
absence of an applied field because the spin symmetry in
Eq. (12) can only be achieved by fine tuning parameters
in the SOC vector. In this section, we therefore focus
on the case where this symmetry is broken: It is plau-
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Figure 2. Energy and IPR of the surface state and the bulk state with the lowest energy at given kq = (kx, ky) in an ideal
system with nonzero winding number W⊥,σ(kq) in the full sBZ. (a) Surface-state energy and lowest bulk energy, illustrating
the size of the gap. (b) Lowest bulk energy as a density plot. (c) IPR of the corresponding state, where low IPR corresponds to
a delocalized state and high IPR corresponds to a strongly localized state. (d) Energy and (e) IPR of the surface state. Note
that in panels (b) to (e) the same color scheme is used for different orders of magnitude.

Figure 3. Lowest eigenvalue of the Hamiltonian as a function
of the thickness Z for various values of the triplet pairing am-
plitude ∆t. For sufficiently large values of ∆t, the winding
number ensures the existence of a zero-energy surface state in
the limit of an infinitely thick slab, while for a slab of finite
thickness, the energy of the surface state decreases exponen-
tially. If ∆t is too small, there are no zero-energy surface
states and the energy approaches a finite value. The inset
shows the same data for small ∆t on a double logarithmic
scale. The red line indicates the transition between zero-
energy surface states and states at finite energy.

sible to assume that while one can find systems where
the SOC vector will point in approximately the same di-
rection for varying momentum k⊥ perpendicular to the
surface, there will generically be small deviations from
this direction. If the spin symmetry is not present, the
winding number W⊥,σ(kq) cannot be defined and there
are no flat bands of zero-energy surface states. However,

we can still consider the BdG Hamiltonian

H(k) = H(0)(k) +H(1)(k) (51)

as the sum of the unperturbed Hamiltonian

H(0)(k) =

(
ϵkσ0 + λlqk·σ (∆s

k +∆t
kl

q
k·σ)(iσy)

−(iσy)(∆
s
k +∆t

kl
q
k·σ) −ϵkσ0 + λlqk·σ∗

)
,

(52)
which only contains the part lqk ≡ (lk ·nkq)nkq ≡ lq(k)nkq

of the SOC vector parallel to nkq and a small perturba-
tion

H(1)(k) =

(
λl⊥k · σ ∆t

k(l
⊥
k · σ)(iσy)

−∆t
k(iσy)(l

⊥
k · σ) λl⊥k · σ∗

)
, (53)

which contains the components l⊥k = lk − (lk · nkq)nkq

orthogonal to nkq . In this section, we will use degenerate
first-order perturbation theory to estimate the energy of
the surface states of H(k), employing an approximation
for the surface states of H(0)(k) which we obtain by a
quasiclassical approximation in the direction orthogonal
to the surface.

The normal-state block of the unperturbed Hamilto-
nian has the eigenvalues ξ±k = ϵk ± λ|lqk| = ϵk ± λ|lq(k)|
with the corresponding eigenvectors
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v±
k =



(
1,±

nx
kq

+ iny
kq

sgn[lq(k)]± nz
kq

)T

for nz
kq

̸= 1,{
(1, 0)T , (0, 1)T

}
for nz

kq
= 1, lq(k) > 0,{

(0, 1)T , (1, 0)T
}

for nz
kq

= 1, lq(k) < 0.

(54)

As the matrix ∆s
k+∆t

kl
q
k ·σ commutes with the normal-

state block, the two matrices are simultaneously diago-
nalizable, which means that the vectors in Eq. (54) are
also eigenvectors of ∆s

k + ∆t
kl

q
k · σ. The corresponding

eigenvalues are ∆±
k = ∆s

k ±∆t
k|lq(k)|.

We assume that the unperturbed Hamiltonian is fully
gapped, thus we expect the gap to also stay open in the
perturbed system as long as the perturbation is suffi-
ciently small. We also know that there is a finite re-
gion of the parameter space where W⊥,↑(kq) = W⊥,↑ =
1 for all momenta in the sBZ and that this leads to
|W⊥,↑| + |W⊥,↓| = 2 |W⊥,↑| = 2 protected zero-energy
surface states in the unperturbed system.
For every point kq in the sBZ, there are four points on

the positive-helicity and negative-helicity Fermi surfaces
that are projected onto this point. As in Sec. II B, the

solutions of ξ+k⊥,kq
= 0 are denoted by k

(1)
⊥ > 0 and k

(2)
⊥ <

0, while the solutions of ξ−k⊥,kq
= 0 are denoted by k

(3)
⊥ >

0 and k
(4)
⊥ < 0. We make the ansatz [42]

Ψ(r⊥, kq) = a
(1)
kq

Ψ+(k
(1)
⊥ ,kq) exp

(
ik

(1)
⊥ r⊥ − κ+

k
(1)
⊥ ,kq

r⊥

)
+ a

(2)
kq

Ψ+(k
(2)
⊥ ,kq) exp

(
ik

(2)
⊥ r⊥ − κ+

k
(2)
⊥ ,kq

r⊥

)
+ a

(3)
kq

Ψ−(k
(3)
⊥ ,kq) exp

(
ik

(3)
⊥ r⊥ − κ−

k
(3)
⊥ ,kq

r⊥

)
+ a

(4)
kq

Ψ−(k
(4)
⊥ ,kq) exp

(
ik

(4)
⊥ r⊥ − κ−

k
(4)
⊥ ,kq

r⊥

)
(55)

for the wave function of the surface state, where κ±
k is

the inverse decay length

κ±
k =

√
|∆±

k |2 − E2

ℏ|v±⊥,F |
E=0
=

|∆±
k |

ℏ|v±⊥,F |
, (56)

with the Fermi velocity perpendicular to the surface,

v±⊥,F =
1

ℏ
∂ξ±k
∂k⊥

∣∣∣∣
k=(kF

⊥,kq)

. (57)

The spinors Ψ± are defined as

Ψ±(k±⊥,kq) =

√
sgn[lq(k)]± nz

kq

4 sgn[lq(k)]

