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We propose an efficient approach for simultaneous prediction of thermal and electronic transport
properties in complex materials. Firstly, a highly efficient machine-learned neuroevolution potential
is trained using reference data from quantum-mechanical density-functional theory calculations.
This trained potential is then applied in large-scale molecular dynamics simulations, enabling the
generation of realistic structures and accurate characterization of thermal transport properties. In
addition, molecular dynamics simulations of atoms and linear-scaling quantum transport calculations
of electrons are coupled to account for the electron-phonon scattering and other disorders that affect
the charge carriers governing the electronic transport properties. We demonstrate the usefulness of
this unified approach by studying thermoelectric transport properties of a graphene antidot lattice.

I. INTRODUCTION

Thermal and electronic transports are two fundamen-
tal properties of a material. For simple solids, computa-
tional methods based on the electron and phonon Boltz-
mann transport equations [1] have been widely used to
compute the transport properties mediated by the heat
and charge carriers. There are a handful computational
programs available for doing these calculations, such as
shengbte [2], phono3py [3], kaldo [4], and gpupbte
[5] for thermal transport and epw [6], perturbo [7],
and phoebe [8] for electronic transport. However, these
methods can only efficiently deal with relatively simple
systems and are generally not applicable to complex sys-
tems that cannot be properly represented by small peri-
odic supercells.

To efficiently compute transport properties in complex
systems one must resort to linear-scaling methods, i.e.,
methods with the computational cost that scales linearly
with respect to the number of atoms in the periodic
supercell. For thermal transport, molecular dynamics
(MD) simulation is such a linear-scaling method at the
atomistic level [9], provided that the interatomic poten-
tial used is a classical one and has a finite cutoff. Nowa-
days, machine-learned potentials (MLPs) [10] have been
routinely applied in MD simulations of thermal trans-
port. Particularly, the neuroevolution potential (NEP)
[11–13] has been developed with a focus on thermal trans-
port applications and has excellent computational effi-
ciency.
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For electronic transport, there are also linear-scaling
quantum transport (LSQT) methods [14] based on semi-
empirical tight-binding (TB) models. The electron-
phonon coupling in LSQT calculations can be captured
by the bond-length dependent hopping integrals in the
electron TB Hamiltonian [15]. This has been explored
using either specific phonon dynamics [16, 17] or MD
simulations [18–20]. Static-disorder approximation of the
electron-phonon coupling has also been used for organic
crystals [21, 22], graphene [23] and a carbon nanotube
[24]. Among these, the combined MD-LSQT approach is
the most flexible one, but it has not been widely used.
The major reason is that there has been no accurate in-
teratomic potential to drive MD simulations for a general
system. Another reason is that there is so far no publicly
available implementation of this approach.

In this paper, we propose to combine machine-learning
molecular dynamics (MLMD), namely, MD driven by a
MLP, and LSQT with a bond-length-aware TB model, to
study the thermal, electronic, and thermoelectric trans-
port properties of complex materials that are beyond
the reach of conventional methods. We call the com-
bined method MLMD-LSQT. For the MLP, we choose
to use the highly efficient NEP approach [11–13] as im-
plemented in the open-source graphics processing units
molecular dynamics (gpumd) package [25]. By train-
ing against quantum-mechanical density functional the-
ory (DFT) data, a NEP model can be constructed on
demand, which can then be used to perform large-scale
MD simulations to obtain realistic structures and ther-
mal transport properties. For the LSQT part, we also
implement it into the gpumd package (version 3.9) to
couple electron and ion motions. To show the useful-
ness of this unified approach, we construct a general-
purpose NEP for carbon systems and study thermal, elec-
tronic, and thermoelectric transport properties of pat-
terned graphene that has large-scale structural features.
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II. THE MLMD-LSQT APPROACH

