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Edge magnetoplasmons arise on a boundary of conducting layer in perpendicular magnetic field
due to an interplay of electron cyclotron motion and Coulomb repulsion. Lateral electric field,
which confines electrons inside the sample, drives their spiraling motion in magnetic field along the
edge with the average drift velocity contributing to the total magnetoplasmon velocity. We revisit
this classical picture by developing fully quantum theory of drift velocity starting from analysis
of magnetic edge channels and their electrodynamic response. We derive the quantum-mechanical
expression for the drift velocity, which arises in our theory as a characteristic of such response
and can be calculated as harmonic mean of group velocities of edge channels crossing the Fermi
level. Using the Wiener-Hopf method to solve analytically the edge mode electrodynamic problem,
we demonstrate that the edge channel response effectively enhances the bulk Hall response of the
conducting layer and thus increases the edge magnetoplasmon velocity. In the long-wavelength limit
of our model, the drift velocity is simply added to the total magnetoplasmon velocity, in agreement
with the classical picture.

I. INTRODUCTION

Edge magnetoplasmons on a boundary of two-
dimensional electron gas (2DEG) are induced jointly by
electric field from electron density perturbations near the
edge and by Lorentz force from the external magnetic
field [1]. Due to the time-reversal symmetry breaking in
magnetic field, edge magnetoplasmons propagate along
the sample boundary only in one direction and cannot
scatter back. This property, together with strong confine-
ment of plasma oscillations near the boundary, is essen-
tial to possible applications of edge magnetoplasmons for
energy and signal transmission on micro- and nanoscale
[2--5]. Edge magnetoplasmons were studied experimen-
tally on boundaries of 2DEG formed by depleting gate
electrodes [6--17], on graphene edges [18--25], and, re-
cently, on the edges of quantum anomalous Hall insu-
lators which do not require external magnetic field to
support magnetoplasmons [26--28].

Theoretical treatment of edge magnetoplasmons re-
lies on various approximations applied to solve Maxwell
equations for a conducting half-plane [1, 29--31] or on
the exact Wiener-Hopf method which allows to solve the
equations analytically [32--34]. Additional factors such
as dissipation [11, 20, 31, 34] and formation of alternat-
ing strips of compressible and incompressible phases near
the edge [8, 13--15, 30, 31, 35--38] make the theory of edge
magnetoplasmons more complicated. The basic feature
of a local structure of electronic states near the edge in
magnetic field is formation of magnetic edge channels [39]
due to the upward bending of Landau levels caused either
by hard boundary of the sample (see Fig. 1) or by soft
confinement field. In the latter picture with the soft edge
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FIG. 1. Illustration of the origin of edge magnetoplasmon
drift velocity. Wavelike oscillations of the local Fermi level
E\mathrm{e}

\mathrm{F} change the filling of magnetic edge channels, i.e. Lan-
dau levels with the energies Enky , which are bent upwards
near the edge x = 0. Since the edge channels are unidirec-
tional, oscillations of their occupation give rise to oscillations
of edge current shown by red cones. The edge current appears
in phase with the bulk current response of the 2DEG (blue
cones) and thus effectively enhances its Hall conductivity \sigma xy.
The edge magnetoplasmon velocity, which is roughly propor-
tional to | \sigma xy| , is increased too by the quantity v\mathrm{d}\mathrm{r} which has
the meaning of drift velocity.

taken at the classical level, the lateral electric field which
confines electrons inside a sample drives electrons into
spiraling motion in crossed electric and magnetic fields
with some average drift velocity. Switching to the ref-
erence frame moving with the drift velocity, where the
electric field vanishes, we obtain simple addition of the
drift velocity to those magnetoplasmon velocity which is
predicted by the edge mode theory without taking into
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account the carrier drift. Such classical-level addition of
velocities was used to interpret data of several experi-
ments [21, 22, 28]. Alternative explanations of the extra
edge magnetoplasmon velocity are based on local capac-
itance models [6, 8, 15], and the recent analysis uses the
model of chiral linearly-dispersive edge states [27].

In this paper, we develop the fully quantum theory
of drift velocity of edge magnetoplasmons, which starts
from the analysis of electron states near the hard edge of
2DEG in magnetic field (magnetic edge channels), pre-
sented in Sec. II. As shown schematically in Fig. 1, per-
turbations of a local Fermi level near the edge during
magnetoplasma oscillations induce the linear responses
of oscillating charge and current densities, which are also
confined to the edge on a scale of magnetic length. The
drift velocity v\mathrm{d}\mathrm{r} arises in our theory as the joint charac-
teristic of charge and density responses of the magnetic
edge channels, and we derive the analytical expression
for it as harmonic mean of group velocities of those edge
states which cross the Fermi level. The additional current
and density responses of the edge channels, which should
be taken into account together with the bulk response of
2DEG, give rise to additional terms in equations describ-
ing the edge magnetoplasmons. Solving these equations
analytically using the Wiener-Hopf method in Sec. III,
we show that the edge response effectively enhances the
bulk Hall conductivity of 2DEG and thus increases the
total magnetoplasmon velocity. In Sec. IV we present
calculations of the edge magnetoplasmon dispersion and
analyze its long-wavelength limit. We show that in this
limit v\mathrm{d}\mathrm{r} is approximately added to the magnetoplasmon
velocity obtained without taking into account the edge
response. Moreover, in the limit of large number of oc-
cupied Landau levels, v\mathrm{d}\mathrm{r} tends to the average velocity of
electron spiraling motion in the effective confining electric
field superimposed on the magnetic field. These results
agree with the conventional classical picture, but here we
obtain them from the first principles. Sec. V is devoted
to conclusions, and Appendix A provides details about
quasiclassical calculations of the drift velocity.

II. EDGE CHANNELS AND THEIR RESPONSE

Consider the edge states of electrons on the boundary
of 2DEG, which occupies the half-plane x \geqslant 0, z = 0.
The uniform external magnetic field \bfB = \bfe zB corre-
sponds to the vector potential \bfA = \bfe yBx taken in the
Landau gauge. Electron wave functions can be found as

\psi (x, y) = L
 - 1/2
y eikyy\phi (x), where ky is the electron mo-

mentum along the edge, Ly is the system size in the y
direction, and \phi (x) obeys the Schrodinger equation

 - \hbar 2

2m
\phi \prime \prime (x) +

1

2m

\biggl( 
\hbar ky +

eBx

c

\biggr) 2

\phi (x) = E\phi (x) (1)

(hereafter we take the electron charge equal to  - e, where
e > 0). For a hard edge, we impose the Dirichlet bound-
ary condition \phi (0) = 0. General solution of Eq. (1),
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FIG. 2. Energies of the edge states Enky in magnetic field
as functions of the wave vector ky along the edge. The curves
from bottom to top correspond to the levels n = 0 . . . 5.
Dashed line show the example of Fermi level location E\mathrm{e}

\mathrm{F}

between the bulk Landau levels n = 2 and 3, and circles
demonstrate its intersections with the edge state energies at
momenta k\mathrm{m}\mathrm{a}\mathrm{x}

n , n = 0, 1, 2.

