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Sampling reduced density matrix to extract fine levels of entanglement spectrum
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Low-lying entanglement spectrum provides the quintessential fingerprint to identify the highly
entangled quantum matter with topological and conformal field-theoretical properties. However,
when the entangling region acquires long boundary with the environment, such as that between long
coupled chains or in two or higher dimensions, there unfortunately exists no universal yet practical
method to compute the entanglement spectra with affordable computational cost. Here we propose
a new scheme to overcome such difficulty and successfully extract the low-lying fine entanglement
spectrum (ES). We trace out the environment via quantum Monte Carlo simulation and diagonalize
the reduced density matrix to gain the ES. We demonstrate the strength and reliability of our method
through long coupled spin chains and answer its previous controversy. In addition, 2D examples
have also been displayed which reveal the continuous symmetry breaking phase through a tower of
states ES. Our simulation results, with unprecedentedly large system sizes, establish the practical
computation scheme of the entanglement spectrum with a huge freedom degree of environment.

Introduction.- Quantum informatics and condensed
matter physics have been increasingly cross-fertilizing
each other in recent years [I, 2]. Within this trend,
quantum entanglement was proposed to detect the field-
theoretical and topological properties of quantum many-
body systems [3H6]. For example, it usually offers the
direct connection to the conformal field theory (CFT)
and categorical description [fHI7]. Beyond the entangle-
ment entropy (EE), Li and Haldane proposed that the
entanglement spectrum (ES) is a more fundamental en-
tanglement characteristic to quantify the intrinsic infor-
mation of many-body systems [I8422]. They also sug-
gested a profound correspondence between the ES of an
entangled region with the energy spectra on the related
virtual edges, which is the so-called Li-Haldane conjec-
ture. Thereafter, low-lying ES has been widely used as
a fingerprint to investigate CFT and topology in highly
entangled quantum matter [23-42].

However, most of the ES studies so far have focused
on (quasi) 1D systems numerically, due to the exponen-
tial growth of computation complexity and memory cost.
The existing numerical methods such as the exact diago-
nalization (ED) and the density matrix renormalization
group (DMRG) have significant limitations for approach-
ing large entangling region. We note that the quantum
Monte Carlo (QMC) is a powerful tool for studying large
size and higher dimensional open quantum many-body
systems [43, 44], which has been developed to extract
the entanglement spectral function combined with nu-
merical analytic continuation [37H39, 45H56]. Though
the method overcomes the exponential wall problem and
can obtain large-scale entanglement spectral functions,
it has rough precision and fails to distinguish the fine
levels while the level structure always carries important
information of CFT and topology. Moreover, the spectral
function is also different from the full spectrum, which we
will further compare to demonstrate that their character-

istics sometimes may be totally different. The other way
to extract ES through QMC is to reconstruct it accord-
ing to the knowledge of all integer Rényi entropies [57]
because in principle, all the integer Rényi entropies can
be calculated by QMC. The difficulty of this scheme is
that the calculation of n-th Rényi entropy itself is not
an easy task especially for higher n while the higher n-th
entropy contains more information of low-lying levels.

Therefore, a practical scheme to extract fine low-lying
ES with reduced computation complexity is urgent to be
proposed. In this paper, we develop a protocol which
can efficiently compute the ES via quantum Monte Carlo
simulation for the entangling region with long boundaries
and in higher dimensions. It can obtain fine low-lying
levels of ES and is not limited to the freedom degree of
the environment.

To demonstrate the strength of our method, a Heisen-
berg ladder in which we choose one chain as the entan-
gling region has been investigated carefully. Compared
with previous work studying the same system [20, 58], 59],
we can not only address a much larger size with a ground-
breaking record, but also clarify some misunderstandings
in past work |20} [45] through our large-scale calculations.
Furthermore, we calculate a 2D Heisenberg model to re-
veal the nontrivial continuous symmetry breaking phase
using the structure of tower of states in the ES. We have
to emphasize that our method is not limited to these
particular systems, yet it can be widely applied to any
models which can be simulated via QMC.

