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Topological bandstructures interfering with moiré superstructures give rise to a plethora of
emergent phenomena, which are pivotal for correlated insulating and superconducting states of
twisttronics materials. While quasiperiodicity was up to now a notion mostly reserved for solid-
state materials and cold atoms, we here demonstrate the capacity of conventional superconducting
circuits to emulate moiré physics in charge space. With two examples, we show that Hofstadter’s
butterfly and the magic-angle effect, are directly visible in spectroscopic transport measurements.
Importantly, these features survive in the presence of harmonic trapping potentials due to parasitic
linear capacitances. Our proposed platform benefits from unprecedented tuning capabilities, and
opens the door to probe incommensurate physics in virtually any spatial dimension.

Introduction.—Emulating quantum condensed matter
systems has emerged as an exciting interdisciplinary
frontier that hopes to utilize novel phenomena in
solid state systems for technological applications in
a range of engineered devices. The available
emulator platforms continue to grow and currently
range from acoustic and photonic metamaterials, to
arrays of microwave resonators, to circuit quantum
electrodynamics devices [1–21]. Several tight binding
models have now been realized with a variety of
geometries and structures, e.g., exhibiting a band
structure with non-trivial topology [22] and higher-order
topology [23, 24], or emulated electrons hopping on
curved space [25], as well as many-body emulators using
ultracold atoms [26, 27] and superconducting quantum
processors [28].

With the discovery of moiré materials in twisted and
stacked van der Waals heterostructures composed
of graphene mulitlayers [29], transition metal
dichalgonides [30], and cuprate superconductors [31],
it is a timely question to understand how to
generalize currently available quantum emulators
to include moiré patterns. In this context, it has been
understood that these patterns can be implemented
by quasiperiodic potentials [32–34] which are either
applied externally or arise due to lattice mismatch.
This motivated several propositions of ultracold atom
emulators to realize the magic-angle effect [32, 35–
40]. More recently, incommensurate effects are taking
center stage with the culmination of experimental
observations of twisted-graphene quasicrystals [41, 42].
Nonetheless, experiments remain quite challenging
due to incorporating specific types of optical lattices
to ensure the combined presence of Dirac points and
quasiperiodic potentials.

In this letter, we show that the conventional
toolbox of circuit quantum electrodynamics (cQED) (i.e.

FIG. 1. Quantum circuit emulating quasiperiodicity in the
space of transported charges. (a) 2D-system circuit with
a three-terminal Dirac junction (DJ). The two contacts 1
and 2 are connected to ground via identical quasiperiodic
nonlinear capacitors [43] with quasiperiodicity parameter
λ, and stray capacitances Ctot. The quasiperiodic circuit
element is implemented with an auxiliary transmon (inset),
where Ctot = C + C0 and λ = C/Ctot. (b) This specific
circuit provides a platform to emulate the magic-angle effect
in a spin-orbit-coupled tight binding model in a quasiperiodic
potential on the square lattice. The red dots mark the discrete
eigenvalues of the charge states on the two nodes, N1 and
N2, forming the tight-binding lattice. The blue contour plot
depicts the quasiperiodic potential (with periodicity λ). For
nonrational λ the potential is incommensurable with respect
to the quantized charges N1,2.

non-topological Josephson junctions, capacitances and
inductances) allows to create and measure moiré effects
in the transport degrees of freedom of a quantum circuit
(see Fig. 1). While we explicitly illustrate the principle
with the emulation of an analog Hofstadter butterfly
and the magic-angle effect, note that our approach
harbors the potential to effectively realize the physics
of virtually any dimension [4, 17], since the lattice is
defined in the number of transported charges instead of
the actual position space. Moreover, the generation of
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a nontrivial band structure occurs in a circuit element
distinct from the one giving rise to the quasiperiodic
potential, allowing for an exceptional degree of tunability.
In particular, there exists the possibility of an in-situ
control of the quasiperiodicity parameter by tuning the
circuit capacitances [44]. Finally, the proposed circuits
implement single-particle physics only. While, beyond
doubt, the correlated many-body phases of twisted
magic-angle samples are of exceptional excitement, they
also wash out and bury interesting single-particle physics,
including (multi-)fractal features [32, 45] occurring when
the twist angle is incommensurate.

