
CERN-TH-2023-192

Black hole bulk-cone singularities

Matthew Dodelsona, Cristoforo Iossab,c,d, Robin Karlssona, Alexandru Lupsascae,
and Alexander Zhiboedova
aCERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland
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Abstract: Lorentzian correlators of local operators exhibit surprising singularities
in theories with gravity duals. These are associated with null geodesics in an emer-
gent bulk geometry. We analyze singularities of the thermal response function dual to
propagation of waves on the AdS Schwarzschild black hole background. We derive the
analytic form of the leading singularity dual to a bulk geodesic that winds around the
black hole. Remarkably, it exhibits a boundary group velocity larger than the speed of
light, whose dual is the angular velocity of null geodesics at the photon sphere. The
strength of the singularity is controlled by the classical Lyapunov exponent associated
with the instability of nearly bound photon orbits. In this sense, the bulk-cone singu-
larity can be identified as the universal feature that encodes the ubiquitous black hole
photon sphere in a dual holographic CFT. To perform the computation analytically, we
express the two-point correlator as an infinite sum over Regge poles, and then evaluate
this sum using WKB methods. We also compute the smeared correlator numerically,
which in particular allows us to check and support our analytic predictions. We com-
ment on the resolution of black hole bulk-cone singularities by stringy and gravitational
effects into black hole bulk-cone “bumps”. We conclude that these bumps are robust,
and could serve as a target for simulations of black hole-like geometries in table-top
experiments.
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1 Introduction

Perturbative Lorentzian correlation functions of local operators in QFT develop sin-
gularities when operators can communicate by exchanging light-like signals [1, 2].1 A
striking feature of holographic theories is that communication can proceed via an emer-
gent bulk and in this way new singularities develop [4–6], through which the bulk ge-
ometry can be reconstructed [7, 8]. This emergent bulk communication channel cannot
be faster than the boundary one [9]. In this way boundary causality is preserved.

The simplest singularity arises in the two-point function ⟨O(x1)O(x2)⟩ when the
points become light-like separated, (x1 − x2)2 = 0. A holographic analog of this light-
cone singularity is the bulk-cone singularity [4]. It occurs when the boundary points are
connected by a null geodesic in the bulk. In pure AdS, the two cones coincide, but they
differ in non-trivial backgrounds. The existence of a nearly null geodesic in the bulk
does not always lead to a singularity in the correlator [10–13], but for the one-sided
correlators we will consider these subtleties do not arise.2

In this paper we derive the singularities of the thermal two-point function of a
holographic CFT on S1 × Sd−1 in the black hole phase. These black hole bulk-cone
singularities were first conjectured in [4, 14] by analyzing the geodesic approximation,
where the dimension of the probe operator becomes large. They have a remarkable
feature that the emerging bulk-cone group velocity is larger than 1.3 It is controlled
by the angular velocity Ω of null geodesics at the photon sphere,4 see Figure 1 and

1While these papers concern QFT in Minkowski space, the same statement is expected to be true
in curved space as well, see e.g. [3].

2As opposed to the situation considered in the present paper, in the two-sided case the two points
cannot exchange light-like signals.

3Similar effects of “faster than light propagation” have been observed experimentally in a variety
of resonant media [15].

4To observe this effect it is important that we consider a CFT on Sd−1, since it is absent in infinite
volume Rd−1. On the other hand, we expect the effect to be present when a holographic CFT is put
on other positively curved spatial manifolds as well.
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Figure 2. As can be seen from Figure 1 this effect is perfectly consistent with boundary
causality because it appears with some delay. We will also see that the strength of the
singularity captures the Lyapunov exponent γ of null geodesics in the vicinity of the
photon sphere. In this sense, the bulk-cone singularity represents the encoding of the
critical parameters (Ω, γ) of the photon sphere in the black hole hologram.

Surprisingly little is known about the structure of correlators close to the black
hole bulk-cone singularities. This is the problem we address in the present paper. Our
work can be viewed as the AdS analog of [16] (see also [17–19]), in which the structure
of singularities was worked out for the two-point function of massless fields on the
Schwarzschild background in four-dimensional asymptotically flat spacetime.

One important difference between the boundary-cone and bulk-cone singularities is
that the former are universal and appear in every theory, whereas the latter are present
in the strong coupling limit only.5 In particular, moving away from the strict ’t Hooft
limit and taking into account finite λ and finite N effects they are expected to become
bulk-cone bumps [6, 14]. As such they represent a simple, universal and robust feature
of emergence of black hole-like geometries in holographic systems.

In this paper we analyze black hole bulk-cone singularities in the gravity approxi-
mation. In particular, we analytically compute the leading form of the singularity. The
key observation is that the singularities are captured by a saddle point computation at
complex spin. More precisely, we express the correlator as a sum over Regge poles and
then use WKB methods to evaluate this sum to obtain the leading singularity.

Let us now present an overview of our final result. We consider the retarded two-
point function GR(t, θ) ≡ iθ(t)⟨[O(t, θ),O(0, 0)]⟩S1×Sd−1 . The leading singular behavior
associated with the no-bounce null bulk geodesics, see Figure 2a, is given by the formula

GR(t, θ) ∝ (u(t)2 − 1)∆−d/2

(u(t))2∆− d−1
2
√
T ′(u(t))(sin θ) d−2

2
(1.1)

×
∞∑
j=1

(−1)jdIm

 1(
tBC(2πj + θ) − t+ i0

)2∆− d−1
2

+ eiπ
d−2

2(
tBC(2πj − θ) − t+ i0

)2∆− d−1
2

 ,
where π > θ > 0, and the omitted numerical pre-factor can be found in (4.27) and
(4.32).

We now explain the basic elements of this formula.
5It has been observed that instanton corrections can sometimes mimic strong coupling singularities

[6]. It would be interesting to understand this better, especially in the thermal context (see [20] for a
related discussion).
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Figure 1: The structure of bulk-cone singularities in AdS Schwarzschild. The black line LC corresponds to
the ordinary light-cone with the leading behavior controlled by the light-cone OPE 1

(tLC−t)∆ . The red line
BC0 denotes a singularity due to a null geodesic in the bulk which wraps around the photon sphere, and its
functional form is computed in this paper. It is more singular than the light-cone for ∆ > d−1

2 and is given
by 1

(tBC−t)2∆− d−1
2

. The effective group velocity of the bulk-cone singularity Ω > 1 is related to the angular

velocity of null geodesics at the photon sphere. The strength of the bulk-cone singularity decays with time as
e−γt/2, where γ is the Lyapunov exponent of geodesics at the photon sphere.
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(a) No bounce BC0 (b) One bounce BC1 (c) Two bounces BC2

Figure 2: Null geodesics in AdS Schwarzschild (d = 4, µ = 1). The gray shaded region corresponds to r < rs,
where rs is the Schwarzschild radius. The black dashed curve is the photon sphere. Black points denote the
beginning and the end-point of the null geodesics that we are interested in. Colored points denote bounces.
Given a bulk-cone singularity with no bounces at (t, θ), there will be an (n− 1)-bounce bulk cone singularity
at (nt, nθ).

• d is the dimensionality of the boundary CFT, and ∆ is the scaling dimension of
the scalar primary operator O, related to the mass of the AdS dual bulk field ϕ

as ∆ = d
2 +

√
d2

4 + (mRAdS)2.

• The formula should be understood as a prediction for the leading singularities
of the correlator close to t = tBC(2πj ± θ) at fixed π > θ > 0. Away from the
singularities there are subleading corrections which we do not compute in the
present paper.

• Consider a null geodesic in the bulk that starts at the boundary point (0, 0) and
ends at the boundary point (T,Θ). tBC(Θ) ≡ T is the time it takes the bulk
geodesic to traverse an angle Θ.

• The j sum is over winding geodesics that end at the same spatial point on the
boundary as a result of the periodicity θ ∼ θ+2π. The two terms in the brackets
correspond to left and right-moving geodesics.

• u(T ) = dΘ
dT

is the effective angular velocity of the bulk geodesic, with 1 ≤ u ≤ Ω,
where Ω is the angular velocity of circular null geodesics at the photon sphere,
see Figure 9a.

• At late times T ′(u(t)) = dT
du

∣∣
u=u(t) ∼ eγt effectively measures the classical Lya-

punov exponent γ at the photon sphere, see Figure 9b.

We also computed the smeared correlator GR(t, θ) numerically as in [17], see Figure
11 and Figure 13, which in particular allows us to check and support our analytic
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predictions. In addition, we observe singularities associated with bouncing geodesics,
see Figure 2b and Figure 2c.

The plan of the paper is as follows:

• In Section 2, we study thermal correlators at infinite volume and reproduce the
expected light-cone singularity from doubly infinite sums over Regge poles and
Matsubara frequencies. This serves as a useful example before proceeding to the
more interesting case of finite volume.

• In Section 3, we turn to finite volume thermal correlators and compute the eikonal
spectrum of quasi-normal modes for both real and imaginary spin using WKB
methods. We further comment on the flat space limit where, in particular, the
spectrum at imaginary spin smoothly approaches the well-studied eikonal spec-
trum of black holes in asymptotically flat spacetime.

• Section 4 contains the main results of this paper. We begin by deriving the
representation of the Euclidean thermal correlator at finite volume as a sum
over Regge poles and Matsubara frequencies in any dimension. This can be
analytically continued to real time in order to explore the singularity structure of
Wightman correlators. Using the spectrum and residues found in Section 3, we
obtain the light-cone singularity as well as the bulk-cone singularities present at
finite volume.

• Section 5 is devoted to numerical computations of retarded correlators in d = 3
and d = 4. We successfully match the location of the bulk cone singularities,
their shape, and their relative strength with the analytical predictions from the
previous sections.

• In Section 6, following [14, 21] we comment on stringy and gravitational correc-
tions to our results. In particular, the singularities are smoothed out into finite
width bumps.

• In Section 7, we review existing bounds on ultra-compact objects (different from
black holes and possibly possessing a photon ring) in four-dimensional asymptot-
ically flat spacetime.

We conclude and discuss open questions in Section 8. Appendix A contains bounds
on Regge poles from the wave equation. As a useful example of the methods described
in this paper, the BTZ black hole is considered in Appendix B. In particular, both
at infinite and finite volume, the correlators written as sums over Regge poles and
Matsubara frequencies are explicitly shown to reproduce known results. In Appendix
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C we derive causality constraints on the retarded two-point function on the sphere in
momentum space. In Appendix D we discuss the structure of the leading light-cone
singularity of the two-point function at finite temperature in d > 2. In Appendix F we
review observational signatures of astrophysical black holes.

Note added: Signatures of the photon sphere in the thermal two-point function in the
eikonal limit ω, ℓ ≫ 1, ℓ/ω fixed were recently discussed in [22–25]. We consider this
regime in Section 3.1.

2 The light cone at infinite volume

In this section, we derive a representation of the holographic thermal two-point corre-
lator at infinite volume as a sum over Regge poles and Matsubara frequencies. We then
use it to obtain the leading light-cone singularity of the Lorentzian thermal two-point
function on S1

β ×Rd−1 in holographic theories. This section serves us a warm-up to the
more interesting case of S1

β × Sd−1, which we consider in the next section.

2.1 Holographic thermal two-point function

We consider a scalar field in the background of a (d+ 1)-dimensional AdS black brane.
The metric takes the form

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dx⃗2, f(r) = r2 − 1
rd−2 . (2.1)

We have chosen to work in units in which the horizon is at r = 1 and the inverse
temperature is β = 4π/d. The AdS boundary is at r = ∞. The equation of motion
(□ −m2)ϕ = 0 is conveniently written in terms of a new field ψ defined by [26]

ϕ(t, x⃗, r) = e−iωt+ik⃗·x⃗r− d−1
2 ψωk(r), k ≡ |⃗k|. (2.2)

The radial part of the wave equation then becomes

(−∂2
z + V (z) − ω2)ψωk(z) = 0, (2.3)

where we have introduced a new coordinate z via

dz = − dr

f(r) , (2.4)

such that z = 0 corresponds to the AdS boundary and z = ∞ to the black hole horizon.
The potential V (z) is given by

V (z) = f(r)
(
k2

r2 + ν2 − 1
4 + (d− 1)2

4rd

)
, (2.5)
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c and it is a monotonically increasing function of r when k is real. The conformal
dimension of the boundary operator O(x) dual to the bulk field ϕ is

∆ = d

2 + ν. (2.6)

The retarded correlator is computed by specifying ingoing boundary conditions at
the horizon [27],

ψωk(z) ∼ eiωz, z → ∞. (2.7)

Near the boundary, the solution behaves as

ψωk(z) ∼ A(ω, k)z 1
2 −ν + B(ω, k)z 1

2 +ν , z → 0. (2.8)

The retarded Green’s function is then given by

GR(ω, k) = B(ω, k)
A(ω, k) , (2.9)

where we have introduced

GR(t, x⃗) ≡ iθ(t)⟨[O(t, x⃗),O(0, 0)]⟩S1×Rd−1 (2.10)

= 1
(2π)d

∫ ∞

−∞
dω dd−1k⃗ e−iωt+ik⃗·x⃗GR(ω, |⃗k|) . (2.11)

We will be interested in the leading light-cone singularity of the thermal two-point
function. This can be readily derived using WKB methods at large ω and k, see
[12, 26, 28]. However, for our purposes of understanding bulk-cone singularities at
finite volume an alternative method via re-summation of Regge poles will turn out to
be more useful. We present this method below.

2.2 Regge poles and the Wightman function

In fact, we will find it more convenient to compute the Wightman two-point function,
and then use it to compute the retarded two-point function (2.10) if necessary.

The real-time Wightman function in a finite temperature CFT on S1
β × Rd−1 is

defined as follows

GW (t, x) = 1
Z

Tr
(
e−βHO(t, x⃗)O(0)

)
, x ≡ |x⃗|. (2.12)

Recall that the Wightman function can be obtained from the Euclidean correlator by
analytic continuation,

GW (t, x) = lim
ϵ→0

GE(τ = ϵ+ it, x). (2.13)
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Moreover, the Euclidean correlator admits a Fourier decomposition (see e.g. [29]),

GE(τ, x) = 1
β

∞∑
n=−∞

eiζnτ

∫
dd−1k⃗

(2π)d−1 e
ik⃗·x⃗GR (i|ζn|, k) , k ≡ |⃗k|, (2.14)

where GR is the retarded Green’s function. Here the Matsubara frequencies are given
by

ζn = 2πn
β

, (2.15)

and GR(iζn, k) = GE(ζn, k). The expression above is manifestly KMS invariant, GE(β−
τ, x) = GE(τ, x).