Method.- In a quantum many-body system, the ES of
a subsystem (entangling region) A with the rest of the
system B (environment) is constructed via the reduced
density matrix (RDM), defined as the partial trace of
the total density matrix p over a complete basis of B,
i.e. pa = Trp(p). The RDM p4 can be interpreted as an
effective thermodynamic density matrix e~*4 through
an entanglement Hamiltonian H 4. The spectrum of the
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FIG. 1. (a) A path integral configuration of a reduced density
matrix. The length of imaginary time is 3, and the time
boundary of B/A is periodic/open; (b) Lattice of the Spin-
1/2 Heisenberg ladder from an overhead view, with spins in
A and B depicted by red and blue circles respectively; (c¢) Its
phase diagram by denoting Jieg = cos 0 and Jrung = sin 6.

entanglement Hamiltonian is usually denoted as the ES.

Due to the exponential growth of the computation
complexity and the memory cost, it is intractable for
the existing numerical methods such as the exact diago-
nalization (ED) and the density matrix renormalization
group (DMRG) to approach entangling regions with long
boundaries and higher dimensions. Because of the finite
computer memory, these numerical methods are limited
to short boundary only. Another way is to extract the
low-lying entanglement spectrum (ES) through the quan-
tum Monte Carlo simulation combined with stochastic
analytic continuation (SAC), both in bosonic [45], 48] [60]
and fermionic systems [37H39]. Especially in bosonic sys-
tems, the ES of spin ladders can be obtained even under
a very long length L = 100 [45]. However, the ES ob-
tained in this way can not show the fine levels but only
the dispersion and weight of the spectral function. Nev-
ertheless, the refined structure of ES; e.g., degeneracy, is
important for identifying the CFT and topology.

The solution comes from QMC + ED: Tracing the en-
vironment via QMC and obtaining the exact low-lying
levels through ED. The weight of RDM element |C'4)(C"|
can be written in the path integral language as

pACA,C;; = Z <CA,CB‘675H|C,/MCB>a ﬂ — 00, (1)
{CB}

where Cy, C') are the configurations of the RDM, and
Cp is the configurations of environment B.

It can be treated as a general partition function under a
special boundary condition along the imaginary time axis
(see Fig.[T{a)), which is much more convenient to be sim-
ulated by quantum Monte Carlo (QMC). We deal with
this special partition function in Eq. in the frame-
work of stochastic series expansion (SSE) method [61-
65]. Of course it can be simulated by other path integral
QMC [66H7I]. The only difference compared with the
normal SSE is that we open the boundary of the imagi-
nary time in the region A and keep the periodic boundary
condition to that of the environment B.

The value of each element in the RDM can be ap-
proached with the frequency of the samplings. It means

that the PAC,,C, is proportional to NCA,C’A /Niotal,
where the N¢, ¢/ is the amount of samplings that the
upper/below imaginary time boundary configuration is
C4/C’ and Niota is the total amount of samplings [72].

Ezample 1:  Antiferromagnetic (AFM) Spin-1/2
Heisenberg Ladder.- To demonstrate the power of our
method, we compute the ES of two-leg Heisenberg ladder
with L = 12, 16, 20, 24 where the entangled boundary
splits the ladder into two chains as shown in Fig. b).
The ES of this model has been carefully studied via ED
for small sizes where L = 10,12, 14 in previous work [20]
and it has a well-known phase diagram (See Fig. [[[c)).
The spins on the ladder are coupled through the near-
est neighbor Heisenberg interactions, where Jioz denotes
the intra-chain strength along the leg and Jyune denotes
the inter-chain strength on the rung. We first simulate
with Jieg = 1 and Jrung = 1.732 (0 = 7/3) at 8 = 100.
The reason for this choice of parameters is that 5 = 100
(T = Jieg/100) is a temperature low enough for a gapped
rung singlet (I) phase which has been studied with ED
in Ref. [20], therefore it is convenient for us to compare
the results.
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FIG. 2. (a)The comparison of low lying entanglement ex-
citation spectra obtained by pure ED and QMC-+ED with
different Monte Carlo steps. The red lines are the results ob-
tained by pure ED and the black dots are the results obtained
by QMC+ED. Here we choose L = 8. (b) Entanglement exci-
tation spectra versus total momenta k in the chain direction
for 6 = /3.

Firstly, we present a comparison of the spectrum ob-
tained through QMC+ED and directly through ED with
system size L = 8, as illustrated in Fig.[2f(a). It is evident
that the spectrum obtained via QMC+ED approaches
that of ED as the sample size increases, and higher energy
levels require a greater number of sampling iterations. It
is easy to be understood because the QMC of course sam-
ples the lower energy configurations with heavier weight
preferentially, thus the low-lying levels converge first.

