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Abstract. We investigate the effect of initial conditions on the fluctuations of the

integrated density current across the origin (x = 0) up to a given time t in a one-

dimensional system of non-interacting run-and-tumble particles. Each particle has

initial probabilities f+ and f− to move with an initial velocity +v and −v respectively,

where v > 0. We derive exact results for the variance (second cumulant) of the current

for quenched and annealed averages over the initial conditions for the magnetization

and the density fields associated with the particles. We show that at large times, the

variance displays a
√
t behavior, with a prefactor contingent on the specific density

initial conditions used. However, at short times, the variance displays either linear t or

quadratic t2 behavior, which depends on the combination of magnetization and density

initial conditions, along with the fraction f+ of particles in the positive velocity state

at t = 0. Intriguingly, if f+ = 0, the variance displays a short time t2 behavior with

the same prefactor irrespective of the initial conditions for both fields.

1. Introduction

Active systems are composed of self-propelling particles that consume energy at the

individual level to perform directed motion [1–12]. The breaking of detailed balance

at the microscopic level allows such systems to exhibit behaviors that are distinct

from equilibrium systems such as coherent motion, pattern formation, motility-induced

phase separation (MIPS), amongst others [13–16]. Particularly intriguing is the run and

tumble (RTP) motion, employed by certain active particles, such as bacteria, to adeptly

navigate their surroundings and explore their environment effectively [10–12, 17–24].

During the running phase, bacteria move towards favorable conditions, while tumbling

allows for random reorientation and exploration of new areas. Over the years, the RTP

model has attracted significant attention leading to numerous studies on active particles

such as first-passage properties, clustering and phase separation, large deviations, and

collective motion [11,14,17,20,21,25–28].

In this work, we focus on the role of initial conditions on current fluctuations

in non-interacting run and tumble particles in one dimension. To explore the effect
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of initial conditions on particle systems, two types of initial density profiles can be

considered: (1) a deterministic profile where the positions of particles are initially fixed

(known as the “quenched density” setting), and (2) a random profile that allows for

fluctuations in the initial positions (known as the “annealed density” setting). Active

systems, on the other hand, also introduce an additional degree of freedom in the form

of magnetization or polarization [14,29–32], which opens up the possibility of two more

types of initial conditions: (3) a deterministic initial magnetization profile where the

velocities of particles are fixed initially (termed “quenched magnetization” setting), and

(4) a random initial profile that allows for fluctuations in the initial velocities of the

particles (termed “annealed magnetization” setting).

The quantity of interest is the total number of particles Q, passing into the half-

infinite line (x > 0) up to time t. There have been many studies on the statistics of

Q for different passive systems like non-interacting random walkers, symmetric simple

exclusion process (SSEP), and Kipnis-Marchioro-Presutti (KMP) model, amongst others

using analytical methods like Bethe ansatz, Green’s function methods and macroscopic

fluctuation theory (MFT) [33–39]. The effect of initial conditions on active systems has

been first analyzed systematically in [40] for non-interacting RTPs in one dimension

where the exact expression for the variance of the integrated current Q in the annealed

density and annealed magnetization setting was derived. Later, this study was extended

to incorporate the effect of annealed and quenched magnetization initial conditions

in [41], focusing on step initial density and zero initial magnetization conditions. In

this study, we derive exact expressions of the variance of the integrated current for

general step initial conditions for both the density and magnetization fields. This allows

for a comparison between the fluctuations due to the differences in initial conditions

for both fields at all times. We consider the case where all particles are uniformly

distributed to the left of the origin at time t = 0. Each particle is associated with

initial probabilities f+ and f− to move with velocities +v and −v, respectively, where

v > 0. Current fluctuations in related models of run and tumble particle systems have

also been analyzed in [32,42]. The main focus of our study is to determine the variance

of the current for annealed and quenched averages over the initial conditions involving

both the density and magnetization fields.

Through our analytical investigation, we find that the variance of the current

exhibits a
√
t behavior at large times with a prefactor contingent on the specific density

initial conditions used. This demonstrates that the fluctuations in the initial positions

of particles have an everlasting effect on the variance of Q, unlike the fluctuations in

the initial velocities. However, at short times, the variance shows either a linear t or a

quadratic t2 behavior influenced by the combination of initial conditions for both the

density and magnetization fields, as well as the fraction f+ of the particles with a positive

velocity at t = 0. Such differences in the short-time behavior of variance have also been

observed in previous studies of a single active particle. For example, it was shown

in Ref. [43] that for asymmetric initial magnetization conditions, the mean squared

displacement of a single active Brownian particle in two dimensions exhibits non-diffusive
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Figure 1: Schematic representation of the trajectories of non-interacting run and tumble

particles in one dimension. At time t = 0, all particles are uniformly distributed towards the

left of the origin. The label xi(mi) indicates the initial position(velocity) of the ith particle.

Different colors denote particles with different initial bias velocities.

behavior at short times and the growth exponent of the variance depends crucially on

the initial magnetization initial conditions. A particularly intriguing observation of

our study is that when f+ = 0, meaning there are no particles initially moving with

a positive velocity, the variance displays a t2 behavior at short times. Interestingly,

this behavior remains the same regardless of the initial conditions of the density and

magnetization fields. Another intriguing aspect is the strictly quenched scenario where

both the density and magnetization fields are quenched. In this case, the variance

always exhibits a t2 behavior at short times regardless of the values of f+ and f−.

The specific scenario in which f+ = f− = 1/2 has been systematically examined in

Ref. [41], which is also the usual case studied in the literature, albeit with annealed

magnetization initial conditions. In this work, we extend the scope of these results to

encompass arbitrary values of both f+ and f− and focus on the actual quantitative

dependence of the fluctuations on the initial conditions in both fields. We argue that

the effect of initial conditions goes far beyond the zero magnetization case studied in

Ref. [41] by considering general step initial conditions for the magnetization field.

This paper is organized as follows. In Sec. 2, we introduce the microscopic model

and different averages used in the study. In Sec. 3, we provide a summary of the main

results. We present derivations of the single particle propagators for different initial bias

velocities in Sec. 4. In Sec. 5, we analytically compute the expressions of the variance

of Q for different annealed and quenched initial conditions involving the density and

magnetization fields. We present our conclusions from the study in Sec. 6. Finally, we

provide details pertaining to some of the calculations in Appendix A-Appendix B.
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2. Microscopic model

We consider a one-dimensional box bounded between [−L, 0] with N run and tumble

particles. The dynamics of each particle evolve according to the Langevin equation

∂xi(t)

∂t
= vmi(t), v > 0, 1 < i < N. (1)

The stochastic variable mi(t) switches values between +1 and −1 at a fixed rate γ. For

mi(t) = ±1, the ith particle has a bias velocity ±v at time t. If the initial velocity of a

particle is +v, then the particle is in + state, and if the initial velocity is −v, then the

particle is in − state. This velocity behaves akin to an internal spin state, leading us to

construct a magnetization field corresponding to the active motion of the particles. We

define a density field ρ(x, t) = L−1
∑N

i=1 δ(x−xi(t)) associated with the positions and a

magnetization field m(x, t) = L−1
∑N

i=1 mi(t)δ(x − xi(t)) associated with the velocities

of these active particles. We consider a step initial density profile where all particles

are uniformly distributed to the left of the origin with density ρ, i.e. ρ(x, 0) = ρΘ(−x)

where ρ = N/L and Θ is the Heaviside theta function. Let f+ denote the fraction of

particles with +v velocity and f− denote the fraction of particles with −v velocity at

time t = 0, with f+ + f− = 1. This corresponds to a step initial magnetization profile,

m(x, 0) = (f+ − f−)ρΘ(−x). For f+ = f− = 1/2, m(x, 0) = 0, and this model reduces

to the model studied in [40, 41]. Even though we start with a finite-dimensional box,

we eventually take the limit N → ∞, L → ∞ with N/L → ρ, fixed in our analytical

calculations.