Note that our work builds on recently proposed
quasiperiodic capacitive elements [43] introduced as a
blue-print to realize cQED emulators of models for
quasiperiodic Anderson localization. The presence
of parasitic linear capacitances however prevented an
explicit link between these fields to be made. Therefore,
a central point of our endeavor concerns the impact
of said parasitic capacitances, leading to a harmonic
trapping potential, similar to the harmonic trapping
potential conventionally used in cold atom experiments.
As we explicitly demonstrate here, the known features
in the density of states for both Hofstadter butterfly
and magic angle effect in the absence of harmonic
traps have a one-to-one correspondence in the density
of states with traps. This makes the observation of
these features amenable to standard ac spectroscopy
tools, readily available in quantum circuit hardware.
Furthermore, given the omnipresence of harmonic traps
in other physical platforms, this surprising result is
relevant beyond the here considered quantum circuit
context.

Quasiperiodic circuit QED.—In our earlier work [43]
we have introduced the quasiperiodic nonlinear capacitor
(QPNC) as a new circuit element realizing an energy
contribution of the form

ĤQPNC = −ES cos
(
2πλN̂

)
+ 2ECN̂

2 , (1)

where N̂ is the number of Cooper pairs separated
across the capacitor. This element can be realized
with conventional superconducting materials. The
nonlinear term arises from a capacitively coupled
auxiliary transmon [43] [see also inset in Fig. 1(a)], where
ES corresponds to the quantum phase slip amplitude
within the transmon [46]. This energy scale can be
controlled in a time-dependent fashion by tuning the
critical current of the transmon’s Josephson junction.
The quasiperiodicity parameter λ corresponds to the
ratio of the capacitive coupling of the transmon, C,
with respect to the total capacitance, Ctot. The latter
defines the charging energy EC = 2e2/Ctot of the
accompanying (parasitic) linear capacitance. Therefore,
λ is in general a real, incommensurate parameter and
renders the charging energy quasiperiodic with respect

to the discrete charge observable N̂ . In [43] we explored
the tunability of the parameter λ and the energy
scales ES and EC , and showed in particular how to
tune the device into a regime of λ2ES > EC , by
means of engineering effective attractive interactions, an
experimentally verified principle in quantum dots [47–
49]. This will be the regime of interest in what follows.
Since λ depends on capacitances, measuring features as
a function of λ is a little more sophisticated. One could
either fabricate a series of devices with different geometry
on the same chip to tailor the electrostatic properties, or
λ may be amenable to time-dependent tuning within a
single device, due to a recently proposed tunability of
circuit capacitances [44].

In this work, we explore the possibility to embed the
QPNC into larger circuits to create Hamiltonians with a
nontrivial density of states (DOS), and how to measure
the DOS. In particular, our focus is on investigating the
role of the parasitic linear capacitive energy term ∼ EC ,
which will prove to be pivotal, in spite of being small.
All considered model systems can be described by

Ĥd = ĤJ (φ̂1, . . . φ̂d) +

d∑
j=1

Ĥj
QPNC (2)

where each Ĥj
QPNC is given by Eq. (1) after inserting

the respective island charge N̂j . ĤJ represents
a generic Hamiltonian describing a multi-terminal
junction, connecting d+1 superconducting contacts (for
an example with d = 2, see Fig. 1). One contact is
put to ground, such that its superconducting phase can
be fixed to zero. There then remain d islands, each
of which is connected with an individual QPNC. The
islands’ degrees of freedom are the canonically conjugate
phase and charge operators

[
φ̂j , N̂k

]
= iδjk.

The charge space spanned by the eigenstates of
all N̂j can thus be considered as the equivalent
of a d-dimensional lattice, where the junction ĤJ

encodes tunneling between lattice points and (optionally)
intrinsic degrees of freedom which act as a pseudo spin.
The QPNC provides a quasiperiodic potential (∼ ES)
on top of a harmonic trap (∼ EC). For simplicity, we
assume that ES and EC are the same for each island.