At the core of our method is the NEP approach [11–13]
for MLP construction. It uses Chebyshev and Legendre
polynomials to construct a local atom-environment de-
scriptor of a given atom which is then mapped to the site
energy Ui of this atom via a feed-forward neural network.
The free parameters in the neural network as well as the
descriptor are optimized though the minimization of a
loss function using an evolutionary algorithm. The loss
function is defined as a weighted sum of the root mean
square errors (RMSEs) of energy, force, and virial be-
tween predictions and DFT target results in combination
with regularization terms. This method as implemeted
in gpumd [25] has been shown to be able to achieve si-
multaneously the accuracy of DFT calculations and the
computational cost of empirical potentials, allowing for
large-scale MD simulations up to 8.1 million atoms us-
ing a single 40-gigabyte graphics processing units (GPU)
card [26].

The LSQT method can be used to calculate electri-
cal conductivity in large systems, but the prerequisite
is to construct an electron Hamiltonian incorporating
electron-phonon coupling and other disorders [14]. By
using a bond-length-aware TB model to configurations
generated from MD simulations, electron-phonon cou-
pling and other structural disorders can be effectively
described. For dissipative electron transport, there are
two equivalent ways to compute the electrical conduc-
tivity, one is based on the velocity-auto-correlation and
the other is based on the mean-square displacement [14].
For the purpose of the present work, we found that
the velocity-auto-correlation approach is more convenient
because the time intervals used in the calculations are
quite small, and the mean-square-displacement approach
is only beneficial when the time intervals are large [27].

In the velocity-auto-correlation approach, the electri-
cal conductivity at energy E and correlation time t can
be calculated as an integral

Σ(E, t) =
2e2

Ω

∫ t

0

Tr
[
δ(E − Ĥ)Re(V̂ V̂ (τ))

]
dτ, (1)

where e is the elementary charge, Ω is the system volume,
Ĥ is the electron Hamiltonian operator, δ(E − Ĥ) is the

energy resolution operator, V̂ is the velocity operator,

and V̂ (τ) = eiĤτ V̂ e−iĤτ is the time-evolved velocity op-
erator. To facilitate the discussion, we denote the trace
in the integral as C(E, τ). The coupled MLMD-LSQT
algorithm can be represented as follows:

1. Starting from an initial structure, run MLMD for
a number of steps in the isothermal or isothermal-
isobaric ensemble to achieve equilibrium.

2. Perform MLMD simulation for a number of steps:

(a) Evolve the atomic system from step n − 1,
{ri(n∆t − ∆t)}, to step n, {ri(n∆t)}, by

a time step of ∆t according the NEP inter-
atomic potential.

(b) Calculate the electron Hamiltonian and veloc-
ity operators at step n according to the atom
positions {ri(n∆t)}.

(c) Calculate C(E,n∆t) using the electron
Hamiltonian at the current step. In this step,
linear-scaling techniques [14], including sparse
matrix-vector multiplication, random phase
approximation of trace, Chebyshev expansion
of quantum evolution operator, and kernel
polynomial method [28] for energy resolution
operator, are used.

After obtaining C(E, τ) at a number of discrete time
points, it can be numerically integrated to calculate the
electrical conductivity according to Eq. 1. This approach
was implemented into the gpumd package and was avail-
able starting from version 3.9. Besides, the electronic
density of states (DOS) was also implemented according
to the following expression:

ρ(E) =
2

Ω
Tr

[
δ(E − Ĥ)

]
. (2)

III. CASE STUDY OF A GRAPHENE ANTIDOT
LATTICE

As a proof of concept, we apply the MLMD-LSQT ap-
proach to study the thermoelectric transport in a GAL
[29], also known as graphene nanomesh [30], a graphene
sheet with patterned holes. Thermoelectric effects in
graphene nanostructures have been extensively studied,
and GALs have been identified as one of the promis-
ing candidates for good thermoelectric materials [31].
However, previous works have only studied the ballistic
electronic transport regime [32–34], without considering
finite-temperature effects.
Fig. 1 shows the atomistic structure of the system un-