We study the statistics of the number of particles Q, that cross the origin up to

time t. As a particle traverses the origin from left to right or vice versa, it adds +1

or −1 to the current, respectively. Therefore, the integrated current up to time t is

exactly equal to the number of particles on the right side of the origin (x > 0) at time

t. We provide a schematic representation of the dynamics of the particles in Fig. 1. We

next elucidate the various types of averages that can be utilized to examine how the

fluctuations of Q are influenced by the initial conditions.

2.1. Annealed and quenched averages

We consider various types of averages involving the initial positions and the velocities

of particles to study the effect of initial conditions on the fluctuations of Q. Annealed

density (magnetization) setting allows for fluctuations in the initial positions (velocities)

of the particles. However, in the quenched density (magnetization) setting, the initial

positions (velocities) are fixed. We denote the initial positions and bias states of particles

by {xi} and {mi} respectively. The angular bracket ⟨· · · ⟩{xi},{mi} denotes an average

over the history, but with fixed initial positions and velocities of the particles. We also

use two additional averages, denoted by · · · for an average over initial positions and
︷︸︸︷
· · ·

for an average over initial bias states.
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Let us denote by Pa,a(Q, t) the probability distribution of Q where both the initial

positions and velocities are allowed to fluctuate. The initial conditions for positions

and velocities are denoted by the first and second subscripts respectively where “a”

stands for annealed and “q” stands for quenched scenarios. For this annealed density

and annealed magnetization setting, the moment-generating function can be computed

as
∞∑

Q=0

e−pQPa,a(Q, t) =
︷ ︸︸ ︷
⟨e−pQ⟩{xi},{mi} . (2)

We next consider the case where the initial positions of the particles are allowed to

fluctuate, but the velocities are fixed. The flux distribution for this case is represented

as Pa,q(Q, t). The corresponding moment-generating function is expressed as
∞∑

Q=0

e−pQPa,q(Q, t) = exp

[︷ ︸︸ ︷
ln ⟨e−pQ⟩{xi},{mi}

]
. (3)

For the case where both the initial positions and velocities of particles are fixed, the

flux distribution is denoted as Pq,q(Q, t). The moment-generating function for this flux

distribution is given as
∞∑

Q=0

e−pQPq,q(Q, t) = exp

[︷ ︸︸ ︷
ln⟨e−pQ⟩{xi},{mi}

]
. (4)

Finally, we consider the case where the initial positions of the particles are fixed, but

the velocities are allowed to fluctuate. The flux distribution for this case is denoted

as Pq,a(Q, t). The expression for the moment-generating function associated with this

process is given as

∞∑
Q=0

e−pQPq,a(Q, t) = exp

[
ln
︷ ︸︸ ︷
⟨e−pQ⟩{xi},{mi}

]
. (5)

3. Summary of the main results

We focus on the role of initial conditions on the fluctuations of the integrated current

Q. The mean of Q is a self averaging property, i.e. it takes on the same characteristics

regardless of the specific initial conditions [36]. However, the variance displays

interesting differences for various averages involving the initial conditions. We first

consider the annealed density and annealed magnetization setting which allows for

fluctuations in both the positions and velocities of particles at time t = 0. Another

equivalent scenario is the annealed density and quenched magnetization setting where

the positions are allowed to fluctuate, but the velocities are fixed at time t = 0 [41].

In the infinite system size limit, the distributions of Q for both these initial conditions

become identical. This is due to the fact that whether the velocities are kept constant

or allowed to fluctuate makes no difference as the initial positions of particles are

randomized. Therefore, the fluctuations in the initial velocities do not have any effect on
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t → 0 t → ∞
ρvf+t− ρvγ

4
(3f+ − f−) t2 ρ

√
Deff t

π
σ2
a,a(t)

ρvf+t− ρvγ
4

(3f+ − f−) t2 ρ
√

Deff t
π

σ2
a,q(t)

ρvγ
4

(3f+ + f−) t2 ρ
√

Deff t
2π

σ2
q,q(t)

ρvf+f−t+ ρvγ
4

(3f+ − f−) (f+ − f−) t2 ρ
√

Deff t
2π

σ2
q,a(t)

Table 1: Asymptotic behaviors of the variance σ2(t) of the integrated current for different

initial conditions. The initial conditions for density and magnetization fields are denoted by

the first and second subscripts respectively where “a” stands for annealed and “q” stands for

quenched. Here, Deff = v2/(2γ) is the effective diffusion constant for RTP motion in one

dimension. The mean of Q denoted as µ(t) is equal to σ2
a,a(t) = σ2

a,q(t) and is the same for all

initial conditions when the initial positions are randomized.

the distribution of Q (and hence the variance) when the initial positions are randomized.

The exact expression for the variance of Q for these cases can be computed as

σ2
a,a(t) = σ2

a,q(t) =
ρv

4γ

[
2e−tγtγ (III0(tγ) + III1(tγ)) +

(
f+ − f−) (1− e−2tγ

)]
. (6)

As before, the initial conditions for density and magnetization fields are denoted by the

first and second subscripts respectively where “a” stands for annealed and “q” stands

for quenched scenarios. The symbols III0 and III1 denote modified Bessel functions of

order 0 and 1 respectively. The modified Bessel function IIIn(z) of order n is a solution

to the homogeneous Bessel differential equation z2y
′′
(z) + zy

′
(z) − (z2 + n2)y = 0.

The expression in Eq. (6) is also equal to the mean for all initial conditions. For

f+ = f− = 1/2, we obtain the simplified expression [40,41]

σ2
a,a(t) = σ2

a,q(t) =
ρv

2
te−tγ(III0(tγ) + III1(tγ)), for f+ = f− = 1/2. (7)

This is the specific case studied in [40, 41]. Unlike the symmetric case, fluctuations in

the asymmetric case involve an additional exponential term as illustrated in Eq. (6).

Interestingly, this term becomes exactly equal to zero in the symmetric case. This

demonstrates the effect of asymmetry in the initial magnetization initial conditions

explicitly.

The third case we study is the quenched density and quenched magnetization setting

where both the positions and velocities of particles are fixed initially. For this non-trivial

case, the exact expression for the variance in real time is hard to compute. Nevertheless,

it is possible to compute the exact expression of the variance in Laplace space. We define

the Laplace transform of a function f(t) as L [f(t)] = f̃(s) =
∫∞
0

dte−stf(t). We show

that

σ̃2
q,q(s) = ρ

(f+ − f−)

 v

4s(s+ 2γ)
−

vK
(
−8γ(s+2γ)

s2

)
2πs(s+ 2γ)

+
vγ

s(s+ 2γ)
√
s(s+ 4γ)

 .

(8)
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Figure 2: Variance of the time integrated current Q plotted as a function of time t for

different values of f+ and f−. The specific cases displayed are (a) annealed density and

annealed magnetization initial conditions (b) annealed density and quenched magnetization

initial conditions. The points are obtained from direct numerical simulations and the solid

curves correspond to the exact analytical result in Eq. (6). These plots are for the parameter

values ρ = 20, γ = 1, v = 1. We notice that the variance exhibits similar behavior for both

annealed and quenched magnetization initial conditions. Thus we infer that magnetization

initial conditions do not influence the statistics of Q when the density initial conditions are

annealed, regardless of the value of f+. We also observe that the case where f+ = 0 is distinct

from the others, displaying a t2 behavior at short times.