(
1,±n,∓γ±

k n, γ±
k

)T
,

(58)

with n = (nx
kq

+ iny
kq
)/(sgn[lq(k)] ± nz

kq
), which is only

well defined for nz
kq

̸= 1. Moreover, k±⊥ is chosen such,

that k ≡ (k±⊥,kq) = kF is a Fermi momentum, i.e., k+⊥ ∈
{k(1)⊥ , k

(2)
⊥ } and k−⊥ ∈ {k(3)⊥ , k

(4)
⊥ }. For nkq = ẑ, we in-

stead find

Ψ±(k±⊥,kq) =

{
1√
2

(
1, 0, 0, γ+

k

)T
,
1√
2

(
0, 1,−γ−

k , 0
)T}
(59)

for lq(k) > 0 and

Ψ±(k±⊥,kq) =

{
1√
2

(
0, 1,−γ+

k , 0
)T

,
1√
2

(
1, 0, 0, γ−

k

)T}
(60)

for lq(k) < 0. Moreover, we have defined

γ±
k =

1

∆±
k

[
E − i sgn(v±⊥,F )

√
|∆±

k |2 − E2

]
, (61)

which for E = 0 becomes

γ±
k = −i sgn(v±⊥,F ) sgn(∆

±
k )

=

{
−i for k+⊥ = k

(1)
⊥ and for k−⊥ = k

(4)
⊥ ,

i for k+⊥ = k
(2)
⊥ and for k−⊥ = k

(3)
⊥ .

(62)

Our approach relies on the quasiclassical assumption that
the system is continuous in the direction perpendicular
to the surface, which is located at r⊥ = 0. For a surface
state, the coefficients a(i) have to be chosen such that the
wave function vanishes at the surface, i.e., Ψ(r⊥=0,kq) =
0 and is normalized, i.e.,

∫ ∞

0

dr⊥Ψ
†(r⊥,kq)Ψ(r⊥,kq) = 1. (63)

The first condition means that the coefficient vector
(a

(1)
kq

, a
(2)
kq

, a
(3)
kq

, a
(4)
kq

)T must be in the kernel ker(M) =

{(−1, 0, 0, 1)T , (0,−1, 1, 0)T } of the matrix

M =
(
Ψ+
(
k(1)

)
,Ψ+

(
k(2)

)
,Ψ−(k(3)

)
,Ψ−(k(4)

))
, (64)

where k(i) = (k
(i)
⊥ ,kq). Therefore, there is a two-di-

mensional eigenspace of zero-energy surface states for
H(0), which is spanned by the vectors Ψ1(r⊥,kq) and
Ψ2(r⊥,kq) with

Ψ1(r⊥,kq) = a
(1)
kq

[
− exp

(
ik

(1)
⊥ r⊥ − κ

(1)
kF

r⊥

)
+ exp

(
ik

(4)
⊥ r⊥ − κ

(4)
kF

r⊥

)]
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×



√√√√ sgn[lq(k
(1)
⊥ ,kq)] + nz

kq

4 sgn[lq(k
(1)
⊥ ,kq)]

1,
nx
kq

+ iny
kq

sgn[lq(k
(1)
⊥ ,kq)] + nz

kq

, i
nx
kq

+ iny
kq

sgn[lq(k
(1)
⊥ ,kq)] + nz

kq

,−i

T for nz
kq

̸= 1,

1√
2
(1, 0, 0,−i)

T
for nz

kq
= 1, lq(k) > 0,

1√
2
(0, 1, i, 0)

T
for nz

kq
= 1, lq(k) < 0,

(65)

Ψ2(r⊥,kq) = a
(2)
kq

[
− exp

(
ik

(2)
⊥ r⊥ − κ

(2)
kF

r⊥

)
+ exp

(
ik

(3)
⊥ r⊥ − κ

(3)
kF

r⊥

)]

×



√√√√ sgn[lq(k
(1)
⊥ ,kq)]− nz

kq

4sgn[lq(k
(1)
⊥ ,kq)]

1,−
nx
kq

+ iny
kq

sgn[lq(k
(1)
⊥ ,kq)]− nz

kq

, i
nx
kq

+ iny
kq

sgn[lq(k
(1)
⊥ ,kq)]− nz

kq

, i

T for nz
kq

̸= 1,

1√
2
(0, 1,−i, 0)

T
for nz

kq
= 1, lq(k) > 0,

1√
2
(1, 0, 0, i)

T
for nz

kq
= 1, lq(k) < 0,

(66)

where we have used sgn[lq(k
(1)
⊥ ,kq)] = sgn[lq(k

(3)
⊥ ,kq)] = −sgn[lq(k

(2)
⊥ ,kq)] = −sgn[lq(k

(4)
⊥ ,kq)]. To ensure normaliza-

tion, the coefficients a
(i)
kq

have to be chosen as

a
(1)
kq

=

[∫ ∞

0

dr⊥

∣∣∣− exp
(
ik

(1)
⊥ r⊥ − κ

(1)
kF

r⊥

)
+ exp

(
ik

(4)
⊥ r⊥ − κ

(4)
kF

r⊥

)∣∣∣2]−1/2

=

[∫ ∞

0

dr⊥ 2e
−
(
κ
(1)
kF

+κ
(4)
kF

)
r⊥
[
cosh

(
κ
(1)
kF

r⊥ − κ
(4)
kF

r⊥

)
− cos

(
k
(1)
⊥ r⊥ − k

(4)
⊥ r⊥

)]]−1/2

, (67)

a
(2)
kq

=

[∫ ∞

0

dr⊥

∣∣∣− exp
(
ik

(2)
⊥ r⊥ − κ

(2)
kF

r⊥

)
+ exp

(
ik

(3)
⊥ r⊥ − κ

(3)
kF

r⊥

)∣∣∣2]−1/2

=

[∫ ∞

0

dr⊥2e
−
(
κ
(2)
kF

+κ
(3)
kF

)
r⊥
[
cosh

(
κ
(2)
kF

r⊥ − κ
(3)
kF

r⊥

)
− cos

(
k
(2)
⊥ r⊥ − k

(3)
⊥ r⊥

)]]−1/2

. (68)

The first-order corrections to the energy of the surface
state for the full Hamiltonian H = H(0) + H(1) can be
calculated by diagonalizing the 2 × 2 matrix P with en-
tries