Each charge island is subject to an induced offset
charge. Note that due to the details of its implementation
the QPNC is affected by two independent sources of
offset charges [43] for the quasiperiodic (∼ ES) and
for the quadratic term (∼ EC). These independent
offset charges are included in Eq. (2) by shifting N̂j −→
N̂j +Nα

g,j where α = C, S, respectively.

Our main focus is the analysis of the DOS of Ĥd,

ρ(E) =
1

D

∑
n

δ(E − ϵn) (3)
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where ϵn are the eigenvalues of Ĥd and D is the size
of the Hilbert space. We hone in on two example
systems. We study a 1D system, where the only island
is connected to ground with an ordinary Josephson
junction, and a 2D system with a Dirac junction, i.e.,
a three-terminal junction showing a Dirac spectrum [see
Fig. 1(a)]. For EC = 0, the 1D system implements
the Aubry-André model [50, 51] (whose spectrum hosts
Hofstadter’s butterfly [52]), whereas the 2D system
simulates a spin-orbit-coupled tight binding model,
subject to an additional quasiperiodic potential, which
at weak to moderate quasiperiodic strength gives rise
to the same phenomena as the magic-angle in twisted
bilayer graphene, including flat and isolated minibands,
multiple magic-angles, and emergent Dirac excitations on
the moiré scale [32, 35, 45, 53] (but Anderson-localizes at
larger values of the potential).

Some general remarks are in order. First, there is
a crucial difference between the here considered circuit
implementation, compared to many-body solid state
or cold-atomic systems. If the lattice points actually
referred to positions of particles, then there would be
a meaningful way to extend the description to a many-
particle wave function. The lattice ‘positions’ in Ĥd

on the other hand (see Fig. 1) already are in second
quantized form, as the observables N̂j count the number
of charges on island j. Therefore, the ground state
of Ĥd, ϵ0, is the many-body ground state, and there
is no meaningful way to emulate quantities like, e.g.,
a chemical potential. This is an important, and as a
matter of fact, advantageous feature. Namely, by means
of probing the ac response of a circuit realizing Ĥd, one
is capable of directly measuring the DOS that would
correspond to the single-particle DOS if Ĥd referred to
positions of a particle instead of the circuit’s charge
configuration [54]. It is in this sense, that we refer to
ρ as a single-particle DOS.

The second important remark concerns the role of the
parasitic linear capacitances, ∼ EC . In the existing
literature, the DOS for the above models has been most
widely studied in a condensed matter context, where
there is no harmonic trapping potential, defining the
untrapped model Ĥ0 ≡ Ĥd(EC = 0). We here find
that while the DOS of Ĥ0, ρ0(E), is related to ρ(E),
the connection is nontrivial. In particular, ρ(E) for
the system with finite EC does not simply approach
ρ0(E) (the ‘untrapped’ system) when going to the limit
EC → 0 [55]. This is due to the fact that there is no
perturbative limit for the trapping energy as the potential
strength diverges sufficiently far away from the origin.
Instead, as EC → 0, we find the convolution formula [56]

ρ(E) ≈
∫ E

E0

dE′ (E − E′)
d
2−1

ρ0 (E
′)

d=2→ ∂Eρ = ρ0, (4)

where E0 is the bottom of the band. Consequently,
the DOS gets distorted in a way characteristic of

FIG. 2. Spectral functions of Hofstadter-butterfly-emulator.
We consider the 1D system with EJ = ES , for (a) EC = 0
(the original Hofstadter butterfly), (b) EC ∼ 10−4EJ , and
(c) EC = 10−1EJ . (d) The auto-correlation of the current
response on a logarithmic scale with EC ∼ 10−4EJ resembles
the density of states shown in (b). The original Hofstadter
butterfly (a) was computed in a discretized phase space with
600 lattice points, while for finite EC the computations were
done on a charge lattice of size (b, d) 271, respectively (c) 11.
The expansion orders of the kernel polynomial method are,
respectively, (a) 651, (b, d) 1474, and (c) 1822.

dimensionality d. For instance, a delta peak in ρ0(E)
morphs either into a van-Hove singularity with algebraic
tail ∼ 1/

√
E (for d = 1) or into a Heaviside step

function (for d = 2) in ρ(E). More generally, in
d = 1 peak features survive, whereas in d = 2, peak
features translate into staircase-like features, as reflected
in the simple relationship given in the second equality in
Eq. (4). We now proceed with numerical calculations [56]
of the above introduced explicit models with d = 1, 2.