which is normalizable at the half-line x \geqslant 0, is given by
the parabolic cylinder functions U( - \varepsilon , z) [40]. The full
electron wave function reads

\psi nky (x, y) =
eikyy\sqrt{} 

LylHNnky

U

\Biggl( 
 - \varepsilon nky ,

\surd 
2

lH
(x+ l2Hky)

\Biggr) 
,

(2)
and the corresponding energy of the nth stationary state
Enky

= \hbar \omega \mathrm{c}\varepsilon nky
is related to the dimensionless energy

\varepsilon nky
which can be found as the (n+1)th (in the increasing

order, n = 0, 1, 2, . . .) root of the equation

U( - \varepsilon nky
,
\surd 
2lHky) = 0. (3)

Here \hbar \omega \mathrm{c} = \hbar eB/mc and lH =
\sqrt{} 

\hbar c/eB are, respectively,
cyclotron energy and magnetic length, which determine
characteristic energy and length scales of electron quan-
tum states in magnetic field. The factor Nnky is de-
termined by the wave function normalization condition\int \infty 
0
dx
\int Ly

0
dy | \psi nky

(x, y)| 2 = 1.
Edge state energies at different n as functions of ky

are shown in Fig. 2. At ky \rightarrow  - \infty the center of wave
function accumulation x \approx  - l2Hky moves away from the
edge x = 0 to the bulk x \rightarrow \infty . The influence of the
boundary weakens, so the edge state wave functions and
energies tend to those of ordinary Landau levels [41] in
unbounded 2DEG in magnetic field:

\psi \mathrm{L}
nky

(x, y) =
eikyye - (x+l2Hky)

2/2l2H\sqrt{} 
2nn!LylH

\surd 
\pi 

Hn

\biggl( 
x+ l2Hky

lH

\biggr) 
, (4)

E\mathrm{L}
n = \hbar \omega \mathrm{c}

\biggl( 
n+

1

2

\biggr) 
, (5)

where Hn are Hermite polynomials. In the opposite
limit ky \rightarrow \infty , the wave functions are strongly squeezed
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FIG. 3. Wave function square moduli | \psi | 2 for (a)--(c) edge
states (2), (d)--(f) bulk Landau levels (4) at different wave
vectors ky along the edge. The columns correspond to the
level numbers n = 0, 1, 2.

against the edge potential wall, so the energies tend to
the classical limit Enky

\sim \hbar 2k2y/2m, which describes
electron states freely propagating along the edge. Ap-
pendix A presents more accurate formula (A6) for edge
state energies applicable at lHky >  - 

\surd 
2n+ 1, which is

derived using quasiclassical quantization. Fig. 3(a)--(c)
shows square moduli of the edge state wave functions (2)
for n = 0, 1, 2, and Fig. 3(d)--(f) shows square moduli
of bulk Landau level (or displaced harmonic oscillator)
wave functions (4) which could exist without the Dirich-
let boundary condition at x = 0. The wave functions in
the top and bottom rows become progressively similar at
ky \rightarrow  - \infty .

Occupation of the edge states (2) by electrons gives
rise to the following spatial profiles of charge density and
current density along the edge:

\rho \mathrm{e}(x) =  - eg
\sum 
nky

fnky
| \psi nky

(x, y)| 2, (6)

jy(x) =  - eg
m

\sum 
nky

fnky

\biggl( 
\hbar ky +

eBx

c

\biggr) 
| \psi nky

(x, y)| 2. (7)

Here g = 2 is the spin degeneracy factor for electron
states, fnky are occupation numbers of edge states which,
at low temperatures, follow the step-like energy depen-
dence fnky

= \Theta (E\mathrm{e}
\mathrm{F} - Enky

), where E\mathrm{e}
\mathrm{F} is the local Fermi

level near the edge, and \Theta (x) is the unit step function.
We need to sum over momenta ky of the occupied edge
states in Eqs. (6)--(7), which are integer multiples of
2\pi /Ly in a sample with periodic boundary conditions
along the y axis. As seen from Fig. 2, this summation
should be carried out from  - \infty to the maximal values
k\mathrm{m}\mathrm{a}\mathrm{x}
n , which are different for each n. These values are

given by the condition Enk\mathrm{m}\mathrm{a}\mathrm{x}
n

= E\mathrm{e}
\mathrm{F} or, using Eq. (3), by
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FIG. 4. Contributions (9)--(10) of individual edge channels
n = 0, 1, 2 to (a) charge density \rho \mathrm{e}(x) and (b) current density
jy(x) as functions of the distance x from the edge. The Fermi
level E\mathrm{e}

\mathrm{F} is located in the mid-gap between the bulk Landau
levels n = 2 and 3, as shown in Fig. 2.

the equation

U( - E\mathrm{e}
\mathrm{F}/\hbar \omega \mathrm{c},

\surd 
2lHk

\mathrm{m}\mathrm{a}\mathrm{x}
n ) = 0. (8)

Separating in Eqs. (6)--(7) contributions of different levels
n as \rho \mathrm{e}(x) =

\sum 
n \rho \mathrm{e}n(x), jy(x) =

\sum 
n jyn(x), and switch-

ing from summation over ky to integration in the limit
Ly \rightarrow \infty , we obtain

\rho \mathrm{e}n(x) =  - eg

2\pi lH

k\mathrm{m}\mathrm{a}\mathrm{x}
n\int 

 - \infty 

dky
U2( - \varepsilon nky

,
\surd 
2(kylH + x/lH))

| Nnky
| 2

,

(9)

jyn(x) =  - eg\omega c

2\pi 

k\mathrm{m}\mathrm{a}\mathrm{x}
n\int 

 - \infty 

dky(kylH + x/lH)

\times 
U2( - \varepsilon nky

,
\surd 
2(kylH + x/lH))

| Nnky
| 2

. (10)

Note that \rho \mathrm{e}n(x) = 0, jyn(x) = 0 when E\mathrm{L}
n \leqslant E\mathrm{e}

\mathrm{F}, be-
cause in this case the whole nth edge state is unoccupied.
Fig. 4 shows the example of how the nth edge channels

contribute to spatial profiles of the charge and current
densities. These profiles are confined to the distance x \sim 
lH of several magnetic lengths from the edge x = 0. Note
that each charge density profile \rho \mathrm{e}n(x) tends at x\rightarrow \infty to
the universal value  - eg/2\pi l2H equal to the charge density
of a single completely filled bulk Landau level. Since we
are interested only in variations of charge density during
magnetoplasma oscillations due to transient changes of
edge state occupations, we subtract this constant part
by considering not the charge density itself \rho \mathrm{e}(x), but
its local deviation from the bulk value near the edge:
\~\rho \mathrm{e}n(x) = \rho \mathrm{e}n(x) + eg/2\pi l2H , \~\rho \mathrm{e}(x) = \rho \mathrm{e}(x) + n0eg/2\pi l

2
H ,

where n0 is the number of completely filled bulk Landau
levels, which depends on the bulk Fermi level location.



