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Abstract

We derive the equations of motion of a test particle with intrinsic hypermomentum in spacetimes with both torsion

S and nonmetricity Q (along with curvature R). Accordingly, S and Q can be measured by tracing out the trajectory

followed by a hypermomentum-charged test particle in such a non-Riemannian background. The test particle is

approximated by means of a Dirac δ-function. Thus we find a tangible way to observe and measure the effects of

torsion and nonmetricity. Our results are consistent with earlier ones derived by Obukhov and Puetzfeld (2014) by

means of a different method. We apply our insight and evaluate how far-reaching the so-called ‘geometrical trinity of

gravity’ really is.
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1. Introduction

The Metric-Affine (gauge theory of) Gravity [1] has

the remarkable property to relate spacetime torsion S and

nonmetricity Q (being the observables) to the microscopic

properties of matter, such as the currents of spin, dilation,

and shear (the sources). Consequently, in order to be able

to observe possible non-Riemannian effects, test matter

with internal structure must be considered [2, 3, 4]. Tor-

sion and nonmetricity can then be detected by deriving

the equations of motion for the momentum and hypermo-

mentum of the particle. Then we can trace out the trajec-

tory of a hypermomentum-charged (i.e. microstructured)

test particle in this post-Riemannian arena. Here, by ap-

proximating the position of the test particle by a Dirac

δ-function, we investigate exactly this problem of finding

out the trajectory followed by the microstructured parti-

cle.

Earlier results are due to Puetzfeld and Obukhov

Email addresses: damianos.iosifidis@ut.ee (Damianos

Iosifidis), hehl@thp.uni-koeln.de (Friedrich W. Hehl)

(2014). In the general relativistic tradition of Mathisson,

Papapetrou, and Dixon, see the review article of Dixon[5],

they extended the methods used in general relativity to

metric-affine gravity. They used a multipole expansion

and solved the system up to second order in the corre-

sponding gravitational moments. Their method is exact in

principle, but in practice they stopped to make it explicit

after the second order, i.e., they eventually could solve the

pole/dipole system. Our δ-function approximation may

appear less satisfactory. However, our method is rather

direct and much less time demanding than the approach

of Puetzfeld and Obukhov.

The paper is organized as follows: We first introduce

the basic ingredients and set-up our conventions and no-

tation. Then we briefly discuss the conservation laws of

Metric-Affine Gravity. Subsequently, in Sec.3, by using

the semi-classical approximation, we derive the desired

path equation. The form the latter is reported also for pure

dilation, pure spin, and pure shear charges.

In Sec.4, we investigate the so-called geometrical ‘trin-

ity’ of gravity as formulated in [7]. We will point out, for

the first time, that this ‘trinity’ claim is unjustified for all
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practical purposes. As soon as one additionally consid-

ers the equations of motion, which are an integral part of

any general-relativistic type theory of gravity, this ‘trinity’

looses its overall meaning.

2. Conservation laws in metric-affine gravity

The sources of Metric-Affine Gravity are the canonical

and metrical energy momentum tensors along with the hy-

permomentum tensor. They are defined as

Σ
µ
ν :=

∂LM

∂(∇µψA)
∇νψA − δµνLM , (1)

tµν := − 2
√−g

δ(
√−gLM)

δgµν
, (2)

and

∆
µν
λ

:= − 2
√−g

δ(
√−gLM)

δΓλµν
, (3)

respectively, where LM is the matter Lagrangian. The

metrical energy-momentum is symmetric by default

whereas the canonical one is asymmetric in general.

These energy and hypermomentum tensors excite

spacetime curvature, torsion, and nonmetricity which, in

our conventions, read, respectively:

Rλ
ρµν = 2∂[µΓ

λ
|ρ|ν] + 2Γλσ[µΓ

σ
|ρ|ν], (4)

S µν
λ = Γλ[µν], and Qλµν = −∇λgµν. (5)

We are working in the exterior calculus framework.