In the above equation, K is the elliptic integral of the first kind defined as

K(m) =

∫ π
2

0

dθ 1/
√

1−m sin2θ. (9)

Equation (8) can be used to extract the asymptotic behaviors of the variance in real-

time and is given in Table 1. Additionally, for symmetric initial conditions with

f+ = f− = 1/2, this expression can be inverted exactly yielding [41]

σ2
q,q(t) =

ρv

4
te−2γt [(2 + πLLL0(2tγ))III1(2tγ)− πLLL1(2tγ)III0(2tγ)] , for f+ = f− = 1/2,

(10)

where LLL0 and LLL1 are modified Struve functions of order 0 and 1 respectively. The

modified Struve function LLLn(z) of order n is a solution to the non-homogeneous Bessel

differential equation z2y
′′
(z) + zy

′
(z)− (z2 + n2)y = 4(z/2)n+1/

(√
πΓ(n+ 1

2
)
)
.

The final case we analyze is the quenched density and annealed magnetization

setting where the positions of particles are fixed, but the velocities are allowed to

fluctuate at time t = 0. For these initial conditions, the exact expression for the variance
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Figure 3: Variance of the time integrated current Q plotted as a function of time t for

different values of f+ and f−. The specific cases displayed are (a) quenched density and

quenched magnetization initial conditions (b) quenched density and annealed magnetization

initial conditions. The points are obtained from direct numerical simulations. The solid

curves for f+ = f− = 0.5 in (a) and (b) correspond to the exact analytical results in

Eqs. (10) and (12) respectively. The dashed curves correspond to the asymptotic behaviors

listed in Table 1. These plots are for the parameter values ρ = 20, γ = 1, v = 1. We observe

that quenched density and quenched magnetization initial conditions consistently result in

suppressed fluctuations at short times, regardless of the value of f+. We also notice that

quenched density and annealed magnetization initial conditions differ from the other cases,

particularly in the behavior observed for f+ = 0 and f+ = 1 cases.

in Laplace space can be obtained as

σ̃2
q,a(s) =

ρv

s3/2(s+ 2γ)

[(
γ√

s+ 4γ
− 1

2

√
s+ 2γ

)(
f+2

+ f−2
)

−
(

2γ√
s+ 4γ

+
√

s+ 2γ −
√

s+ 4γ

)
f+f− +

1

2

√
s+ 2γ

−
√
s

K
(
−8γ(s+2γ)

s2

)
2π

+
1

4

(f+2 − f−2
)
+

1

2

√
s
(
f+ − f−) ].

(11)

For symmetric initial conditions f+ = f− = 1/2, the above expression can be inverted

exactly yielding [41]

σ2
q,a(t) =

ρv

8
te−2γt [(4 + πLLL0(2tγ))III1(2tγ) + (2− πLLL1(2tγ))III0(2tγ)] , for f

+ = f− = 1/2.

(12)

The asymptotic behaviors of the variance for each of the four cases discussed above are

listed in Table 1. We also compare our analytical predictions for the variance of Q with

direct Monte Carlo simulations in Fig. 2 and Fig. 3. Our theoretical predictions align
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remarkably well with the results obtained from Monte Carlo simulations.

We notice from Table 1 that for the special case where f+ = 0 and f− = 1,

the mean and the variance always grow as ρvγt2/4 in the small time limit irrespective

of the initial conditions. This results in suppressed fluctuations, and the short-time

behavior of current fluctuations becomes independent of the initial conditions. This

independence arises because, in the absence of particles initially in the positive state,

the sole factor contributing to the current across the origin is the flipping of particle

states. Consequently, within this flipping time scale, all initial conditions essentially

become identical. The behavior of the mean can be understood as explained below.

Consider a single RTP starting its motion from the location −x0 with x0 > 0 at time

t = 0 in − state (i.e. with velocity −v). The particle cannot cross the origin until it

flips the velocity state. At short times, we can safely approximate that the mean is

dominated by trajectories with a single flip. Let τ be the time taken by the particle to

flip its velocity state. Here, τ is a stochastic variable. For the particle to be able to

cross the origin within a time t > τ , the necessary condition is

x0 + τv < (t− τ)v. (13)

That is, the distance to the location of the particle just before the first flip (before

time τ) should be less than the distance traveled by the particle in the remaining time

interval t− τ . Equation (13) can be rewritten as

τ <
1

2

(
t− x0

v

)
. (14)

Since the distribution of the time gap between consecutive flips is Poissonian, the

probability that the particle will cross the origin within a time t is given as

⟨Q(t)|x0⟩ =
∫ 1

2(t−
x0
v )

0

dτ γe−γτ = 1− e−
γ
2 (t−

x0
v ). (15)

If the density of particles is ρ, the average current is then given as

⟨Q⟩ = ρ

∫ vt

0

dx0

(
1− e−

γ
2 (t−

x0
v )
)
= ρv

t−
2
(
1− e−

1
2
tγ
)

γ

 , (16)

which in the short time limit yields

⟨Q⟩ −−→
t→0

ρvγ

4
t2. (17)

In Sec. 5, we demonstrate that when the initial density conditions are annealed, the

flux distribution consistently follows a Poisson distribution. This holds true regardless

of the initial magnetization conditions. Therefore, both Pa,a(Q, t) and Pa,q(Q, t) are

Poissonian, as evidenced by Eqs. (66) and (70), respectively. Consequently, the mean

value of the distribution is equal to its variance in these cases. Hence, the result

presented in Eq. (17) also applies to the variance when the initial density conditions are
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annealed. This finding aligns with the limiting behavior outlined in Table 1, considering

the parameter choice of f+ = 0 and f− = 1. We also note that for initial conditions

where both the density and magnetization fields are quenched, the variance consistently

follows a t2 behavior at short times, regardless of the specific values of f+ and f−.

4. Single particle propagators

In this section, we provide expressions for the single particle propagators associated

with a run and tumble particle (RTP) in one dimension. We also provide expressions

for the integrals of these Green’s functions. These expressions will be useful in the

analytical calculations presented in the next section. We consider symmetric and

asymmetric initial bias velocities separately. An alternate method to derive the single

particle propagators has also been given in [41]. Here, we employ a Laplace transform

approach to the Fokker-Planck equations governing occupation probabilities. We then

solve these equations with initial conditions and normalization constraints. In contrast,

the derivation outlined in [41] involves solving the matrix equation associated with the

Fourier-Laplace transform of the occupation probabilities.

We consider an RTP starting its motion from the position x = 0 at time t = 0

in one dimension. We use the notation Pm(x, t) to represent the probability density of

the particle to be at location x at time t in the velocity state m, where m = ±. The

evolution equations for this probability density are [17]

∂P+(x, t)

∂t
= − v

∂P+(x, t)

∂x
− γP+(x, t) + γP−(x, t),

∂P−(x, t)

∂t
= + v

∂P−(x, t)

∂x
− γP−(x, t) + γP+(x, t). (18)

The total probability density of being at position x at time t is given as

P (x, t) = P+(x, t) + P−(x, t). (19)

Taking a Laplace transform of Eq. (18) yields

−P+(x, 0) + v
∂P̃+(x, s)

∂x
+ (s+ γ)P̃+(x, s)− γP̃−(x, s) = 0,

−P−(x, 0)− v
∂P̃−(x, s)

∂x
+ (s+ γ)P̃−(x, s)− γP̃+(x, s) = 0. (20)

We consider an ansatz of the form

P̃± = A±e
−λx for x > 0,

P̃± = B±e
+λx for x < 0. (21)

Substituting these solutions into Eq. (20) (away from x = 0) yields

(s+ γ − λv)A+ = γA−,

(s+ γ + λv)B+ = γB−,

(s+ γ + λv)A− = γA+,

(s+ γ − λv)B− = γB+. (22)
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Combining the above equations yields the expression for λ as

λ =

√
s(s+ 2γ)

v
. (23)

Since the total probability density P (x, t) = P+(x, t) + P−(x, t) has to be normalised,

we obtain the condition ∫ ∞

−∞
dx
(
P̃+ + P̃−

)
=

1

s
. (24)

This implies

A+ + A− +B+ +B− =
λ

s
. (25)

This condition along with the initial conditions can be together used to evaluate the

undetermined coefficients A± and B± as we demonstrate in the following subsections.