Pij = ⟨Ψi|H(1)|Ψj⟩

=

∫ ∞

0

dr⊥Ψ
†
i (r⊥,kq)H(1)(−i∂r⊥ ,kq)Ψj(r⊥,kq),

(69)

where the first argument of H(1)(k) = H(1)(k⊥,kq) is
replaced by −i∂k⊥ (note ℏ = 1), acting on the wavefunc-
tion Ψj(r⊥,kq). If we assume that only the lowest-order
terms in l⊥k are relevant, i.e., that l⊥k does not depend on

k⊥, we get the first-order energy corrections

E
(1)
± (kq) = ±a

(1)
kq

a
(2)
kq

√
(∆t)2 + λ2 |l⊥k |

∫ ∞

0

dr⊥

×
(
e
−ik

(1)
⊥ r⊥−κ

(1)
kF

r⊥ − e
−ik

(4)
⊥ r⊥−κ

(4)
kF

r⊥

)
×
(
e
ik

(3)
⊥ r⊥−κ

(3)
kF

r⊥ − e
ik

(2)
⊥ r⊥−κ

(2)
kF

r⊥

)
(70)

of the eigenvalue corresponding to the surface state. We
thus find

E
(1)
± (kq) = ±αkq

√
(∆t)2 + λ2 |l⊥k | (71)

with the prefactor

αkq = 2

[(
κ
(1)
kF

+ κ
(2)
kF

+ κ
(3)
kF

+ κ
(4)
kF

)2
+
(
k
(1)
⊥ − k

(2)
⊥ − k

(3)
⊥ + k

(4)
⊥

)2]1/2 κ
(1)
kF

κ
(2)
kF

κ
(3)
kF

κ
(4)
kF(

κ
(1)
kF

+ κ
(4)
kF

)(
κ
(2)
kF

+ κ
(3)
kF

)
1/2
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×


(
κ
(1)
kF

+ κ
(4)
kF

)2
+
(
k
(1)
⊥ − k

(4)
⊥

)2
[(

κ
(1)
kF

+ κ
(2)
kF

)2
+
(
k
(1)
⊥ − k

(2)
⊥

)2] [(
κ
(1)
kF

+ κ
(3)
kF

)2
+
(
k
(1)
⊥ − k

(3)
⊥

)2]

1/2

×


(
κ
(2)
kF

+ κ
(3)
kF

)2
+
(
k
(2)
⊥ − k

(3)
⊥

)2
[(

κ
(2)
kF

+ κ
(4)
kF

)2
+
(
k
(2)
⊥ − k

(4)
⊥

)2] [(
κ
(3)
kF

+ κ
(4)
kF

)2
+
(
k
(3)
⊥ − k

(4)
⊥

)2]

1/2

. (72)

For practical purposes, it is useful to compare the energy

E
(1)
± (kq) to the energy of the lowest-lying bulk state, i.e.,

with the gap size. The minimal gap size is Ebulk,min =
minkq |∆−

kF
|, such that

E
(1)
± (kq)

Ebulk,min
= ±αkq

√
(∆t)2 + λ2 |l⊥k |

∆t minkq |lkF
| −∆s

. (73)

We now simplify the model further, in order to be able
to calculate αkq analytically. To this end, we assume the
momentum dependence of the SOC vector of the unper-
turbed system to be lq(k) = sin k⊥ and the dispersion
ϵk⊥,kq = ϵ−k⊥,kq to be even in k⊥. The first assump-
tion is reasonable for most of the noncentrosymmetric
point groups which can exhibit a nonzero winding num-
ber W⊥,σ(kq) in the full sBZ, if we assume that the SOC
vector is dominated by nearest-neighbor terms, as shown
in Appendix B. The second assumption means that hop-
ping terms in any direction which is neither parallel nor
orthogonal to the surface should be negligible. For in-
stance, this is the case if we assume dispersions consisting
only of nearest-neighbor hopping terms. These assump-

tions lead to k
(2)
⊥ = −k

(1)
⊥ , k

(4)
⊥ = −k

(3)
⊥ , and κ

(1)
kF

= κ
(2)
kF

,

κ
(3)
kF

= κ
(4)
kF

so that the prefactor is

αkq =
κ
(1)
kF

κ
(3)
kF

κ
(1)
kF

+ κ
(3)
kF

(
κ
(1)
kF

+ κ
(3)
kF

)2
+
(
k
(1)
⊥ + k

(3)
⊥

)2
(
κ
(1)
kF

+ κ
(3)
kF

)2
+
(
k
(1)
⊥ − k

(3)
⊥

)2
× 1√(

κ
(1)
kF

)2
+
(
k
(1)
⊥

)2√(
κ
(3)
kF

)2
+
(
k
(3)
⊥

)2 .
(74)

We now compare Eq. (71) with the result of exact nu-
merical diagonalization of the BdG Hamiltonian of a slab
with a (001) surface and Z = 500 layers in the z direction
for a system with C4 point-group symmetry. Other pos-
sible point groups and surface orientations are discussed
and compared in Appendix B. The general form of the
SOC vector in this point group is

lk =
∑
j,k,l

 cxj,k,l sin(jkx + kky) cos(lkz)

cxj,k,l sin(jky − kkx) cos(lkz)

czj,k,l cos(jkx + kky) cos(kkx − jky) sin(lkz)

 ,

(75)

with the real coefficients cxj,k,l and czj,k,l. Restricting this
to nearest-neighbor terms, we get

lk = (cx1,0,0 sin kx + cx0,1,0 sin ky) x̂

+ (cx1,0,0 sin ky − cx0,1,0 sin kx) ŷ

+ cz0,0,1 sin kz ẑ. (76)

In order to obtain a SOC vector which is approximately
parallel to the z-axis, we require |cx1,0,0|, |cx0,1,0| ≪ |cz0,0,1|.
Equation (71) leads to the approximation

E
(1)
± (kq) = αkq

√
2
√

(∆t)2 + λ2
√
(cx1,0,0)

2 + (cx0,1,0)
2

×
√
sin2 kx + sin2 ky (77)

for the surface-state energy. This relation shows that the
energy of the perturbed surface band and thus the band
width are of first order in the perturbation, i.e., in the
SOC terms that break the symmetry in Eq. (12).