Aubry-André model and Hofstadter Butterfly.—We
begin by exploring quasiperiodicity in a simple 1D
system in conjunction with a harmonic trap [57]. While
aspects of this problem have previously been studied with
ultracold atoms [58–60], as well as acoustic [61], photonic
[62, 63], and polaritonic [64] emulators, quantum circuits
present another, extremely compact platform, where
circuit-specific observables allow a direct measurement
of the characteristic Hofstadter DOS.

Consider Ĥd=1 from Eq. (2) with the central
junction being a simple Josephson junction, Ĥd=1

J =
−EJ cos (φ̂1), where EJ = ES . For EC = 0 this is
the Aubry-André model, which produces the famous
Hofstadter butterfly (HB) pattern [52]; see Fig. 2(a).
In accordance with Eq. (4), the influence of the finite
trapping term EC ̸= 0 is nontrivial. Energy gaps in
the pure HB are now filled with a background density
of states, due to the already mentioned algebraic tails
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∼ 1/
√
E; see Figs. 2(b, c). Nevertheless, for EC/EJ ∼

10−4, panel (b), the HB peaks are clearly visible. When
going to values close to EC/EJ ∼ 10−1, Eq. (4) starts to
lose its validity, see Fig. 2(c). Note that EC/EJ ∼ 10−2

corresponds to the regime where transmon devices are
typically operated.

The DOS of a quantum circuit can be
straightforwardly measured via ac spectroscopy in
various manners [65], similar in spirit to Refs. [66–75].
For concreteness, we here explicitly study a specific
measurement of the DOS via a current response due to
an external flux. The standard linear response to a time-
dependent magnetic flux φj → φj + φj

ext (t) θ (t− t0)
yields the autocorrelated response function [56]

Im [χjj (ω > 0)] = π
∣∣∣⟨ϵ0| Îj |ϵ0 + ω⟩

∣∣∣2 ρ (ϵ0 + ω) , (5)

with the current operator Îj = −2e i
[
ĤJ , N̂j

]
,

eigenenergies ϵn, and eigenstates |ϵn⟩. We show this
response in Fig. 2(d) with a logarithmic color scale in
units of 2eEJ/ℏ. We observe that while the HB pattern
still persists, it is distorted with respect to Figs. 2(a–c).
This is simply because for the response function the λ-
dependent ground state energy is automatically set to
zero as a reference point.

Magic-Angle effect in 2D Dirac system.—We now move
on to consider a three-terminal junction [d = 2 in Eq. (2)]
with a generic two-dimensional Dirac structure

ĤD
J = EDJ

(
0 sin (φ̂1) + i sin (φ̂2)

sin (φ̂1)− i sin (φ̂2) 0

)
,

(6)
see Fig. 1. Such a Dirac junction can be realized, e.g.,
with four-terminal Weyl circuits [4, 13, 14], by closing two
contacts by a flux-threaded loop, and tuning the external
flux to the degeneracy point. While in this construction,
the Dirac points would not be topologically protected,
residual side-effects of a fluctuating minigap due to flux
noise could likely be mitigated by increasing the loop
area (at the cost of a non-negligible loop inductance
in the limit of very large loops). Dirac physics have
also been predicted in several other conventional circuits
(consisting of regular Josephson junctions), either in a
mixed 2D phase-charge space [19, 43] or in a pure charge-
charge space [19, 43]. We expect that charge and phase
degrees of freedom in these proposals can be swapped by
exploiting the duality between Josephson and quantum
phase slip junctions [76].