Notice that we cannot use (2.14) directly to compute the Lorentzian correlator.
The reason is that plugging (2.14) into (2.13) leads to a divergent sum over Matsubara
frequencies. To overcome this difficulty we use a trick familiar from Regge theory, and
analytically continue the representation above in k. To achieve this we first note that
the potential (2.5) is an analytic function of k2, so that the retarded two-point function
computed from it is automatically analytic in k and also obeys GR(ω, k) = GR(ω,−k).
It follows that we can extend the k integral to the full real line,∫

dd−1k⃗

(2π)d−1 e
ik⃗·x⃗GR(i|ζn|, k) = 1

(2π) d−1
2 x

d−3
2

∫ ∞

0
dk k

d−1
2 J d−3

2
(kx)GR(i|ζn|, k)

= 1
2(2π) d−1

2 x
d−3

2

∫ ∞

−∞
dk k

d−1
2 H

(1)
d−3

2
(kx)GR(i|ζn|, k), (2.16)

where Jα(x) and H(1)
α (x) are the Bessel and Hankel functions of first kind respectively.

When evaluating k d−1
2 H

(1)
d−3

2
(kx) for k < 0 the correct continuation prescription is k →

k + i0.
At large k, the Hankel function behaves as eikx, so for x > 0 the integrand expo-

nentially decays as Im k → +∞. We can therefore close the contour in the upper half
plane, picking up singularities along the way,

GE(τ, x) = iπβ−1

(2π) d−1
2 x

d−3
2

∞∑
n=−∞

∑
m

eiζnτk
d−1

2
mn H

(1)
d−3

2
(kmnx) Res

k→kmn

GR(i|ζn|, k), (2.17)

where the sum over m runs over poles kmn of GR(i|ζn|, k) in the upper half k-plane.
From (2.9), we see that the poles of GR(ω, k) are determined by the equation A(ω, k) =
0. One familiar way to think about this equation is to fix k, and to look for solutions
ωm(k). These solutions are the frequencies of quasi-normal modes. In the present
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context, we fix ω = i|ζn| and look for solutions km(ω). We call these solutions thermal
Regge poles. From (2.17), the spectrum and residues of Regge poles are sufficient
information to compute the Euclidean Green’s function.

As we will see shortly, the utility of (2.17) is that it can be directly used to analyze
the singularities of the Lorentzian correlator via the analytic continuation eiζnτ → e−ζnt.

2.3 Eikonal spectrum of thermal Regge poles

The singularities of the two-point function are controlled by the high energy and mo-
mentum asymptotics of the sum (2.17). Therefore we need to understand the structure
of thermal Regge poles in the eikonal limit where |ζn| → ∞ and |km(i|ζn|)| → ∞.

In Appendix A, we show that for positive imaginary ω, thermal Regge poles in
the upper half plane must lie in the sector π

4 < Arg(km(ω)) < 3π
4 . In fact, we found

numerically that all the Regge poles for positive imaginary ω are at imaginary k, see
Figure 15. Therefore, let us define k = ip and ω = ipu and then take p → ∞. Then
away from the boundary z ≫ 1/p, the wave equation (2.3) reduces to

(∂2
z + p2κ2(z))ψ(z) = 0, κ(z) =

√
−V k=ip

eik (z) − u2, (2.18)

where we have defined the eikonal potential

V k=ip
eik (z) = 1

rd
− 1. (2.19)

This potential admits bound states which appear as Regge poles on the imaginary k

axis, and we wish to compute the locations of these poles and their residues.
We take 0 < u < 1, so that there is a single turning point located at rT =

(1 − u2)−1/d, as depicted in Figure 3. This turning point approaches the boundary as
u → 1 and the horizon as u → 0. In the WKB approximation, the ingoing solution
takes the following form near the horizon,

ψ(z) ∼ 1√
|κ(z)|

e
−p

∫ z
zT

dz′|κ(z′)|
, z > zT . (2.20)

Note that this is exponentially decaying at infinity, as is appropriate for a bound state.
Applying the WKB connection formula then gives the solution in the classically allowed
region,

ψ(z) ∼ e
iπ
4 −iS(0,zT )√
κ(z)

eip
∫ z

0 dz′κ(z′) + e− iπ
4 +iS(0,zT )√
κ(z)

e−ip
∫ z

0 dz′κ(z′), z < zT . (2.21)
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Here we have defined the WKB action

S(za, zb) = p

∫ zb

za

dz′ |κ(z′)|. (2.22)

The WKB solution (2.21) does not yield the correct boundary asymptotics (2.8).
The reason is that the eikonal potential is no longer dominant at z of order 1/p. In
this region the potential (2.5) can be approximated as

V (z) ∼
ν2 − 1

4
z2 − p2, z ∼ 1

p
≪ 1. (2.23)

The solutions are Hankel functions, whose coefficients can be fixed by matching to the
WKB solution (2.21) at z ≫ 1/p. We find

ψ(z) ∼ i

√
πpz

2 e
iπν

2 −iS(0,zT )H(1)
ν (p

√
1 − u2z) (2.24)

− i

√
πpz

2 e− iπν
2 +iS(0,zT )H(2)

ν (p
√

1 − u2z), z ∼ 1
p
.

The retarded Green’s function (2.9) can then be read off from the asymptotics (2.8),

GR(ω, k) = Γ(−ν)
Γ(ν)

(
ω2 − k2

4

)ν cos
(
S(0, zT ) + πν

2

)
cos
(
S(0, zT ) − πν

2

) . (2.25)

In deriving this formula we assumed that S(0, zT ) ≫ 1. Corrections to this formula are
suppressed by 1

S(0,zT ) .
Now let us compute the spectrum of thermal Regge poles from (2.25). The pole

condition reduces to

S(0, zT ) = π(ν + 1 + 2m)
2 , m = 0, 1, . . . , (2.26)

where S(0, zT ) is given by

S(0, zT ) = p
√

1 − u2
∫ ∞

rT

dr

√
1 −

(
rT

r

)d
r2 − r2−d

=
√
πp(1 − u2) 1

d
+ 1

2 Γ
(
1 + 1

d

)
2F1

(
1, 1

d
; 3

2 + 1
d
; 1 − u2)

2Γ
(3

2 + 1
d

) . (2.27)

As mentioned above, this calculation can be trusted for m ≫ 1. The residues of GR in
(2.25) are found to be

Res
k→km

GR(ω, k) = − π

νΓ(ν)2

(
ω2 − km(ω)2

4

)ν (
∂S(0, zT )

∂k

∣∣∣
km

)−1

. (2.28)
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z

V k=ip
eik (z)

−u2

−1

zT

Figure 3: The eikonal potential (2.19) for imaginary k = ip has one real turning point zT . The minimum of
the potential is at the boundary z = 0.

In particular, as the turning point approaches the boundary, we have u → 1, so that
we can expand the action as

S(0, zT ) =
p
√
π2− 1

2 + 1
d Γ
(
1 + 1

d

)
Γ
(3

2 + 1
d

) (1 − u) 1
2 + 1

d + . . . , u → 1. (2.29)

Plugging into (2.26), we can read off the low-lying spectrum

km(ω) = ω + i

(−iω)
d−2
d+2

(√
πΓ
(3

2 + 1
d

)
m

2 1
d

− 1
2 Γ
(
1 + 1

d

) ) 2d
d+2

+ . . . , (2.30)

for km ∼ ω and |ω| ≫ m ≫ 1.
As mentioned above, thermal Regge poles and quasi-normal modes are equivalent

descriptions of the poles of GR(ω, k). We can invert the relation (2.30) to find the
spectrum of quasi-normal modes,

ωm(k) = k − i
1

(−ik)
d−2
d+2

(√
πΓ
(3

2 + 1
d

)
m

2 1
d

− 1
2 Γ
(
1 + 1

d

) ) 2d
d+2

+ . . . , (2.31)

for ωm ∼ k and |k| ≫ m ≫ 1.
Let us make several comments on this formula. First, note that Im ωm(k) < Im k,

as required by causality at infinite volume [30]. Second, the spectrum (2.31) precisely
agrees with the naive rotation of the real k spectrum [26] to imaginary k.6 At finite

6Here we have corrected a minor numerical typo in [26].
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volume, we will see that both of these properties are violated: there are modes with
Im ωm(ℓ) > Im ℓ, where ℓ is the spin, and the imaginary spin modes are not obtained
by simply rotating the real spin modes.

2.4 The light-cone singularity

Next we will see how the light-cone singularity is reproduced from the Regge expansion
(2.17). To this end, let us evaluate (2.17) on the Regge poles at the Matsubara frequen-
cies, with the residues (2.28). Since we are interested in the singularities in position
space, we approximate the sums by integrals for ζn ∼ pm(i|ζn|) ≫ 1,

1
β

∑
n

∑
m

≃ 1
2π

∫ ∞

0
dp
dm

dp

∫ p

−p
dζ = 1

2π

∫ ∞

0
dp

∫ p

−p
dζ

i

π

dS(0, zT )
d(ip) . (2.32)

The last factor cancels the corresponding derivative in (2.28). We also use the large p
asymptotic of the Hankel function,

H
(1)
d−3

2
(ipx) →

√
2i
πpx

e− 1
4 iπde−px. (2.33)

Combining all the factors together, we get the following expression for the Euclidean
two-point function,

GE(τ, x) = 1
22ν+1π(2πx) d

2 −1νΓ(ν)2

∫ ∞

0
dp

∫ p

−p
dζ eiζτ−pxp

d
2 −1(p2 − ζ2)ν . (2.34)

Computing the leading light-cone singularity as t → x, we get

GW (t, x) = Γ(∆)
π

d
2 Γ(∆ − d

2)
1

(x2 − t2)∆ + ... , (2.35)

which correctly reproduces the expected leading light-cone singularity of the two-point
function and serves as a consistency check for our computation. The factor Γ(∆)

π
d
2 Γ(∆− d

2 )
in front is simply an overall normalization of the operators. Notice that in contrast to
d = 2, see Appendix B, the leading light-cone singularity is the same as in the vacuum.

Equivalently, we could have used WKB methods to compute the large ω, k asymp-
totic for real ω and k directly, from which the leading light-cone singularity trivially
follows. The result above predicts that

GW (ω, k) ≃
2π
(
ω2−k2

4

)∆−d/2

Γ(∆ − d
2)Γ(∆ + 1 − d

2)
, (2.36)

which indeed coincides with the results in [12, 26, 28], up to a factor 2∆ − d which is
due to the difference in our definition of the retarded two-point function (2.9).
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3 Eikonal spectrum of quasi-normal modes for complex spin

Now let us turn to finite volume. In the next section we will compute the singularity
structure of the correlator using the same method as at infinite volume. To do this
we first need to understand the poles and residues of the retarded Green’s function
in the eikonal limit ω, ℓ → ∞ with ω/ℓ fixed. In this section we will focus on the
quasi-normal modes rather than the Regge poles in order to make contact with prior
work. The translation to Regge poles is straightforward, and will be done in Section 4
when discussing the singularities. For complex spin, the answer is highly sensitive to
the argument of ℓ, and we will treat the cases of real ℓ and imaginary ℓ separately.

We consider scalar field propagation in the AdSd+1 Schwarzschild black hole with
metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2
d−1, f(r) = r2 + 1 − µ

rd−2 . (3.1)

The black hole geometry dominates the canonical ensemble above the Hawking-Page
transition, µ > 2 [31]. The Schwarzschild radius is at

r2
s + 1 − µ

rd−2
s

= 0. (3.2)

The equation of motion simplifies after Fourier decomposition,

ϕ(t,Ωd−1, r) = e−iωtYℓm⃗(Ωd−1)r− d−1
2 ψωℓ(r), (3.3)

where Yℓm⃗ are spherical harmonics on Sd−1. The wave equation takes the same form
(2.3) as at infinite volume, with the potential

V (z) = f(r)
((ℓ+ α)2 − 1

4
r2 + ν2 − 1

4 + (d− 1)2µ

4rd

)
, α ≡ d− 2

2 . (3.4)

3.1 Real spin and long-lived quasiparticles

Let us first review the case when the spin ℓ is large and real. The eikonal limit is
defined by taking p = ℓ + α and ω = pu, with p → ∞. Then for z ≫ 1/p, the wave
equation becomes

(∂2
z + p2κ2(z))ψ(z) = 0, κ(z) =

√
u2 − V ℓ+α=p

eik (z), (3.5)

where the eikonal potential is

V ℓ+α=p
eik (z) = 1 + 1

r2 − µ

rd
. (3.6)
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z

V ℓ+α=p
eik (z)

1

Ω2

u2

z− z+

Figure 4: The eikonal potential (3.6) for real spin has two real turning points z+ and z− when 1 < u < Ω.
The height of the barrier is Ω2.

As shown in Figure 4, there is a potential barrier separating the boundary from the
horizon. The maximum of the potential is at the photon sphere

rphot =
(
dµ

2

) 1
d−2

. (3.7)

The height of the barrier is

Ω2 = 1 +
(

1 − 2
d

)(
2
dµ

) 2
d−2

> 1, (3.8)

which coincides with the velocity squared of null geodesics at the photon sphere.
We work in the regime 1 < u < Ω, so that there are two real turning points z± with

κ(z±) = 0 in the WKB region z ≫ 1/p, as shown in Figure 4. The ingoing solution at
the horizon is

ψ(z) ∼ 1√
κ(z)

e
ip

∫ z
z+

dz′κ(z′)
, z > z+. (3.9)

Assuming that z− and z+ are sufficiently far apart, the behavior of ψ(z) for z < z− can
be computed by applying the standard WKB connection formulae twice7. One finds

ψ(z) ∼
eS(z−,z+) + 1

4e
−S(z−,z+)√

κ(z)
e
ip

∫ z
z−

dz′κ(z′)

− i
eS(z−,z+) − 1

4e
−S(z−,z+)√

κ(z)
e

−ip
∫ z

z−
dz′κ(z′)

, z < z−. (3.10)

7When the two turning points approach each other, this procedure is no longer valid and one should
use a uniform approximation instead [32, 33].
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Figure 5: The spectrum of quasi-normal modes for real ℓ. For ℓ < Re ω < Ωℓ the modes are quasiparticles
with exponentially small imaginary part. For Re ω > Ωℓ the modes go off into the complex plane at a finite
angle.