Then the invariance of the matter action under diffeomor-

phisms and the general linear group GL(4,R) leads to the

conservation laws [8, 9, 10] (here expressed in a holo-

nomic frame):

1
√−g

(∇µ − 2S µ)(
√
−gΣ

µ
α) =

−2S αµνΣ
µν +

1

2
Rλµνα∆

λµν − 1

2
Qαµνt

µν, (6)

1

2
√−g

(∇ν − 2S ν)(
√
−g∆

µν
λ ) = Σ

µ
λ − t

µ
λ. (7)

This is the most general form of the conservation laws of

Metric-Affine Gravity.

An alternative form is obtained if we expand out the

covariant derivative in terms of the Levi-Civita connection

plus the distortion tensor Nλ
µν. We have

Nλ
µν := Γλµν − Γ̃λµν. (8)

All Riemannian quantities, that is, the ones computed

with respect to the Levi-Civita connection, will be de-

noted by a tilde. After some elementary algebra, we find:

∇̃µΣµα = (S µνα − 2S αµν + Qµνα)Σ[µν] +
1

2
Rλµνα∆

λµν

+
1

2
Qαµν(Σ

(µν) − tµν), (9)

∇̃ν∆ µν
λ = 2(Σ

µ
λ − t

µ
λ) − N

µ
αβ∆

αβ
λ + Nα

λβ∆
µβ
α . (10)

Noting also the relation

N[νµ]α = S µνα − 2S α[µν] + Q[µν]α, (11)

Eq.(6) can be rewritten as

∇̃µΣµα =
1

2
Rλµνα∆

λµν+
1

2
Qαµν(Σ

(µν)−tµν)−NµναΣ
[µν]. (12)

After some trivial algebra, the last equation can be refor-

mulated as

∇̃µΣµα =
1

2
Rλµνα∆

λµν + Nνµα(Σµν − tµν). (13)

The advantage of Eqs.(10) and (13) is that they both

contain the Levi-Civita covariant derivative, meaning that

we can freely move the metric in and out of them and

perform the various contractions and raising/lowering of

the indices. Moreover, we can fully eliminate tµν from

(13) by employing (7). Furthermore, we perform a post-

Riemannian expansion on the curvature. This results in1

∇̃µΣµα =
1

2
R̃λµνα∆

[λµ]ν +
1

2
∇̃λ(∆µνλNµνα) − 1

2
∆λ

µν∇̃αNλ
µν.

(14)

At this stage, our Eqs.(14) and (10) are the main results.

1In exterior calculus, the energy-momentum law of Metric-Affine

Gravity can be formulated very compactly, see [4, Eq.(52)]:

D̃ [Σα + ∆
βγ(eα⌋Nβγ)] + ∆βγ ∧ (£eαNβγ) = τβγ ∧ (eα⌋R̃γβ).

Our set of conservation laws here maps to Eqs.(55) and (56) of [3] by the

substitutions Σi
k
7→ Σ i

k
, ti j 7→ −ti j , ∆

ik
j
7→ −2∆i k

j
, and Γl

ik
7→ Γ l

ki
.
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3. Test particle equations of motion in metric-affine

gravity

An energy-momentum tensor describes the densities of

the fluxes of energy and momentum at a certain point of

spacetime. For a particle with intrinsic spin, its momen-

tum density pν is no longer proportional to its transport

velocity uµ, a fact which can be extracted from the Dirac

theory of the electron. The analogous is true more gener-

ally for a particle with intrinsic hypermomentum. Hence,

using a semiclassical approximation, we arrive for the

canonical energy-momentum tensor at the form2

Σµν = uµpν. (15)

For the hypermomentum tensor we assume a similar con-

vective form,

∆λ
µν = uνdλ

µ, (16)

which proves to be a valid ansatz in many actual appli-

cations. In Eq.(16), dλ
µ represents the hypermomentum

density.