4

Taking into account that local variations of charge
and current densities near the edge are confined to a re-
gion of several magnetic lengths, which is small in strong
magnetic field in the quantum Hall regime, we can look
only on the integral charge (per unit length of the edge)
Q\mathrm{e} =

\sum 
nQ\mathrm{e}n, Q\mathrm{e}n =

\int \infty 
0
dx \~\rho \mathrm{e}n(x), and integral current

along the edge Iy =
\sum 

n Iyn, Iyn =
\int \infty 
0
dx jyn(x) both

resolved over edge channels numbers n. These quanti-
ties can be found analytically. First, representing the
bulk charge density  - eg/2\pi l2H as the ky-integrated den-
sity  - eg| \psi \mathrm{L}

nky
| 2 provided by the bulk Landau levels (4),

we obtain from Eq. (9):

Q\mathrm{e}n = - egLy

2\pi 

\infty \int 
0

dx

\left\{     
k\mathrm{m}\mathrm{a}\mathrm{x}
n\int 

 - \infty 

dky | \psi nky
(x, y)| 2

 - 
\infty \int 

 - \infty 

dky | \psi \mathrm{L}
nky

(x, y)| 2

\right\}     =  - eg

2\pi 
k\mathrm{m}\mathrm{a}\mathrm{x}
n . (11)

The last equality was obtained by changing the order
of integration over x and ky (which is possible due to
rapid decay of the integrand | \psi nky (x, y)| 2  - | \psi \mathrm{L}

nky
(x, y)| 2

at x\rightarrow \infty , ky \rightarrow  - \infty , see Fig. 3) and using the symme-
try property | \psi \mathrm{L}

nky
(x, y)| 2 = | \psi \mathrm{L}

n, - ky
( - x, y)| 2. Second,

using the Hellmann-Feynman theorem \partial Enky/\partial ky =
\langle \psi nky

| \partial H/\partial ky| \psi nky
\rangle , we can easily integrate Eq. (10) by

x, so the integral edge current reads

Iyn =  - eg

2\pi \hbar 

k\mathrm{m}\mathrm{a}\mathrm{x}
n\int 

 - \infty 

dky
\partial Enky

\partial ky
=  - eg

2\pi \hbar 
(E\mathrm{e}

\mathrm{F}  - E\mathrm{L}
n). (12)

Summing contributions of all partially occupied edge
channels with E\mathrm{e}

\mathrm{F} > E\mathrm{L}
n , we obtain the following simple

expressions for integral charge and current at the edge:

Q\mathrm{e} =  - eg

2\pi 

\sum 
n

\Theta (E\mathrm{e}
\mathrm{F}  - E\mathrm{L}

n)k
\mathrm{m}\mathrm{a}\mathrm{x}
n , (13)

Iy =  - eg

2\pi \hbar 
\sum 
n

\Theta (E\mathrm{e}
\mathrm{F}  - E\mathrm{L}

n)(E
\mathrm{e}
\mathrm{F}  - E\mathrm{L}

n). (14)

III. THEORY OF MAGNETOPLASMONS WITH
EDGE CHARGE AND CURRENT

Now we consider the problem of edge magnetoplas-
mons propagating along the straight boundary of 2D
conducting material. Suppose the electric potential \varphi 
and the oscillating charge density \rho on the surface of the
2D material have the common plane-wave dependence
on y and t: \varphi , \rho \propto ei(qy - \omega t) (we assume q, \omega > 0). At
each point (x, y) of this material, the 2D current den-
sity \bfj = \{ jx, jy\} can be found as the matrix product of
the local conductivity tensor \sigma \alpha \beta (x) and the electric field

vector \bfE =  - \nabla \varphi = \{  - \varphi \prime (x), - iq\varphi (x)\} :

jx =  - \sigma xx(x)\varphi \prime (x) - iq\sigma xy(x)\varphi (x), (15)

jy =  - \sigma yx(x)\varphi \prime (x) - iq\sigma yy(x)\varphi (x) + \Delta j\mathrm{d}\mathrm{r}y (x). (16)

The key point here is the density of drift current \Delta j\mathrm{d}\mathrm{r}y
in the right hand side of Eq. (16), which is the oscillat-
ing part \Delta j\mathrm{d}\mathrm{r}y \propto ei(qy - \omega t) of the boundary current (14)
carried by the edge channels and distributed in space
near the sample boundary as shown in Fig. 4(b). This
term is absent in the conventional theory of edge modes
[1, 29--34, 42]. The oscillations of drift current den-
sity \Delta j\mathrm{d}\mathrm{r}y originate from transient changes of the edge

state occupations due to oscillations \Delta E\mathrm{e}
\mathrm{F} \propto ei(qy - \omega t)

of the local Fermi level at the edge E\mathrm{e}
\mathrm{F} = E\mathrm{F} + \Delta E\mathrm{e}

\mathrm{F}
around its equilibrium bulk value E\mathrm{F}, see Fig. 1. If
the amplitude of these oscillations is relatively small,
we assume the linear response of magnetic edge channels
taking small oscillating perturbations of Eqs. (13)--(14):
\Delta Q\mathrm{e} = (\partial Q\mathrm{e}/\partial E

\mathrm{e}
\mathrm{F})\Delta E

\mathrm{e}
\mathrm{F}, \Delta Iy = (\partial Iy/\partial E

\mathrm{e}
\mathrm{F})\Delta E

\mathrm{e}
\mathrm{F}.

The oscillating integral edge current \Delta Iy =\int \infty 
0
dx\Delta j\mathrm{d}\mathrm{r}y (x) is distributed over several magnetic

lengths near the edge x = 0, as seen from Fig. 4(b).
We can introduce the model distribution function a(x),
which is essentially nonzero near x = 0 on the scale x \sim 
lH and normalized to unity, such as j\mathrm{d}\mathrm{r}y (x) = a(x)\Delta Iy,\int \infty 
 - \infty dx a(x) = 1. The coordinate-dependent components

\sigma \alpha \beta (x) of the conductivity tensor rise from zero in empty
space x < 0 to their bulk values \sigma \alpha \beta at x \rightarrow \infty . This
also happens on the scale of several magnetic lengths,
so, for simplicity of the following calculations, we can
assume that \partial x\sigma \alpha \beta (x) = a(x)\sigma \alpha \beta . As will be clear be-
low, the exact shape of the function a(x) is not impor-
tant whilst the charge density \rho (x) and electric potential
\varphi (x) profiles of magnetoplasmon oscillations are slowly
varying on the scale of lH . Thus, using the continuity
equation \partial \rho /\partial t+ div \bfj = 0, which in our case turns into
 - i\omega \rho + \partial xjx + iqjy = 0, we obtain from Eqs. (15)--(16):

i\omega \rho (x) = a(x)\{  - \sigma xx\varphi \prime (x) - iq\sigma xy\varphi (x) + iq\Delta Iy\} 
 - iq(\sigma xy + \sigma yx)\varphi 

\prime (x) - \sigma xx\varphi 
\prime \prime (x) + \sigma yyq

2\varphi (x). (17)

For isotropic material in magnetic field, \sigma xx = \sigma yy, \sigma xy =
 - \sigma yx, so the second term in the right hand side vanishes.
The oscillations \Delta E\mathrm{e}

\mathrm{F} of the local Fermi level at the
edge can be related to those of the integral charge \Delta Q\mathrm{e},
so that \Delta Iy = (\partial Iy/\partial E