Figure 4 shows the energy and IPR of the surface state
and the first bulk state for the point group C4, with the
parameters for H(0) being tz = 1, txy = 0.1, µ = −1,
λ = 0.1, ∆s = 0.1, and ∆t = 0.2, as in Sec. III and
the parameters for H(1) being cx1,0,0 = cx0,1,0 = 0.025 and
cz0,0,1 = 1. Figure 4(a) shows both the energy of the sur-
face state and the gap. For the surface-state energy, the
result of the exact diagonalization of the BdG Hamilto-
nian is given in blue, while the result of first-order per-
turbation theory is plotted in orange. Both results lie
almost exactly on top of each other, with the relative
difference between the two never exceeding 7×10−3 such
that the orange and blue plot cannot be distinguished
in the figure. A plot of the relative difference between
the two energies is given in Appendix B in Fig. 6. For
the first bulk state, i.e., the gap size, the value from the
exact diagonalization is plotted in green. The plot in red
shows the gap

min
k⊥

∆−
k⊥,kq

= ∆−
k−
⊥,F ,kq

. (78)

Both plots should coincide in the limit of an infinitely
thick slab, while for finite thickness, the result from ex-
act diagonalization should be slightly higher, due to the
discretization of momentum space. In Fig. 4(a), the red
plot is barely visible below the green, which shows that
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Figure 4. Energy and IPR of the surface state and the bulk state with the lowest energy at given kq = (kx, ky) for the C4

point group and a SOC vector with nonzero components lqk with cx1,0,0 = cx0,1,0 = 0.025, cz0,0,1 = 1. (a) Surface-state energy
from first-order perturbation theory (blue) and from exact diagonalization (orange, obscured by and indistinguishable from the
blue surface) and lowest bulk energy from exact diagonalization (green) and from the minimal gap (red, nearly obscured by the
green surface), illustrating the size of the gap. (b) Lowest bulk energy as a density plot. (c) IPR of the corresponding state,
where low IPR corresponds to a delocalized state and high IPR corresponds to a strongly localized state. (d) Energy and (e)
IPR of the surface state.

the thickness is sufficiently large to yield the expected en-
ergy for the bulk states. In Figs. 4(b) and 4(c), we plot
the energy of the lowest-energy bulk state and its IPR,
respectively. Figure 4(d) shows the energy of the sur-
face state, calculated by exact diagonalization of the slab
Hamiltonian, while Fig. 4(e) shows its IPR. The compar-
ison of Figs. 4(b) and 4(d) demonstrates that the energy
of the surface state is still much smaller than the gap.
The flatness of the surface band can be controlled by the
ratio of the parameters cx1,0,0 and cx0,1,0 to cz0,0,1. The fact
that the IPR in Fig. 4(e) is much larger than the one in
Fig. 4(c) shows that the state close to zero energy is still
much more strongly localized than the bulk state and the
perturbation H(1) does not destroy the surface state.

V. SUMMARY AND CONCLUSIONS

Superconductors with zero-energy flat bands of Majo-
rana states at their surfaces accompanied by full energy
gaps in the bulk would be of tremendous interest from
both fundamental and applied perspectives. However,
crystal symmetries and TRS generically cannot guaran-
tee such a situation. We have shown that it should nev-
ertheless be possible to realize such systems at least ap-
proximately, i.e., with a nearly flat surface band in a full
bulk gap. We have done this in two steps: First, we have
derived the conditions for ideal flat surface bands. We
have identified a winding number that protects such flat

bands at specific surfaces of noncentrosymmetric super-
conductors with TRS. For every point in the sBZ, these
superconductors must have a SOC vector that does not
change in direction—but may change in magnitude—as a
function of the momentum component normal to the sur-
face and is parallel to the triplet-pairing vector. Conse-
quently, the BdG Hamiltonian commutes with a compo-
nent of the electronic spin and can be block-diagonalized
into spin-up and a spin-down blocks. While the fully
gapped BdG Hamiltonian of the entire system obeys TRS
T with T 2 = −1, PHS C with C2 = +1, and chiral sym-
metry, and is therefore in symmetry class DIII, the spin-
up and spin-down blocks individually obey neither TRS
nor PHS but retain chiral symmetry so that they are both
in symmetry class AIII. Due to the chiral symmetry, we
can bring the spin blocks into off-diagonal form and de-
fine a winding number as the winding of the off-diagonal
entries in the complex plane when the momentum com-
ponent normal to the surface traverses the bulk Brillouin
zone. We have discussed a simple model for which the
winding number can be written in terms of the signs of
the gaps on the spin-up and spin-down bands at the re-
spective Fermi surfaces. If the triplet-pairing amplitude
is sufficiently large and the normal-state dispersion is suf-
ficiently flat in the directions parallel to the surface, i.e.,
it is quasi-one-dimensional, the chemical potential can be
chosen such that the winding number is nonzero in the
entire sBZ.

Furthermore, we have identified the point groups that
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permit such a nonzero winding number. As an exam-
ple, we have calculated the surface-state and lowest bulk-
state energy for the BdG Hamiltonian of a slab with C4

point-group symmetry and a SOC vector pointing in the
z direction. We have also calculated the IPRs for these
states to show that there is indeed a zero-energy surface
state and a finite bulk gap everywhere in the sBZ. The
method of choice for the detection of (approximately)
zero-energy surface bands is angle-resolved photoemis-
sion spectroscopy (ARPES). However, ARPES may not
work because heating effects could prevent reaching the
required low temperatures. The key experimental signa-
ture of the zero-energy surface band is then a zero-bias
conductance peak in low-temperature tunneling experi-
ments [1, 2, 4, 6, 43, 44].

In the second step, we have examined the effect of a
small component in the SOC term that breaks the spin-
component symmetry. This is the realistic situation be-
cause, in contrast to the occurrence of an exact commu-
tation with a spin component, it does not require fine-
tuning of parameters. We treat the symmetry-breaking
term as a small perturbation. We have employed a quasi-
classical approximation for the unperturbed surface state
and have derived its energy within degenerate perturba-
tion theory. The dispersion of the surface states and their
band width turn out to be of first order in the symmetry-
breaking SOC terms. We have compared these results to
the numerical exact diagonalization of the BdG Hamil-
tonian of a slab for the exemplary point group C4, find-
ing very good agreement of the quasiclassical and per-
turbative approximation and exact diagonalization. The
results show that sufficiently weak breaking of the spin-
rotation symmetry does not destroy the surface states
and keeps them at low energies but makes their disper-
sion weakly dispersive. On the other hand, the bulk gap
remains large. We therefore expect a somewhat broad-
ened zero-bias conductance peak in low-temperature tun-
neling experiments for such systems [2, 4, 43].