der investigation. The simulation domain cell of the GAL
sample contains 187 200 atoms and has a dimension of
about 88.5 nm × 76.7 nm in the xy-plane, which can be
considered as a two-dimensional (2D) system when pe-
riodic boundary conditions are applied to the in-plane
directions. The thickness of the system was taken as
0.335 nm in calculating the volume. The primitive cell
for the GAL contains 156 atoms, a complexity that chal-
lenges conventional numerical methods based on the elec-
tron and phonon Boltzmann transport equations. How-
ever, this kind of complex structures are well-suited for
the MLMD-LSQT approach. To construct the Hamilto-
nian and velocity operators, we employed a pz-orbital TB
model with a bond-length dependent hopping parameter

Hij = t0

(
r0
rij

)2

, (3)
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FIG. 1. (a) Atomistic structure of an example graphene antidot lattice (GAL) system studied in this work. (b) Illustration of
the primitive cell containing 156 atoms, enclosed by the parallelogram.

where t0 = −2.7 eV, r0 = 1.42 Å, and rij is the distance
between the atom pair i and j. The model with a fixed
hopping parameter t0 has been used in previous works
[35, 36] that did not account for electron-phonon cou-
pling. The real-space Hamiltonian and velocity (assum-
ing to be in the x direction) operators can be written
as

Ĥ =
∑
i,j

Hij |i⟩⟨j|; (4)

V̂ =
i

ℏ
∑
i,j

(xj − xi)Hij |i⟩⟨j|, (5)

where xi is the x-position of atom i.

A. Training a general-purpose NEP for carbon
systems

Although for the scope of the current work, it suf-
fices to train a specialized NEP model for GAL, it is
our broader objective to train a general-purpose carbon
potential based on the extensive dataset as used for con-
structing a Gaussian approximation potential [37]. Using
this dataset and the hyperparameters given in Appendix
A, we trained a general-purpose NEP model for carbon

systems. The training results are shown in Fig. 2. Af-
ter a few hundred thousand training steps, the RMSEs
of energy, force, and virial all converge [Fig. 2(a)], and
their converged values are 45 meV/atom, 599 meV/Å,
and 105 meV/atom, respectively. The predicted data
are compared to the DFT reference ones in Fig. 2(b)-(d).
The seemingly large RMSE values are typical for general-
purpose carbon systems, as similar ones were reported in
or can be extracted from previous works [13, 37–40].

B. Thermal transport

For a complete study of thermoelectric transport, the
lattice (phonon) thermal conductivity κph must be eval-
uated. To this end, we calculated κph for the GAL model
with 187 200 atoms using the HNEMD method [41]. In
this method, an external driving force

F ext
i = Fe ·

∑
j ̸=i

(
∂Uj

∂rji
⊗ rij

)
(6)

is exerted on each atom i, driving the system out of equi-
librium. Here, Fe is the driving force parameter with the
dimension of inverse length and rij ≡ rj−ri, ri being the
position of atom i. After a steady state is achieved, the

lattice thermal conductivity tensor καβ
ph can be computed
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FIG. 2. (a) Evolution of the energy, force, and virial loss val-
ues as a function of the number of training generations for a
general-purpose NEP for carbon systems based on an exten-
sive dataset [37]. (b)-(d) Comparison between NEP predic-
tions and DFT reference values for energy, force, and virial.
The RMSE values are indicated in each panel.
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FIG. 3. (a) Phonon thermal conductivity κph as a function
of the HNEMD production time for GAL at 300 K. (b) The
classical and quantum-corrected spectral thermal conductiv-
ity as a function of the phonon frequency ω/2π.

from the relation

⟨Jα⟩
TΩ

=
∑
β

καβ
phF

β
e , (7)

where T is the system temperature, Ω is the system vol-
ume, and ⟨Jα⟩ is the ensemble average of the heat current
[42]

J =
∑
i

vi ·
∑
j ̸=i

(
∂Uj

∂rji
⊗ rij

)
. (8)