\mathrm{e}
\mathrm{F})(\partial Q\mathrm{e}/\partial E

\mathrm{e}
\mathrm{F})

 - 1\Delta Q\mathrm{e}. In strong
enough magnetic field, where lH is much smaller than
characteristic length scale of \varphi (x), which is known to be
of the order of q - 1 [32, 42], we can replace a(x) by the
Dirac delta function, a(x) \approx \delta (x). Thus, Eq. (17) takes
the form

i\omega \rho (x) = \delta (x)

\biggl\{ 
 - \sigma xx\varphi \prime (x) - iq

\biggl[ 
\sigma xy  - v\mathrm{d}\mathrm{r}

\Delta Q\mathrm{e}

\varphi (0)

\biggr] 
\varphi (0)

\biggr\} 
 - \sigma xx(\partial 2x  - q2)\varphi (x),

(18)
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where the drift velocity

v\mathrm{d}\mathrm{r} =
\partial Iy
\partial Q\mathrm{e}

=
\partial Iy/\partial E

\mathrm{e}
\mathrm{F}

\partial Q\mathrm{e}/\partial E\mathrm{e}
\mathrm{F}

\bigm| \bigm| \bigm| \bigm| 
E\mathrm{e}

\mathrm{F}=E\mathrm{F}

(19)

was introduced. This velocity jointly characterizes the
charge and density responses of the edge channels and can
be calculated explicitly from Eqs. (13)--(14). Assuming
that the Fermi level lies between n0th and (n0+1)th bulk
Landau levels, n0 + 1

2 < E\mathrm{F}/\hbar \omega \mathrm{c} < n0 + 3
2 , so that n0

edge channels contribute to the sums in Eqs. (13)--(14),
we obtain

v\mathrm{d}\mathrm{r} =
n0/\hbar 

n0\sum 
n=0

\partial k\mathrm{m}\mathrm{a}\mathrm{x}
n

\partial Enky

=

\Biggl\langle \biggl( 
1

\hbar 
\partial Enky

\partial ky

\biggr)  - 1
\Biggr\rangle  - 1

, (20)

where the average \langle . . .\rangle is taken at the Fermi level Enky
=

E\mathrm{F} over all edge states crossing this level. Thus we may
interpret v\mathrm{d}\mathrm{r} as a harmonic mean of group velocities of
all magnetic edge channels crossing the Fermi level.

Eq. (18) has a form of conventional continuity equation
in the theory of plasmon-type edge modes [29--32, 34, 42],
but with the Hall conductivity \sigma xy replaced by

\~\sigma xy = \sigma xy  - v\mathrm{d}\mathrm{r}
\Delta Q\mathrm{e}

\varphi (0)
(21)

due to the response of edge channels. Since in magnetic
field along the positive z axis with negatively charged car-
riers \sigma xy < 0 at low frequencies \omega \rightarrow 0, and \Delta Q\mathrm{e}/\varphi (0) >
0, the edge channels effectively increase the negative \sigma xy
by the absolute value. In other words, the current re-
sponse of edge channels acts in phase with the bulk cur-
rents caused by the Hall conductivity, as depicted in
Fig. 1. As will be shown below [see Eq. (43)], in the long-
wavelength limit the magnetoplasmon phase velocity \omega /q
is approximately proportional to | \sigma xy| [32--34], thus the
edge channel response speeds up the magnetoplasmons.

We need to supplement Eq. (18) with the Poisson equa-
tion \varepsilon \mathrm{b}\nabla 2\varphi =  - 4\pi \rho \delta (z), where \varepsilon \mathrm{b} is the background di-
electric constant of the surrounding medium. For a half-
plane material, this equation at z = 0 can be transformed
into the integral form [1, 32--34]

\varphi (x) =
4\pi 

\varepsilon \mathrm{b}

\infty \int 
0

dx\prime L(x - x\prime )\rho (x\prime ), (22)

where the kernel

L(x - x\prime ) =

\infty \int 
 - \infty 

dk

2\pi 

eik(x - x\prime )

2
\sqrt{} 
k2 + q2

=
1

2\pi 
K0(q| x - x\prime | ) (23)

is given in terms of the second kind Bessel function K0.
The system of equations (18), (22) can be solved an-

alytically using the Wiener-Hopf method [32--34, 42--44]
after the Fourier transforms of \varphi (x) and \rho (x) carried out

separately at x < 0 and x > 0: \Phi +(\xi ) =
\int \infty 
0
dx eiq\xi x\varphi (x),

\Phi  - (\xi ) =
\int 0

 - \infty dx eiq\xi x\varphi (x), Q+(\xi ) =
\int \infty 
0
dx eiq\xi x\rho (x).

Applying these transforms to Eqs. (18), (22), we obtain

i\omega Q+(\xi ) =  - iq\varphi (0)(\xi \sigma xx + \~\sigma xy) + q2\sigma xx(\xi 
2 + 1)\Phi +(\xi ),

(24)

\Phi +(\xi ) + \Phi  - (\xi ) =
4\pi 

\varepsilon \mathrm{b}q
L(\xi )Q+(\xi ), (25)

where, according to Eq. (23), the dimensionless Fourier-

transformed kernel is L(\xi ) = [2
\sqrt{} 
\xi 2 + 1] - 1. Excluding

Q+ from Eqs. (24)--(25), we obtain

\varepsilon (\xi )\Phi +(\xi ) + \Phi  - (\xi ) =  - i\varphi (0)
q

L(\xi )(\eta \xi  - i\~\chi ), (26)

where the dielectric function of the 2D material

\varepsilon (\xi ) = 1 - \eta L(\xi )(\xi 2 + 1) = 1 - \eta 

2

\sqrt{} 
\xi 2 + 1, (27)

at the wave vector \bfk = \{  - q\xi , q\} is introduced. The di-
mensionless conductivities

\eta =
4\pi q\sigma xx
i\varepsilon \mathrm{b}\omega 

, \chi =
4\pi q\sigma xy
\varepsilon \mathrm{b}\omega 

(28)

are purely real in the static nondissipative limit, when
\sigma xx and \sigma xy are, respectively, imaginary and real. Since
\sigma xy is renormalized, see Eq. (21), due to the edge channel
response, \chi gets renormalized as well:

\~\chi = \chi  - 4\pi qv\mathrm{d}\mathrm{r}
\varepsilon \mathrm{b}\omega 

\Delta Q\mathrm{e}

\varphi (0)
. (29)

According to definitions, the functions \Phi +(\xi ) and
\Phi  - (\xi ) are analytical in, respectively, upper and lower
half-planes of the complex dimensionless wave vector \xi .
The Wiener-Hopf method [32, 44] relies on the decompo-
sition \varepsilon (\xi ) = F+(\xi )/F - (\xi ) of the dielectric function (27),
where F\pm (\xi ) are analytical in, respectively, upper and
lower half-planes. This decomposition can be carried out
analytically (see also Ref. [45]), and the result is

F+(\xi ) =  - \eta 
2

(1 - z1)
(s+1)/2(1 + z2)

1/2

(2p)1/2(1 + z1)s/2
K(\xi ), (30)