Our work describes the surface bands at the BdG
mean-field level, i.e., the quasiparticle states forming
these bands are effectively non-interacting. Since the
band width is small, residual interactions between the
quasiparticles easily drive the system into a strongly cor-
related regime. The correlation effects will be funda-
mentally different from, e.g., flat bands in magic-angle
twisted bilayer graphene, in that the Bogoliubov quasi-
particles are not charge eigenstates and their average
charge is small. Hence, interactions mediated by the
Cooper-pair condensate and possibly by phonons will
play an important role. The proposed setup thus pro-
vides a route to unconventional, strongly correlated, two-
dimensional fermionic systems.

A reasonable next step is to search for suitable candi-
date materials. These materials should be superconduc-
tors with a crystal structure belonging to one of the point
groups C1, C2, C3, C4, C6, D2, D3, D4, D6, C2v, or Cs.
Moreover, they should have a Fermi surface which is suf-
ficiently flat in directions parallel to a surface such that

the projection covers the entire sBZ. Moreover, the ma-
terial should have a strong triplet-to-singlet ratio for the
superconducting gap. Among the identified candidates,
one can then try to find the ones which come closest to
a unidirectional SOC vector.
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Appendix A: Conditions for nonzero winding
number

In this appendix, we derive the conditions under which
the winding number defined in Eq. (35) can be nonzero in
the entire sBZ. The winding number W⊥,σ(kq) describes
the winding of the image of the function Dσ(k⊥,kq) =
ϵk + σλl(k) + i [∆s

k + σ∆t
kl(k)], see Eq. (31), around the

origin of the complex plane. We note the close connection
between the real part of Dσ(k⊥,kq) and the dispersion
of the positive-helicity and negative-helicity bands ξ±k :

ReDσ(k⊥,kq) = ϵk + σλl(k) =

{
ξσk for l(k) ≥ 0,

ξ−σ
k for l(k) < 0,

(A1)
as well as of the imaginary parts of Dσ(k⊥,kq) and the
gap ∆±

k on the two bands,

ImDσ(k⊥,kq) = ∆s
k + σ∆t

kl(k) =

{
∆σ

k for l(k) ≥ 0,

∆−σ
k for l(k) < 0.

(A2)
We assume that for every point kq in the sBZ, both
ξ+k⊥,kq

= 0 and ξ−k⊥,kq
= 0 have exactly two solutions

each, which we denote by k
(1)
⊥ > 0, k

(2)
⊥ < 0 and k

(3)
⊥ > 0,

k
(4)
⊥ < 0, respectively. This means that the projections of

the positive-helicity and the negative-helicity Fermi sur-
faces both cover the entire sBZ, which can for example be
achieved in a model where the hopping is much stronger
in the direction orthogonal to the surface than in the
in-plane directions and the SOC is sufficiently weak.

We rewrite Eq. (35) as

W⊥,σ(kq) =
1

2π

∫
k⊥

dk⊥ ∂k⊥

× arg
(
−[∆s

k + σ∆t
kl(k)] + i [ϵk + σλl(k)]

)
. (A3)

The argument function is smooth except for a branch
cut on the negative real axis, where it jumps by ±2π, de-
pending on the direction in which the real axis is crossed.
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Since the argument function is real valued and momen-
tum space is periodic the only contributions to the inte-

gral come from points k
0,(i)
⊥,σ where −[∆s

k + σ∆t
kl(k)] +

i [ϵk + σλl(k)] crosses the negative real axis:

W⊥,σ(kq) = −
∑
i

Θ

[
∆s

k
0,(i)
⊥,σ ,kq

+ σ∆t

k
0,(i)
⊥,σ ,kq

l
(
k
0,(i)
⊥,σ ,kq

)]

× sgn

(
∂[ϵk + σλl(k)]

∂k⊥

∣∣∣∣
k⊥=k

0,(i)
⊥,σ

)
, (A4)

where Θ is the Heaviside step function. The sign function
determines whether the arg function jumps by +2π or
by −2π. It depends on the k⊥-component of the Fermi
velocity. The functions ReDσ(k⊥,kq) = ϵk + σλl(k) can
only have an even number of zeros as the image of Dσ is
a closed curve in the complex plane and therefore cannot
cross the real axis an odd number of times.
Note that there is a one-to-one correspondence be-

tween the zeros k
(i)
⊥ of ξ± and the zeros of ReDσ(k⊥,kq),

mediated by Eq. (A1). If all the four values k
(i)
⊥ are also

zeros of ReD↑(k⊥,kq), then ReD↓(k⊥,kq) is nonzero for
all k⊥ ∈ [−π, π). This would mean that W⊥,↓(kq) = 0
and thus W⊥,↑(kq) = W⊥,↓(−kq) = 0 such that there is
no nonzero winding number in the full sBZ. An analogous

argument holds if all k
(i)
⊥ are zeros of ReD↓(k⊥,kq).

The two momenta k
(1)
⊥ and k

(2)
⊥ , which correspond

to the positive-helicity Fermi surface, are zeros of

ReD↑(k⊥,kq) if l(k
(i)
⊥ ,kq) > 0 and zeros of ReD↓(k⊥,kq)

if l(k
(i)
⊥ ,kq) < 0. For the momenta k

(3)
⊥ and k

(4)
⊥ on the

negative-helicity Fermi surface, the opposite is true. The

sign of l(k⊥,kq) cannot change between k⊥ = k
(1)
⊥ and

k⊥ = k
(3)
⊥ and between k⊥ = k

(2)
⊥ and k⊥ = k

(4)
⊥ since

this would lead to additional zeros of ξ±. This leaves

two possible cases: In the first case, both l(k
(1)
⊥ ,kq) and

l(k
(3)
⊥ ,kq) are positive, whereas l(k

(2)
⊥ ,kq) and l(k

(4)
⊥ ,kq)

are negative, such that k
(1)
⊥ and k

(4)
⊥ are solutions of

ReD↑(k⊥,kq) = 0 and k
(2)
⊥ and k

(3)
⊥ are solutions of

ReD↓(k⊥,kq) = 0. Without loss of generality, we can as-
sume that ∆s

k ≡ ∆s > 0 and ∆t
k = ∆t > 0. This means

that the momenta on the positive-helicity Fermi surface
both contribute to the sum in their respective winding
number in Eq. (A4) because the argument of the Heavi-
side step function for these momenta, i.e., ∆+

k , is always
positive. The contribution is either +1 or −1, depending
on the sign of the k⊥-component of their Fermi velocity,

which is positive for k
(1)
⊥ and negative for k

(2)
⊥ .