The WKB solution (3.10) can now be matched to Hankel functions in the same
manner as at infinite volume,

ψ(z) ∼
√
πipz

2

(
eS(z−,z+) + 1

4e
−S(z−,z+)

)
e

iπν
2 −iS(0,z−)H(1)

ν (p
√
u2 − 1z) (3.11)

−
√
πipz

2

(
eS(z−,z+) − 1

4e
−S(z−,z+)

)
e− iπν

2 +iS(0,z−)H(2)
ν (p

√
u2 − 1z), z ∼ 1

p
.

The retarded Green’s function (2.9) can then be read off from the asymptotics (2.8),

GR(ω, ℓ) = Γ(−ν)
Γ(ν)

(
ω2 − p2

4

)ν cos
(
S(0, z−) + πν

2

)
− i

4e
−2S(z−,z+) sin

(
S(0, z−) + πν

2

)
cos
(
S(0, z−) − πν

2

)
− i

4e
−2S(z−,z+) sin

(
S(0, z−) − πν

2

) ,
(3.12)

where in deriving this formula we have assumed that S(z−, z+) ≫ 1 so that the turning
points are not too close together. There are also corrections suppressed by 1/p.

Using (3.12), we can now compute the spectrum and residues. Recall that we are
working in the regime where the tunneling action S(z−, z+) is large. The pole condition
therefore reduces to

Sm(0, z−) = π

2 (ν + 1 + 2m) − i

4e
−2Sm(z−,z+) + . . . , m = 0, 1, . . . , (3.13)

which signifies a large number of quasiparticles with exponentially small decay rate
[26, 34–37]. Note that we can only trust this formula for m ≫ 1 in light of the
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comments above. This structure of QNMs as a function of an overtone number for
fixed large spin ℓ has recently been discussed in [22–24]. These quasiparticles extend to
ω = Ωℓ, and smoothly join onto a line of quasi-normal modes with order one imaginary
part, as shown in Figure 5. The residues at the quasiparticles are

Res
ω→ωm

GR(ω, ℓ) = − π

νΓ(ν)2

(
ω2
m − p2

4

)ν 1
Tm(0, z−) , (3.14)

where Tm(0, z−) is the time traversed by a null geodesic from z = 0 to z = z−,

Tm(0, z−) = dS(0, z−)
dω

∣∣
ω=ωm

=
∫ ∞

r(z−)

dr

f(r)
1√

1 − p2f(r)
ω2

mr
2

. (3.15)

The spectrum and residues simplify in the limit m ≪ p, when the wavefunction is
localized near the boundary of AdS. The action S(0, z−) can be evaluated explicitly in
this limit,

S(0, z−) = πp

2 (u− 1), u ∼ 1. (3.16)

The quasi-normal mode spectrum (3.13) is then (recall that p = ℓ+ α)

Re ωm(ℓ) = ℓ+ ∆ + 2m, 1 ≪ m ≪ ℓ, (3.17)

which matches the spectrum of descendant operators in pure AdS. A more careful
analysis, see e.g. [35], implies that the formula is correct starting from m = 0. The
residues (3.14) become

Res
ω→ωm

GR(ω, ℓ) = − 2
νΓ(ν)2 (ℓm)ν . (3.18)

We can compute the leading light-cone singularity from (3.18) using the results
of [35]. In particular see Formula (4.32) in that paper, noticing that the relation-
ship between P

(d)
J (cos θ) used there and Gegenbauer polynomials used here leads to

Res
ω→ωm

GR(ω, ℓ) ℓ
d
2 −1

Γ(d/2) = −cnormcm,ℓ. We conclude that the operators are normalized

with cnorm = 2Γ(∆)
Γ(d/2)Γ(∆−d/2) , so that the identity operator contributes as

GW (t, θ) = 2Γ(∆)
Γ(d/2)Γ(∆ − d/2)

1
2∆(cos t− cos θ)∆ + . . . . (3.19)

We will reproduce the same result in the next section by doing the computation at
complex spin.
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Figure 6: The potential (3.21) for imaginary spin has two real turning points when 1 < u < Ω. The depth of
the well is Ω2.

3.2 Imaginary spin and the photon sphere

We now turn to the case of large imaginary spin, in which we define ℓ + α = ip and
ω = ipu and take p → ∞. The wave equation (2.3) becomes

(∂2
z + p2κ2(z))ψ(z) = 0, κ(z) =

√
−V ℓ+α=ip

eik (z) − u2, (3.20)

where the eikonal potential is inverted in comparison to the real spin potential (3.6),

V ℓ+α=ip
eik (z) = −1 − 1

r2 + µ

rd
(3.21)

The rotation from real to imaginary spin has converted the potential barrier into a
potential well, as depicted in Figure 6. This potential admits bound states which appear
as quasi-normal modes on the positive imaginary ω axis, and we wish to compute the
locations of these poles and their residues. To this end, we will repeat the analysis of
the previous subsection, pointing out several important differences along the way.

Let us first discuss the regime 0 < u < 1, where the eikonal potential (3.21) has
one real turning point zT . In this case the analysis is identical to the infinite volume
computation. The quasi-normal modes and residues are given by

S(0, zT ) = π(ν + 1 + 2m)
2 , m = 0, 1, . . . , (3.22)

Res
ω→ωm

GR(ω, ℓ) = − π

νΓ(ν)2

(
ωm(ℓ)2 − (ℓ+ α)2

4

)ν (
∂S(0, zT )

∂ω

∣∣∣
ωm

)−1

. (3.23)

This formula captures the leading large ℓ behavior of the residues, with further correc-
tions suppressed by 1

ℓ
. It is valid when S(0, zT ) ∼ m ≫ 1.
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The more interesting regime is when u is real with 1 < u < Ω, so that there are
two turning points at z±. The wave equation is then real, and the ingoing boundary
condition translates to normalizability of the solution at the horizon. The normalizable
solution is

ψ(z) = 1√
|κ(z)|

e
−p

∫ z
z+

dz′ |κ(z′)|
, z > z+. (3.24)

Next we would like to solve the connection problem from the region z > z+ to the
region z < z−. In contrast to the case of real spin, we will not assume that the two
turning points are far apart. For general z− and z+ one can use a uniform approximation
involving parabolic cylinder functions, finding [32, 33]

ψ(z) = C−√
|κ(z)|

e−p
∫ z

0 dz′ |κ(z′)| + C+√
|κ(z)|

ep
∫ z

0 dz′ |κ(z′)|, z < z−, (3.25)

where the connection coefficients are given by

C+ = sin(S(z−, z+))e−S(0,z−) (3.26)

C− =
√

2
π

(
πe

S(z−, z+)

)S(z−,z+)/π

Γ
(
S(z−, z+)

π
+ 1

2

)
cos(S(z−, z+))eS(0,z−). (3.27)

In the limit of large S(z−, z+), this reduces to the answer obtained by applying the
WKB connection formulae at z+ and z− successively.

Finally, we must match (3.25) to the correct boundary asymptotics (2.8) as above.
In terms of modified Bessel functions, we have8

ψ(z) = C+

√
πpz

2 (I−ν(p
√
u2 − 1z) + Iν(p

√
u2 − 1z))

+ C−

√
2pz
π
Kν(p

√
u2 − 1z), z ∼ 1/p. (3.28)

The retarded Green’s function (2.9) is

GR(ω, ℓ) = Γ(−ν)
Γ(ν)

(
p2 − ω2

4

)ν
C− − C+ sin(πν)
C− + C+ sin(πν) . (3.29)

8The asymptotic expansion of modified Bessel functions at large argument is subtle, due to the
presence of a Stokes line on the real axis. We refer the reader to Chapter 2 of [38] for the derivation of
the asymptotic expansion of (3.28). For half-integer ν, the modified Bessel functions are elementary
and it is simple to check that (3.28) has the correct asymptotic behavior.
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Figure 7: The spectrum of quasi-normal modes for ℓ+α = ip imaginary. There is a series of imaginary modes
starting in the upper half plane at ω = iΩp, as well as two lines of complex modes in the lower half plane.

In the limit of large S(0, z−), the poles of GR are located at

Sm(z−, z+) = π

(
m+ 1

2

)
+
√
π

2

(
m+ 1

2
e

)m+ 1
2 sin(πν)

m! e−2Sm(0,z−), m = 0, 1, . . . ,

(3.30)

with both polynomial corrections as well as corrections of the form e−4Sm(0,z−), e−6Sm(0,z−),
... . We will see in the next section that including the latter leads to a correct prediction
of the locations of the bouncing singularities depicted in Figures 2b and 2c. However,
we were not able to match the shapes and heights of the bounces using exponentially
small corrections to (3.30), so these corrections should not be trusted.

The residues are

Res
ω→ωm

GR(ω, ℓ) = − 1
νΓ(ν)2

(
(ℓ+ α)2 − ω2

m

4

)ν √
2π3

m!

(
m+ 1

2
e

)m+ 1
2 e−2Sm(0,z−)

dSm(z−,z+)
dω

.

(3.31)

Now let us analyze the spectrum for m ≪ p, which consists of modes localized
near the photon sphere. The action integral reduces to

S(z−, z+) = πp√
2(V ℓ+α=ip

eik )′′(zphot)
(−V ℓ+α=ip

eik (zphot) − u2), (3.32)

where zphot is the location of the photon sphere. Solving (3.30) at large p, we find

ωm = Ω(ℓ+ α) − iγ

(
m+ 1

2

)
, m ≪ |ℓ|, (3.33)
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m QNMSpectral Eikonal
0 222.79 i 222.82 i
1 221.24 i 221.23 i
2 219.70 i 219.65 i
3 218.18 i 218.07 i
4 216.69 i 216.49 i

Table 1: We compare numerical values for the photon sphere QNMs obtained with the Mathematica package
QNMSpectral [39] against the eikonal prediction (3.33). Here d = 4, p = 200, ν = 2 and µ = 1.

where we have defined the Lyapunov exponent

γ ≡

√
−(V ℓ+α=ip

eik )′′(zphot)
2V ℓ+α=ip

eik (zphot)
=

√
d− 2 Ω. (3.34)

In Table 1, we compare the analytic prediction (3.33) to numerics, finding agreement
to a high level of accuracy. This spectrum of bound states is displayed in Figure 7,
along with the rest of the quasi-normal modes in the lower half plane.

3.3 The flat space limit

It is instructive to consider the limit µ ≪ 1, which describes a small black hole in AdS.
For real ℓ, the poles and residues can be computed order by order in µ using (3.13) and
(3.14). For example, in d = 4 we get

Re ωm = ω(0)
m − µ

3m2

ℓ
+ . . . (3.35)

Res
ω→ωm

GR(ω, ℓ)

Res
ω→ωm

G
(0)
R (ω, ℓ)

= 1 − µ
3m((ν + 2)ℓ+ 2m(ν + 1))

2ℓ(m+ ℓ) + . . . , (3.36)

where ω(0)
m and Resω→ωmG

(0)
R (ω, ℓ) are given by (3.17) and (3.18). On the boundary,

these quasi-normal modes correspond to the heavy-light double-twist operators [HL]mℓ
in the Regge limit m, ℓ → ∞ with m/ℓ fixed, see e.g. [35, 40–46] for related work.
The mode energies and residues match the double-twist spectrum and OPE coefficients
c

[HL]
HL obtained by alternative methods. The crucial point here is that these modes are

localized near the AdS boundary, not near the black hole photon sphere. Therefore, in
the flat space limit we do not recover the eikonal spectrum of asymptotically flat black
holes.

For imaginary spin the situation is different. As explained above, the highest bound
states on the imaginary axis correspond to modes localized near the photon sphere.
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Therefore the eikonal spectrum (3.33) for imaginary ℓ + α smoothly approaches the
eikonal spectrum in an asymptotically flat black hole in the limit µ → 0. Let us work
in the case d = 3, which corresponds to a small black hole in four dimensions. The
spectrum becomes

ωm = 2
3
√

3rs

(
ℓ+ 1

2

)
− 2i

3
√

3rs

(
m+ 1

2

)
, m ≪ |ℓ|, rs ≪ LAdS, (3.37)

which matches the standard asymptotically flat results [47–52], see Appendix F for a
review.

4 The bulk-cone singularity from thermal Regge poles

In the previous section we studied the spectrum of QNMs for both real and imaginary
spin, and found that in the case of imaginary spin the spectrum is controlled by the
photon sphere. In fact, the same is true for the thermal Regge poles at large imaginary
frequency. In this section, we will consider the position space correlator in special kine-
matics where the two boundary points are connected by a light ray in the bulk [4, 14].
As reviewed in the introduction, we expect a singularity in this kinematic configuration,
and the role of the Regge poles will be to precisely reproduce this singularity.

4.1 Position space and complex spin

Let us first generalize the Regge expansion of the correlator from Section 2.2 to thermal
correlators on the sphere Sd−1, whose radius we set to R = 1. Recall that the Wightman
function is obtained from the Euclidean correlation function as follows,

GW (t, θ) = lim
ϵ→0

GE(τ = ϵ+ it, θ). (4.1)

On the other hand, the Euclidean correlator on Sd−1 admits the following repre-
sentation9

GE(τ, θ) = 1
β

∞∑
n=−∞

eiζnτ

∞∑
ℓ=0

GR (ω = i|ζn|, ℓ) ℓ+ α

α
C

(α)
ℓ (cos θ), (4.2)

where α = d−2
2 , C(α)

ℓ (cos θ) are the Gegenbauer polynomials, and the Matsubara fre-
quencies ζn = 2πn

β
were introduced in (2.15). We have again used the relationship

between the Euclidean and retarded two-point functions in momentum space. In order
9The relationship between GE and GR could be modified at ω = 0, see e.g. [29]. This subtlety is

not relevant in exploring the singularities of the Lorentzian correlators so we ignore it.
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to analytically continue in spin ℓ, we first note that C(α)
ℓ (cos θ) vanishes on the negative

integers between 3 − d, . . . ,−1, so that we can trivially extend the summation to start
at ℓ = −⌊α⌋. We now use a Sommerfeld-Watson transform to rewrite the sum as an
integral

GE(τ, θ) = i

2β

∞∑
n=−∞

eiζnτ

∫
γ

dℓ

sin πℓ GR (i|ζn|, ℓ) ℓ+ α

α
C

(α)
ℓ (−z), (4.3)

where γ is the sum of contours running clockwise around the integers −⌊α⌋, . . . ,∞ and
we introduced z ≡ cos θ.