F - (\xi ) =
(2p)1/2(1 + z2)

s/2

(1 + z1)1/2(1 - z2)(s+1)/2
K(\xi ), (31)

K(\xi ) = exp

\biggl\{ 
\pi i

4
+

s

2\pi i
[f(z1) + f(z2)]

\biggr\} 
, (32)

f(z) =  - \pi 
2

6
+ log z log(1 + z)

+ Li2( - z) + Li2(1 - z), (33)

where z1 = isp\lambda , z2 =  - isp/\lambda , s = sign(Re \eta ), p =

\xi +
\sqrt{} 
\xi 2 + 1, \lambda =  - 2i/\eta +

\sqrt{} 
1 - (2/\eta )2; Li2 is the dilog-

arithm function. These formulas are applicable for any
complex \eta , i.e. in both capacitive (Im\sigma xx < 0, Re \eta < 0)
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and inductive (Im\sigma xx > 0, Re \eta > 0) regimes of the
conductivity, and for both materials with dissipation
(Re\sigma xx > 0, Im \eta < 0) and active media (Re\sigma xx < 0,
Im \eta > 0).
Equating separately the parts of Eq. (26), which are

analytical in upper and lower complex half-planes of \xi ,
we obtain the Fourier transforms of the potential (see the
details in [32, 42]):

\Phi \pm (\xi ) = \pm i\varphi (0)
2q

\biggl\{ 
1 - \~\chi /\eta 

\xi  - i

\biggl[ 
1 - F+(i)

F\pm (\xi )

\biggr] 
+
1 + \~\chi /\eta 

\xi + i

\biggl[ 
1 - F - ( - i)

F\pm (\xi )

\biggr] \biggr\} 
. (34)

At | \xi | \rightarrow \infty the functions (30)--(31) behave as F\pm (\xi ) \propto 
\xi \pm 1/2, which allows us to find the power-law asymptotics
of \Phi \pm (\xi ) at large \xi . They are related to the limiting
behavior of the potential \varphi (x) = q

\int \infty 
 - \infty d\xi e - iq\xi x[\Phi +(x)+

\Phi  - (x)] at x \rightarrow 0. By equating the limiting value \varphi (x \rightarrow 
0) to \varphi (0) in Eq. (34), we find the dispersion equation
for edge magnetoplasmons:

(\eta  - \~\chi )F+(i) + (\eta + \~\chi )F - ( - i) = 0. (35)

Using the analytical expressions (30)--(31), this equation
can be written explicitly as:

F+(i)

F - ( - i)
=

1 + \lambda 

1 - \lambda 
exp

\biggl\{ 
2i

\pi 
f(\lambda )

\biggr\} 
=

\~\chi + \eta 

\~\chi  - \eta 
. (36)

In order to calculate the magnetoplasmon dispersion
from Eq. (36) with taking into account the edge channel
response (29), we need to find the ratio \Delta Q\mathrm{e}/\varphi (0), which
defines the fraction of a total magnetoplasmon oscillat-
ing charge which is accommodated by the edge channels.
The theory of edge modes [32, 42] shows that oscillat-
ing charge density \rho (x) behaves as \rho (x) \propto x - 1/2 at the
distances from the edge x = 0 much smaller than the
wavelength 2\pi /q. Thus we can assume that the dom-
inating part of the charge is concentrated in very nar-
row strip near the edge, so \Delta Q\mathrm{e} \approx 

\int \infty 
0
dx \rho (x) = Q+(0).

From Eqs. (25), (34), and (35) we can find the Fourier
transform of charge density

Q+(\xi ) =
\varphi (0)\varepsilon \mathrm{b}
4\pi 

(\eta  - \~\chi )
F+(i)

F+(\xi )
. (37)

Using the property F+(\xi )F - ( - \xi ) =  - \eta /2 of the
functions F\pm (\xi ) and the dispersion equation (35),

we obtain F+(0) =  - (\eta /2)
\sqrt{} 

1 - 2/\eta and F+(i) =\sqrt{} 
\eta (\eta + \~\chi )/2(\eta  - \~\chi ) (we take into account here that

\eta , \~\chi < 0 for a system in the quantum Hall regime at low
frequencies of edge magnetoplasmons). Thus Eq. (37) at
\xi = 0 results in

\Delta Q\mathrm{e} = Q+(0) =
\varphi (0)\varepsilon \mathrm{b}
4\pi 

\sqrt{} 
\~\chi 2  - \eta 2\sqrt{} 
1 - \eta /2

. (38)

Substituting Eq. (38) to Eq. (29), we obtain

\~\chi = \chi  - qv\mathrm{d}\mathrm{r}
\omega 

\sqrt{} 
\~\chi 2  - \eta 2\sqrt{} 
1 - \eta /2

. (39)

The equations (36), (39), taken with the notations (19),
(28), and with the edge channel charge and current re-
sponse functions (13)--(14), are the main result of this
paper. These equations determine the edge magnetoplas-
mon dispersion \omega (q), when the edge channel response,
characterized by the drift velocity v\mathrm{d}\mathrm{r}, is taken into ac-
count.

IV. EDGE MAGNETOPLASMON DISPERSIONS

From the point of view of the existing experiments
on edge magnetoplasmons [8--11, 20, 21], only the long-
wavelength asymptotic of the dispersion relation \omega (q)
at q, \omega \rightarrow 0 is usually relevant and observable. In this
limit, for a conducting material with negligible dissipa-
tion, which turns into an insulator in the quantum Hall
regime, the parameter \eta = 4\pi q\sigma xx/i\varepsilon \mathrm{b}\omega is small by the
absolute value and negative. We can represent it as
\eta =  - 2qw, where w =  - (2\pi /\varepsilon b)(\partial Im\sigma xx/\partial \omega )| \omega =0 is the
characteristic penetration length of the charge density
oscillations (the 2D counterpart of a 3D conductor skin
depth) [32, 34]. The parameter \chi = 4\pi q\sigma xy/\varepsilon \mathrm{b}\omega remains
finite and negative at q, \omega \rightarrow 0. The asymptotic expres-
sions for the functions (30)--(31) at \eta \rightarrow 0 can be written
as:

F\pm (\xi ) =

\sqrt{} 
 - \eta 
2

\biggl\{ 
1 - i\eta 

4\pi p

\biggl[ 
(p2 + 1)

\biggl( 
\mp \pi i

2
+ log p

\biggr) 
+(p2  - 1) log

\Bigl( 
 - \eta 

4e

\Bigr) \biggr] 
+\scrO (\eta 2)

\biggr\} 
,

(40)

where e is the base of a natural logarithm. Using these
asymptotics, we obtain

F+(i)

F - ( - i)
\approx 1 +

\eta 

\pi 
log
\Bigl( 
 - \eta 

4e

\Bigr) 
, (41)

so we bring the dispersion equation (36) to the approxi-
mate form

1

\~\chi  - \eta 
=

1

2\pi 
log
\Bigl( 
 - \eta 

4e

\Bigr) 
. (42)

Taking into account that | \eta | \ll | \~\chi | at \omega \rightarrow 0 and using
Eqs. (28), (39), we obtain the magnetoplasmon disper-
sion in the long-wavelength limit:

\omega \approx v\mathrm{d}\mathrm{r}q  - 
2\sigma xyq

\varepsilon \mathrm{b}
log

2e

qw
. (43)

This formula differs by the drift term v\mathrm{d}\mathrm{r}q from the well-
known asymptotic formula for edge magnetoplasmon dis-
persion [32, 34]. Thus, due to additional current response
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FIG. 5. Drift velocity v\mathrm{d}\mathrm{r} (solid lines) as function of (a)
Fermi level E\mathrm{F} and (b) Landau level filling factor \nu \mathrm{L}. Dashed
lines show the quasiclassical approximation (44) which coin-
cide (circles) with the exact quantum-mechanical v\mathrm{d}\mathrm{r} when
the Fermi level is located in the mid-gap between Landau
levels, i.e. when E\mathrm{F}/\hbar \omega \mathrm{c} and 1

2
\nu \mathrm{L} are equal integers.

of the magnetic edge channels, the edge magnetoplasmon
phase velocity v = \omega /q increases by v\mathrm{d}\mathrm{r}.