The momenta on the negative-helicity Fermi surface,

i.e., k
(3)
⊥ and k

(4)
⊥ , contribute to the sum if the corre-

sponding gap ∆− is positive, i.e., ∆s/∆t > |l(k(3)⊥ ,kq)|
and ∆s/∆t > |l(k(4)⊥ ,kq)|. If this is the case, then the
contribution of the negative k⊥-component of the Fermi

velocity corresponding to k
(4)
⊥ cancels the contribution of

the term corresponding to k
(1)
⊥ in W⊥,↑(kq) and the pos-

itive k⊥-component of the Fermi velocity corresponding

to k
(3)
⊥ cancels the contribution of the term correspond-

ing to k
(2)
⊥ in W⊥,↓(kq), such that both winding numbers

are zero. If ∆s/∆t < mini∈{3,4} |l(k
(i)
⊥ ,kq)|, then k

(3)
⊥

and k
(4)
⊥ do not contribute to the winding numbers and

W⊥,↑(kq) = −1 = −W⊥,↓(kq).

In the second case, both l(k
(1)
⊥ ,kq) and l(k

(3)
⊥ ,kq) are

negative and l(k
(2)
⊥ ,kq) and l(k

(4)
⊥ ,kq) are positive. An

analogous line of reasoning leads to a nonzero wind-
ing number W⊥,↑(kq) = 1 = −W⊥,↓(kq) if ∆s/∆t <

mini∈{3,4} |l(k
(i)
⊥ ,kq)|. In conclusion, we find nonzero

winding numbers W⊥,↑(kq) and W⊥,↓(kq) in the full

sBZ if and only if ∆s/∆t < mini∈{3,4} |l(k
(i)
⊥ ,kq)| and l

changes sign between the Fermi surfaces at positive k
(1,3)
⊥

and the Fermi surfaces at negative k
(2,4)
⊥ . This is equiv-

alent to requiring

sgn
(
∆+

k
(1)
⊥ ,kq

)
= −sgn

(
∆−

k
(4)
⊥ ,kq

)
, (A5)

sgn
(
∆+

k
(2)
⊥ ,kq

)
= −sgn

(
∆−

k
(3)
⊥ ,kq

)
, (A6)

which are the conditions given in Eqs. (38) and (39).

Appendix B: Other point groups

In this appendix, we consider the effects of a not ex-
actly unidirectional SOC vector on the surface states for
systems with various point groups. There are 11 non-
centrosymmetric point groups which allow for a unidi-
rectional SOC vector and a nonzero winding number
W⊥,σ(kq) in the full Brillouin zone, namely C1, C2, C3,
C4, C6, D2, D3, D4, D6, C2v, and Cs, as discussed in
Sec. III. Table I shows the nearest-neighbor approxima-
tion for the SOC vector in these groups, which is re-
stricted according to Eq. (9). Moreover, the table lists
all possible orientations n for a unidirectional SOC vec-
tor and the corresponding direction of k⊥ which can lead
to a nonzero winding number W⊥,σ(kq). The last two
columns list the conditions which must be fullfilled by
the coefficients in order to get an approximately unidi-
rectional SOC vector and the component lqk of the SOC
vector which is parallel to n.
We now use the SOC vectors from Table I to calcu-

late the surface-state energies in a non-ideal system, i.e.,
a system where the SOC vector is not exactly unidi-
rectional for the examples of the C2, C4, D2, Cs, and
C2v groups. We require the spin-rotation symmetry in
Eq. (12) to be approximately satisfied, which leads to
certain conditions shown in the fifth column of Table I.
For the numerical calculations, we choose the parame-
ters in such a way that these conditions are satisfied; our
choice is given in Table II. Here, we do not list the point
group C1 as it requires many parameters to be fine tuned
but does not yield any additional insight. We also leave
out choices that lead to SOC vectors or first-order en-
ergy corrections which have the same form as the ones
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Table I. Nearest-neighbor approximation for the antisymmetric SOC vector for all noncentrosymmetric point groups which
permit a nonzero winding number W⊥,σ(kq) in the full sBZ. The constants cxi,j,k, c

y
i,j,k, and czi,j,k are real valued. The second

column gives the most general nearest-neighbor term in the SOC vector. The third and fourth columns give all possible options
for the direction of a unidirectional SOC vector and the corresponding surface orientations that can lead to a nonzero winding
number W⊥,σ(kq). The fifth column lists the conditions which must be satisfied by the coefficients ci,j,k so that the SOC vector
can be approximately unidirectional and lead to surface modes close to zero energy in the entire sBZ. The last column gives
the component lqk of the SOC vector which is parallel to n.