After demonstrating the power of this method, we want
to answer some physical questions. For example, there is
a contradiction for the ES in the rung singlet (I) phase of
the Heisenberg ladder in previous works [20, [45]. The ES
here is expected to bear the low-energy CFT structure,
i.e., the ground level of ES, &y, will scale as /L = eg +
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FIG. 3. (a) The fitting of velocity v according to the numerical results with different size. (b)The extrapolation of v with 1/L.

(c) Spectral function of the system with size L = 24 and its fitting of v. (d) Entanglement spectrum versus total momenta
k in the chain direction for § = 27 /3. The system size is L = 20. (e) The entanglement spectral function of FM Heisenberg
ladder with L = 20. Its quadratic fitting curve near the gapless point. (f) The quadratic fitting curve in the full entanglement

spectrum.

d1/L? + O(1/L3) where the d; = mcv/6 according to the
CFT predication with the central charge ¢ = 1 and v is
the velocity of ES near the gapless point [20], i.e. the
Cloiseaux-Pearson spectrum of the quantum spin chain,
v|sin(k)| [73]. The fitting for the fine levels of the ES by
ED at L = 14 (its largest size) gave v ~ 2.36 while the
fitting for the rough spectral function of entanglement by
QMC combined with SAC at L = 100 pointed to a double
value v ~ 4.58 [45]. Therefore, the later one thought it
is because the finite size effect of ES is serious. Since our
method avoids the limitation of the environment size, we
can calculate larger sizes to see how the v scales with L.
If the ES has obvious finite size effect, the v certainly
will increase following the size. In Fig. [2b), we give the
the low-lying levels of ES in different sizes which is much
larger than the pure ED’s results, so that we can inspect
the finite size effect here.

The spectra of the system with various system sizes
obtained by QMC-+ED is shown in Fig. [2[(b), and the re-
sults are consistent with the ED results show in Ref. [20].
In the Fig. Bf(a), we fit the velocities of different sizes via
linear functions. All the lines are close to each other,

representing that their velocities are similar. Further-
more, we draw a fitting line for the velocity v of different
size L in Fig. b), which scales to a value in the region
[2.40, 2.45] at infinite size. It turns out that the velocity is
almost unchanged with size L and convergent to ~ 2.41,
which is inconsistent to the result of spectral function by
QMCHSAC where v ~ 4.58.

In order to show the spectral property of the system
and avoid the difference between the ES and entangle-
ment spectral function, we also calculate the spectral
function of entanglement. For a physical observable de-
noted by O, the spectral function S(w) can be written
as

S(w) = = 3" e (] O m) P 6w — (B — Ea), (2)

m,n

where {|n)} and {E,,} are the eigenstates and eigenvalues
of the Hamiltonian H respectively. In the following, we
choose O as the spin operator S*, |m) as the ground
state, and F,, as the ground state energy. The choice is
same as the Ref. [45] which is convenient for comparisons.

Fig. (c) shows the spectral function of the system with



size L = 24 and we also give the velocity v ~ 2.29. It
reveals that the contradiction between the ES and entan-
glement spectral function is not because of the difference
of the definition. We favor the reason that the settings of
some constant are different between the two Refs. |20, 45]

Ezample 2: Ferromagnetic (FM) Spin-1/2 Heisenberg
Ladder.- Furthermore, we simulate the case with ferro-
magnetic Jieg = —1 and antiferromagnetic Jrung = 1.732
at § = 100 on the two-leg Heisenberg ladder for L =
8,12, 16,20 and compare the results with that in Ref. [20],
in which case the ladder is in the gapped rung singlet (II)
phase.

According to Refs. [45] [74H76], the lowest-energy ex-
citations at k = 27 /L corresponds to the one magnon
state and behaves as E = 2J.gsin?(k/2), where Jog is
an effective chain coupling. The results in Ref. [20] did
not show the quadratic behavior due to the small system
size. Other studies explained this non-quadratic disper-
sion via long-range boundary Hamiltonian [22] 58] (9].
Meanwhile, the QMC+SAC simlation at L = 100 in
the Ref. [45] shows the spectral function of entanglement
is indeed a quadratic dispersion, which further demon-
strated the finite size effect of ES here.

In order to check whether the loss of quadratic disper-
sion is because of the finite size effect, we further try to
calculate the ES and its spectral function for larger sizes.
Fig. d) shows the results with L = 20, in which there
is no obvious quadratic dispersion near k = 0. Actually,
we haven’t seen an obvious change of the dispersion from
the linear to the quadratic when increasing the size.