As metric (Hilbert) energy-momentum tensor we take

here, by hypothesis, that one of a structureless point par-

ticle, see Weinberg [13] and also Papapetrou [14] and

Adler, Bazin, and Schiffer [15],

tµν =
1
√−g

muµuν
dτ

dt
δ(3)(~x − ~xp(t)). (17)

Here m is the mass of the particle and ~xp(t) its position in

3-space. Analogously, in the limit where the particle be-

comes pointlike, the above expressions for the canonical

energy-momentum and hypermomentum tensors take the

forms

Σµν =
1
√−g

uµpν
dτ

dt
δ(3)(~x − ~xp(t)) (18)

and

∆λ
µν =

1
√−g

uνhλ
µ dτ

dt
δ(3)(~x − ~xp(t)), (19)

2This ansatz is inspired by the physical interpretation of the canoni-

cal energy-momentum tensor: The canonical energy-momentum tensor,

according to its physical definition, describes the transport of energy-

momentum. If we assume that the momentum density pν is transported

with the flux velocity uµ, then we have Σµν = uµpν . This is a so-called

convective ansatz.

respectively. We are approximating in this article the test

particles as point particles. We use the Dirac delta func-

tion as technical tool. Then integrals of densities of some

rank-2 tensor field Aµν do make sense since in this case,

and only then, the outcome of the integration is a true ten-

sor [15]: ∫
d3x
√
γAµν. (20)

Here γ is the determinant of the spatial metric tensor γi j.

For the cases of above, one finds the canonical and the

metric energy-momentum tensors as

∫
d3x
√
γΣµν = uµPν (21)

and ∫
d3x
√
γtµν = muµuν, (22)

respectively. Here

Pν :=

∫
d3x
√
γpνδ

(3)(~x − ~xp(t)) (23)

is the total momentum. Similarly, the total hypermomen-

tum reads:

Hλ
µ :=

∫
d3x
√
γhλ

µδ(3)(~x − ~xp(t)). (24)

With the definitions of above, we integrate Eq.(10) and

obtain immediately

uµPν = muµuν+
1

2

D̃Hνµ

dτ
+

1

2
uβ(Nαν

βHα
µ−Nµ

αβHνα), (25)

where D̃
dτ

:= uα∇̃α. Contracting by uµ, we arrive at the

momentum-velocity equation

Pν = muν− 1

2
uµ

D̃Hνµ

dτ
− 1

2
uµuβ(Nαν

βHαµ−NµαβHνα). (26)

This demonstrates our aforementioned statement that the

momentum of the point particle, if hypermomentum is

present, is not fully aligned to its velocity! In terms of

the full covariant derivative, it assumes a more compact

form:

Pλ = muλ + ξλ, with ξλ := −1

2
uµuν∇νHλ

µ. (27)
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Now we are going to derive the equation of the path.

We simply integrate (12) over a 3-ball enclosing the point

particle, use the semiclassical approximation and equa-

tions (21)-(24). We assume that curvature and distortion

vary slowly in the proximity of the particle. Eventually,

we arrive at

D̃Pν

dτ
=

1

2
HαβuγR ν

αβγ −N ν
αβ u[αPβ]+

1

2
Qν

αβuα(Pβ−muβ).

(28)

We have also used the fact that ∇̃µuµ = 0 which ensures

that there is no accumulation/depletion of particles, given

that we are considering a single point particle. Equa-

tion (28) yields the trajectory of a test particle that is

hypermomentum-charged in spaces with torsion and non-

metricity. Note that our result agrees with the one ob-

tained in [16] in the limiting case of vanishing nonmetric-

ity and hypermomentum of a purely spin type, that is,

∆αµν = σαµuν, where σµν is the spin density tensor. Of

course Eq.(28) governs the evolution of momentum along

the particle’s trajectory. In order to get the actual equation

of the path, we must substitute (26) into the latter.

Equation (27) yields

ξν = −1

2
uµ

D̃Hνµ

dτ
− 1

2
uµuβ(Nαν

βHαµ − NµαβHνα). (29)

We substitute Pµ = muµ + ξµ into (28). Then we arrive at

the final form of the differential equation whose solution

yields the trajectory of the particle:

m

(
d2xν

dτ2
+ Γ̃ναβu

αuβ
)
=

1

2
HαβuγR ν

αβγ

−uµ∇̃µξν +
(1

2
Qν

αβ − N ν
[αβ]

)
uαξβ. (30)

Here the mass conservation equation ∇̃µ(muµ) = 0 has

been employed.3 Noting also the relation Qναβ = 2N(αβ)ν,

the last term simplifies and we arrive at the final expres-

sion

m

(
d

2
x
ν

dτ2
+Γ̃
ν

αβ
u
α
u
β

)
=

1

2
H
αβ

u
γ

R
ν

αβγ
−u
µ
∇̃µξ

ν
+N

ν

βα
u
αξβ.