Point
group

SOC vector (nearest-neighbor
approximation), general n k⊥

Condition for lk ≈
l(k)n

Component of the
SOC vector parallel

to n

C1 lk = c1,0,0 sin kx + c0,1,0 sin ky + c0,0,1 sin kz c1,0,0 kx |c0,1,0|, |c0,0,1| ≪ |c1,0,0| lqk = sin kx c1,0,0

c0,1,0 ky |c1,0,0|, |c0,0,1| ≪ |c0,1,0| lqk = sin ky c0,1,0

c0,0,1 kz |c1,0,0|, |c0,1,0| ≪ |c0,0,1| lqk = sin kz c0,0,1

C2 lk = (cx1,0,0 sin kx + cx0,1,0 sin ky)x̂

+ (cy1,0,0 sin kx + cy0,1,0 sin ky)ŷ

+ c0,0,1 sin kz ẑ

⊥ ẑ kx |cx0,1,0|, |cy0,1,0|, |c
z
0,0,1|

≪ |cx1,0,0|, |cy1,0,0|
lqk = sin kx

(cx1,0,0x̂+ cy1,0,0ŷ)

ky |cx1,0,0|, |cy1,0,0|, |c
z
0,0,1|

≪ |cx0,1,0|, |cy0,1,0|
lqk = sin ky

(cx0,1,0x̂+ cy0,1,0ŷ)

ẑ kz |cx1,0,0|, |cx0,1,0|, |cy1,0,0|,
|cy0,1,0| ≪ |cz0,0,1|

lqk = c0,0,1 sin kz ẑ

C3 lk = [cx1,0,0 sin(kx/2) cos(
√
3ky/2) + cy1,0,0

cos(kx/2) sin(
√
3ky/2) + cx1,0,0 sin kx]x̂

− [−3cx1,0,0 cos(kx/2) sin(
√
3ky/2)+

cy1,0,0 sin(kx/2) cos(
√
3ky/2)+

cy1,0,0 sin kx]/
√
3 ŷ + {cz1,0,0[1/2 sin kx+

sin(kx/2) cos(
√
3ky/2)] + cz0,0,1 sin(kz)}ẑ

ẑ kz |cx1,0,0|, |cy1,0,0|
≪ |cz1,0,0|
≪ |cz0,0,1|

lqk = {cz1,0,0[1/2 sin kx+
sin(kx/2)

cos(
√
3ky/2)]+

cz0,0,1 sin(kz)}ẑ

C4 lk = (cx1,0,0 sin kx + cx0,1,0 sin ky)x̂+

(cx1,0,0 sin ky − cx0,1,0 sin kx)ŷ+

cz0,0,1 sin kz ẑ

ẑ kz |cx1,0,0|, |cx0,1,0| ≪ |cz0,0,1| lqk = cz0,0,1 sin kz ẑ

C6 lk =[cx1,0,0 sin(kx/2) cos(
√
3ky/2) + cy1,0,0

cos(kx/2) sin(
√
3ky/2) + cx1,0,0 sin kx]x̂−

[−3cx1,0,0 cos(kx/2) sin(
√
3ky/2)+

cy1,0,0 sin(kx/2) cos(
√
3ky/2)+

cy1,0,0 sin kx]/
√
3 ŷ + cz0,0,1 sin kz ẑ

ẑ kz |cx1,0,0|, |cy1,0,0| ≪ |cz0,0,1| lqk = cz0,0,1 sin kz ẑ

D2 lk = cx1,0,0 sin kxx̂+ cy0,1,0 sin kyŷ

+ cz0,0,1 sin kz ẑ

x̂ kx |cy0,1,0|, |cz0,0,1| ≪ |cx1,0,0| lqk = cx1,0,0 sin kxx̂

ŷ ky |cx1,0,0|, |cz0,0,1| ≪ |cy0,1,0| lqk = cy0,1,0 sin kyŷ

ẑ kz |cx1,0,0|, |cy0,1,0| ≪ |cz0,0,1| lqk = cz0,0,1 sin kz ẑ

D3 lk = cx1,0,0{[sin(kx/2) cos(
√
3ky/2) + sin kx]x̂

+
√
3 cos(kx/2) sin(

√
3ky/2)ŷ}+

{cz1,0,0[1/2 sin kx + sin(kx/2) cos(
√
3ky/2)]

+ cz0,0,1 sin(kz)}ẑ

ẑ kz |cx1,0,0|
≪ |cz1,0,0|
≪ |cz0,0,1|

lqk = {cz1,0,0[1/2 sin kx+
sin(kx/2)

cos(
√
3ky/2)]

+ cz0,0,1 sin(kz)}ẑ
D4 lk = cx1,0,0(sin kxx̂+ sin kyŷ) + cz0,0,1 sin kz ẑ ẑ kz |cx1,0,0| ≪ |cz0,0,1| lqk = cz0,0,1 sin kz ẑ

D6 lk = cx1,0,0{[sin(kx/2) cos(
√
3ky/2) + sin kx]x̂+√

3 cos(kx/2) sin(
√
3ky/2)ŷ}+

cz0,0,1 sin(kz)ẑ

ẑ kz |cx1,0,0| ≪ |cz0,0,1| lqk = cz0,0,1 sin kz ẑ

C2v lk = cx0,1,0 sin kyx̂+ cy1,0,0 sin kxŷ x̂ ky |cy1,0,0| ≪ |cx0,1,0| lqk = cx0,1,0 sin kyx̂

ŷ kx |cx0,1,0| ≪ |cy1,0,0| lqk = cy1,0,0 sin kxŷ

Cs lk = cx0,0,1 sin kzx̂+ cy0,0,1 sin kzŷ+

(cz1,0,0 sin kx + cz0,1,0 sin ky)ẑ

⊥ ẑ kz |cz1,0,0|, |cz0,1,0|
≪ |cx0,0,1|, |cy0,0,1|

lqk = sin kz

(cx0,0,1x̂+ cy0,0,1ŷ)

ẑ kx |cx0,0,1|, |cy0,0,1|, |c
z
0,1,0|

≪ |cz1,0,0|
lqk = cz1,0,0 sin kxẑ

ky |cx0,0,1|, |cy0,0,1|, |c
z
1,0,0|

≪ |cz0,1,0|
lqk = cz0,1,0 sin ky ẑ
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Table II. Orientation of the SOC vector and the surface as well as parameter choices and first-order energy corrections of the
surface state for the numerical calculations in Figs. 5 and 6.