Next, notice that the wave equation depends on ℓ only through ℓ(ℓ+2α). It follows
that GR(ω, ℓ) is analytic in ℓ and

GR(ω, k − α) = GR(ω,−k − α), (4.4)

where ℓ ≡ k − α. Meanwhile, the Gegenbauer polynomials satisfy the relation

C
(α)
k−α(−z) = (−1)2α+1C

(α)
−k−α(−z), (4.5)

so the full integrand in (4.3) is even around k = −α. This allows us to extend the
integration along the whole real axis as in Figure 8,

GE(τ, θ) = i

4αβ

∞∑
n=−∞

eiζnτ

∫
C++C−

k dk

sin (π(k − α))GR (i|ζn|, k − α)C(α)
k−α(−z), (4.6)

where C+ runs just above the real axis to the right and C− runs just below the real axis
to the left. Due to the symmetry under k → −k, this can be written as an integral
only over C+ above the real axis.

We then deform the contour in the upper half plane, picking up all the Regge
poles with Im k > 0. Here we used the fact that the Gegenbauer polynomials have the
following leading behavior at large imaginary k,

C
(α)
ip−α(−z) = − ieiπαpα−1

(2 sin θ)αΓ(α)e
p(π−θ)

(
1 + O

(
1
p

))
, 0 < θ < π. (4.7)

The arc therefore vanishes as long as θ ≤ π thanks to the 1/ sin(π(k−α)) factor. This
leads to the Regge expansion of the Euclidean correlator,

GE(τ, θ) = − π

αβ

∞∑
n=−∞

∑
m

eiζnτ
kmnC

(α)
kmn−α(−z)

sin (π(kmn − α)) Res
k→kmn

GR (i|ζn|, k − α) , (4.8)

where kmn ≡ km(i|ζn|) are the Regge poles in the upper half plane.
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In Appendix E we show that the formula (4.8) can be rewritten in the following
form

GE(τ, θ) =
∞∑
j=0

(
gE(τ, |θ| + 2πj) + (−1)2αgE(τ, 2π − |θ| + 2πj)

)
, |θ| < π, (4.9)

where

gE(τ, θ) = 41−α

(sin θ)2α−1
π

αβ

∞∑
n=−∞

eiζnτ
∑
m

Res
k→kmn

GR (i|ζn|, k − α) ei(1+kmn−α)θ

× Γ(kmn + α)
Γ(kmn)Γ(α) 2F1(1 − α, 1 + kmn − α, 1 + kmn, e

2iθ). (4.10)

We will see that the sum over j in (4.9) corresponds to summing over the winding
number of bulk geodesics. Note that the formula (4.9) is manifestly KMS invariant.
It is also invariant under θ → −θ. For later reference we note the asymptotics of the
hypergeometric function at large imaginary spin,

Γ(ip+ α)
Γ(ip)Γ(α) 2F1(1 − α, 1 + ip− α, 1 + ip, e2iθ)

≃ e
iπα

2
pα

Γ(α)(1 − e2iθ)α−1
(

1 + O
(

1
p

))
. (4.11)

4.2 The ordinary light-cone

First, let us understand how the usual light-cone emerges from the Regge expansion
(4.8). In analogy to the infinite volume case, it is natural to expect that the Regge poles
that reproduce the ordinary light cone are purely imaginary, km(i|ζn|) = ipm(i|ζn|), with
pm(i|ζn|) > |ζn|. Indeed, the modes (3.22) with one turning point are precisely of this
form.

Let us now analyze the contribution of the modes (3.22) to the function gE(τ, θ)
defined in (4.10). The residues of these modes are given by (3.23). For τ, θ ≪ 1, we can
approximate the sums over Regge poles and Matsubara frequencies by integrals. Using
the asymptotics (4.7), the kernel in the integrand takes the following simple form at
large p up to power-law corrections,

pCα
ip−α(−z)

sinh(π(p+ iα)) = −2ipαe−pθ

(2 sin θ)αΓ(α)

(
1 + O

(
1
p

))
. (4.12)

where we only kept the leading large p asymptotic. For τ, θ ≪ 1, the expansion (4.8)
then becomes

GE(τ, θ) = 1
22ν+ανΓ(ν)2Γ(α + 1)θα

∫ ∞

0
dp

∫ p

−p
dζ eiζτpαe−pθ(p2 − ζ2)ν . (4.13)
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Figure 8: We start with a sum over integer spins indicated by the contours in red, which we deform to the
contours C+ and C−. Because of the symmetry properties around ℓ = 2−d

2 , the contributions from C+ and
C− are equal. We can then close the contour C+ in the upper half plane, picking up the Regge poles. The red
contours around the integers come in three different classes. For ℓ ≥ 0 these are the spins we started with,
for ℓ = 3 − d, . . . ,−1 the Gegenbauer polynomials vanish and give no contribution, and finally for ℓ ≤ 2 − d

we get dual poles due to the symmetry of the integrand around ℓ = 2−d
2 . In this figure we have assumed that

there are no Regge poles on the real axis, see Appendix A. In Figure 15 we computed Regge poles numerically
using the Mathematica package QNMSpectral [39].

Performing the integrals in (4.13), we get for the leading light-cone asymptotic

GW (t, θ) ≃ 2Γ(∆)
Γ
(
d
2

)
Γ
(
∆ − d

2

) 1
2∆θ∆(θ − t)∆ , 0 < θ ≪ 1, (4.14)

where the computation above only matches the leading θ ≪ 1 asymptotic of the lead-
ing light-cone singularity 1

(θ−t)∆
1
θ∆ . We get the same normalization as the one obtained

for real spins after (3.18). Going beyond that requires taking into account 1
ℓ

correc-
tions both in (3.23) and in (4.12). It would be interesting to check explicitly that the
subleading terms in the small θ expansion come out correctly.

4.3 Bulk-cone singularities

Now that we have understood the ordinary light-cone, we can address the new singu-
larity on the bulk light cone. Since the bulk light cone is controlled by the photon
sphere at late times, we expect that the Regge poles near the bottom of the potential
in Figure 6 are responsible for reproducing the late time bulk-cone. Let us now confirm
this expectation.

We consider the contribution of the modes (3.30) with ℓ + α = ip and pm(ζn) <
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|ζn| < Ωpm(ζn) to the Regge expansion (4.8). The residues are given by (3.31), with
the factor of dS(z−, z+)/dω in the denominator replaced by dS(z−, z+)/dk, since we
are considering Regge poles, not quasi-normal modes. Replacing the sums by integrals
as usual and using the asymptotic formula (4.11) then gives

gE(τ, θ) = eiπα⌊
θ
π ⌋

22ν+ανΓ(ν)2Γ(α + 1)| sin θ|α

×
∫ ∞

0
dp

∫ Ωp

p

dζ e−iζτ−pθpα(ζ2 − p2)νe−2S(0,z−), (4.15)

where ⌊x⌋ is the floor of x, i.e. the largest integer n with n ≤ x. In this formula we
have assumed that S(z−, z+) ≫ 1. We will check this assumption later. We have also
neglected the contribution from ζ < 0 to the integral, since eiζτ can never produce a
singularity under Wick rotation τ → it.

Next let us perform the integral over p, for which it is useful to define u = ζ/p.
Recall that the action integral can be written as

2S(0, z−) = puT (u) − pΘ(u) ≥ 0, (4.16)

where T (u) and Θ(u) are twice the elapsed time and angle of a null geodesic from the
boundary to z−,

T (u) = 2
∫ ∞

r(z−)

dr

f(r)
u√

u2 − f(r)
r2

, (4.17)

Θ(u) = 2
∫ ∞

r(z−)

dr

r2
1√

u2 − f(r)
r2

. (4.18)

The result of the p integral is then

gE(it+ ϵ, θ) = Γ(2ν + α + 2)eiπα⌊
θ
π ⌋

22ν+ανΓ(ν)2Γ(α + 1)| sin θ|α

×
∫ Ω

1
du

(u2 − 1)ν
(θ − Θ(u) − u(t− T (u)) + iϵ)2ν+α+2 . (4.19)

Note that the integral over p converges when

t− θ < 0, (4.20)

or in other words in the spacelike region. From there we can continue the integral to
t > θ using the iϵ prescription. We then have a candidate singularity at

u∗t = u∗T (u∗) − Θ(u∗) + θ. (4.21)
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However for it to be an actual singularity the integration contour must be pinched,
which happens for

∂u(uT (u) − Θ(u))|u=u∗ = t. (4.22)

Using the fact that uT ′(u) − Θ′(u) = 0, we thus find that the condition for the pinch
becomes

t = T (u) ≥ π,

θ = Θ(u) ≥ π. (4.23)

Now let us compute the functional form of the correlator near the singularity. To
do so, we expand around the pinch singularity as u = u(t) + δu, where u(t) is the
solution to T (u(t)) = t. Expanding to second order gives

θ − Θ(u) − u(t− T (u)) = θ − Θ(u(t)) + T ′(u(t))
2 δu2. (4.24)

The δu integral can then be performed as follows,∫ ∞

−∞

dδu(
θ − Θ(u(t)) + T ′(u(t))

2 δu2 + iϵ
)2ν+α+2 =

Γ
(
2ν + α + 3

2

)
Γ(2ν + α + 2)

√
2π

T ′(u(t))

× 1
(θ − Θ(u(t)) + iϵ)2ν+α+ 3

2
. (4.25)

Close to the singularity we have θ − Θ(u(t)) = u(t)(tBC(θ) − t), where tBC(θ) ≡
T (u(t))|Θ(u(t))=θ is defined as the time it takes a geodesic emanating from the boundary
to return to the boundary after traversing an angle θ. In this way we get for the
singularity

gE(it+ ϵ, θ) =
√

2πΓ
(
2ν + α + 3

2

)
(u(t)2 − 1)ν(u(t))−(2ν+α+ 3

2 )

22ν+ανΓ(ν)2Γ(α + 1)| sin θ|α
√
T ′(u(t))

eiπα⌊
θ
π ⌋

(tBC(θ) − t+ iϵ)2ν+α+ 3
2
.

(4.26)

The singularities of the Wightman function can now be obtained by summing gE
over the winding number j as in (4.9). Taking 0 < θ < π, we are left with the final
result

GW (t, θ) ≃ 2Γ(∆)
Γ(d/2)Γ(∆ − d/2) ×

2 d
2 −2∆Γ

(
2∆ − d−1

2

)
Γ(∆)Γ

(
∆ − d−2

2

) √
2π

(sin θ) d−2
2

(4.27)

× (u(t)2 − 1)∆−d/2

(u(t))2∆− d−1
2
√
T ′(u(t))

∞∑
j=1

(−1)jd
(
X+
j (t, θ) + eiπ

d−2
2 X−

j (t, θ)
)
,
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where

X±
j (t, θ) = 1(

tBC(2πj ± θ) − t+ iϵ
)2∆− d−1

2
. (4.28)

Close to the singularity the following conditions are satisfied,

t = T (u),
2πj ± θ = Θ(u). (4.29)

The solutions to these conditions satisfy 1 ≤ u(t) ≤ Ω, where u(t) → Ω corresponds to
the late time limit t → ∞. Let us remind the reader that the formula above is writ-
ten in the normalization where the unit operator contributes to the OPE as follows,

2Γ(∆)
Γ(d/2)Γ(∆−d/2)

1
2∆(cos t−cos θ)∆ . The pre-factor 2d/2−2∆Γ(2∆− d−1

2 )
Γ(∆)Γ(∆− d−2

2 ) is O(1) for fixed d and any
∆.

Let us now comment on the singularities corresponding to null geodesics that
bounce off the AdS boundary. These were predicted in [14], and are depicted in Figures
2b and 2c. As mentioned above, the pole condition (3.30) receives exponentially small
corrections, which leads to corrections to the residues (3.31) that are proportional to
e−2nS(0,z−) with n > 1. Repeating the analysis leading to (4.27) gives new singularities
at

t = nT (u)
2πj ± θ = nΘ(u). (4.30)

This is indeed the expected location of the singularity with n − 1 bounces, and we
will numerically confirm the presence of these singularities in the next section. How-
ever, we were not able to match the predictions for the shape and size of the bounces to
numerics, so we omit the details of the computation. It would be very interesting to un-
derstand why the naive calculation fails; perhaps more sophisticated WKB techniques
are required.

4.4 Corrections

There are two types of corrections to the singularity structure above that we neglected.
The first come from powers 1

p
, which enter both the expansion of the Gegenbauer poly-

nomials and the residues. These will produce subleading singularities.
Second, we approximated the sums over ζ and p by integrals. By the Euler-

Maclaurin formula, this is equivalent to neglecting contributions from the endpoints
at ζ = p + c1 and ζ = Ωp − c2, where c1 and c2 are order one constants. The leading
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endpoint contribution from ζ = p + c1 yields a subleading singularity on the ordinary
light-cone,

GE(it+ ϵ, θ) ∝
∫ ∞

0
dp ep(t−θ−iϵ)pα+ν ∝ 1

(θ − t+ iϵ)∆ . (4.31)

At small θ, this is suppressed compared to the light-cone asymptotic (4.14) by a power
θ∆, so it can be neglected. Further endpoint corrections involve the derivative of the
integrand at the endpoints, and it is straightforward to check that these are subleading
as well.

Similarly, the endpoint at ζ = Ωp−c2 leads to a singularity of the form 1
(2πj±θ−Ωt+iϵ)∆ .

However, 2πj ± θ = Ωt is never satisfied when the saddle point conditions (4.29) hold,
so this singularity is fictitious and can be discarded. We conclude that the endpoint
contributions to the bulk-cone singularity are suppressed away from t = π and t = ∞.

4.5 Dependence of singularities on spacetime dimension

One interesting consequence of (4.27) is that the structure of the singularities depends
on the number of spacetime dimensions. We now classify the possible cases. Recall
that α = d−2

2 .
Consider first the case when d ∈ 4Z>0 + 2 = 6, 10, .... In this case eiπα = 1 and all

singularities enter in the same way as
∑

k(X
+
k +X−

k ). We can say that in this case the
structure of singularities is one-fold.