(31)

3In general, it is also possible to put Regge trajectories into Metric-

Affine Gravity, where the conservation law for mass does’t make sense.

Under such conditions, we would have an additive term − dm
dτ uν appear-

ing on the right-hand side of (30).

The first term on the right-hand side is of the Mathisson-

Papapetrou type [17] (see also [5]) and the rest are addi-

tional forces in the form of hypermomentum-derivative

and hypermomentum-distortion couplings. Of course

for particle with no microsctructure (identically vanish-

ing hypermomentum) this reduces to the usual geodesic

equation—as it should.

To have a complete picture of the dynamics of the test

particle we should also have an evolution equation for hy-

permomentum. But this we already have. Indeed, solv-

ing (25) for the derivative of Hνµ we derive the evolution

equation

D̃Hνµ

dτ
= 2uµ(Pν − muν) + uβ

(
Nαν

βHα
µ − Nµ

αβHνα
)

(32)

The latter along with (31) forms a coupled system of dif-

ferential equations that fully describe the dynamics of the

test particle. Alternatively, one may use the momentum

equation combined with (32) instead which may also be

expressed in the more compact form

D̃Pν

dτ
=

1

2
HαβuγR ν

αβγ + N ν
βα uα(Pβ − muβ). (33)

The system of equations (33) and (32) is equivalent to that

of (31) and (32) and the actual choice is a matter of pref-

erence. Let us note an immediate conclusion that can be

drawn from (33). We see that for teleparallel geometries

(i.e. R ν
αβγ ≡ 0) there can be no Mathisson-Papapetrou

force on the right-hand side of (33). This observation

already puts a limitation on the reach that these theories

have. Our result seems to support earlier conclusions, see

[20, p.41], that within teleparallelism spinning matter is

not allowed for consistency reasons.

Finally, in order to get an even better physical picture,

let us perform a post-Riemannian expansion of the curva-

ture tensor that appears on the right-hand side of (33). A

trivial calculation reveals,

D̃Pν

dτ
=

1

2
σαβuγR̃ ν

αβγ +
1

2
Hαβ

D̃Nαβ
ν

dτ
− 1

2
Hαβuγ∇̃νNαβγ

+
1

2
Hαβuγ(NαργN

ρ ν
β
− N ν

αρ N
ρ
βγ

) + N ν
βα uα(Pβ − muβ).

(34)
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or equivalently,

D̃Pν

dτ
=

1

2
σαβuγR̃ ν

αβγ +
1

2

D̃(HαβNαβ
ν)

dτ
− 1

2
Hαβuγ∇̃νNαβγ,

(35)

where σαβ := H[αβ] is the spin part of hypermomentum.

Note that only this part couples to the Riemannian curva-

ture R̃ ν
αβγ . Let us stress out that this is in perfect agree-

ment with the multipolar expansion result of [11].

We shall now become more specific and consider a par-

ticle that is charged with dilation, spin, and shear, respec-

tively.

3.1. Pure Dilation Case

Let us consider a point particle that is charged only with

dilation. In this case, its hypermomentum is of the form

∆̂
µν
λ
= δ

µ
λ
∆ν, (36)

where ∆µ = ∆uµ is the dilation current, with ∆ being the

dilation charge density. In this case, Eq.(25) takes the

form

uµPν = muµuν +
1

2
gµνdiv∆, (37)

where div∆ := 1√−g
∂α(
√−g∆α) is the divergence of the

dilation current. Contracting Eq.(36) by hµν = gµν + uµuν,

we find as a consistency relation

div∆ = 0. (38)

Thus, the dilation current is a conserved vector current.