Although our analysis started from the hard-edge
boundary conditions, this result is surprisingly consis-
tent with the classical picture of the soft edge formed
by a local electric field \scrE \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}

x which confines electrons
inside the sample. Indeed, such field gives rise to a
spiraling motion of the electrons in magnetic field with
the classical drift velocity v\mathrm{c}\mathrm{d}\mathrm{r} =  - c\scrE \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}

x /B along the
edge. From the other hand, the edge state wave func-
tion is typically concentrated near x0 =  - l2Hky (at
least, when ky \rightarrow  - \infty , see Fig. 3), so we can relate
the x0- and ky-derivatives of edge state energies to ob-
tain the effective confining field in terms of mean force
Fx =  - e\scrE \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}

x =  - \partial Enky
/\partial x0 \approx l - 2

H \partial Enky
/\partial ky acting

on electrons at the Fermi level near the edge. Hence the
classical drift velocity is v\mathrm{c}\mathrm{d}\mathrm{r} = \hbar  - 1(\partial Enky

/\partial ky), which
agrees with the quantum-mechanical expression (20) if
we neglect the variance of edge state group velocities.

The quasiclassical approximation for v\mathrm{d}\mathrm{r} can be ob-
tained from Eq. (20) in the limit when a large number
of bulk Landau levels n0 = E\mathrm{F}/\hbar \omega \mathrm{c} \gg 1 is occupied,
and when we find the edge state energies Enky approx-
imately using the quasiclassical quantization condition.
As shown in Appendix A,

v\mathrm{q}\mathrm{c}\mathrm{d}\mathrm{r} = lH\omega \mathrm{c}

\sqrt{} 
n0
2

=

\sqrt{} 
E\mathrm{F}

2m
. (44)

Assuming that the Fermi energy E\mathrm{F} = 1
2mv

2
\mathrm{F} can be

related to the Fermi velocity v\mathrm{F} of electrons at the edge,
we obtain v\mathrm{q}\mathrm{c}\mathrm{d}\mathrm{r} =

1
2v\mathrm{F}. This estimate agrees with Ref. [46]

where the velocity of quasiclassical motion on skipping
orbits in magnetic field was found to be of the order of
the Fermi velocity, and with the recent experiment [28].

The drift velocity v\mathrm{d}\mathrm{r}, calculated according to
quantum-mechanical formulas (19) and (13)--(14), is
shown in Fig. 5 as function of the Fermi level E\mathrm{F} and
Landau level filling factor \nu \mathrm{L}, i.e. number of occu-
pied Landau levels with taking into account their dou-

ble spin degeneracy g. To calculate the \nu \mathrm{L}-dependence, a
weak broadening of the Landau levels is assumed, which
makes the dependence of E\mathrm{F} on the electron density
n\mathrm{e} = \nu \mathrm{L}/2\pi l

2
H almost step-like, but smooth, when the

system goes through a sequence of interchanging com-
pressible and incompressible phases [8, 35]. As seen in
Fig. 5, the quasiclassical approximations (44) coincides
with the exact result (19) when the Landau level filling
is strictly integer, i.e. in the incompressible phases when
the Fermi level is located in the mid-gaps. In the follow-
ing, we will consider only such cases of integer Landau
level fillings corresponding to the quantum Hall regime,
when E\mathrm{F}/\hbar \omega \mathrm{c} = n0 + 1 = \nu \mathrm{L}/g.
To calculate the conductivity tensor \sigma \alpha \beta (\omega ) of 2DEG

in magnetic field, we can use the approach similar to
those applied to graphene in Ref. [34]. In the \bfE \cdot \bfr 
gauge, with the assumption of Lorentzian broadening of
the spectral function An(E) = (\Gamma /\pi )/[(E  - E\mathrm{L}

n)
2 + \Gamma 2]

of each nth Landau level with the width \Gamma , we obtain

\sigma xx(\omega ) =
ige2\hbar \omega 2

\mathrm{c}

4\pi 

\infty \sum 
n=1

n[In,n - 1(\omega ) + In - 1,n(\omega )], (45)

\sigma xy(\omega ) =
ge2\hbar \omega 2

\mathrm{c}

4\pi 

\infty \sum 
n=1

n[In,n - 1(\omega ) - In - 1,n(\omega )], (46)

where

In1n2(\omega ) =

\int 
dE1dE2 An1(E1)An2(E2)

\times f(E2) - f(E1)

(E1  - E2)(\hbar \omega + E2  - E1 + i\delta )
, (47)

and f(E) = \Theta (E\mathrm{F}  - E) is the low-temperature occu-
pation number of electronic state with the energy E.
The integrals (47) take into account both inter-Landau-
level electron transitions and intralevel transitions inside
each broadened Landau level, in case of its partial fill-
ing. In the case of integer Landau level filling E\mathrm{F} =
\hbar \omega \mathrm{c}(n0 + 1), and when the energy width of each level is
much smaller than the cyclotron energy, \Gamma \ll \hbar \omega \mathrm{c} (clean
limit), we obtain In,n - 1(\omega ) = \delta n,n0+1/\hbar 2\omega \mathrm{c}(\omega  - \omega \mathrm{c}),
In - 1,n(\omega ) = \delta n,n0+1/\hbar 2\omega \mathrm{c}(\omega + \omega \mathrm{c}).The resulting conduc-
tivities of 2DEG in magnetic field calculated in the clean
limit in the insulating (or incompressible) regime coincide
with the classical Drude result:

\sigma xx(\omega ) =
i\nu \mathrm{L}e

2

2\pi \hbar 
\omega \omega \mathrm{c}

\omega 2  - \omega 2
\mathrm{c}

, \sigma xy(\omega ) =
\nu \mathrm{L}e

2

2\pi \hbar 
\omega 2
\mathrm{c}

\omega 2  - \omega 2
\mathrm{c}

.