The next simplest case is d ∈ 4Z>0 = 4, 8, 12, .... In this case eiπα = −1, and the
singularities enter with alternating signs,

∑
k(X

+
k −X−

k ). The structure of singularities
is therefore two-fold.

Let us next take the number of dimensions to be odd. In this case the structure
of singularities is four-fold, as was first pointed out in the case of asymptotically flat
black holes in d = 3 [16]. For d = 4Z>0 − 1 = 3, 7, 11, ... we have eiπα = i. The
singularity structure then takes the form

∑
j(−1)j(X+

j + iX−
j ). Finally, for d = 4Z>0 +

1 = 5, 9, 13, ... we have eiπα = −i. The singularity structure then takes the form∑
j(−1)j(X+

j − iX−
j ).

It is interesting to analyze the implications of this dimension-dependent structure
for the retarded two-point function, which is defined as

GR(t, θ) = iθ(t)
(

⟨O(t, θ)O(0)⟩ − ⟨O(0)O(t, θ)⟩
)

= −2θ(t)Im GW (t, θ). (4.32)

In the last step we used that for real operators ⟨O(0)O(t, θ)⟩ = ⟨O(t, θ)O(0)⟩∗. This
formula has interesting consequences for the structure of singularities when 2∆ + 1−d

2
is a positive integer. The reason is that in this case Xk −X∗

k is a delta-function or its
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Figure 9: In (a) we plot u(t) in d = 4 for µ = 1. The dashed lines correspond to umin = 1 and umax = Ω. At
late times u(t) is seen to approach Ω. In (b) we plot 1

γt
log T ′(u)

∣∣∣
u=u(t)

which approaches 1 (γ =
√

2Ω ≈ 1.58

in d = 4 and µ = 1). Equivalently, T ′(u) ∼ eγt at late times.

derivatives, whereas i(Xk + X∗
k) is a power-like singularity. A simple example of this

type is a massless perturbation with ∆ = d in odd d. In the next section we will study
this example numerically in d = 3 and confirm the results discussed here.

4.6 Thermalization of the bulk cone

The formula (4.27) for the leading bulk-cone singularity reveals a curious fact: the
bulk-cone singularity behaves as (tBC(θ) − t)−2∆+ d−1

2 . While this power is weaker than
the Euclidean singularity (τ 2 + θ2)−∆, it is actually stronger than the ordinary light-
cone singularity (θ − t)−∆ when ∆ > d−1

2 . Therefore at order one times, the bulk-cone
will dominate over the light cone. On the other hand, at late times we expect that the
strength of the bulk cone decays to zero, consistent with thermalization of observables
localized away from the boundary.

Let us now see this decay explicitly. The time dependence of the singularity takes
the form

GW (t, θ) ∝ (u(t)2 − 1)∆−d/2

(u(t))2∆− d−1
2
√
T ′(u(t))

1
(tBC(2πj ± θ) − t+ iϵ)2∆− d−1

2
. (4.33)
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At late times, u(t) approaches Ω, so the leading time-dependence comes from (T ′(u(t))− 1
2 .

For u ∼ Ω, we can approximate the formula (4.17) for T (u) as follows,

T (u) ∼ −1
γ

log(Ω − u) + constant, (4.34)

where the Lyapunov exponent γ is given by (3.34). It follows that
1√

T ′(u(t))
= constant × e− γ

2 t, (4.35)

which decays exponentially at late times with rate γ. We plot explicitly u(t) and
T ′(u(t)) as a function of t ≥ π in Figure 9. Notice that T ′(u(t)) quickly approaches eγt.

We see from (4.35) that the time scale for the decay of the bulk-cone singularity
is governed by the Lyapunov exponent associated with the instability of the photon
sphere. This fact is very familiar in astrophysics [53] and was also recently discussed in
[54–56]. The basic intuition is that a wave which is initially localized near the photon
sphere quickly spreads out away from the photon sphere region due to the instability,
and can easily fall into the black hole. Note that a similar decay of the singularity
residue of the two-point function with time controlled by the Lyapunov exponent was
observed in asymptotically flat black holes as well [16], see formula (42) in that paper,
where X ∼ e−T/[2

√
27]. Using γ = 1√

27 in the units M = 1, this indeed coincides with
the expected behavior e−γt/2.

Let us now discuss the late time behavior of the correlator. We have seen that the
bulk-cone without bounces is negligible at late times. The strength of the boundary
light-cone in d > 2, see Eq. (3.19), is constant in time. This is in stark contrast with
the case of d = 2, where it decays exponentially with time, see Appendix B.10 Instead,
in d > 2 we expect that the presence of the black hole horizon narrows the light-cone
singularity at late times, see Appendix D. In addition to the boundary light-cone, the
bouncing singularities could potentially contribute as t → ∞. Since we were unable to
predict the size of the bounces, we cannot compute their late time behavior. However,
numerics suggest that bounce singularities do not decay to zero, so a full understanding
of the late-time structure of the correlator would need to take bounces into account.
We leave this important problem to future work.

5 Singularities from numerics

In this section we study singularities of Lorentzian two-point retarded correlators nu-
merically by solving the corresponding wave equations in the bulk in d = 3 and d = 4.

10One can think of this exponential decay as a consequence of the fact that the AdS boundary at
r = ∞ acts as an unstable photon sphere in the BTZ black hole.
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In all examples, we reproduce the expected location of the singularities and successfully
match the relative strength of the first winding singularities to the predictions in the
previous section.

5.1 Correlator in momentum space

In order to numerically compute the retarded correlator on the sphere, we solve the
wave equation (2.3) with the potential given by (3.4). We use the NDSolve function in
Mathematica, imposing ingoing boundary conditions at the horizon (see for example
[57, 58]). At the boundary the solution looks like (e.g. d = 4 and ∆ = 4)

ψωℓ(v) = B(ω, ℓ)ψB(v) + A(ω, ℓ)ψA(v) ,
ψB(v) = v2 (1 + b1v + b2v

2 + O(v3)
)
,

ψA(v) = haψB(v) log v + 1 + a1v + a2v
2 + O(v3),

(5.1)

in the convenient coordinate 1 ≥ v ≡ r2
+/r

2 ≥ 0. Note that a2 is left as a free parameter
since the two solutions can mix from O(v2) on. We set a2 = 0, and according to (2.9)
GR is given by

GR(ω, ℓ) = lim
v→0

(
ψ′′
ωℓ(v)

2ψωℓ(v) − ha

(
log v + 3

2

))
. (5.2)

When computing GR(ω, ℓ) numerically, we introduce a finite cutoff close to the horizon
v = 1 − ϵH where we impose the purely ingoing boundary condition, and we read off
the boundary correlator from (5.2) at finite v = ϵB. Below we set ϵB = ϵH = 10−6, and
we have checked that our results are stable against changing the cutoffs. We further
choose small values of µ (µ = 1

50 in d = 4 and µ = 1
15 in d = 3) in order to cleanly

separate the singularities. However, conceptually nothing is different for µ > 2 (above
the Hawking-Page transition).

5.2 Correlator in position space

To numerically compute the Fourier transform, it is convenient to deform the contour to
Im ω = δ > 0 in order to move further away from quasi-stable orbit resonances. This is
allowed because GR is analytic in the upper half ω plane. Since GR(−ω, ℓ) = GR(ω, ℓ)∗,
we can conveniently write down the ω-integral as∫ ∞+iδ

−∞+iδ
dω GR(ω, ℓ)e−iωt =

∫ ∞+iδ

0+iδ
dω
(
GR(ω, ℓ)e−iωt +GR(ω, ℓ)∗eiω

∗t
)
. (5.3)

To numerically evaluate the integral and the sum over ℓ we discretize the con-
tour with a spacing δω, and introduce UV cut-offs ωmax, ℓmax and smoothing factors
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2

0

π

2 π

Figure 10: Here we show the analog of Figure 1 for µ = 1
50 in d = 4. The n-bounce bulk-cone singularity

BCj
n,± is defined by (4.30). The black dashed line corresponds to the slice θ = π

2 that was used in our
numerical computations and the black dots indicate the predicted bulk-cone singularities that were shown
in Figure 1. The gray lines correspond to the boundary light-cone. The solid weak red lines correspond to
further windings of the no-bounce singularity, whose residues decay exponentially with a rate determined by
the Lyapunov exponent and are therefore not visible in our numerics compared to the bouncing singularities.
Note that with this value of µ the slope of the bulk-cone singularities is small compared to 1, and therefore
as time increases we see windings of the no-bounce singularity before we hit the first bouncing singularity.

e−ℓ2/ℓ2ce−(Re ω)2/ω2
c following [17, 59]. We set ωmax ≫ ωc ≫ 1 and ℓmax ≫ ℓc ≫ 1. This

converts the light- and bulk-cone singularities into finite bumps and removes spurious
oscillations introduced by the UV cut-offs in the transform. Physically, the smoothing
factors introduce smearing of the correlator on the time scale δt ∼ 1

ωc
and angular scale

δθ ∼ 1
ℓc

.
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Figure 11: GR(t, π/2) in d = 3 with ∆ = 3 and µ = 1/15. Grey dashed lines correspond to light-cone
singularities, which are present but are difficult to see at this scale. The red and blue dashed lines correspond
to the analytic predictions from (4.30) for the position of the bulk cone singularities. Further windings are
there as well, but are almost invisible at these scales. Here ωc = ℓc = 40, δ = 1/5, and ωmax = ℓmax = 150.

Ratios Numerics Analytic prediction
BC1

0,+/BC1
0,− 0.1730 0.1865

3d BC2
0,−/BC1

0,− 0.0325 0.0310
BC2

0,+/BC1
0,− 0.0073 0.0073

BC1
0,+/BC1

0,− 0.0954 0.0946
4d BC2

0,−/BC1
0,− 0.0104 0.0102

BC2
0,+/BC1

0,− 0.0011 0.0011

Table 2: Comparison of winding bulk-cone peaks between numerics and the analytic prediction from (4.27)
in 3d and 4d. All peaks are normalized by the first bulk-cone.

5.3 Results

We have implemented the scheme above in d = 3 and d = 4. We plot the outcome
of the computations in Figures 11 and 13 respectively. Here we denote the (n − 1)
bounce bulk-cone singularity (4.30) by BCj

n−1,±. Given fixed (θ, n, j,±), we can solve
2πj ± θ = nΘ(u) for u, and then insert the solution into t = nT (u) to obtain the time
t of the corresponding singularity. The prediction for the locations of the singularities
on the boundary in d = 4 is shown in Figure 10, and the d = 3 case is qualitatively
similar.

Let us start with the correlator in d = 3. We set ∆ = 3, µ = 1/15, θ = π/2, and
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Figure 12: GR(t, π/2) in 3d close to (a) BC1
0,−, (b) BC1

0,+, (c) BC2
0,−, (d) BC2

0,+. The bulk-cone bumps
exhibit the four-fold structure discussed in Section 4.5. Since GR = −2θ(t)Im GW , the relative i between
BCk

0,− and BCk
0,+ coming from eiπ d−2

2 in (4.27) changes the shape of the bumps. The shapes of BCk
0,− are

consistent with the prediction ∼ Im i[tBC(2πk − π
2 ) − t + iϵ]−5 and those of BCk

0,+ with ∼ Im [tBC(2πk +
π
2 ) − t+ iϵ]−5. The shapes of BC1

0,± and BC2
0,± are the same up to a minus sign. The parameters of these

plots and legends for the dashed lines are the same as in Figure 11.

we study the correlator as a function of t. We find the following results:

• The positions of light-cone and winding bulk-cone singularities are consistent with
the expected locations. For the light-cone singularities these are t = θ+2πm and
t = 2π − θ + 2πm with m = 0, 1, . . .. For the bulk-cone singularities these are
given by (4.30).

• As shown in Figure 12, the bulk-cone singularities exhibit the four-fold structure
predicted from (4.27) with d = 3, see also Section 4.5.

• Bulk-cone bumps are higher then light-cone ones, consistent with the fact that
GR diverges as δt−(2∆− d−1

2 ) = δt−5 at bulk-cone points and as δt−∆ = δt−3 on the
light-cone.
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Figure 13: GR(t, π/2) in d = 4 with ∆ = 4 and µ = 1
50 . The grey dashed lines are the light-cone singularities,

which are present but are difficult to see at this scale in comparison to the bulk-cone singularities. The red
dashed lines correspond to the analytic predictions from (4.30) for the position of the first four bulk cone
singularities from the BC0 series. Further windings will overlap with bouncing singularities and therefore
will be difficult to distinguish., The dashed blue lines correspond to the predictions from the first bouncing
singularity and its first few windings. Here ωc = ℓc = 35, δ = 1/5, and ωmax = ℓmax = 150. Note that the
residues at the windings BC2

0,∓ are suppressed by 10−2 and 10−3, respectively, compared with the residue at
BC1

0,− and are therefore difficult to see at this scale.

• The ratios of heights of winding bulk-cone peaks are always within ∼ 10% of the
prediction in (4.27). We show the comparison in Table 2.

• The bumps at the dashed blue lines in Figure 11 correspond to bulk-cone sin-
gularities that include bounces from the AdS boundary. The location of these
bouncing singularities is consistent with (4.30) with n = 2, but our attempt to
use (3.29) to reproduce the shape and size of the bounces did not produce the
expected results. Note that the height of the first bounce is actually larger than
any of the no-bounce winding singularities.

Next we repeat the same exercise in d = 4. We set ∆ = 4, µ = 1
50 , and θ = π

2 and
we study the correlator as a function of t. The results are as follows:

• We find light-cone and bulk-cone singularities at the predicted locations.

• As shown in Figure 14, the bulk-cone singularities exhibit the two-fold structure
predicted in d = 4.
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Figure 14: GR(t, π/2) in 4d close to (a) BC1
0,−, (b) BC1

0,+. The bulk-cone bumps exhibit the two-fold

structure discussed in Section 4.5. Since in 4d eiπ d−2
2 = −1 in (4.27), shapes of BC1

0,− and BC1
0,+ are the

same up to a minus sign. The parameters of these plots and legends for the dashed lines are the same as in
Figure 13. The shapes and locations are consistent with the prediction ∼ Im [tBC(2π ± π

2 ) − t+ iϵ]−
13
2 .