We consider symmetric and asymmetric initial bias velocities separately.

4.1. Symmetric initial bias velocity

We consider symmetric initial bias velocities of the form

P+(x, 0) = P−(x, 0) =
1

2
δ(x), (26)

where the particle starts from + or − velocity state with equal probability. Integrating

Eq. (20) over x yields

−1

2
+

(s+ γ)

λ
(A+ +B+)−

γ

λ
(A− +B−) = 0,

−1

2
+

(s+ γ)

λ
(A− +B−)−

γ

λ
(A+ +B+) = 0. (27)

Solving Eqs. (22), (25) and (27) yields the expressions for coefficients as

A+ =
vλ+ s

4sv
, A− =

vλ− s

4sv
,

B+ =
vλ− s

4sv
, B− =

vλ+ s

4sv
. (28)

Using the above expressions and the form of ansatz provided in Eq. (21), we directly

obtain [40]

P̃ (x, s) = P̃+(x, s) + P̃−(x, s) = e−|x|λ λ

2s
, (29)

where the expression for λ is provided in Eq. (23).

We define the symmetric Green’s function G0(x, xi, t) as the probability density of

finding an RTP at position x at time t, given that it started from position xi at time

t = 0, with an equal chance of being in the + or − state. The superscript “0” indicates

the symmetric scenario where the particle has an equal probability of being in the + or

− state at time t = 0. Since the evolution equations are invariant under translations,

Eqs. (29) and (23) directly lead to

G̃0(x,−z, s) =
e−

|x+z|
√

s(s+2γ)

v

√
s(s+ 2γ)

2vs
, z = −xi. (30)
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Here, G0(x,−z, s) represents the Laplace transform of the Green’s function for an RTP

that starts with equal probabilities to be in both the + and − states. For step initial

conditions, we consider xi ≤ 0, thus z ≥ 0.

We define the integral of the Green’s function G0(x,−z, t) over the half-infinite line

as

U0(z, t) =

∫ ∞

0

dx G0(x,−z, t), z ≥ 0. (31)

The quantity U0(z, t) corresponds to the probability that a particle starting from the

location −z in a symmetrized velocity state is found towards the right side of the origin

at time t. Using the exact expression in Eq. (30), we derive the expression for U0(z, t)

in Laplace space as

Ũ0(z, s) =

exp

(
−z

√
s(s+2γ)

v

)
2s

. (32)

The integral of the function Ũ0(z, s) over z yields∫ ∞

0

dz Ũ0(z, s) =
v

2s3/2
√
(s+ 2γ)

. (33)

We next define the Laplace transform of the square of the function U0(z, t) as

Ṽ 0(z, s) = L
[
U0(z, t)

2
]
. (34)

This is a useful quantity that enters the computations of the current fluctuations

presented in the next section. The integral of the function Ṽ 0(z, s) over z yields∫ ∞

0

dz Ṽ 0(z, s) =
v

2s3/2

(
1√

s+ 2γ
−

√
s+ 4γ

2(s+ 2γ)

)
. (35)

We provide details regarding the calculation of the above integral in Appendix B.

4.2. Asymmetric initial bias velocity

We next consider asymmetric initial bias velocities where the particle is initialized in

either + or − state.

Case 1: Particle initialized in + state:

We consider asymmetric initial conditions of the form

P+(x, 0) = δ(x), P−(x, 0) = 0. (36)

Here, the particle starts from + velocity state at time t = 0. Integrating Eq. (20) over

x yields

−1 +
(s+ γ)

λ
(A+ +B+)−

γ

λ
(A− +B−) = 0,

(s+ γ)

λ
(A− +B−)−

γ

λ
(A+ +B+) = 0. (37)
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Solving Eqs. (22), (25) and (37) yields the expressions for coefficients as

A+ =
s+ γ + vλ

2v2λ
, A− =

γ

2v2λ
,

B+ =
s+ γ − vλ

2v2λ
, B− =

γ

2v2λ
. (38)

Using the above expressions and the form of ansatz provided in Eq. (21), we obtain

P̃ (x, s) = P̃+(x, s) + P̃−(x, s) =
e−|x|λ

2s

(
λ+ sgn(x)

s

v

)
, (39)

where the expression for λ is provided in Eq. (23) and sgn is the sign function.

Case 2: Particle initialized in − state:

We consider asymmetric initial conditions of the form

P−(x, 0) = δ(x), P+(x, 0) = 0. (40)

Here, the particle starts from − velocity state at time t = 0. Integrating Eq. (20) over

x yields

(s+ γ)

λ
(A+ +B+)−

γ

λ
(A− +B−) = 0,

−1 +
(s+ γ)

λ
(A− +B−)−

γ

λ
(A+ +B+) = 0. (41)

Solving Eqs. (22), (25) and (41) yields the expressions for coefficients as

A+ =
γ

2v2λ
, A− =

s+ γ − vλ

2v2λ
,

B+ =
γ

2v2λ
, B− =

s+ γ + vλ

2v2λ
. (42)

Using the above expressions, we directly obtain

P̃ (x, s) = P̃+(x, s) + P̃−(x, s) =
e−|x|λ

2s

(
λ− sgn(x)

s

v

)
, (43)

where the expression for λ is provided in Eq. (23).

We define the Green’s functions G±(x, xi, t), which represent the probability density

of finding an RTP at position x at time t, given that it started from position xi at time

t = 0, in a fixed velocity state ±. The superscript “±” indicates the asymmetric scenario

where the particle starts from either the + or − state at time t = 0 with a probability 1.

Since the evolution equations are invariant under translations, Eqs. (43), (39) and (23)

directly yield

G̃±(x,−z, s) =
e−

|x+z|
√

s(s+2γ)

v

(√
s(s+ 2γ)± s sgn(x+ z)

)
2vs

, z = −xi, (44)

where sgn denotes the sign function.
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We next define the integral of the Green’s functionG±(x,−z, t) over the half-infinite

line x ≥ 0 as

U±(z, t) =

∫ ∞

0

dx G±(x,−z, t). (45)

The quantity U±(z, t) corresponds to the probability that a particle starting from the

location −z in the velocity state ± is found towards the right side of the origin at time

t. Using Eq. (44) and the definition provided in Eq. (45), we obtain the exact expression

for the Laplace transform of U±(z, t) as

Ũ±(z, s) =
e−

z
√

s(s+2γ)

v

2s

(
1± s√

s(s+ 2γ)

)
. (46)

We integrate the function Ũ±(z, s) over z to yield∫ ∞

0

dz Ũ±(z, s) =
v
(√

s(s+ 2γ)± s
)

2s2(s+ 2γ)
. (47)

We next define

Ṽ ±(z, s) = L
[
U±(z, t)

2
]
, (48)

as the Laplace transform of the square of the function U±(z, t). After performing some

algebraic calculations (details are presented in Appendix B), it can be shown that∫ ∞

0

dz Ṽ ±(z, s) =
v

s(s+ 2γ)

±1

4
+

1

2

√
s+ 2γ

s
− γ√

s(s+ 4γ)
±

K
(
−8γ(s+2γ)

s2

)
2π

 .