In this case study, we only consider the condition of 300 K
and zero in-plane pressure. The input script for gpumd

is given in Appendix B. The time convergence of κph is
shown in Fig. 3(a). We have performed 4 independent
simulations in both the x and the y directions and aver-
aged the results over the two directions as the system is
essentially isotropic.
For the GAL in our case study, the simulation temper-

ature (300 K) is much lower than the Debye temperature
(on the order of 2000 K), and the classical MD simula-
tion thus significantly overestimates the modal heat ca-
pacity, which in turn leads to an overestimation of the
thermal conductivity. Fortunately, there exists a feasible
correction for the missing quantum statistics, as has been
successfully applied to amorphous [43, 44] and fluid [45]
systems described by NEP models. In this quantum cor-
rection method, the spectral thermal conductivity κ(ω)
as calculated from the HNEMD method [41] is multiplied

by a quantum-to-classical factor p(x) = x2ex/ (ex − 1)
2
,

where x = ℏω/kBT , ω is the phonon frequency, ℏ is the
reduced Planck constant, and kB is the Boltzmann con-
stant. The spectral decomposition of κph corresponding
to the classical results is depicted in Fig. 3(b), where
the quantum-corrected results are also shown. The
classical value of κph is 13.3W/(mK), which becomes
6.7W/(mK) after quantum correction. The quantum
corrected value will be used later.

C. Electronic and thermoeletric transports

The time-dependent electrical conductivity Σ(E, t)
(see Appendix C for the input script and more calculation
details) converges in the diffusive transport regime, and
one can obtain the so-called semi-classical electrical con-
ductivity Σ(E) by averaging Σ(E, t) over a proper range
of correlation time,

Σ(E) =
1

t2 − t1

∫ t2

t1

Σ(E, t)dt. (9)

According to Fig. 4(a), it is a good choice to set t1 = 80 fs
and t2 = 100 fs. The semi-classical electrical conductivity
Σ(E) can be regarded as the transport distribution func-
tion (TDF) [46–51] for thermoelectric transport. The cal-
culated TDF as well as DOS are presented in Fig. 4(b).
The anti-dots induce a considerable band gap of about
0.8 eV. This band gap is then also the transport gap.
From the TDF, we then calculated the transport coef-

ficients at 300 K for a range of chemical potential µ. We
first define the functionals (n = 0, 1, 2) of the TDF:

Xn(µ, T ) =

∫ [
−∂f(E,µ, T )

∂E

]
EnΣ(E)dE, (10)

where

f(E,µ, T ) =
1

exp
(

E−µ
kBT

)
+ 1

(11)

is the Fermi-Dirac distribution. The electrical conduc-
tivity σ(µ, T ), Seebeck coefficient S(µ, T ), and electronic
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FIG. 4. (a) Electrical conductivity Σ(E, t) as computed by us-
ing Eq. 1 at E = 0.65 eV. (b) Transport distribution function
(TDF) Σ(E) and electronic density of states (DOS). (c)-(f)
Electrical conductivity σ(µ, T ), Seebeck coefficient S(µ, T ),
electronic thermal conductivity κel(µ, T ), and figure of merit
zT (µ, T ) for a range of chemical potential µ at T = 300K.

thermal conductivity κel(µ, T ) can be expressed in terms
of these functionals as

σ(µ, T ) = X0(µ, T ); (12)

S(µ, T ) = − 1

eT

[
X1(µ, T )

X0(µ, T )
− µ

]
; (13)

κel(µ, T ) =
1

e2T

[
X2(µ, T )−

X2
1 (µ, T )

X0(µ, T )

]
. (14)

The calculated results are presented in Fig. 4(c)-(e). The
finite-temperature electrical conductivity σ(µ, T ) resem-
bles the TDF, but with smearing resulting from the
Fermi-Dirac distribution. The Seebeck coefficient has
a negative peak for electrons and a positive peak for
holes. The electronic thermal conductivity resembles the
electrical conductivity in shape which is in line with the
Wiedemann-Franz law.