Group n k⊥ Parameters E(1)(kq)/(αkq

√
(∆t)2 + λ2)

C2 ẑ kz cz0,0,1 = 1 ≫ cx1,0,0 = 0.025,
cx0,1,0 = 0.005, cy1,0,0 = 0.02,
cy0,1,0 = 0.02

√
(cx1,0,0 sin kx + cx0,1,0 sin ky)

2 + (cy1,0,0 sin kx + cy0,1,0 sin ky)
2

C4 ẑ kz cz0,0,1 = 1 ≫ cx1,0,0 = 0.025,
cx0,1,0 = 0.025

√
2
√

(cx1,0,0)
2 + (cx0,1,0)

2
√

sin2 kx + sin2 ky

D2 ẑ kz cz0,0,1 = 1 ≫ cx1,0,0 = 0.04,
cy0,1,0 = 0.03

√
(cx1,0,0)

2 sin2 kx + (cy0,1,0)
2 sin2 ky

Cs ⊥ ẑ kz cx0,0,1, c
y
0,0,1 = 1/

√
2 ≫ cz1,0,0 = 0.02,

cz0,1,0 = 0.03
|cz1,0,0 sin kx + cz0,1,0 sin ky|

C2v ŷ kx cy1,0,0 = 1 ≫ cx0,1,0 = 0.05 |cx0,1,0 sin ky|

we have already listed. The first-order approximation for
the surface-state energy according to Eq. (71) is listed in
the last column of Table II. For the normal-state disper-
sion, we choose

ϵk = −µ− 2t⊥ cos k⊥ − 2tq(cos kq,1 + cos kq,2), (B1)

where kq,1 and kq,2 are two orthogonal momentum com-
ponents parallel to the surface. We choose the parame-
ters t⊥ = 1, tq = 0.1, µ = −1, λ = 0.1, ∆s = 0.1, and
∆t = 0.2, which would ensure a nonzero winding number
in the entire sBZ for the ideal system.

The results for the surface state energies for the var-
ious point groups calculated by exact diagonalization of
a slab with a thickness of Z = 500 layers are shown in
Fig. 5. The figure shows that for all the point groups,
the surface bands become weakly dispersive. The maxi-
mal surface state energy is approximately the same for all
cases as it only depends on the parameters of the unper-
turbed system, which are chosen identically for all the
point groups, and on the strength of the perturbative
term, which can be measured by maxkq∈ sBZ |l⊥kq

|. We

have chosen the parameters in the SOC vector such that
this measure stays the same, namely maxkq∈ sBZ |l⊥kq

| =
0.05. The exact shape of the surface band depends on the
point group, which is also reflected by the equations for
the first-order perturbative approximation given in the
last column of Table II.

Figure 6 shows the relative difference |Ee
0 − Ep

0 |/Ee
0

between the surface-state energy Ee
0 calculated by exact

diagonalization of the slab Hamiltonian and the approxi-
mation Ep

0 calculated by first-order perturbation theory.
All the relative differences are very small, which confirms
the very good agreement between the results of exact
diagonalization and the approximation in Eq. (71). We
have also checked that there are no qualitative differences
for the IPR of the surface states and the energy and IPR
of the first bulk state compared to the point group C4 so
that they all look similar to the ones shown in Fig. 4.

Appendix C: Hamiltonian matrix and exact
diagonalization

In this appendix, we present the derivation of the
Hamiltonian matrix in real space that needs to be di-
agonalized and comment on the numerical method. To
derive the Hamiltonian of a slab of thickness Z, we first
Fourier transform the Hamiltonian matrix in Eq. (1) in
the direction normal to the slab, i.e., with respect to k⊥,
to real space. Here, we use the example from Sec. III,
with the normal-state dispersion

ϵk = −µ− 2tz cos kz − 2txy(cos kx + cos ky) (C1)

and the SOC vector lk = sin k⊥ n. For the sake of con-
creteness, we choose k⊥ = kz and n = ẑ. The Fourier
transform of the fermionic operators is defined as

ck,σ =
1√
Z

∑
z

e−ikzz c(z,kq),σ, (C2)

where c†(z,kq),σ
(c(z,kq),σ) is the creation (annihilation)

operator of an electron with surface momentum kq and
spin σ ∈ {↑, ↓} in layer z. Performing the Fourier trans-
formation and restricting the Hamiltonian to layers z ∈
{0, . . . , Z − 1} leads to

H =
1

2

∑
kq

Ψ†
kq
H(kq)Ψkq , (C3)

with the spinors

Ψkq =
(
c(0,kq),↑, c(0,kq),↓, c

†
(0,−kq),↑, c

†
(0,−kq),↓,

. . . ,

c(Z−1,kq),↑, c(Z−1,kq),↓, c
†
(Z−1,−kq),↑,

c†(Z−1,−kq),↓

)T
(C4)

with 4Z components. The BdG Hamiltonian H(kq) in
Eq. (C3) is given by the block-band matrix
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Figure 5. Surface-state energy Ee
0 calculated by exact diagonalization of the slab BdG Hamiltonian for the point groups (a)

C2, (b) C4, (c) D2, (d) Cs, and (e) C2v.

Figure 6. Relative difference between the surface-state energy Ee
0 calculated by exact diagonalization of the slab BdG Hamil-

tonian and the surface-state energy Ep
0 calculated within perturbation theory with Eq. (71) for the point groups (a) C2, (b)

C4, (c) D2, (d) Cs, and (e) C2v.

H(kq) =



d
(0)
kq

d
(1)
kq

0 . . . 0(
d
(1)
kq

)†
d
(0)
kq

d
(1)
kq

...

0
(
d
(1)
kq

)†
d
(0)
kq

. . . 0
...

. . .
. . . d

(1)
kq

0 . . . 0
(
d
(1)
kq

)†
d
(0)
kq


(C5)

with the 4× 4 blocks

d
(0)
kq

=


−µ− 2txy(cos kx + cos ky) 0 0 ∆s

0 −µ− 2txy(cos kx + cos ky) −∆s 0

0 −∆s µ+ 2txy(cos kx + cos ky) 0

∆s 0 0 µ+ 2txy(cos kx + cos ky)


(C6)

and

d
(1)
kq

=


−tz − iλ/2 0 0 −i∆t/2

0 −tz − iλ/2 −i∆t/2 0

0 −i∆t/2 tz − iλ/2 0

−i∆t/2 0 0 tz + iλ/2

 .

(C7)
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The matrix in Eq. (C5) has to be diagonalized in or-
der to obtain the eigenvalues and eigenstates of the
slab. In our case, we only need the eigenvalues of lowest
magnitude and the corresponding eigenstates. We have
performed the diagonalization with the SciPy function

scipy.sparse.linalg.eigsh, which uses the implicitly
restarted Lanczos method. However, since the matrix
size is only 4Z × 4Z for slab width Z (we take Z = 500)
other methods should also work.
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