Moreover, expanding the latter, we have 0 = ∇̃µ(∆uµ) =

∆̇ + ∆∇̃µuµ. Thus, combining Eq.(38) with ∇̃µuµ = 0, it

follows that, quite remarkably, the dilation charge does

not change along the particle’s motion. Consequently,

this ∆ = const. is similar to the constancy of the electric

charge. The momentum-velocity equation, in this case,

reads

Pµ = muµ. (39)

It is unaffected by the dilation and retains its usual (clas-

sical) linear form. It also follows that ξν = 0. Then the

path equation reduces to

d2xν

dτ2
+ Γ̃ναβu

αuβ =
1

2m
∆µ∂

[µQν]. (40)

Consider now the right hand side of Eq.(40). Since the

dilation current is of the form ∆µ = ∆uµ, we see that on

the right-hand side of (40) appears a Lorentz-type force,

which influences the motion of a dilation charged particle

in this non-metric background.

3.2. Pure Spin Case

When the particle at hand is only charged with spin, the

hypermomentum is antisymmetric in the first two indices,

that is, ∆̂αµν = ∆̂[αµ]ν . In many practical applications it

reads as follows:

∆[αµ]ν = uνσαµ, (41)

with σµν = −σνµ being the spin tensor satisfying the

Frenkel condition σµνuν = 0. Under these circumstances,

the momentum-velocity equation (26) takes the form

Pν = muν +
1

2
uµ

D̃σµν

dτ
− 1

4
σµνuαuβ(4S µαβ + Qµαβ). (42)

Note that the mass of the point particle is still given by

the expression m = −Pµuµ; this is a consequence of the

Frenkel condition and the antisymmetry of the spin tensor.

Using these results, the path equation (31) now reads

m

(
d2xν

dτ2
+ Γ̃ναβu

αuβ
)
=

1

2
σαβuγR ν

[αβ]γ + f ν + N ν
βα uαξβ,

(43)

where ξν is the part subsequent to muν in equation (42)

and

f ν := −uα∇̃αξν = −
1

2

D̃2σµν

dτ2

+
1

2

−
D̃σµ

ν

dτ
+ σανuβ(4S µαβ + Qµαβ)

 ãµ (44)

+
D̃σµν

dτ
uαuβ(4S µαβ + Qµαβ) +

1

4
σµνuαuβ

D̃(4S µαβ + Qµαβ)

dτ
.

Here ãµ := uα∇̃αuµ denotes the conventional Riemannian

acceleration.

3.3. Pure Shear Case

If the particle carries only a shear charge, we have a

proper traceless hypermomentum tensor [1, 18], viz.

∆̂αµν = ∆̂(αµ)ν = Jαµuν , gαµJαµ = 0. (45)
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Interestingly enough, the above tracelessness condition

ensures that the relation

m = −Pµuµ (46)

still holds true even in this case. This can be easily seen by

contracting (25) with gµν. Therefore in all three cases of

interest (pure dilation, spin, and shear), the mass relation

(46) remains valid. In the present shear case, the path

equation of the point particle becomes

m

(
d2xν

dτ2
+ Γ̃ναβu

αuβ
)
=

1

2
Jαβuγ

(
gµν∇[γQµ]αβ − 2S γ

νλQλαβ

)

−uµ∇̃µξν + N ν
βα uαξβ. (47)

We further compute

ξν = −1

2
uµ

D̃Jµν

dτ
− 1

2
uµuβ(NµαβJνα − Nαν

βJαµ). (48)

We may then plug back to Eq.(47) and arrive at a force

with terms similar to (3.2).

To recap, the trajectory of a particle fully charged under

hypermomentum (all three currents) obeys equation (31),

while if it is charged only under dilation, spin, or shear

separately, it obeys (40), (43) or (47), respectively. The

corresponding dynamics of the hypermomentum piece

Hνµ is contained in eq. (32).