Based on these transport coefficients and the
(quantum-corrected) phonon thermal conductivity κph,
one can define the dimensionless figure of merit as

zT (µ, T ) =
S2(µ, T )σ(µ, T )

κph + κel(µ, T )
T. (15)

Due to the competition between the various transport co-
efficients, zT develops peaks for both electron and hole
transport, at µ = 0.47 eV and −0.44 eV, respectively.
The transport is asymmetric between electron and hole,
showing a maximum zT = 0.47 for hole and a maximum
zT = 0.16 for electron.

Experimentally, thermoelectric transport properties
have been measured for single- and bi-layer graphene
nanomeshes with the neck width down to 8 nm [52]. This
neck width between the nearest antidot pairs is a few
time larger than that we studied and the measured ther-
mal conductivity values (of the order of 100W/(mK))
are significantly larger than our prediction. On the other
hand, there are geometrical disorders in the experimen-
tal samples, namely, variations in the positions and sizes
of the antidots, which, according to previous calculations
[35, 36], can lead to suppressed electrical conductivity.
Therefore, the relatively high zT values we predicted re-
main a challenge for experimental realization.

IV. SUMMARY AND CONCLUSIONS

In summary, we have introduced a numerical approach
for simultaneous prediction of thermal and electronic
transport properties in complex materials. This ap-
proach, based on MLMD and LSQT, offers an excellent
efficiency with a computational cost that scales linearly
with the system size. For a given material, a highly ef-
ficient NEP is first constructed on demand. This MLP
can be used to perform large-scale MD to obtain realistic
structures and accurate thermal transport properties. By
combining the time-evolution of electrons and atoms dur-
ing the MD simulation, electron-phonon scattering and
other disorders for the charge carriers can be naturally
captured and the various electronic transport properties
can be obtained.

As an illustrative example, we have investigated the
thermoelectric transport properties of a type of graphene
antidot lattices (GALs), predicting its relatively high
thermoelectric efficiency at room temperature. We recog-
nize the necessity of future work to conduct a more com-
prehensive study of the thermoelectric transport in GALs
using our proposed approach. Subsequent research en-
deavors may consider integrating machine-learning tech-
niques to explore the vast design space, similar to the
methods employed in thermal transport studies in these
systems [53, 54].
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Appendix A: Inputs for training the NEP model

NEP models can be trained using the nep executable in
the gpumd package. The relevant hyperparameters are
specified in the nep.in input file. The contents of the
nep.in input file for training the general-purpose model
of carbon systems are given below.

type 1 C
version 4
cutoff 7 4
n_max 12 8
basis_size 16 12
l_max 4 2 1
neuron 100
lambda_1 0.0
lambda_e 1.0
lambda_v 0.1
batch 8000
population 100
generation 2000000

Appendix B: Inputs for phonon thermal
conductivity calculations

MD simulations with NEP models can be performed by
using the gpumd executable in the gpumd package. The
controlling parameters are specified in the run.in input
file. The contents of the run.in input file for calculating
the thermal conductivity are given below.

# setup
potential nep.txt
velocity 300

# equilibration
ensemble npt_ber 300 300 100 0 0 0

1000 1000 1000 1000
time_step 1
run 100000

# production
ensemble nvt_nhc 300 300 100
compute_hnemd 1000 1e-4 0 0
compute_shc 2 250 0 1000 400.0
run 1000000

Appendix C: Inputs for electronic transport
calculations

The contents of the run.in input file for calculating
the electronic transport properties are given below. The
time step in the production stage is chosen to be small
enough (0.1 fs) to ensure accurate integration in Eq. 1.
The keyword compute_lsqt invokes the LSQT calcula-
tions. This is a new keyword introduced in GPUMD-
v3.9 during the course of the present study. Here are the
meanings of the parameters for this keyword:

• The first parameter x means that the transport is
along the x direction. We have calculated 10 times
along the x directions and also 10 times along the
y direction and averaged the results.