For EC = 0, it was previously demonstrated [32]
that ĤD

d=2 = ĤD
J +

∑2
j=1 Ĥ

j
QPNC exhibits magic-

angle physics in the same universal fashion as twisted
bilayer graphene [32, 45, 77] with the characteristic
flat bands [53] and non-zero DOS at zero energy for
critical values of ES and λ, see Fig. 3(a). Consistently
with Eq. (4) (and subsequent discussion) we here
numerically demonstrate that the same transition can

FIG. 3. Spectral signatures of the magic-angle emulator.
Here, with ES/EDJ = 0.541 a magic-angle appears at λ =
λ∗ ≈ 0.62. (a) The density of states (DOS) for EC = 0
shows the characteristic magic-angle effect. (b) For a finite
EC ∼ 10−4EDJ the same characteristic pattern emerges
in the differential DOS (dDOS), ∂Eρ (E). Note that some
weakly negative values have been cut to match the color
scale of panel (a) [56]. (c) Comparison of the DOS for
EC/EDJ = 0, 10−4 (blue solid and blue dashed) and dDOS
for EC/EDJ = 10−4 (red dashed), all at λ = λ∗. The DOS
for finite EC has been scaled up by a factor of 40 to allow
for a direct comparison. All these spectra were computed
in a discretized phase space with 6102 lattice points, while
the expansion orders of the kernel polynomial method are,
respectively, (a) 1430, (b) 4019, and (c) 1430 (EC = 0) and
4019 (EC > 0).

also be observed in the presence of a finite EC > 0.
The characteristic magic-angle structure of the DOS
now reveals itself in the form of steps surrounded by
plateaus of constant DOS (or as peaks in the differential
DOS, referred to as dDOS) at the precise values of
energy, where the system without trap exhibits flat
band peaks, see Figs. 3(b, c). This result numerically
confirms the convolution formula, Eq. (4), for d =
2. In analogy with the previous section, one can
measure this feature by means of an ac response of the
circuit, here in particular with a form of differential
response ∂ωχjj . Once again, if the device is prepared
in the ground state [roughly at −2EDJ in Fig. 3(c)]
the magic angle peak will be visible at a driving
frequency of ∼ 2EDJ . This finding constitutes one of
our main results: the emulation of magic-angle physics
in superconducting circuits requiring a relatively small
number of conventional circuit elements. Finally, we
insist that harmonic traps are a feature transcending
the narrow context of superconducting circuits and
our specific realization of QPNCs [43], such that the
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demonstrated survival of the magic angle feature in the
presence of such traps [underlined by Eq. (4)] is expected
to be of importance also for many other platforms.

Conclusion and outlook.—We demonstrate that
conventional circuit elements can reproduce the DOS
from a wide variety of solid state moiré materials,
such as the Hofstadter butterfly and the magic angle
effect. We show both analytically and numerically that
distortions of the DOS due to harmonic traps (parasitic
linear capacitances) do not impede the observation of
characteristic features—a finding relevant beyond the
superconducting circuit context. We further show that
straightforward ac current responses directly probe the
DOS. Our results prepare the ground for a multitude
of future research directions, such as the inclusion of
effective many-body features by increasing the number
of circuit degrees of freedom. The main challenge for
such a generalization is likely the imitation of bosonic
(fermionic) exchange statistics, exactly because the wave
function is already embedded in a many-body Hilbert
space, and as such does not naturally have the required
(anti-)symmetry in charge space. Another nontrivial
extension is to use the circuit-specific flexibility to
emulate topological materials with d > 3 (see, e.g.,
Ref. [17] for a junction emulating a topological material
with d = 4 exhibiting a nonzero second Chern number),
and study the so far poorly understood interplay between
moiré patterns and topological band structures beyond
the usual limitation of three (spatial) dimensions.
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S1

Supplementary materials on
“Emulating the magic-angle effect in quasiperiodic circuit quantum electrodynamics”

T. Herrig, C. Koliofoti, J. H. Pixley, E. J. König, and R.-P. Riwar

S1. NUMERICAL METHODS

Let us begin with some general remarks. We use
Python to implement the kernel polynomial method [79]
which allows to approximate and compute spectral
functions like a DOS or a correlation function without
diagonalization of the Hamiltonian. It is based on a
Chebyshev expansion while applying the Jackson kernel
to avoid Gibbs oscillations. In order to compute specific
eigenenergies or -states like the ground state, we made
use of the Lanczos algorithm. Both of these methods
scale linearly with the system size and take advantage of
sparse matrices.