In fact, the answer of the contradiction comes from
the difference between the ES and entanglement spectral
function instead of the finite size effect. The results of the
FM Heisenberg ladder indicates that the spectrum and
spectral function exhibit distinct behaviors at low energy
levels. As it is shown in Fig. [3{e), the ES in L = 20
does not show a quadratic dispersion while the spectral
function does. We try to draw the curve of the spectral
function in the ES levels as shown in Fig. [3(f), which
further demonstrates that the spectral function goes up
quickly beyond the lowest levels of ES. Thus, the spectral
function is not the descender line of full spectrum at all
in this FM case which is opposite to the AFM case. This
is actually the intrinsic reason that the FM ES has no
quadratic dispersion. It also answers that why the top
of the entanglement spectral function [45] is much larger
than the top of the descender line of ES [20].

Two dimensional examples.- We then calculate a pe-
riodic boundary condition (PBC) 20 x 20 square lattice
AFM Heisenberg model with two different cut-geometries
of A. If we choose the A as a chain as the yellow dots (A
region) in Fig. [f|a) displays, it presents a linear disper-
sion ES reflecting the Néel order of this AFM model, as
shown in Figb). What’s more, the linear low-lying lev-
els is the famous tower of states (TOS) structure which
reveals the continuous symmetry breaking here [22] [77-
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FIG. 4. (a) The AFM Heisenberg model on the square lattice.
The dashed lines are to illustrate the bipartition into two
subsystems. The yellow dashed lines illustrate the cutting
method that A is a ring and the red dashed lines illustrate
the method that A’ is a block. For each cutting method, the
other part is denoted as B. We consider the square lattice
model with size 20 x 20. We show the entanglement spectrum
of EH corresponding to (b) A with length L = 20 and (c) A’
with size 4 x 4. The TOS levels are connected by a red line.
All the data are calculated in the total S* = 0 sector.

79). Meanwhile, if we set A as a 4 x 4 region as the
red dots (A’ region) in Fig. [4f(a), the ES also shows a
TOS character as shown in Figc). Usually, the TOS
holds in cornerless cutting cases, this is the first evidence
supporting the TOS also arises in cornered cutting.

The advantage and disadvantage of this method.- We
have to emphasize that the computational complexity of
this method is exponential /polynomial for the freedom
degree of A/B. Since we trace all the freedom degrees
of B and sample them, the complexity of B part is as
same as the normal QMC which increases in the power-
law. At the same time, we sample all the freedom degree
of A without any trace operation, thus its complexity is
proportional to the dimension of the RDM, which is ex-
ponentially increasing. Therefore, the advantage of this
method is that it is basically not limited to the size of
the environment and can obtain the RDM and fine levels
of the ES.

However, because the important information is always
contained in the low-lying ES, while the importance sam-
pling of QMC just presents the low-lying levels first, ac-
tually we can set a cut-off for the sampling to avoid the
additional cost for high levels. For example, if we only
consider the first excited gap of the ES (the Schmidt
gap[80, [§T]), the sampling amount could be small. As
shown in the Fig. a), the first gap converges very
quickly over the Monte Carlo sampling.

To compare with ED, this method can obtain p4 in
a much larger size. To compare with the QMC+SAC
scheme, it is not limited to the cut-geometry between
A and B, and it can extract the fine levels of low-lying
ES [82]. Similarly, although the Bisognano-Wichmann
theorem gives the detailed form of entanglement Hamil-
tonian, it holds under some strict conditions (e.g., the
entanglement region has no corner, the original Hamil-
tonian satisfies translation symmetry) and may lose the
effectiveness in many lattice models [83H86].



Conclusions and outlooks.- We propose a practical
scheme to extract the fine levels of entanglement spec-
trum from the method of quantum Monte Carlo simula-
tion combined with exact diagonalization. It can extract
the fine information of low-lying ES for large-scale quan-
tum many-body systems whose environment has huge
degrees of freedom. Using this method, we answer the
previous contradiction for the entanglement spectrum in
a Heisenberg ladder system. Furthermore, we calculate
the ES of a 2D AFM Heisenberg model within two dif-
ferent cut-geometries. Both the cornered and cornerless
cases show the TOS character which reflects the contin-
uous symmetry breaking here.

In summary, the reduced density matrix can be ob-
tained in larger size via QMC within this frame. There-
fore, other observables such as von Neumann entropy and
off-diagonal measurements can also be extracted in this
way.
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