(49)

Another useful quantity that enters the computations of current fluctuations is the

Laplace transform of the product of the functions U+(z, t) and U−(z, t). We denote

Ṽ cross(z, s) = L
[
U+(z, t)U−(z, t)

]
, (50)

as the Laplace transform of the product of the functions U+(z, t) and U−(z, t). As

the symmetric Green’s function G0(x, xi, t) is the average of the asymmetric Green’s

functions G+(x, xi, t) and G−(x, xi, t), we have

G0(x, xi, t) =
(
G+(x, xi, t) +G−(x, xi, t)

)
/2, (51)

and consequently

U0(z, t) =
(
U+(z, t) + U−(z, t)

)
/2. (52)

Using Eqs. (34), (48), and (52) we obtain

Ṽ cross(z, s) = 2Ṽ 0(z, s)− 1

2

(
Ṽ +(z, s) + Ṽ −(z, s)

)
. (53)

After performing the integration over z and plugging in the expressions provided in

Eqs. (35) and (49), we obtain∫ ∞

0

dz Ṽ cross(z, s) =
v√

s(s+ 2γ)3/2

1

2
+

γ

s
+

γ
√

s(s+2γ)
s+4γ

s3/2
−
√
s(s+ 2γ)(s+ 4γ)

2s3/2

 .

(54)
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5. Current fluctuations for different initial conditions

In this section, we analytically compute the variance of Q for different initial conditions

involving the density and magnetization fields. Let {xi} denote the positions and {mi}
denote the velocities or bias states of particles at time t = 0. Each position xi is drawn

from a uniform distribution between −L and 0. Here, i ∈ [1, N ] denotes the particle

index with xi < 0. The initial bias state mi can be + with probability f+ or − with

probability f−, with f+ + f− = 1. Thus f+ and f− denote the fraction of positive and

negative biased particles respectively at time t = 0.

We follow similar steps introduced in [40, 41] to compute the current fluctuations

for different initial conditions. Let Ii(t) be an indicator function defined as

Ii(t) =

{
1, if the ith particle is towards the right side of the origin at time t,

0, otherwise.
(55)

The total number of particles N+ to the right side of the origin at time t is thus given

as

N+ =
N∑
i=1

Ii(t). (56)

As mentioned before, the number of particles that cross the origin up to time t is equal

to the number of the particles on the right side of the origin at time t. For a fixed initial

realization of the positions {xi} and the bias states {mi}, the distribution of Q is given

as

P (Q, t, {xi}, {mi}) = Prob. (N+ = Q) =

〈
δ

[
Q−

N∑
i=1

Ii(t)

]〉
{xi},{mi}

.(57)

Here, the angular bracket ⟨· · · ⟩{xi},{mi} denotes an average over the history, but with

fixed initial positions {xi} and bias states {mi}.
We next turn to the computation of the generating function of Q. Multiplying

Eq. (57) with e−pQ and summing over Q yields

∞∑
Q=0

e−pQP (Q, t, {xi}, {mi}) = ⟨e−pQ⟩{xi},{mi} =

〈
exp

[
−p

N∑
i=1

Ii(t)

]〉
{xi},{mi}

. (58)

Since we focus on a non-interacting process, the motion of each particle can be considered

independently. We have the identity e−pIi = 1−(1−e−p)Ii because the indicator variable

Ii can only take values 0 or 1. Inserting this identity in Eq. (58) and considering the

non-interacting nature of particle motion yield

⟨e−pQ⟩{xi},{mi} =
N∏
i=1

[
1− (1− e−p)⟨Ii(t)⟩{xi},{mi}

]
. (59)

The average ⟨Ii(t)⟩{xi},{mi} is the probability that the ith particle starting from the

location xi in the bias state mi is present on the right side of the origin at time t. This
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quantity is connected to the Green’s function Gmi(x, xi, t) as

⟨Ii(t)⟩{xi},{mi} =

∫ ∞

0

dx Gmi(x, xi, t) = Umi(−xi, t), xi < 0. (60)

After inserting Eq. (60) into Eq. (59), we obtain

⟨e−pQ⟩{xi},{mi} =
N∏
i=1

[
1− (1− e−p)Umi(−xi, t)

]
, xi < 0. (61)

As specified before, · · · denotes an average over the initial positions and
︷︸︸︷
· · · denotes

an average over the initial bias states of the particles. In the following subsections, we

consider the effect of these averages separately. By expanding the generating function in

p for each of the four cases, we demonstrate below that the mean of Q remains the same

across all initial conditions. However, the variance displays distinct behaviors depending

on the initial conditions.

5.1. Case 1: Annealed density and annealed magnetization initial conditions

We first consider an initial condition where the initial positions and bias states of

particles are allowed to fluctuate. The flux distribution for this case is denoted as

Pa,a(Q, t). The moment-generating function for this distribution is given in Eq. (2).

The position of each particle is distributed uniformly in the box [−L, 0]. While we

initially consider a system of finite size, we eventually take the limit L → ∞, N → ∞
with N/L → ρ fixed in our analytical calculations. After averaging over the initial

positions in Eq. (61), we obtain

⟨e−pQ⟩{xi},{mi} =
N∏
i=1

[
1− (1− e−p)Umi(−xi, t)

]
=

N∏
i=1

[
1− (1− e−p)

∫ 0

−L

dxi

L
Umi(−xi, t)

]

=

[
1− 1

L
(1− e−p)

∫ L

0

dz Umz(z, t)

]N
, z = −xi. (62)

In this context, mz represents the bias state of the particle located at xi = −z at time

t = 0. Subsequently, after averaging over the initial bias states in the above equation,

we obtain︷ ︸︸ ︷
⟨e−pQ⟩{xi},{mi} =

[
1− 1

L
(1− e−p)

∫ L

0

dz
(
f+U+(z, t) + f−U−(z, t)

)]N
. (63)

In the limit as N and L tend to infinity while keeping the ratio ρ = N/L fixed, we

obtain
∞∑

Q=0

e−pQPa,a(Q, t) =
︷ ︸︸ ︷
⟨e−pQ⟩{xi},{mi} → exp

[
−µ(t) (1− e−p)

]
, (64)
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where

µ(t) = ρ

∫ ∞

0

dz
[
f+U+(z, t) + f−U−(z, t)

]
. (65)

This corresponds precisely to the moment-generating function of a Poisson distribution.

Consequently, Pa,a(Q = N, t) always follows a Poisson distribution with

Pa,a(Q = N, t) = e−µ(t)µ(t)
N

N !
, N = 0, 1, 2, · · · . (66)

The expressions for the mean and variance are thus given as

⟨Q⟩a,a = µ(t),

σ2
a,a = ⟨Q2⟩a,a − ⟨Q⟩2a,a = µ(t), (67)

where µ(t) is defined in Eq. (65). The mean and the variance are the same for annealed

density and annealed magnetization initial conditions which has a particularly simple

form in Laplace space. Using the expression in Eq. (47) to compute the Laplace

transform of Eq. (65), we obtain

µ̃(s) = ρ

f+
v
(√

s(s+ 2γ) + s
)

2s2(s+ 2γ)
+ f−

v
(√

s(s+ 2γ)− s
)

2s2(s+ 2γ)

 . (68)

This expression can be inverted exactly yielding the expression for the mean and variance

as in Eq. (6).