A. Approximation of the Hilbert space

When numerically implementing Hamiltonians of the
here considered form [see Eq. (2)] whose Hilbert space
is infinite we have to approximate them such that they
only live in a finite Hilbert space. Considering that the
conjugated variables are pairs of a discrete charge and a
compact phase, we found the following two approaches
useful.

That is, either we introduce a cutoff in charge space
or we discretize the phase space. The first approach
is only useful with a finite charging energy EC > 0
since the corresponding energy parabola in charge space
separates the charge values energetically such that we
find a good approximation for the lower part of the
spectrum for a chosen cutoff |N | < Nco (without
altering form of the Hamiltonian). The second approach,
on the other hand, is especially useful for EC = 0
where the above approximation breaks down. Here,
the quasiperiodic term with λ = p/q (this approach
only works with commensurate values of λ but we can
approach incommensurate values with q ≫ 1) represents
a hopping term translating the phase by 2πλ. This
defines a grid in phase space of φk = 2πk/q which we
use to discretize the phase space. The values between
these points are then covered by including an offset value
0 ≤ ∆φ < 2π/q as a new parameter analogous to an
offset charge, which technically also has to be integrated
out. In praxis, however, increasing q suppresses any
dependence on ∆φ.

FIG. S1. Smooth introduction of the harmonic trap. (a, c, d)
The trap is approximated by a cosine potential in the low
EC/EJ regime showing the transition of a negligible to a
quadratic EC contribution. (b) Introducing a charge cutoff
for higher values of EC/EJ , the spectrum becomes more
complex. The quasiperiodicity parameter is chosen to be
(a, b) λ = 1/2, and (c, d) λ ≈ 0.62, while (a–c) ES = EJ

or, respectively, (d) ES/EDJ = 0.541. The spectra were
computed in a discretized phase space with (a) 600, (c) 610, or
(d, e) 6102 lattice points or (b) on a charge lattice with the size
ranging between 7–191 (needing a larger lattice for smaller
EC values). The expansion orders of the kernel polynomial
method respectively range between (a) 463–3756, (b) 1371–
2001, (c) 474–3767, and (d) 1443–14614.

B. Cosine approximation of the harmonic trap

In the second approach of a discretized phase space we
cannot implement an exact charge parabola ∼ N2 since
this term corresponds to infinitesimal shifts in the phase
space. However, we can introduce an approximation of a
term creating the smallest shifts possible

(N̂j +NC
g,j)

2 −→ q2

2π2

[
1− cos

(
2π

N̂j +NC
g,j

q

)]
, (S1)

that is, a nearest neighbor hopping term in the discretized
phase space

∑
k |φk+1⟩ ⟨φk| + h.c., whose cosine form

approximates a charge parabola for increasing values of
q. This, again, gives us a good approximation for the
lower part of the spectrum. However, it also provides
the possibility to introduce a finite value of EC in a
smooth manner, starting from EC = 0. This transition
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FIG. S2. Staircase-like magic-angle signature in the trapped
model. (a) In the presence of the harmonic trap, we find
a density of states (DOS) which is characterized by steps
instead of peaks but still incorporates the magic angle effect.
(b) The energy derivative of the DOS (dDOS) reveals the
characteristic magic-angle signature from the DOS of the
untrapped model. The quasiperiodicity parameter is λ ≈
0.62, while ES/EDJ = 0.541. The spectra were computed
in a discretized phase space with 6102 lattice points. The
expansion order of the kernel polynomial method is 4019.

of the DOS is shown in Figs. S1(a, c, d) for various cases,
where we fixed λ and q while increasing EC/ES from
q2EC/π

2 ≪ ES to q2EC/π
2 ≫ ES . This represents the

transition into the limit of low but finite harmonic trap.
Beyond that, Fig. S1(b) demonstrates the effect of larger
EC values.