• The second parameter refers to the number
of Chebyshev moments in the kernel-polynomial
method [28] for both the DOS and conductivity cal-
culations. A value of 3000 is large enough here.

• The next three parameters are respectively the
number of energy points to be considered, the min-
imum energy and the maximum energy. Here we
calculated the transport properties from −8.1 eV
to 8.1 eV, with an interval of 1.62meV.

• The last parameter is an energy threshold that
needs to be larger than the energy range of the
tight-binding model. Here, a value of 8.2 eV is suf-
ficient. This parameter can be determined by a
trial-and-error approach.

#setup
potential nep.txt
velocity 300

# equilibration
ensemble npt_ber 300 300 100 0 0 0

1000 1000 1000 1000
time_step 1
dump_exyz 100000
run 100000

# production
ensemble nve
time_step 0.1
compute_lsqt x 3000 10001 -8.1 8.1 8.2
run 1000

https://gitlab.com/brucefan1983/nep-data
https://github.com/brucefan1983/GPUMD
https://gpumd.org
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A. Michaelides, An accurate and transferable machine
learning potential for carbon, The Journal of Chemical
Physics 153, 034702 (2020).

[38] J. Wang, H. Shen, R. Yang, K. Xie, C. Zhang, L. Chen,
K.-M. Ho, C.-Z. Wang, and S. Wang, A deep learning
interatomic potential developed for atomistic simulation
of carbon materials, Carbon 186, 1 (2022).

[39] Y. Wang, Z. Fan, P. Qian, T. Ala-Nissila, and M. A.
Caro, Structure and pore size distribution in nanoporous
carbon, Chemistry of Materials 34, 617 (2022).

[40] M. Qamar, M. Mrovec, Y. Lysogorskiy, A. Bochkarev,
and R. Drautz, Atomic cluster expansion for quantum-
accurate large-scale simulations of carbon, Journal of
Chemical Theory and Computation 19, 5151 (2023).

[41] Z. Fan, H. Dong, A. Harju, and T. Ala-Nissila, Homo-
geneous nonequilibrium molecular dynamics method for
heat transport and spectral decomposition with many-
body potentials, Phys. Rev. B 99, 064308 (2019).

[42] Z. Fan, L. F. C. Pereira, H.-Q. Wang, J.-C. Zheng,
D. Donadio, and A. Harju, Force and heat current formu-
las for many-body potentials in molecular dynamics sim-
ulations with applications to thermal conductivity calcu-
lations, Phys. Rev. B 92, 094301 (2015).

[43] Y. Wang, Z. Fan, P. Qian, M. A. Caro, and T. Ala-
Nissila, Quantum-corrected thickness-dependent thermal
conductivity in amorphous silicon predicted by machine

learning molecular dynamics simulations, Phys. Rev. B
107, 054303 (2023).

[44] H. Zhang, X. Gu, Z. Fan, and H. Bao, Vibrational an-
harmonicity results in decreased thermal conductivity of
amorphous HfO2 at high temperature, Phys. Rev. B 108,
045422 (2023).

[45] K. Xu, Y. Hao, T. Liang, P. Ying, J. Xu, J. Wu, and
Z. Fan, Accurate prediction of heat conductivity of water
by a neuroevolution potential, The Journal of Chemical
Physics 158, 204114 (2023).

[46] G. D. Mahan and J. O. Sofo, The best thermoelectric,
Proceedings of the National Academy of Sciences 93,
7436 (1996).

[47] Z. Fan, H.-Q. Wang, and J.-C. Zheng, Searching for the
best thermoelectrics through the optimization of trans-
port distribution function, Journal of Applied Physics
109, 073713 (2011).

[48] J. Zhou, R. Yang, G. Chen, and M. S. Dresselhaus, Opti-
mal bandwidth for high efficiency thermoelectrics, Phys.
Rev. Lett. 107, 226601 (2011).