• GR diverges as δt−(2∆− d−1
2 ) = δt−

13
2 on the bulk-cone and only as δt−∆ = δt−4 on

the light-cone. Accordingly bulk-cone bumps are higher than light-cone ones.

• The ratios of heights of bulk cones are in good agreement with the prediction in
(4.27). The comparison is shown in Table 2.

• The position of bouncing singularities is correctly predicted by including e−2nS(0,z−)

corrections to the residues. However, the shape and size of these singularities is
not correctly reproduced by (3.29).

6 Stringy and gravitational corrections

Our computation so far was done in the approximation where the boundary operator
is described by free wave propagation on the fixed AdS Schwarzschild background. In
the language of the CFT dual this is a good description in the planar limit when the ’t
Hooft coupling is arbitrarily large. As we move away from this holographic limit new
physical effects arise.

Let us first discuss stringy effects, which should become important as we decrease
the ’t Hooft coupling away from infinity (in other words, we consider finite λ effects).
First, there are stringy corrections to the black hole geometry itself. However, as long
as rs ≫

√
α′ we expect that these are small. Second, there are effects related to string

propagation on the Schwarzschild background. These were analyzed in [14]. More
precisely, to understand stringy corrections to the singularity, we need to study string
propagation along null geodesics in the bulk. This is given by the so-called pp-wave
limit [60], which is solvable. The basic physical effect is tidal excitation of the string,
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which attenuates the singularity and turns it into a finite bump of width Γ(α′, t).11

At early times t ∼ π the effective width takes the form

Γ(α′, t) ∝ α′GM(
r+(u(t))

)d , (6.1)

where r+ is the outermost turning point. The relevant physics describes propagation
through a gravitational shock wave, so that the computation mimics the one of [21],
with a familiar formula for tidal excitations Im δtidal ∼ α′Gs

bD−2 .12 For the same reason we
expect this tidal resolution of the singularity to be universal for any extended object
that has internal excitations, e.g. a hydrogen atom.13

At late times the effective width takes the form

Γ(α′, t) ∝ α′

(GM)
2

d−2
log 1

r+(u(t))
r−(u(t)) − 1

, (6.2)

where r+ and r− are the turning points just outside and just inside the photon sphere
respectively. Here the tidal force becomes so strong that it effectively rips the object
apart (by extending it along one transverse direction and compressing along others).
This again we expect to be quite universal and the effect kicks in when the tidal force
becomes comparable to the binding force that keeps it together. Tidal excitations in
thermal CFTs were also recently explored in [64].

Let us next briefly discuss gravitational effects (or finite N corrections). The sim-
plest one to consider is emission of gravity waves. Indeed, as a particle spirals around
the black hole it will emit gravity waves, and therefore we expect the exclusive am-
plitude which our two-point correlator computes to be suppressed. Considering for
simplicity propagation through a gravitational shockwave in flat space, the relevant
correction to the phase shift takes the form Im δGW ∼ G3s2

b3D−10 [21]. It is an interest-
ing question whether gravitational effects eventually completely remove the singularity
from the complex plane or not.

To conclude we expect the bulk-cone singularities to be absent at finite N and λ,
but the corresponding features, namely the bulk-cone bumps, should remain. In fact,
based on this discussion, it seems very natural that at finite coupling the only true
singularities of the thermal two-point function on the sphere are light-cone singularities.

11This attenuation is clearest for the light-cone singularity in the bulk-to-bulk propagator, but there
are subtleties involved in computing the boundary two-point function, see the discussion in [14]. Here
we assume that these subtleties are unimportant.

12Here D = d + 1 is the dimensionality of the bulk.
13It would be interesting to do the computation for the hydrogen atom explicitly, see [61–63] for

related work.
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7 Photon rings versus black holes

The fact that astrophysical black holes are surrounded by a photon shell is one of their
key properties, which is responsible for many of their observable signatures as reviewed
in Appendix F. The existence of the photon shell crucially relies on the compactness of
the hole, and it is widely believed that only black holes are sufficiently compact to lie
within their photon shell, and hence capable of producing a photon ring in their image.
We now briefly review some of the evidence for this claim.

Here we consider four-dimensional black holes in asymptotically flat spacetime.
Recall that a Schwarzschild black hole has an event horizon radius of r = 2M , which
is well within its photon sphere located at r = 3M .

In 1959, Buchdahl [65] proved that, under certain mild assumptions, a static and
spherically symmetric matter configuration of total mass M must occupy a region of
space with radius R > (9/4)M , thus making precise the idea that ordinary matter
cannot reach an arbitrarily high density before collapsing into a black hole. Although
Buchdahl’s theorem does not rule out the possibility that an ultradense object (such as
a neutron star) could be sufficiently compact to lie within its photon sphere, Buchdahl’s
bound has since been greatly improved via different methods.

Building upon the seminal work of Hartle [66], a much stronger and rather general
bound was eventually obtained in 1984 by Lindblom [67], who used causality constraints
to argue for a compactness limit R ≳ 2.8M on neutron stars. More precisely, Hartle,
Lindblom, and others assumed the equation of state to be known (from nuclear theory
and experiments) up to some nuclear density ρ0, and then used the requirement that the
speed of sound within the star be subluminal (the causal bound dp/dρ ≤ c2) to constrain
the allowed total mass and size of the star, and hence to bound its compactness. This
calculation is weakly sensitive to the specific choice of ρ0 and the precise equation of
state assumed for ρ ≤ ρ0 (which in practice is not quite perfectly known), but the
causal limit R ≳ 2.8M remains quite robust. Though it does technically leave some
region of parameter space for a neutron star to have a photon shell, the state of the art
suggests that all such models are very contrived. Indeed, all of the modern, realistic
equation-of-state calculations rule out this possibility, as can be clearly seen in Figure 7
(right panel) of the recent review [68]. This is ultimately the strongest evidence ruling
out neutron stars with a photon ring.

Once neutron stars are ruled out, the only possible remaining loopholes to the
dictum that “only black holes have a photon ring” are exotic ultracompact objects (such
as boson stars) whose existence is highly speculative. Even in that context, it seems very
difficult to engineer configurations dense enough to have a photon ring (see, e.g., [69]).
More sophisticated arguments have been developed to rule out such configurations as
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well, even lifting the restriction of spherical symmetry (but still assuming stationarity
and axisymmetry). For instance, a particularly promising line of attack proceeds from
the observation that “photon spheres always come in pairs” for ultracompact objects
that are not black holes, and that moreover, an unstable photon sphere (which is needed
for light to escape and produce a photon ring) is always accompanied by another stable
photon sphere [70]. This result is significant because the instability of the bound
photon orbits in the Kerr spacetime is a necessary condition for the stability of the
Kerr family of metrics under small perturbations. Conversely, stable photon spheres
have been argued to generally lead to nonlinear spacetime instabilities, as they can
keep accruing massless particles (or trapping waves) until enough energy density has
accumulated to backreact on the geometry and collapse the compact object into a
black hole. Despite some initial doubts about the onset of such instabilities [71], more
recent numerical investigations seem to suggest that ultracompact objects with an
outer photon shell are indeed unstable, either to black hole collapse or expansion to
non-compact configurations without a photon ring [72]. This line of argument may
thus rule out even exotic configurations with a photon shell.14

At any rate, discarding these exotic possibilities, there is substantial evidence that
the only compact astrophysical objects with unstably bound photon orbits—and hence
a photon ring—are black holes. If this belief indeed holds true, then it is of great
empirical importance and can help tackle the question: “How can one ascertain whether
an astrophysical source is truly a black hole?”

The photon ring provides an operational answer: it is present if (and likely, only
if) the source is a black hole. In other words, measuring a photon ring around an
astrophysical object could not only provide a consistency test, but also a smoking gun
signature, for the Kerr nature of the source. In the context of this paper, it would
be very interesting to understand to what extent black holes are the only objects that
possess a photon sphere within AdS/CFT. To phrase this question in the language of
CFT: what is the set of states in the boundary theory exhibiting a bulk-cone singularity?

8 Conclusions

In this paper we analyzed singularities of the holographic real-time thermal two-point
function ⟨O(t, θ)O(0)⟩S1×Sd−1 on the spatial sphere. This correlator is dual to wave
propagation in an AdS Schwarzschild black hole background. In addition to the usual
light-cone singularities it exhibits an interesting pattern of bulk-cone singularities cap-
tured by null geodesics in the black hole geometry.

14It would be interesting to study the existence and stability of such configurations within AdS/CFT.
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We analytically derived the leading bulk-cone singularity for the two-point function
of scalar operators. The result is pictorially summarized by Figure 1, see (4.27) for the
precise formula. A striking feature of the black hole bulk-cone singularities is that they
exhibit group velocity larger than the speed of light. They originate from geodesics
wrapping the photon sphere in the bulk. Our result (4.27) exhibits several interesting
features:

• For ∆ > d−1
2 it is more singular than the ordinary light-cone singularity.

• The coefficient of the singularity decays with time, with rate controlled by the
Lyapunov exponent of null geodesics around the photon sphere.

• The bulk-cone singularities exhibit an N(d)-fold structure, with N(3) = 4 and
N(4) = 2, see Section 4.5.

This result extends the analysis of [4, 14] beyond the geodesic approximation. It also
represents the AdS analog of the flat space results [16–19].

We also computed the correlator numerically. In this case to get reliable results
we effectively smeared the correlator in space and time, which turns singularities into
finite-size bumps. We tested our analytic predictions numerically and confirmed them
with the available precision. We also observed singularities due to bouncing geodesics,
which were predicted in [14].

Stringy and gravitational corrections are expected to remove the bulk-cone sin-
gularities and turn them into bumps. It would be interesting to understand if these
stringy features can be reproduced using the thermal product formula [73], or equiva-
lently, stringy quasi-normal modes, see e.g. [74, 75]. These black hole bulk-cone bumps
provide a clear boundary signature of the photon sphere at large but finite N and λ.
In the context of the physics of gravitational waves, the retarded two-point function
enters the computation of the self-force which affects the worldline of the inspiraling
compact body, see e.g. [59, 76, 77]. It would be interesting to explore how the change
in the singularity structure of the two-point function affects the waveform of emitted
gravity waves.

There are several interesting directions in which our analysis could be extended and
improved. While in our numerical analysis we have observed bulk-cone singularities that
include bounces from the AdS boundary we have not derived analytically the form of
the leading singularity in this case. Notice that from our numerical analysis it is clear
that bounce singularities become dominant at later times. It would be very interesting
to understand their late-time structure in more detail. A related question is how to
go beyond the leading singularity computed in this paper, which would require several
technical improvements of our analysis.
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In our analytic investigation we found it useful to organize the computation in terms
of thermal Regge poles (which are poles in spin of the correlator at a given Matsubara
frequency). Regge poles with the smallest value of Im ℓ dominate the late-time behavior
of the no-bounce bulk-cone singularity. It would be interesting to understand the
structure of thermal Regge poles in a generic CFT, and if they have a clear physical
interpretation.

It would be interesting to understand if techniques similar to our numerical analysis
of the smeared correlator can be used to compute real-time correlators in CFTs using the
spectrum of low-lying operators and their three-point functions. Indeed, by inserting
a complete set of states we can express ⟨O(t, θ)O(0)⟩S1×Sd−1 as a sum over three-point
functions, see e.g. [78, 79]. Similarly, it would be also interesting to see if the bootstrap
[80, 81], lattice [82, 83], or fuzzy sphere approach [84–86] can be used to study the
thermal correlator on the sphere at real times.

An obvious extension of our work is to consider more general backgrounds. For
example we can consider non-zero angular velocities [87]. In this case (within a certain
parameter range [88, 89]) the dual geometry becomes AdS Kerr and the structure of
singularities depends on the orientation on the sphere. For instance, right-moving and
left-moving singularities in the equatorial plane will exhibit different late-time velocities.
It would be interesting to determine whether the recently identified emergent conformal
symmetry of the Kerr photon shell [55], which must also arise in AdS Kerr, has a clearer
holographic interpretation in the context of AdS/CFT. We can also consider non-trivial
chemical potential for charge, and correspondingly explore Lorentzian singularities in
large charge EFTs [90–92].

Our analysis was done for S1 ×Sd−1, but similar effects are expected to be present
on more general backgrounds, as well as away from equilibrium. One well-known ex-
ample of this type is provided by the so-called Robinson-Trautman spacetimes [93, 94].
Another very interesting setup was considered recently in [11], which in the context of
the present paper would correspond to studying the structure of the bulk-cone singu-
larities in the presence of shock waves. In [95] an excited thermal state was constructed
using a Euclidean path integral with a relevant deformation.

Note that to observe the effects considered in this paper it was important to consider
d > 2. We are not aware of examples of similar effects in lower-dimensional systems.15

It would of course be very interesting to compute thermal correlators on the sphere in
higher-dimensional CFTs directly, and to search for signatures of bulk-cone singularities
there. In [97, 98] this was done for the singlet sector of free large N gauge theories

15Curiously, an analog of the photon sphere has been discussed also for 2+1 dimensional acoustic
black holes [96].
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coupled to vector or adjoint scalar matter, and no bulk-cone singularities were observed.
This is consistent with the expectation that the holographic dual in this case is highly
nonlocal.

We lack microscopic understanding of the black hole bulk-cone singularities. For
example, in [99, 100] a ‘partonic’ picture for the behavior of the two-point function
at strong coupling at finite temperature and infinite volume was put forward. Many
qualitative features of correlators were captured by assuming that tentative partons
(quarks and gluons at strong coupling) that capture gauge theory dynamics are co-
piously produced democratically distributed across angles. Similarly, it was possible
to accommodate the effects of plasma by postulating a certain force that it exerts on
partons (its microscopic origin is not understood). Here we see that on the sphere even
more peculiar effects appear. In this case some excitations with large enough angular
velocity take parameterically large time to thermalize (these correspond to stable orbits
[26, 35, 37]). There are other excitations that exhibit anomalous dispersion and group
velocity larger than one (these correspond to the bulk cone close to the photon sphere).
Finding other examples of this phenomenon in quantum many-body systems would be
very interesting.
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A Bounds on the positions of Regge poles

In this appendix we explore constraints on the position of the Regge poles coming from
the wave equation. Like quasi-normal modes, these are defined by the ingoing boundary
condition at the horizon and normalizability at the boundary. This discussion follows
closely similar arguments for quasi-normal modes [101]. It is convenient to introduce
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ω=1 ω=

0

Figure 15: Regge poles for a scalar field in a black hole background obtained numerically from the Mathematica
package QNMSpectral [39]. Here d = 4, µ = 1, and ∆ = 4. When ω is real, the Regge poles sit in the
first and third quadrant as predicted from (A.8). When ω is purely imaginary, the Regge poles are purely
imaginary.