(48)
The low-frequency asymptotics of these expressions
\sigma xx \approx  - (\varepsilon \mathrm{b}/2\pi )i\omega w, w = \nu \mathrm{L}e

2/\varepsilon \mathrm{b}\hbar \omega \mathrm{c}, \sigma xy \approx  - \nu \mathrm{L}e2/2\pi \hbar 
can be used in Eq. (43) to find an approximate magne-
toplasmon dispersion in the long-wavelength limit.
Calculation results for the edge magnetoplasmon dis-

persion in our approach depend on the dimensionless pa-
rameter

r\mathrm{s} =
e2/\varepsilon \mathrm{b}lH
\hbar \omega \mathrm{c}

, (49)
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FIG. 6. Edge magnetoplasmon dispersions found numerically
in the presence (solid lines) and absence (dashed lines) of the
drift velocity v\mathrm{d}\mathrm{r}. Black circles show the analytical approxi-
mation (43) for the long-wavelength limit. The panels corre-
spond to different Landau level filling factors \nu \mathrm{L} and Coulomb
interaction strengths r\mathrm{s}.

which defines the ratio of characteristic Coulomb inter-
action and kinetic energies of electrons in magnetic field.
As follows from Eqs. (43) and (44), the ratio of v\mathrm{d}\mathrm{r} to
the typical magnetoplasmon velocity v = \omega /q \sim  - \sigma xy/\varepsilon \mathrm{b}
found in the absence of the drift contribution, behaves as
v\mathrm{d}\mathrm{r}/v \sim 1/r\mathrm{s}. Since r\mathrm{s} \propto 1/\varepsilon \mathrm{b}

\surd 
B, we expect significant

contribution of v\mathrm{d}\mathrm{r} to the total velocity of edge mag-
netoplasmon at strong dielectric screening or in strong
magnetic field. In experiments on edge magnetoplasmons
dealing with GaAs-based quantum wells [8--11], the sys-
tem parameters are typically \varepsilon \mathrm{b} = 4 - 13, B = 4 - 20T,
and the electron effective mass is m = 0.067m0, so
r\mathrm{s} \approx 0.6 - 4. In the case of graphene [20, 21], the role of
cyclotron energy \hbar \omega \mathrm{c} is played by the characteristic dis-
tance between Landau level \hbar v\mathrm{F}/lH , where v\mathrm{F} \approx 106 m/s,
so r\mathrm{s} does not depend on B but, depending on the sub-
strate dielectric constant \varepsilon \mathrm{b}, can take the values r\mathrm{s} \sim 2
(for suspended graphene) or less.

Fig. 6 shows the example results (solid lines) of numer-
ical solution of the dispersion equation (36) with taking
into account the contribution of the drift velocity. In
experiments [6--25], typical wavenumbers q of edge mag-
netoplasmons are 10  - 104 cm - 1, while magnetic length
is lH \sim 10 nm at B = 4  - 20T, so the dimensionless
product qlH does not exceed 10 - 2. As seen in Fig. 6, in
this regime the long-wavelength asymptotic (43), shown
by black circles, proves to be quite accurate. For the sake
of comparison, the dispersions calculated in the absence
of v\mathrm{d}\mathrm{r} are shown by dashed lines. The relative role of
v\mathrm{d}\mathrm{r} increases with decrease of r\mathrm{s}, in agreement with the
arguments presented above. The total velocity of mag-
netoplasmons rises with increase of the filling factor \nu \mathrm{L},
which agrees with experimental data [9, 11, 13, 17].

We have considered clean system, however our analysis

of the role of drift velocity remains valid in the presence
of dissipation as well. Nonzero DC limit of conductivity
lim\omega \rightarrow 0 \sigma xx(\omega ) = \sigma \mathrm{D}\mathrm{C} implies that \eta acquires finite value
\eta =  - 4\pi iq\sigma \mathrm{D}\mathrm{C}/\varepsilon \mathrm{b} instead of being infinitesimally small.
Since \eta is still much smaller by absolute value than \~\chi 
in the strong magnetic field limit, it enters only the log-
arithm in the dispersion equation (42), so the approxi-
mation \omega \approx  - 2\sigma xyq/\varepsilon \mathrm{b} [see Eq. (43)] would be sufficient
to estimate \eta \approx 2\pi i\sigma \mathrm{D}\mathrm{C}/\sigma xy. The resulting real part of
long-wavelength dispersion

\omega \approx v\mathrm{d}\mathrm{r}q  - 
2\sigma xyq

\varepsilon \mathrm{b}
log

2e| \sigma xy| 
\pi \sigma \mathrm{D}\mathrm{C}

(50)

has the same form as in the clean limit (43) if the
characteristic screening length is assumed to be w =
2\pi \sigma \mathrm{D}\mathrm{C}/\varepsilon \mathrm{b}\omega \approx \pi \sigma \mathrm{D}\mathrm{C}/q| \sigma xy| . The same expression for
w in the presence of significant dissipation was derived
in Ref. [32]. Thus the additive contribution of v\mathrm{d}\mathrm{r} to the
total edge magnetoplasmon velocity arises in the long-
wavelength limit irrespective of the role of dissipation.

V. CONCLUSIONS

Starting from quantum-mechanical analysis of mag-
netic edge channels, we developed consistent theory de-
scribing the drift velocity of edge magnetoplasmons. The
unidirectional propagation of electrons populating the
edge channels causes additional current response emerg-
ing during magnetoplasmon oscillations and accompany-
ing perturbations of the local Fermi level near the edge.
This response gives rise to additional term in the equa-
tions which describe edge magnetoplasmon electrody-
namics. The magnitude of this term is characterized by
the drift velocity v\mathrm{d}\mathrm{r} calculated analytically as harmonic
mean of group velocities of all magnetic edge channels
whose dispersions cross the Fermi level. At the quasi-
classical level, v\mathrm{d}\mathrm{r} is analogous to the average velocity of
electron spiraling motion in a confining electric field near
the edge and in perpendicular magnetic field. As we show
in Appendix A using the quasiclassical quantization, v\mathrm{d}\mathrm{r}
is close to one half of the electron Fermi velocity when
large number of Landau levels is occupied.
Due to Landau quantization, the quantum-

mechanically calculated v\mathrm{d}\mathrm{r} strongly oscillates when
the Landau level filling factor is changed, but on average
it is close to one half of electron Fermi velocity, in
agreement with the classical picture of skipping orbits.
Assuming that charge density oscillations are confined
in a narrow strip near the edge, we solved analytically
the problem of edge magnetoplasmon in the presence of
the drift velocity using the Wiener-Hopf method. We
show that in the low-frequency and long-wavelength
limit, v\mathrm{d}\mathrm{r} provides additive contribution to the edge
magnetoplasmon velocity, which agrees with traditional
treatment [20, 21] based on transition to a reference
frame moving with the drift velocity v\mathrm{d}\mathrm{r}. Our conclusion
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about additive contribution of the drift velocity holds
both in the clean limit and in the presence of dissipation.

The presented analysis, where the Dirichlet boundary
condition is imposed on electron wave functions, cor-
responds to a thin-film or 2D material with an abrupt
edge, examples are etched semiconductor quantum wells,
atomically thin transition metal dichalcogenides [47], and
other 2D conducting and semiconducting materials such
as phosphorene [48] or TiN [49]. The drift velocity of
edge magnetoplasmons in such physical realizations with
the hard edge was not considered theoretically so far.
Nevertheless, in the classical limit our results come to
surprising agreement with the opposite picture of smooth
edge created by confining electric field.