5.2. Case 2: Annealed density and quenched magnetization initial conditions

We next consider an initial condition where the initial positions of the particles are

allowed to fluctuate, but the bias states are fixed. The flux distribution for this case

is represented as Pa,q(Q, t). The corresponding moment-generating function is given in

Eq. (3). Substituting Eq. (62) in Eq. (3), we obtain

exp

[︷ ︸︸ ︷
ln ⟨e−pQ⟩{xi},{mi}

]
= exp

︷ ︸︸ ︷
N ln

[
1− 1

L
(1− e−p)

∫ L

0

dz Umz(z, t)

]
= exp

[
Nf+ ln

[
1− 1

L
(1− e−p)

∫ L

0

dz U+(z, t)

]]
×

exp

[
Nf− ln

[
1− 1

L
(1− e−p)

∫ L

0

dz U−(z, t)

]]
→ exp

[
−ρ(1− e−p)

∫ ∞

0

dz
[
f+U+(z, t) + f−U−(z, t)

]]
= exp

[
−µ(t)(1− e−p)

]
, (69)

which is same as Eq. (64) and µ(t) is defined in Eq. (65). Consequently, Pa,q(Q = N, t)

is also a Poisson distribution with

Pa,q(Q = N, t) = e−µ(t)µ(t)
N

N !
, N = 0, 1, 2, · · · . (70)
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In the large system size limit (L → ∞, N → ∞, N/L → ρ = fixed), the

distribution Pa,q(Q, t) is equivalent to the distribution Pa,a(Q, t). The distinction

between keeping the velocities constant or allowing them to fluctuate does not matter in

the annealed density setting, as the initial positions of particles are randomized. Thus

we obtain the expressions for the mean and variance as

⟨Q⟩a,q = µ(t), (71)

σ2
a,q = ⟨Q2⟩a,q − ⟨Q⟩2a,q = µ(t), (72)

where the expression for µ(t) is provided in Eq. (6).

5.3. Case 3: Quenched density and quenched magnetization initial conditions

We next consider an initial condition where the initial positions and bias states of

particles are fixed. The flux distribution for this case is denoted as Pq,q(Q, t). The

moment-generating function for this flux distribution is given as in Eq. (4). By taking

the logarithm of both sides of Eq. (61), we obtain

ln
[
⟨e−pQ⟩{xi},{mi}

]
=

N∑
i=1

ln
[
1− (1− e−p)Umi(−xi, t)

]
. (73)

Subsequently, we compute the average over the initial positions. We independently and

uniformly select each xi from the interval [−L, 0] and then take the limit as N → ∞,

L → ∞, while keeping the ratio ρ = N/L constant. This yields

ln
[
⟨e−pQ⟩{xi},{mi}

]
=

N

L

∫ 0

−L

dxi ln
[
1− (1− e−p)Umi(−xi, t)

]
→ ρ

∫ ∞

0

dz ln
[
1− (1− e−p)Umz(z, t)

]
, z = −xi. (74)

Next performing the average over initial bias states, we obtain︷ ︸︸ ︷
ln
[
⟨e−pQ⟩{xi},{mi}

]
= ρf+

∫ ∞

0

dz ln
[
1− (1− e−p)U+(z, t)

]
+ ρf−

∫ ∞

0

dz ln
[
1− (1− e−p)U−(z, t)

]
. (75)

The above expression represents the cumulant-generating function for the distribution

Pq,q(Q, t). To obtain the cumulants, we collect terms that occur at the same powers of

p. This allows us to derive the expressions for the mean and variance, which are given

as

⟨Q⟩q,q = µ(t),

σ2
q,q = ⟨Q2⟩q,q − ⟨Q⟩2q,q

= ρ

∫ ∞

0

dz
[
f+U+(z, t)(1− U+(z, t))

]
+ ρ

∫ ∞

0

dz
[
f−U−(z, t)(1− U−(z, t))

]
,

(76)
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where the expression for µ(t) is provided in Eq. (6). To compute the variance, we take

a Laplace transform of the expression for variance provided in Eq. (76) which yields

σ̃2
q,q(s) = ρ

(
f+T̃1(s) + f−T̃2(s)

)
, (77)

where

T̃1(s) = L
[∫ ∞

0

dz
[
U+(z, t)(1− U+(z, t))

]]
=

∫ ∞

0

dz
[
Ũ+(z, s)− Ṽ +(z, s)

]
, (78)

and

T̃2(s) = L
[∫ ∞

0

dz
[
U−(z, t)(1− U−(z, t))

]]
=

∫ ∞

0

dz
[
Ũ−(z, s)− Ṽ −(z, s)

]
. (79)

The functions Ṽ +(z, s) and Ṽ −(z, s) are defined in Eq. (48). Substituting the expressions

provided in Eqs. (47) and (49) in the above equations, we obtain

T̃1(s) =
v

4s(s+ 2γ)
+

vγ

s(s+ 2γ)
√
s(s+ 4γ)

−
vK
(
−8γ(s+2γ)

s2

)
2πs(s+ 2γ)

, (80)

and

T̃2(s) = − v

4s(s+ 2γ)
+

vγ

s(s+ 2γ)
√
s(s+ 4γ)

+
vK
(
−8γ(s+2γ)

s2

)
2πs(s+ 2γ)

. (81)

Combining Eqs. (77), (80) and (81), we obtain the expression for the variance in Laplace

space as in Eq. (8). Performing series expansions, we obtain the following expressions

in the small and large s limits,

σ̃2
q,q(s) −−→

s→0

ρv

4
√
γs3/2

,

σ̃2
q,q(s) −−−→

s→∞

(
3f+ + f−) ρvγ

2s3
. (82)

The small and large s limits correspond to the large and small time behaviors

respectively. Upon inversion of the above expressions, we obtain the limiting behaviors

listed in Table 1.

In particular, for the symmetric case where f+ = f− = 1/2, the variance assumes

a very simple form in Laplace space. Substituting f+ = f− = 1/2 in Eq. (8) yields

σ̃2
q,q(s) = ρ

vγ

s3/2(s+ 2γ)
√

(s+ 4γ)
. (83)

In order to obtain the behavior in time, we perform the inverse Laplace transform of

the above expression. It is convenient to break up the expression as

σ̃2
q,q(s) = f̃(s).g̃(s), (84)

with

f̃(s) = ρ
vγ

s3/2
√
s+ 4γ

,

g̃(s) =
1

s+ 2γ
. (85)
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Each of these expressions can be inverted individually yielding

f(t) = L−1[f̃(s)] = ρvγe−2γtt [III0(2tγ) + III1(2tγ)] ,

g(t) = L−1[g̃(s)] = e−2γt. (86)

Using the convolution theorem

L−1[f̃(s)g̃(s)] =

∫ t

0

dτ f(τ)g(t− τ), (87)

we arrive at the following expression for the variance for the quenched case

σ2
q,q(t) = ρvγe−2γt

∫ t

0

dτ τ [III0(2τγ) + III1(2τγ)] . (88)

Performing this integral, we arrive at the exact expression provided in Eq. (10).

5.4. Case 4: Quenched density and annealed magnetization initial conditions

Finally, we consider an initial condition where the initial positions of the particles are

fixed, but the bias states are allowed to fluctuate. The flux distribution for this case is

denoted as Pq,a(Q, t). The moment-generating function associated with this process is

given in Eq. (5). After calculating the average across initial bias states in Eq. (61), we

arrive at ︷ ︸︸ ︷
⟨e−pQ⟩{xi},{mi} =

N∏
i=1

[
1− (1− e−p)

︷ ︸︸ ︷
Umi(−xi, t)

]

=
N∏
i=1

[
1− (1− e−p)

(
f+U+(−xi, t) + f−U−(−xi, t)

)]
. (89)

Taking a logarithm of the moment generating function yields the cumulant generating

function. From the above expression, we thus directly compute the cumulant generating

function as

ln
︷ ︸︸ ︷
⟨e−pQ⟩{xi},{mi} =

N

L

∫ 0

−L

dxi ln
[
1− (1− e−p)

(
f+U+(−xi, t) + f−U−(−xi, t)

)]
→ ρ

∫ ∞

0

dz ln
[
1− (1− e−p)

(
f+U+(z, t) + f−U−(z, t)

)]
, z = −xi.