4. A geometric ’trinity’ of gravity?

The so-called geometric trinity [7] asserts that gravity

can be formulated in three equivalent ways:

metric theory: R , 0, S = 0, Q = 0; (49)

metric teleparallelism: R = 0, S , 0, Q = 0; (50)

symmetric teleparallelism: R = 0, S = 0, Q , 0. (51)

A crucial difference among the three cases is that, in the

case (49), hypermomentum vanishes by default, whereas

in the two latter cases (50) and (51), respectively, hyper-

momentum will be non-vanishing in general. Thus, for

the trinity to be valid, the motion of test particles should

be the same in all three cases, otherwise there can be no

equivalence. To explore the particle trajectories for each

case, it is convenient, for the case (49), to cast the path

equation (31) into the form

m

(
d2xν

dτ2
+ Γ̃ναβu

αuβ
)
=

1

2
∆̂αβγR ν

αβγ − gλνuα
tp

∇α ξλ. (52)

Here
tp

∇α ξλ = ∂αξλ −
tp

Γ
β
λαξβ = ∇αξλ − 2S

β
αλ ξβ is the

covariant derivative with respect to the transposed con-

nection
tp

Γ
β
λα = Γ

β
λα + 2S

β
αλ = Γ

β
αλ.

Now let us see how far the trinity goes. First of all,

we note that for metric theories (49) the hypermomentum

tensor vanishes by default. Then Eq.(52) reduces to the

usual geodesic equation:

d2xν

dτ2
+ Γ̃ναβuαuβ = 0. (53)

Consequently for the equivalence to exist, the same equa-

tion should hold true for metric (50) and symmetric (51)

teleparallelism as well. Let us investigate. In both cases

(50) and (51), we have a flat connection, that is, Rα
βµν≡0.

Therefore the first term on the right-hand side of Eq.(52)

vanishes. The point particle will then follow a geodesic

iff

uα
tp

∇α ξλ = 0. (54)

Of course one immediately recognizes that such a con-

dition highly constrains the form of the hypermomen-

tum that these theories allow for. For sensible theories,

Eq.(54) must follow from the connection field equations.

The instances where this is identically satisfied are the two

teleparallel equivalents for which the gravitational actions

are just the torsion scalar and the nonmetricity scalar, re-

spectively. Indeed, in both of these cases it can be shown

that the connection field equations imply that

(∇ν − 2S ν)(
√
−g∆̂

µν
λ ) = 0. (55)

This results in a vanishing ξλ yielding, therefore, the

geodesic equation in the end. However, this is a strong

constraint on the hypermomentum. Furthermore, by

means of Eq.(7), we see that this condition also de-

mands that the canonical energy-momentum tensor co-

incides with the metrical one, which cannot be valid in

general. It is known, for instance, that for fermionic mat-

ter the canonical energy-momentum tensor is not symmet-

ric. Accordingly, it cannot coincide with the metric one.
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As a result we see that the ’trinity’ holds only for highly

constrained hypermomentum or for no hypermomentum

at all.

Wolf and Read [19] even argue that “The actions of

all three theories are equivalent up to a total divergence

term—in this sense, all three theories are dynamically

equivalent.” As we saw from studying the equation of mo-

tion of test particles—which are always an integral part

of any gravitational theory of a general-relativistic type—

this statement is misleading since the equations of motion

of test particles destroy this ‘trinity’ radically.

5. Conclusions

Using the conservation laws of Metric-Affine Gravity

and the semiclassical approximation, we have derived the

equations of motion governing the trajectory of a point

test particle, supported by a Dirac δ-function, and carrying

hypermomentum in spaces with torsion and nonmetricity.

In the most general case (that is, a particle possessing all

spin, dilation and shear charges), the system of the differ-

ential equations describing the particle’s trajectory is (31).

The actual curve swept out by the test particle (influenced

by the non-Riemannian features of space) is then found

by the solution of the system (31). When the particle car-

ries only one of the dilation, spin, and shear currents, the

path equation reduces to (40), (43) and (47) respectively.

Finally, we have also addressed the case of the geomet-

rical trinity of gravity and concluded that for the trinity

to hold the hypermomentum of the particle must be either

vanishing or highly constrained.
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