Eddington-Finkelstein coordinates v = t− z in which the metric is given by

ds2 = −f(r) dv2 + 2dv dr + r2 dΩ2
d−1. (A.1)

After the Fourier decomposition (3.3), the wave equation (□ −m2)ϕ = 0 is given by

f(r)ψ′′(r) + (f ′(r) − 2iω)ψ(r) − VEF(r)ψ(r) = 0, (A.2)

where

VEF(r) = V1(r) + V2(r), (A.3)

with

V1(r) = (d− 1)(d− 3)
4r2 f(r) + (d− 1)

2r f ′(r) + ∆(∆ − d) (A.4)

V2(r) = ℓ(ℓ+ 2α)
r2 . (A.5)

The potential is positive outside the horizon for d ≥ 3 and ∆ /∈ (d−1
2 , d+1

2 ).
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We now multiply the wave equation (A.2) by ψ∗ and integrate from the horizon to
the boundary to obtain∫ ∞

r+

dr
(
f |ψ′|2 + 2iωψ∗ψ′ + (V1 + V2)|ψ|2

)
= 0, (A.6)

where we have integrated by parts and used that f(r+) = 0 and ψ∗(∞) = 0.
Defining ℓ = α + p and taking the imaginary part we get

(ω − ω∗)
∫ ∞

r+

dr ψ∗ψ′ = ω∗|ψ|2(r+) − Im(p2)
∫ ∞

r+

dr
|ψ|2

r2 . (A.7)

When ω is real and positive we find

Im(p2) = ω|ψ2|(r+)∫∞
r+
dr |ψ|2

r2

> 0. (A.8)

Therefore p must be in either the first or third quadrant, as shown in Figure 15.
Similarly when ω is real and negative, p is in the second or fourth quadrant.

Secondly, for Imω > 0 let us multiply (A.6) by ω∗ and again take the imaginary
part, from which we obtain

Im(ω∗(p2 − α2)) =
Im ω

∫∞
r+
dr f |ψ′|2 + Im ω

∫∞
r+
dr V1|ψ|2 + |ω|2|ψ|2(r+)∫∞

r+
dr |ψ|2

r2

> 0. (A.9)

The allowed sectors are then
Arg ω

2 < Arg(
√
p2 − α2) < π + Arg ω

2 , (A.10)
−2π + Arg ω

2 < Arg(
√
p2 − α2) < −π + Arg ω

2 . (A.11)

In fact, for imaginary ω a numerical computation shows that the Regge poles are purely
imaginary, see Figure 15.

B BTZ

In this appendix we study BTZ both at infinite and finite volume as a pedagogical
example of how the expansion in terms of Regge poles correctly reproduces the posi-
tion space correlator and its singularities. We start with the Fourier expansion of the
Euclidean correlator at infinite volume (β = 2π)

GE(τ, x) =
∞∑

n=−∞

einτ
∫ ∞

−∞
dk eikxGR(ω = i|n|, k), (B.1)
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with the retarded correlator in BTZ given by

GR(ω, k) =
Γ
(

∆
2 + i(k−ω)

2

)
Γ
(

∆
2 − i(k+ω)

2

)
4 sin(π∆)Γ(∆)2Γ

(
−∆

2 + i(k−ω)
2 + 1

)
Γ
(

−∆
2 − i(k+ω)

2 + 1
) . (B.2)

Deforming the k contour in the upper half plane, we pick up Regge poles at k =
i(2m+ |n| + ∆) and obtain the following representation of the Euclidean correlator,

GE(τ, x) =
∞∑

n=−∞

∞∑
m=0

einτ−x(∆+2m+|n|) Γ(m+ ∆)Γ(m+ ∆ + |n|)
Γ(∆)2Γ(m+ 1)Γ(m+ |n| + 1) . (B.3)

Performing the sums we find the expected expression

GE(τ, x) = 1
2∆(cosh x− cos τ)∆ . (B.4)

Consider now instead the Euclidean correlator at finite volume

GE(τ, θ) =
∞∑

n, ℓ=−∞

einτ+iℓθGR(ω = i|n|, ℓ) . (B.5)

We rewrite the sum over ℓ as an integral using the contours C+ and C− as in Figure 8.
Then

GE(τ, θ) = i

2

∞∑
n=−∞

einτ
∮

C++C−

dℓ

sin(πℓ)e
iℓ(θ−π)GR(i|n|, ℓ). (B.6)

Using the symmetry under ℓ → −ℓ we can write this as an integral to the right above
the real axis,

GE(τ, θ) = i
∞∑

n=−∞

einτ
∫

C+

dℓ

sin(πℓ) cos(ℓ(π − θ))GR(i|n|, ℓ). (B.7)

We can proceed analogously to the infinite volume case by deforming in the upper half
plane and picking up the Regge poles at ℓ = i(2m+ |n| + ∆),

GE(τ, θ) =
∞∑

n, s=−∞

∞∑
m=0

einτ−|2πs+θ|(∆+2m+|n|) Γ(m+ ∆)Γ(m+ ∆ + |n|)
Γ(∆)2Γ(m+ 1)Γ(m+ |n| + 1) , (B.8)

where the sum over s comes from the kernel

cosh((∆ + 2m+ |n|)(π − θ))
sinh(π(∆ + 2m+ |n|)) =

∞∑
s=−∞

e−|θ+2πs|(∆+2m+|n|). (B.9)
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It is clear in (B.8) that the sum over m,n reproduces the infinite volume expression,
while the sum over p implements periodicity in θ. Explicitly we find

GE(τ, x) =
∞∑

p=−∞

1
2∆(cosh(θ + 2πp) − cos τ)∆ . (B.10)

Analytically continuing the Euclidean correlator to real time, we reproduce the ex-
pected singularities of the finite volume Wightman correlator starting from the Regge
expansion.

C Causality on the sphere

In this appendix we analyze the constraints of causality at finite volume. We consider
the thermal retarded two-point function on the sphere,

GR(t, θ) =
∫ ∞

−∞
dω e−iωt

∞∑
ℓ=0

GR(ω, ℓ)ℓ+ α

α
C

(α)
ℓ (cos θ). (C.1)

Let us take 0 < θ < π and set t = θ−δθ with δθ > 0. Since G(t, θ) must vanish outside
the lightcone, we have

0 = GR(θ − δθ, θ) =
∫ ∞

−∞
dω eiωδθG̃R(ω, θ), (C.2)

where

G̃R(ω, θ) =
∞∑
ℓ=0

GR(ω, ℓ)ℓ+ α

α
C

(α)
ℓ (cos θ)e−iωθ. (C.3)

Causality is then the statement that G̃R(ω, θ) is analytic and sub-exponential for
Im ω > 0. Indeed, if this is the case then we can close the contour in (C.2) into
the upper half-plane and get zero.

We can rewrite this condition as follows

Causality :
∣∣∣ ∞∑
ℓ=0

GR(ω, ℓ)ℓ+ α

α
C

(α)
ℓ (cos θ)

∣∣∣ ≲ e−Im(ω)θ, Im ω > 0 , (C.4)

where 0 < θ < π and ≲ means up to subexponential corrections.
As before we can perform the Sommerfeld-Watson transform and consider the

contribution of a given Regge pole

GR(ω, ℓ) ∼ λm(ω)
ℓ− ℓm(ω) (C.5)
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Figure 16: We plot the exponential decay rate of the residues of the Regge poles (C.15) as a function of µ
and the corresponding causality bound (C.7). As expected the gravity result is consistent with causality.

to the left hand side of (C.4). Up to non-important power-like corrections we get

λm(ω)e−|Im ℓm(ω)| ≲ e−Im(ω)θ. (C.6)

This tells us that the Regge pole residues have to satisfy the following constraint

λm(ω) ≲ e−(Im ω−|Im ℓm(ω)|)π. (C.7)

Let us now explicitly check that (C.7) is satisfied, taking the case d = 4 for
simplicity. In order to compute the residues, we need to evaluate the action integral
(4.16) from the boundary to z−,

S(0, z−) = −p

2Θ(0, z−) + pu

2 T (0, z−), (C.8)

where Θ(0, z−) and T (0, z−) are the elapsed angle and time between 0 and z−,

Θ(0, z−) = 2r−√
µ
K

(
r2

−

r2
+

)
(C.9)

T (0, z−) = 2ur−√
µ

r2
sΠ
(
r2

s

r2
+
,
r2

−
r2

+

)
+ (1 + r2

s)Π
(

−1+r2
s

r2
+
,
r2

−
r2

+

)
1 + 2r2

s

. (C.10)
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Here we have defined the two turning points

r± =

√
1 ±

√
1 − 4µ(u2 − 1)
2(u2 − 1) . (C.11)

Plugging the low-lying spectrum (3.33) into (C.8) and expanding at large p gives

Sm(0, z−) = p

2g1(rs) −
m+ 1

2
2 log

(
g2(rs)ep
m+ 1

2

)
, (C.12)

where

g1(rs) = ArcCot(
√

2rs)
rs

−
ArcCoth(

√
2(1 + r2

s))√
1 + r2

s

(C.13)

g2(rs) = 16
√

2
(2r2

s + 1)2 e
√

2
rs

ArcCot(
√

2rs)

(
2r2

s + 1
2r2

s + 2
√

2(1 + r2
s) + 3

) 1√
2(1+r2

s )
. (C.14)

Converting the QNM residues (3.31) to Regge pole residues then gives

Res
ℓ→ℓm(i|ζ|)

GR(i|ζ|, ℓ) = 2
√
πi

νΓ(ν)2m!

(
|ζ|

√
Ω2 − 1
2Ω

)2ν ( |ζ|g2(rs)
Ω

)m+ 1
2

e− g1(rs)
Ω |ζ|. (C.15)

It is straightforward to check that the exponential damping factor in this expression
decays fast enough to satisfy the constraint (C.7), see Figure 16.

One peculiar feature of the bound (C.7) as opposed to the infinite volume case is
that (C.7) does not imply that all non-analyticities of the retarded two-point function
have to satisfy |Im ℓm(ω)| > Im ω, and indeed the photon sphere Regge poles (3.33) ex-
plicitly violate this condition since Ω > 1. Instead causality allows for non-analyticities
at arbitrary positions as long as the residues decay fast enough. Because of this there
is no obvious generalization of the hydrohedron analysis [102] to the sphere case.

D Late-time light cone at finite temperature in d > 2

Let us consider the following series,

fc(t) =
∞∑
J=0

eiJt−ce
−J t. (D.1)

It mimics the sum over spinning quasi-normal modes which have exponentially small
imaginary part corresponding to the probability of an orbiting particle to tunnel into
a black hole, see [35].
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The sum (D.1) converges in the sense of distributions, see e.g. [103], and gives

f0(t) = 1
1 − eit

, (D.2)

which models light-cone singularities at t = 2πk in the vacuum, c = 0. We would like
to understand what happens to them at finite temperature, or c ̸= 0.

To evaluate the sum for c ̸= 0 we use the Mellin representation of the exponential

e−z = 1 + 1
2πi

∫ −0+i∞

−0−i∞
Γ(s)z−sds . (D.3)

In this way we get for the sum

fc(t) = f0(t) + 1
2πi

∫ −0+i∞

−0−i∞
ds Γ(s)

∞∑
J=0

eiJt(ce−Jt)−s. (D.4)

Here we have exchanged the sum and the integral, which is justified when both are
absolutely convergent. We have |eiJt(ce−Jt)−s| = (ct)−Re seJRe s. The sum over J
converges for Re s < 0, which explains our treatment of the s = 0 pole above.

Now we can trivially do the sum to get

fc(t) = f0(t) + 1
2πi

∫ −0+i∞

−0−i∞
ds Γ(s) (ct)−s

1 − eit+s
. (D.5)

An interesting new feature of this expression is that it has extra poles in s at

s = −it+ 2πik, k ∈ Z . (D.6)

There are various limits we can consider. First, let us consider c → 0. In this case
we close the contour to the left and we recover (D.2). Indeed, we simply get a Taylor
series in c.

Consider next the late-time limit ct ≫ 1. In this case we want to deform the
contour to the right. The leading contribution takes the form

fc(t) =
+∞∑

k=−∞

Γ(i(2πk − t))ei(t−2πk) log ct + O(e−ect), (D.7)

where O(e−ect) is the contribution of the background integral.
Notice that all the light-cone singularities and their residues stay intact, fc(t) ∼

i
t−2πk . However, as we go away from the light-cone singularity the correlator acquires
a highly oscillatory phase ei(t−2πk) log ct which suppresses the correlator upon smearing.
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The characteristic timescale of oscillations of ei t−2πk
δT is δT ∼ 1

log ct , which slowly goes to
zero at late times.

We expect that light-cone singularities of thermal correlators in d > 2 behave in a
similar fashion with some δT (t) dictated by the imaginary part of the large-spin non-
analyticity of the retarded two-point function, such that δT (t) → 0 when t → ∞. It
would be interesting to check this explicitly.

E Deriving the representation (4.9)

Our starting point is the sum over Regge poles (4.8),

GE(τ, θ) = − π

αβ

∞∑
n=−∞

∑
m

eiζnτ
kmnC

(α)
kmn−α(−z)

sin (π(kmn − α)) Res
k→kmn

GR (i|ζn|, k − α) .