(90)

Collecting the terms that appear in the first and second powers of p, we derive the

expressions for the mean and variance of Q as

⟨Q⟩q,a = µ(t),

σ2
q,a = ⟨Q2⟩q,a − ⟨Q⟩2q,a

= ρ

∫ ∞

0

dz
[(
f+U+(z, t) + f−U−(z, t)

) (
1−

(
f+U+(z, t) + f−U−(z, t)

))]
,

(91)
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where the expression for µ(t) is provided in Eq. (6). Since the computation of the

variance in real space is difficult, we turn to the computation of the variance in Laplace

space. From the above expression, we obtain

σ̃2
q,a(s) = ρ

∫ ∞

0

dz
[
f+Ũ+(z, s) + f−Ũ−(z, s)− f+2

Ṽ +(z, s)− f−2
Ṽ −(z, s)

− 2f+f−V cross(z, s)
]
. (92)

The integral of each term in the above expression are provided in Eqs. (47), (49) and (54).

Combining these results, we obtain the exact expression for the variance in Laplace space

as in Eq. (11). The asymptotic forms of this expression are remarkably simple. These

are given as

σ̃2
q,a(s) −−→

s→0

ρv

4
√
γs3/2

,

σ̃2
q,a(s) −−−→

s→∞
f+f−ρv

s2
++

ρvγ

2s3
(
3f+ − f−) (f+ − f−) . (93)

The inverse Laplace transforms of the above expressions yield the limiting behaviors

in time as listed in Table 1. Interestingly, we observe that the short-time behavior of

current fluctuations is determined by the product of the initially present fraction of

particles in the positive and negative states. This sets it apart from other cases where

the leading linear behavior of current fluctuations at short times is solely determined by

the fraction of positive particles. Therefore this specific initial condition induces cross-

correlations between positive and negative states, as also evidenced by the presence of

the cross-term V cross in Eq. (92).

For the symmetric case where f+ = f− = 1/2, the expression in Eq. (11) reduces

to

σ̃2
q,a(s) = ρ

v

2s3/2

( √
s+ 4γ

2(s+ 2γ)

)
. (94)

We can rewrite this expression as

σ̃2
q,a(s) = ρ

v

2s3/2
1√

(s+ 2γ)

(
1

2

√
(s+ 4γ)√
(s+ 2γ)

)
. (95)

We should compare this with the exact expression for the variance for the annealed case

provided in Eq. (68) with f+ = f− = 1/2. We, therefore, have the identity

σ̃2
q,a(s)

σ̃2
a,a(s)

=

(
1

2

√
(s+ 4γ)√
(s+ 2γ)

)
. (96)

In the large s limit, this yields a factor of 2, and in the small s limit this yields a factor

of
√
2 as also observed in previous studies [40,41].

In order to obtain the behavior in time, we perform the inverse Laplace transform

of the expression in Eq. (94). It is convenient to break up the expression as

σ̃2
q,a(s) = h̃(s).q̃(s), (97)
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with

h̃(s) = ρ
v

2s3/2

(√
s+ 4γ

)
,

q̃(s) =
1

2(s+ 2γ)
. (98)

Each of these expressions can be inverted individually yielding

h(t) = L−1[h̃(s)] =
ρv

2
e−2γt [(4γt+ 1)III0(2tγ) + 4γtIII1(2tγ)] ,

q(t) = L−1[q̃(s)] =
1

2
e−2γt. (99)

Using the convolution theorem

L−1[h̃(s)q̃(s)] =

∫ t

0

dτ h(τ)q(t− τ), (100)

we arrive at the following expression for the variance for the quenched case

σ2
q,a(t) =

ρv

4
e−2γt

∫ t

0

dτ [(4γτ + 1)III0(2τγ) + 4γτIII1(2τγ)] . (101)

Performing this integral, we arrive at the exact expression in Eq. (12).

6. Conclusion and discussion

In this paper, we have studied the fluctuations (variance) of the integrated current Q

across the origin up to time t in a one-dimensional system of non-interacting run and

tumble particles. Our analysis involved performing annealed and quenched averages

over general step initial conditions for both density and magnetization fields associated

with the motion of particles. Our analytical findings provide valuable insights into the

dynamic behavior of the fluctuations of Q. At large times, we observed that these

fluctuations grow as
√
t, which indicates the effective diffusive nature of the system

during these times. The behavior of the fluctuations at large times is independent of

the magnetization initial conditions and depends only on the density initial conditions.

Annealed density conditions display larger fluctuations with a factor of
√
2 consistent

with previous findings in the literature [35,36,40,44].

The situation is significantly different at short times, where the magnetization initial

conditions play a crucial role in determining the growth exponent of the fluctuations.

When we have a non-zero fraction f+ of particles in the + velocity state at time

t = 0, the fluctuations display a quadratic t2 growth for quenched density and quenched

magnetization initial conditions. On the other hand, if we employ annealed initial

conditions in either of the fields, the fluctuations exhibit a linear t growth. Notably,

the prefactor for each of these cases strongly depends on the type of density and

magnetization initial conditions used. Interestingly, when f+ = 0, meaning there are

no particles in the + velocity state at time t = 0, the fluctuations exhibit a t2 growth

regardless of the type of initial conditions employed.

Our results highlight how slight variations in initial conditions can result in

significant disparities in the behavior of active systems over time. Although the
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techniques outlined in this paper are specific to non-interacting RTPs in one dimension,

they can also be extended to systems with multiple degrees of freedom at the particle

level, even in higher spatial dimensions. One approach to defining a current in higher

dimensions involves considering N particles uniformly distributed within a specific

region R in space. We define the space outside this region as S. At any given time t,

the current of the system, denoted as Q, represents the number of particles that have

exited region R up to time t, or equivalently, the number of particles present in the

region S at time t. It is possible to generalize many of our results to such a situation,

which could help in understanding the transport properties of non-interacting particles

and the influence of various initial conditions and geometries. Furthermore, despite the

effective diffusive behavior of the fluctuations at late times, previous studies [40] have

shown that the fingerprints of activity are visible in the full large deviation function

in the quenched density and the annealed magnetization setting. It would therefore be

interesting to study the large deviation function for the case where both the density and

magnetization fields are quenched and analyze how the effects of activity persist in such

cases.
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Appendix A. Laplace transform of the square of a function

In this Appendix, we show that the knowledge of the Laplace transform of a function

U(z, t) also yields the Laplace transform of the square of the function. Let us define

Ṽ (z, s) = L
[
U(z, t)2

]
, (A.1)

as the Laplace transform of the square of the function U(z, t). The expression for V (z, s)

can be rewritten as

Ṽ (z, s) =

∫ ∞

0

∫ ∞

0

dt dt′ U(z, t)U(z, t′)e−
s
2
(t+t′)δ(t− t′). (A.2)

Using the integral representation of the Dirac delta function in the above expression,

we obtain

Ṽ (z, s) =
1

2π

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
dt dt′ dk U(z, t)U(z, t′)e−

s
2
(t+t′)eik(t−t′)

=
1

2π

∫ ∞

−∞
dk

(∫ ∞

0

dt U(z, t)e−( s
2
−ik)t

)(∫ ∞

0

dt′ U(z, t′)e−( s
2
+ik)t′

)
. (A.3)
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This is the product of two Laplace transforms, which can be written as

Ṽ (z, s) =
1

2π

∫ ∞

−∞
dk Ũ

(
z,

s

2
− ik

)
Ũ
(
z,

s

2
+ ik

)
. (A.4)

The above expression is extremely useful as it directly computes the Laplace transform

of the square of a function from the knowledge of the Laplace transform of the function

itself.

Appendix B. Details of calculations

In this Appendix, we provide details regarding the calculations presented in the main

text based on the identity provided in Eq. (A.4).