Out theoretical analysis opens the door for prediction
of edge-mode velocities with taking into account the local
edge response beyond long-wavelength phenomenologi-
cal and classical approaches. Numerical calculations for
specific physical realizations will be performed in the fu-
ture. Further development of the theory adapted to more
complicated electronic structure and electromagnetic re-
sponse near the edge should take into account appearance
of dissipation at non-integer Landau level fillings [31, 34],
and spatial structure of compressible and incompressible
stripes [8, 35]. Anisotropy of electron dispersion arising
due to intrinsic properties of a material (such as AlAs
[50]) or fabrication-related strain can also affect the edge
state and edge magnetoplasmon physics. After rescal-
ing of coordinates, anisotropy of effective mass becomes
equivalent to anisotropic Coulomb interaction, which af-
fects integer and fractional quantum Hall effects [50--53]
uncovering the physics of electron nematics [54]. Edge
mode electrodynamics becomes more mathematically in-
volved in anisotropic case [42], so interplay of drift veloc-
ity and anisotropy deserves additional study. Multiple-
subband effects can modify the structure of Landau lev-
els triggering their crossing [55, 56], and spin-orbit in-
teraction arising at the interfaces where 2DEG is formed
[57, 58] can also modify the structure of Landau levels in
the bulk [59, 60] and near the edge [61]. These effects can
change the edge magnetoplasmon properties and electro-
magnetic response of magnetic edge channels at specific
Landau level filling factors, however we expect the quali-
tative features of drift velocity to be robust against band
structure modifications at low energy scale, because our
results demonstrate correct quasiclassical limiting behav-
ior arising when large number of Landau levels is occu-
pied.

It is also of interest to extend our theory on massless
Dirac electrons in doped graphene with accounting for
specific character of their edge states at boundaries of
graphene lattice having different orientations [62], and
on different unconventional materials such as quantum
anomalous Hall insulators [26--28], magic-angle twisted
bilayer graphene [63] with a flat-band electron spectrum,
and other graphene-based heterostructures.
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Appendix A: Quasiclassical approximation
for drift velocity

The problem (1) of one-dimensional motion in har-
monic potential with hard wall

V (x) =

\biggl\{ 
1
2m\omega 

2
\mathrm{c} (x+ l2Hky)

2, x > 0,
+\infty , x \leq 0,

(A1)

can be solved (see also Ref. [46]) in the quasiclassical
approximation using the Einstein-Brillouin-Keller quan-
tization condition [64]

x2\int 
x1

p(x) dx = \pi \hbar (n+ \alpha ), (A2)

where E\mathrm{q}\mathrm{c}
nky

is the quasiclassical energy level, p(x) =

\{ 2m[E\mathrm{q}\mathrm{c}
nky

 - V (x)]\} 1/2, and the sum of Morse-Maslov in-

dices \alpha equals to 1
2 if the potential V (x) is smooth at

both turning points x1,2, or
3
4 if one of these points is

located at the hard wall x = 0.
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FIG. 7. Exact energies of the edge states Enky in magnetic
field (solid lines) as functions of ky, and their quasiclassi-
cal approximations (circles) given by Eq. (A6). Insets show
quadratic confining potential V (x) and wave function \psi nky (x)
for n = 2 in different regions of quasiclassical quantization.
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Depending on E\mathrm{q}\mathrm{c}
nky

and ky, we identify different

regimes of quasiclassical quantization shown in the in-
sets in Fig. 7. At ky <  - (2mE\mathrm{q}\mathrm{c}

nky
)1/2\hbar  - 1 (region I), both

turning points lie at the parabolic part of V (x), so we ob-
tain

\int x2

x1
p(x)dx = \pi E\mathrm{q}\mathrm{c}

nky
/\omega \mathrm{c} and hence the familiar har-

monic oscillator quasiclassical energies E\mathrm{q}\mathrm{c}
nky

= \hbar \omega \mathrm{c}(n+
1
2 )

coinciding with the exact ones. At  - (2mE\mathrm{q}\mathrm{c}
nky

)1/2\hbar  - 1 <

ky < 0 (region II) and ky > 0 (region III) one of the turn-
ing points is the hard wall x1 = 0, and the quantization
condition (A2) reads

r(x)

x
=
n+ 3

4

\varepsilon 
, (A3)

where x = \varepsilon /z, \varepsilon = E\mathrm{q}\mathrm{c}
nky

/\hbar \omega \mathrm{c} is the dimensionless en-

ergy, and z = l2Hk
2
y/2. The function

r(x) =
x

2
 - sgn(ky)

\biggl( 
x

2
+

\surd 
x - 1 - x arctan

\surd 
x - 1

\pi 

\biggr) 
(A4)

can be surprisingly well approximated by the simpler ex-
pression

r(x) \approx x

2
 - sgn(ky)

\sqrt{} 
4(x - 1)

\pi 2
+

1

4
. (A5)

From Eqs. (A3) and (A5) we can obtain the approximate
quasiclassical energies in the regions II and III:

E\mathrm{q}\mathrm{c}
nky

=
4\hbar 2k2y
\pi 2m

+ \hbar \omega \mathrm{c}

\biggl( 
2n+

3

2

\biggr) 

+
2
\surd 
2\hbar 2ky
mlH

\sqrt{} 
2n+

3

2
+
l2Hk

2
y

2

\biggl( 
2

\pi 
 - \pi 

4

\biggr) 2

, (A6)

which are quite close to the exact ones as shown in Fig. 7.

Using the quasiclassical dispersion equation (A2) and
the property xr\prime (x)  - r(x) = sgn(ky)

\surd 
x - 1/\pi of the

exact function (A4), we obtain the derivative

\partial ky
\partial E\mathrm{q}\mathrm{c}

nky

=
\pi 

\hbar \omega \mathrm{c}l2H | ky| 
r\prime (x)\surd 
x - 1

(A7)

taken at n = const. If the equilibrium Fermi level E\mathrm{F} is
located between n0th and (n0 +1)th bulk Landau levels,
and n0 \gg 1 (as assumed in the quasiclassical limit), then
we can approximate summation over n in Eq. (20) by
continuous integration. Using Eq. (A7) and taking the
quantization condition (A3) at \varepsilon = const to switch from
n to x, we obtain

n0\sum 
n=0

\partial k\mathrm{m}\mathrm{a}\mathrm{x}
n

\partial Enky

\approx \pi \surd 
2\hbar \omega \mathrm{c}lH

n0\int 
0

dn

\sqrt{} 
x

\varepsilon 

r\prime (x)\surd 
x - 1

=
1\surd 

2\hbar \omega \mathrm{c}lH

\infty \int 
1

dx
\surd 
\varepsilon 

x3/2
=

1

\hbar \omega \mathrm{c}lH

\sqrt{} 
2E\mathrm{F}

\hbar \omega \mathrm{c}
. (A8)

Substituting this result to Eq. (20) and taking into ac-
count that E\mathrm{F} \approx \hbar \omega \mathrm{c}n0, we obtain the final quasiclassical
expression (44) for the drift velocity.
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