C. EC-dependent adjustment of numerical
parameters

For the plots of Fig. S1 where we tuned EC over
multiple orders of magnitude, we adjusted the expansion
order of the kernel polynomial method NKPM with
increasing values of EC/EJ to scale with the size of the
spectrum NKPM ∼ Emax − Emin. Moreover the charge
cutoff Nco in panel (b) is also adjusted according to
Nco =

⌈√
5EJ/2EC

⌉
, where ⌈x⌉ maps x to the least

integer greater than or equal to x.

D. Magic-angle signature in the trapped model

In the presence of the harmonic trap, the characteristic
spectral signature of the magic-angle effect gets
incorporated into the energy derivative of the DOS
(dDOS) while the DOS itself shows the same pattern in
staircase-like manner. That is, peaks in the DOS of the
untrapped system turn into steps while empty density
turns into a plateau of constant DOS in the trapped
model, see Fig. S2. The computed dDOS shows weak
negative values which we fully present here. In the main
text, however, we cut these values off in order to match
the color map of the computation for the untrapped
model to render the two more comparable; see Fig. 3(a,
b).

S2. DENSITY OF STATES AT FINITE
TRAPPING POTENTIAL

We here derive the convolution formula given in Eq. (4)
in the main text. To this end, we start from a generic
d-dimensional Hamiltonian with harmonic trapping as
defined in Eq. (2). As in the main text, we define the
untrapped Hamiltonian as Ĥ0 = Ĥd(EC = 0). The
full Hamiltonian can thus be decomposed into Ĥd =
Ĥ0 + Ĥtrap, where the last term simply encompasses the
trapping energy term, Ĥtrap = 2EC

∑
j

(
N̂j + NC

g,j

)2.
While Eq. (4) is valid in the limit EC → 0, where the
spectrum no longer depends on the offset charges NC

g,j , it
actually turns out that the offset charges play an essential
role in the proof, as we show in what follows.

We define the DOS as in the main text,

ρ (E) = − 1

π
Im
[
GR (E)

]
(S2)

where GR represents the retarded Green’s function

GR (ω) = tr

[
1

Ĥd − ω + i0+

]
. (S3)

In fact, the proof works interchangeably for GR and
ρ. Since the Green’s function is the more general of
the two quantities, we show it explicitly for GR. The
corresponding Green’s function for Ĥ0 is

GR
0 (ω) = tr

[
1

Ĥ0 − ω + i0+

]
. (S4)

We now make use of the hypothesis stated in the
main text, that for EC → 0, the spectrum of
H does not depend on the offset charges, that is
spec

[
Ĥd

(
NC

g,1, N
C
g,2, . . . , N

C
g,d

)]
≈ spec

[
Ĥd (0, 0, . . . , 0)

]
.

Crucially, note that this statement involves a gauge
fixing. In principle, we might apply a gauge
transformation on the full Hamiltonian

Ĥ ′
d = Ĥd + f

(
NC

g,1, N
C
g,2, . . . , N

C
g,d

)
, (S5)

where f is an arbitrary scalar function. Both Ĥ ′
d and

Ĥd predict the exact same physics. But we note that our
above statement about the invariance of the spectrum on
Ng,j is true if, and only if, f ≡ const. (for simplicity, f ≡
0 in what follows) for all values of Ng,j . Consequently,
for the system in the gauge Ĥd (and only in this gauge),
the statement

GR (ω) =
1

N

∫
dNC

g,1

∫
dNC

g,2 . . .

∫
dNC

g,dG
R (ω) (S6)

must be true. The variable N is a suitably chosen (but
irrelevant) normalization constant. By means of Eq. (S6)
we can fully appreciate the importance of the gauge
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fixing. Had we not chosen the above gauge, we would
integrate the density of states on the right-hand side
of the equation by an arbitrary and unphysical energy

reference point which fluctuates with the offset charges.
This would be in contradiction with the basic fact that
only energy differences are measurable (e.g., from ground
to excited states).

On a side note, we emphasize the importance of performing the trace in GR. We cannot make the same statement
on the operator object itself (prior to taking the trace). That is, in general

1

Ĥd − ω + i0+
̸= 1

N

∫
dNC

g,1

∫
dNC

g,2 . . .