We can use the following representation for Gegenbauer polynomials valid for 0 < θ < π

C
(α)
k−α(−z) = i(2 sin θ)1−2αΓ(k + α)

Γ(α)Γ(k + 1)

(
e−i(1+k−α)(π−θ)f(k, θ) − ei(1+k−α)(π−θ)f(k, π − θ)

)
,

(E.1)

where

f(k, θ) = 2F1(1 − α, 1 + k − α, 1 + k, e2iθ). (E.2)

Since the sum over Regge poles runs over Im k > 0, we can also expand

1
sin π(k − α) = −2i

∞∑
j=0

eiπ(2j+1)(k−α). (E.3)

In this way we get the following representation for the correlator

GE(τ, θ) =
∞∑
j=0

(
gE(τ, θ + 2πj) + (−1)2αgE(τ, 2π − θ + 2πj)

)
, (E.4)

where

gE(τ, θ) = 41−α

(sin θ)2α−1
π

αβ

∞∑
n=−∞

eiζnτ
∑
m

Res
k→kmn

GR (i|ζn|, k − α) ei(1+kmn−α)θ

× Γ(kmn + α)
Γ(kmn)Γ(α) 2F1(1 − α, 1 + kmn − α, 1 + kmn, e

2iθ) . (E.5)

In writing the formula above we implicitly used that f(k, θ) = f(k, θ + 2πj). Given
that θ = 0 is a branch point of the hypergeometric function, periodicity of f(k, θ) in θ

is only true given a particular prescription for going around this branch point, namely
f(k, θ + iϵ). This prescription is understood in (E.4).
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F Astrophysical black holes

Astrophysical black holes are typically described by the Kerr family of asymptotically
flat metrics, which is parameterized by the mass M and angular momentum J of
the hole. Following the 2019 release by the Event Horizon Telescope (EHT) of the first
image of a supermassive black hole in our sky [104], it was soon realized that such black
hole images ought to display a “photon ring” consisting of multiple mirror images of the
main emission surrounding the hole: this is a generic prediction of general relativity,
which follows directly from the observation that a Kerr black hole possesses a “photon
shell” of (unstably) bound photon orbits outside its event horizon, in which light can
orbit the black hole (possibly multiple times) before escaping to a distant observer
[105–107]. Whilst this theoretically predicted feature has not yet been resolved with the
ground-based EHT, detecting the photon ring will be a key target for future spaceborne
interferometric observations of the supermassive black holes M87* and Sgr A* [108–111].

F.1 Observational signatures of a Schwarzschild black hole

Black holes predict a very specific shape and structure for the photon ring, which we
will now briefly describe, and which can be used to answer the question: “How can one
ascertain whether an astrophysical source is truly a Kerr black hole, as predicted by
the Kerr hypothesis in general relativity?”

We begin with a discussion of the non-rotating Schwarzschild black hole of mass
M , both due to its relative simplicity and because it can be recovered from its AdS
counterpart—the subject of this paper—in the limit RAdS/M → ∞ (see Section 3.3).
Consider an observer at a large distance D ≫ M from the black hole in asymptotically
flat spacetime. A photon received with energy E = −pt and total angular momentum
L2 = p2

θ + p2
ϕ csc2 θ appears in the image plane of the observer at impact parameter

b = L/E. As is now well-known, a photon shot back from the observer with critical
energy-rescaled angular momentum b̃ = 3

√
3M will asymptote to an unstable planar

orbit on the photon sphere at r = 3M .16 Photons traced backwards into the geometry
with b < b̃ must fall into the black hole, while those with b > b̃ are merely deflected
and eventually escape back out to infinity. Thus, the image b = b̃ of the photon
sphere—which is also known as the “critical curve” and is depicted in red in Figure
17 (left panel)—is the boundary delineating the region of photon capture from that of
photon escape. Photons shot back from the vicinity of the critical curve (i.e., with small
δb = b − b̃) will describe multiple orbits skirting the photon sphere before eventually

16Remarkably, the critical image radius b̃ = 3
√

3M was already published (by David Hilbert) in
1917, immediately following Einstein’s publication of his general theory of relativity in 1915, and mere
months after Schwarzschild found his eponymous solution to Einstein’s field equations in 1916.
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falling into the black hole (if δb < 0) or escaping back out to infinity (if δb > 0). The
number n of half-orbits executed around the black hole diverges logarithmically in the
perpendicular distance from the curve [106, 107],

n ≈ − 1
γo

log
∣∣∣∣δbb̃
∣∣∣∣ , (F.1)

where γo = π is the Lyapunov exponent governing the orbital instability of nearly bound
rays near the Schwarzschild photon sphere. The upshot is that a light ray appearing
at a distance |δb| from the critical curve must be aimed exponentially closer to it by
e−γo = e−π ≈ 4.3% in order to execute an additional half-orbit around the black hole.17

In particular, if a black hole is surrounded by an astrophysical source—such as
an equatorial disk of emission, for instance—then multiple images of the source will
appear in the vicinity of the critical curve [106]. More precisely, there could in principle
be a whole infinite sequence of images of the main emission, with each successive one
appearing smaller (and closer to the critical curve) than its predecessor by a factor
of e−γo . These images would thus be lensed into a “photon ring” with an intricate
substructure consisting of self-similar subrings stacked on top of one another, and with
relative widths decreasing by a demagnification factor of e−γo .

In the idealized configuration (first studied by Falcke et al. [113] and then revisited
by Narayan et al. [114]) of a black hole that is fully immersed within a spherically
symmetric accretion flow of hot, radiating gas, the event horizon casts a “shadow”
on the surrounding emission, and the black hole image displays a darkness depression
whose edge precisely coincides with the critical curve. Moreover, in that case, the
observed intensity near the edge of the shadow scales like I ∝ n, and therefore diverges
logarithmically according to (F.1) (though, in practice, absorption effects cut off the
divergence after some finite number of orbits). As a result, the critical impact parameter
b̃ is precisely the radius of the observed shadow, and the Lyapunov exponent can in
principle be read off from the intensity profile near its edge. In the currently favored
scenario of near-equatorial emission [115], the image decomposes into discrete subrings
labeled by half-orbit index n, whose asymptotic radius as n → ∞ again approaches
b̃, and whose relative widths scale with a factor of wn+1/wn

n≫1
≈ e−γo , such that the

critical parameters b̃ and γo are both still measurable.
Although no photon ring has been measured so far, this GR-predicted structure

is in principle observable; moreover, it is universal (i.e., very weakly dependent on the
nature of the source), as it follows purely from the lensing behavior of the black hole,
which is in turn determined by the geometry of its spacetime (in particular, of its photon

17The δb > 0 version of these statements was already known to Luminet in 1979 [112].
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Axis of rotation

Figure 17: Left: Image plane of a distant observer in the Schwarzschild spacetime. A photon with total
angular momentum L and energy E appears at impact parameter b = L/E. Photons whose energy-rescaled
angular momentum takes the critical value b̃ = 3

√
3M can be trapped on the photon sphere of unstably bound

light orbits at r = 3M , whose image is the “critical curve” C (red). Middle: When a black hole spins, its
photon sphere thickens into a shell bounded by circular-equatorial photon orbits, with the innermost prograde
orbit at r = r+ and the outermost retrograde orbit at r = r−. As the black hole spins up to extremality
(|J | → M2), the shell reaches its maximal size (r+, r−) → (M, 4M). In Kerr, only one orbital radius
r = r0 ∈ (r+, r−), which corresponds to zero-angular-momentum orbits with pϕ = 0, allows for light to pass
over the poles (white photon sphere, located at r = 3M in Schwarzschild). Bound orbits inside/outside the
sphere are prograde/retrograde with pϕ ≷ 0. Right: Image plane of a distant, equatorial observer (θo = π/2)
in the Kerr spacetime with spin J/M2 = 99.9%, parameterized by Bardeen’s Cartesian coordinates (α, β)
[116]. The critical curve C (red) is now parameterized by the photon shell radius r that a light ray traced
backwards into the geometry ends up orbiting at. The Lyapunov exponent γ(r) governing the instability of
the bound orbit at radius r also controls the width of the photon ring (red annulus) at the corresponding
angle around the critical curve (for the non-rotating black hole, γ = π). Measuring the size, shape, and radial
profile of the photon ring can yield information on the parameters of the black hole.

sphere). State-of-the-art simulations numerically confirm this behavior [106, 115], so
future observations may well measure the photon sphere critical parameters.

Finally, the photon sphere also controls the spectrum ω
(s)
ℓmn of quasi-normal modes

in the eikonal regime of high-frequency ω ≫ 1/M . In that limit, one can apply the
geometric-optics approximation and use congruences of null geodesics to describe mass-
less waves (of any spin s, whose effect is subleading). Moreover, it turns out that the
quasi-normal mode boundary conditions correspond to light rays that are asymptot-
ically bound in the photon sphere, so it should come as no surprise that the eikonal
QNM spectrum is controlled by the critical parameters of the photon sphere [47–52],

ω
(s)
ℓmn

ℓ≫|s|
≈
(
ℓ+ 1

2

)
Ω − i

(
n+ 1

2

)
γ, Ω = γ = 1

b̃
= 1

3
√

3M
, (F.2)

where Ω is the angular velocity of bound photon orbits, while the Lyapunov-exponent-
in-time γ ≈ dr/dt is equal to the Lyapunov-exponent-per-orbit γo = π ≈ dr/dn, divided
by the time elapsed per half-orbit, τo ≡ (∆t)half-orbit = 3

√
3πM ≈ dt/dn.
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F.2 Observational signatures of a Kerr black hole

We continue our discussion of how to ascertain whether an astrophysical source is truly
a black hole, now extending it to the general case of a rotating (Kerr) black hole. Here
we sketch only the main ideas, which are essentially the same as in the previous section,
and omit most explicit formulas.

In the presence of rotation, the photon sphere thickens into a shell (Figure 17,
middle panel) containing multiple orbital radii r+ < r < r−, where r± denote the radii
of the prograde/retrograde circular-equatorial orbits bounding the shell. Only light
trapped at the radius r0 ∈ (r+, r−) of the zero-angular-momentum orbits can pass over
the poles. The sphere r = r0 generalizes the Schwarzschild photon sphere, and indeed
r0 → 3M as J → 0. Orbits with radius r ∈ (r+, r0) within this photon sphere all
have positive angular momentum and are corotating with the black hole (prograde),
while those with radius r ∈ (r0, r−) outside the photon sphere all have negative angular
momentum and are counter-rotating relative to the black hole (retrograde). These
orbits describe librations (polar oscillations) up to some angle θ̃(r), which equals π/2
at the edges r± of the shell and vanishes at r0. One may assign a unique “signed
inclination” µo(r) = ± sin θ̃(r) to each orbit, where the sign ± is that of the orbital
angular momentum: thus, µo(r) decreases monotonically from µo(r+) = 1 through
µo(r0) = 0 to µo(r−) = −1, resulting in a 1-1 correspondence between photon shell
radii r ∈ [r+, r−] and signed inclinations µo ∈ [−1, 1].

In the absence of spherical symmetry, the lensing behavior of the black hole depends
on the polar inclination θo of the distant observer relative to the spin axis. Following
Bardeen [116], it is convenient to parameterize the image plane of the observer using
Cartesian coordinates (α, β) defined such that a photon received with four-momentum
pµ appears at a position α = −pϕ/(pt sin θo) and β = −pθ/pt. The critical curve is
then defined as the image of the photon shell, that is, the set of image-plane directions
corresponding to light rays that are asymptotically bound in the photon shell. Bardeen
[116] provides a simple analytic expression for this curve. The key difference with the
non-rotating case is that the curve is now parameterized by photon shell radius, with
each point (α̃(r), β̃(r)) on (half of) the critical curve corresponding to a light ray that
is trapped at a different orbital radius r in the photon shell (Figure 17, right panel).

The (energy-rescaled) azimuthal angular momentum λ = −pϕ/pt of a critical ray
with horizontal impact parameter α̃(r) takes the value λo(r) = −α̃(r) sin θo, which is
thus a measurable quantity. Each bound photon orbit has a different rate of orbital
instability governed by its own Lyapunov exponent γo(r), and a different half-orbit
time lapse τo(r) = (∆t)half-orbit. Explicit forms for these critical parameters of the Kerr
black hole are given in terms of elliptic integrals in [106, 107].
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The half-orbit number still diverges logarithmically as one approaches the critical
curve, so (F.1) still holds, except that γo(r) now varies around the curve. Still, each
Lyapunov exponent γo(r) can in principle be read off from the radial intensity profile
near the corresponding position (α̃(r), β̃(r)) around the photon ring: depending on
the precise astrophysical scenario, this could be done either by comparing the angle-
dependent demagnification e−γo(r) across successive subrings (when the emission is near-
equatorial), or from the log-divergence in the intensity (when the emission is spherical).
Likewise, λo(r) can in principle be read off from the horizontal impact parameter of
light in the photon ring, so both λo(r) and γo(r) are observable, as is τo(r), which
can for instance be inferred from the time delay of light echoes [117]. Thus, precise
measurements of the photon ring (its GR-predicted substructure and critical exponents)
could in principle be used to test whether a source is indeed a Kerr black hole.

Finally, one expects the eikonal QNM spectrum to still be described by the Kerr
photon shell, as in the Schwarzschild case. Though this was indeed a widely held picture
since the seminal work of Ferrari & Mashhoon [48] and Iyer & Wald [51] in the 1980s,
their work did not in fact apply to Kerr, as the class of potentials they considered
did not include the Kerr radial geodesic potential. Thus, this lore was only verified to
hold in 2012 [118], using indirect formulas for the form of the spectrum. Following the
explicit derivation of photon shell critical exponents, the analogue of (F.2) was finally
derived last year [55]: as ℓ,m → ∞ with µ̃ = m/ℓ held fixed,

ω
(s)
ℓmn

ℓ≫|s|
≈
(
ℓ+ 1

2

)
Ω(µ̃) − i

(
n+ 1

2

)
γ(µ̃), Ω(µ̃) = µ̃

λo(r)
, γ(µ̃) = γo(r)

τo(r)
, (F.3)

where µ̃ = m/ℓ ∈ [−1, 1] and the photon shell radius r ∈ [r+, r−] are bijectively related
by identifying µ̃(r) ≡ µo(r) with the signed inclination µo(r) = ± sin θ̃(r) defined above.
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[64] J. Engelsöy and B. Sundborg, Tidal excitation as mixing in thermal CFT, JHEP 08
(2021) 085, [arXiv:2106.06520].

[65] H. A. Buchdahl, General Relativistic Fluid Spheres, Physical Review 116 (Nov., 1959)
1027–1034.

[66] J. B. Hartle, Bounds on the mass and moment of inertia of nonrotating neutron
stars., Physics Reports 46 (Jan., 1978) 201–247.

[67] L. Lindblom, Limits on the gravitational redshift form neutron stars, Astrophysical
Journal 278 (Mar., 1984) 364–368.
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