[49] C. Jeong, R. Kim, and M. S. Lundstrom, On the
best bandstructure for thermoelectric performance: A
Landauer perspective, Journal of Applied Physics 111,
113707 (2012).

[50] J. Maassen, Limits of thermoelectric performance with
a bounded transport distribution, Phys. Rev. B 104,
184301 (2021).

[51] S. Ding, X. Chen, Y. Xu, and W. Duan, The best ther-
moelectrics revisited in the quantum limit, npj Compu-
tational Materials 9, 189 (2023).

[52] J. Oh, H. Yoo, J. Choi, J. Y. Kim, D. S. Lee, M. J. Kim,
J.-C. Lee, W. N. Kim, J. C. Grossman, J. H. Park, S.-S.
Lee, H. Kim, and J. G. Son, Significantly reduced thermal
conductivity and enhanced thermoelectric properties of
single- and bi-layer graphene nanomeshes with sub-10nm
neck-width, Nano Energy 35, 26 (2017).

[53] J. Wan, J.-W. Jiang, and H. S. Park, Machine learning-
based design of porous graphene with low thermal con-
ductivity, Carbon 157, 262 (2020).

[54] H. Wei, H. Bao, and X. Ruan, Genetic algorithm-driven
discovery of unexpected thermal conductivity enhance-
ment by disorder, Nano Energy 71, 104619 (2020).

https://doi.org/10.1103/PhysRevB.84.155449
https://doi.org/10.1063/1.3629990
https://doi.org/10.1063/1.3629990
https://doi.org/https://doi.org/10.1016/j.physleta.2012.06.010
https://doi.org/10.1103/PhysRevB.89.165401
https://doi.org/10.1103/PhysRevB.89.165401
https://doi.org/10.1103/PhysRevB.91.125434
https://doi.org/10.1063/5.0005084
https://doi.org/10.1063/5.0005084
https://doi.org/https://doi.org/10.1016/j.carbon.2021.09.062
https://doi.org/10.1021/acs.chemmater.1c03279
https://doi.org/10.1021/acs.jctc.2c01149
https://doi.org/10.1021/acs.jctc.2c01149
https://doi.org/10.1103/PhysRevB.99.064308
https://doi.org/10.1103/PhysRevB.92.094301
https://doi.org/10.1103/PhysRevB.107.054303
https://doi.org/10.1103/PhysRevB.107.054303
https://doi.org/10.1103/PhysRevB.108.045422
https://doi.org/10.1103/PhysRevB.108.045422
https://doi.org/10.1063/5.0147039
https://doi.org/10.1063/5.0147039
https://doi.org/10.1073/pnas.93.15.7436
https://doi.org/10.1073/pnas.93.15.7436
https://doi.org/10.1063/1.3563097
https://doi.org/10.1063/1.3563097
https://doi.org/10.1103/PhysRevLett.107.226601
https://doi.org/10.1103/PhysRevLett.107.226601
https://doi.org/10.1063/1.4727855
https://doi.org/10.1063/1.4727855
https://doi.org/10.1103/PhysRevB.104.184301
https://doi.org/10.1103/PhysRevB.104.184301
https://doi.org/10.1038/s41524-023-01141-1
https://doi.org/10.1038/s41524-023-01141-1
https://doi.org/https://doi.org/10.1016/j.nanoen.2017.03.019
https://doi.org/https://doi.org/10.1016/j.carbon.2019.10.037
https://doi.org/https://doi.org/10.1016/j.nanoen.2020.104619

	Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials
	Abstract
	Introduction
	The MLMD-LSQT approach
	Case study of a graphene antidot lattice
	Training a general-purpose NEP for carbon systems
	Thermal transport
	Electronic and thermoeletric transports

	Summary and conclusions
	Acknowledgments
	Inputs for training the NEP model
	Inputs for phonon thermal conductivity calculations
	Inputs for electronic transport calculations
	References