Let us first derive the expression provided in Eq. (35). Using Eqs. (32) and (A.4),

the explicit expression of Ṽ 0(z, s) can be computed as

Ṽ 0(z, s) =
1

2π

∫ ∞

−∞
dk

exp

(
−

z
√
( s
2
−ik)( s

2
−ik+2γ)

v
−

z
√
( s
2
+ik)( s

2
+ik+2γ)

v

)
4
(
s
2
− ik

) (
s
2
+ ik

) . (B.1)

We next compute the integral of the above function over z. This yields

∫ ∞

0

dz Ṽ 0(z, s) =
1

2π

∫ ∞

0

dz

∫ ∞

−∞
dk

exp

(
−

z
√
( s
2
−ik)( s

2
−ik+2γ)

v
−

z
√
( s
2
+ik)( s

2
+ik+2γ)

v

)
4
(
s
2
− ik

) (
s
2
+ ik

) .

(B.2)

The integral becomes simpler if we first perform the z integral and this yields∫ ∞

0
dz Ṽ 0(z, s) =

1

2π

∫ ∞

−∞
dk

2v

(s2 + 4k2)
(√

(s− 2ik)(s+ 4γ − 2ik) +
√

(s+ 2ik)(s+ 4γ + 2ik)
)

(B.3)

The integral above can be done in closed form and has a particularly simple answer.

Let us define the function I0(k) as

I0(k) =

∫
dk

2

(s2 + 4k2)
(√

(s− 2ik)(s+ 4γ − 2ik) +
√
(s+ 2ik)(s+ 4γ + 2ik)

) .
(B.4)

The indefinite integral I0(k) can be explicitly computed as

I0(k) =
1

2s3/2(s+ 2γ)
√

−(2k + is)
×[√

(2k + is)(s+ 2γ)

(
tanh−1

(√
(2k + is)(s+ 2γ)√
s(2k + i(s+ 4γ))

)
− tanh−1

(√
(2k − is)(s+ 2γ)√
s(2k − i(s+ 4γ))

))

+
√

(2k + is)(s+ 4γ)

(
tanh−1

(√
(2k − is)(s+ 4γ)√
s(2k − i(s+ 4γ))

)
− tanh−1

(√
(2k + is)(s+ 4γ)√
s(2k + i(s+ 4γ))

))]
.

(B.5)
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Figure B1: The integral I0(k) provided in Eq. (B.5) plotted as a function of k for fixed

s = 1, γ = 1 (solid purple curve). The integral has a discontinuity across the origin. The

limiting forms limk→∞ I0(k), limk→−∞I0(k), limk→0+I
0(k) and limk→0−I

0(k) are provided

in Eqs. (B.7) and (B.8).

The function I0(k) has the typical behavior provided in Fig. B1. The definite integral

in Eq. (B.3) can be computed simply as∫ ∞

0

dz Ṽ 0(z, s) =
v

2π

(
lim
k→∞

I0(k)− lim
k→0+

I0(k) + lim
k→0−

I0(k)− lim
k→−∞

I0(k)
)
. (B.6)

We need to extract the asymptotic behaviors of I0(k). These can be computed as

I0(k) −−−−→
k→±∞

∓
π
(√

s+4γ
s+2γ

− 1
)

2s3/2
√
s+ 2γ

, (B.7)

and

I0(k) −−−→
k→0±

∓
π
√

s+4γ
s+2γ

4s3/2
√
s+ 2γ

. (B.8)

Combining Eqs. (B.6), (B.7) and (B.8), we obtain the desired result in Eq. (35).

Let us next derive the expression provided in Eq. (49). One can use the Eqs. (46)

and (A.4) and proceed exactly like the symmetric case. It is possible to show that∫ ∞

0

dz Ṽ ±(z, s) =
v

2π

(
lim
k→∞

I±(k)− lim
k→0+

I±(k) + lim
k→0−

I±(k)− lim
k→−∞

I±(k)
)
, (B.9)

where I±(k) has the limiting behaviors

I+(k) −−−−→
k→±∞

∓

 2πγ

s3/2(s+ 2γ)
√
s+ 4γ

−
π + 2K

(
−8γ(s+2γ)

s2

)
4s(s+ 2γ)

 , (B.10)
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I−(k) −−−−→
k→±∞

∓

 2πγ

s3/2(s+ 2γ)
√
s+ 4γ

+
π + 2K

(
−8γ(s+2γ)

s2

)
4s(s+ 2γ)

 , (B.11)

I+(k) −−−→
k→0±

∓
π
(

1
2
√
s+2γ

+ γ
(s+2γ)

√
s+4γ

)
s3/2

, (B.12)

and

I−(k) −−−→
k→0±

∓
π
(

1
2
√
s+2γ

+ γ
(s+2γ)

√
s+4γ

)
s3/2

. (B.13)

Combining Eqs. (B.9)-(B.13), we obtain the result provided in Eq. (49).
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[33] Bernard Derrida, Benôıt Douçot, and P-E Roche. Current fluctuations in the one-dimensional

symmetric exclusion process with open boundaries. Journal of Statistical Physics, 115:717–748,

2004.

[34] Bernard Derrida and Antoine Gerschenfeld. Current fluctuations of the one dimensional symmetric

simple exclusion process with step initial condition. Journal of Statistical Physics, 136(1):1–15,

2009.

[35] Bernard Derrida and Antoine Gerschenfeld. Current fluctuations in one dimensional diffusive

systems with a step initial density profile. Journal of Statistical Physics, 137(5):978–1000, 2009.

[36] PL Krapivsky and Baruch Meerson. Fluctuations of current in nonstationary diffusive lattice



Effect of initial conditions on current fluctuations in active particles 28

gases. Physical Review E, 86(3):031106, 2012.

[37] Kirone Mallick, Hiroki Moriya, and Tomohiro Sasamoto. Exact solution of the macroscopic

fluctuation theory for the symmetric exclusion process. Physical Review Letters, 129(4):040601,

2022.

[38] Rahul Dandekar, PL Krapivsky, and Kirone Mallick. Dynamical fluctuations in the riesz gas.

Physical Review E, 107:044129, 2023.

[39] David S Dean, Satya N Majumdar, and Gregory Schehr. Effusion of stochastic processes on a

line. Journal of Statistical Mechanics: Theory and Experiment, 2023:063208, 2023.

[40] Tirthankar Banerjee, Satya N Majumdar, Alberto Rosso, and Grégory Schehr. Current

fluctuations in noninteracting run-and-tumble particles in one dimension. Physical Review E,

101(5):052101, 2020.

[41] Stephy Jose, Alberto Rosso, and Kabir Ramola. Generalized disorder averages and current

fluctuations in run and tumble particles, 2023.

[42] Tanmoy Chakraborty and Punyabrata Pradhan. Time-dependent properties of run-and-tumble

particles. ii.: Current fluctuations, 2023.

[43] Urna Basu, Satya N Majumdar, Alberto Rosso, and Grégory Schehr. Active brownian motion in

two dimensions. Physical Review E, 98(6):062121, 2018.

[44] Tirthankar Banerjee, Robert L Jack, and Michael E Cates. Role of initial conditions in 1d

diffusive systems: compressibility, hyperuniformity and long-term memory. Physical Review

E, 106:L062101, 2022.


	Introduction
	Microscopic model
	Annealed and quenched averages

	Summary of the main results
	Single particle propagators
	Symmetric initial bias velocity
	Asymmetric initial bias velocity

	Current fluctuations for different initial conditions
	Case 1: Annealed density and annealed magnetization initial conditions
	Case 2: Annealed density and quenched magnetization initial conditions
	Case 3: Quenched density and quenched magnetization initial conditions
	Case 4: Quenched density and annealed magnetization initial conditions

	Conclusion and discussion
	Laplace transform of the square of a function 
	Details of calculations