∫
dNC

g,d

1

Ĥd − ω + i0+
, (S7)

because even if the spectrum of Ĥd is independent on NC
gj , the eigenbasis of Ĥd is not. Only after performing the

trace,

tr

[
1

Ĥd − ω + i0+

]
=
∑
n

1

ϵn − ω + i0+
, (S8)

we arrive at a quantity that does not depend on the eigenbasis.
We now use the gauge-dependent statement in Eq. (S6) for our advantage. First, we represent the full Green’s

function in a Dyson series

GR (ω) = tr

[
1

Ĥ0 − ω + i0+

∞∑
k=0

(
−Ĥtrap

1

Ĥ0 − ω + i0+

)k
]
, (S9)

and now we integrate it over all the offset charges. Importantly, due to the invariance of the spectrum on NC
g,j , we

can take the integrals with respect to NC
g,j in the limit of diverging bounds (that is, for each NC

g,j the lower and upper
integral bounds approach −∞ and +∞, respectively). Therefore, in each order k of the Dyson series, the dominant
term is the term of highest order in NC

g,j (which is an even power of NC
g,j , such that the integral does not vanish).

Consequently, for the integrated quantity, we find

GR (ω) =
1

N

∫
dNC

g,1

∫
dNC

g,2 . . .

∫
dNC

g,d tr

[
1

Ĥ0 − ω + i0+

∞∑
k=0

(
−htrap

1

Ĥ0 − ω + i0+

)k
]
, (S10)

where htrap is simply the scalar

htrap
(
NC

g,1, N
C
g,2, . . . , N

C
g,d

)
= 2EC

d∑
j=1

(
NC

g,j

)2
. (S11)

Consequently, we get

GR (ω) =
1

N

∫
dNC

g,1

∫
dNC

g,2 . . .

∫
dNC

g,d G
R
0

[
ω + htrap

(
NC

g,1, N
C
g,2, . . . , N

C
g,d

)]
, (S12)

and analogously for ρ. Note that while it might seem that the above statement is equivalent to saying that the
spectrum of Ĥ0 is equal to the spectrum of Ĥd, up to a NC

g,j-dependent shift, this is under no circumstances what
happens. The traps distort the spectrum of Ĥd in a highly nontrivial, and nonperturbative way, while the spectrum
stays independent of NC

g,j . The above identity only holds exactly under the precise series of steps taken above, that
is, only for quantities involving the trace, and only when fixing the gauge of Ĥd as prescribed. To conclude, we see
that the full Green’s function GR(ω) can be invoked by GR

0 (ω) through a convolution with the well-known density of
states of a parabolic spectrum in d dimensions. For ρ, the same relationship holds since ρ follows from the imaginary
part of GR, see Eq. (S2). We thus arrive at Eq. (4) in the main text.

S3. LINEAR RESPONSE

The density of states of a quantum circuit can
be measured via a current response to an external

flux. To that end we consider a small time-dependent
external magnetic flux driving the phase φk → φk +
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φk
ext (t) θ (t− t0). The standard linear response of the

current (in the interaction picture) yields

〈
Îj (t)

〉
t
=
〈
Îj (t)

〉
0
+

∫ t

t0

dt1 φ
k
ext (t1)χjk (t− t1) ,

(S13)
with the current operator Îj = −2e i

[
ĤJ , N̂j

]
and the

response function χjj′(t − t1) = i
〈[
Îj(t), Îj′(t1)

]〉
0
/2e.

The brackets ⟨. . .⟩0 denote the expectation value with
respect to the unperturbed ground state. Note that
the current operator itself in principle also obtains a

correction due to the driving. However, this term is
trivial since it contributes equally to all frequencies of
the response.

Considering the Fourier transformation of the response
function, χjj′ (ω) = i

∫∞
0

dτ eiωτχjj′ (τ), we can connect
the imaginary part of the auto-correlator to the DOS
ρ(E) via

Im [χjj (ω > 0)] = π
∣∣∣⟨ϵ0| Îj |ϵ0 + ω⟩

∣∣∣2 ρ (ϵ0 + ω) , (S14)

with eigenenergies ϵn and eigenstates |ϵn⟩; see Eq. (5) of
the main text.
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