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ABSTRACT

This paper aims to build a multi-speaker expressive TTS system,
synthesizing a target speaker’s speech with multiple styles and emo-
tions. To this end, we propose a novel contrastive learning-based
TTS approach to transfer style and emotion across speakers. Specif-
ically, contrastive learning from different levels, i.e. utterance and
category level, is leveraged to extract the disentangled style, emo-
tion, and speaker representations from speech for style and emotion
transfer. Furthermore, a semi-supervised training strategy is intro-
duced to improve the data utilization efficiency by involving multi-
domain data, including style-labeled data, emotion-labeled data, and
abundant unlabeled data. To achieve expressive speech with diverse
styles and emotions for a target speaker, the learned disentangled
representations are integrated into an improved VITS model. Ex-
periments on multi-domain data demonstrate the effectiveness of the
proposed method.

Index Terms— expressive speech synthesis, style transfer, emo-
tion transfer, contrastive learning, semi-supervised

1. INTRODUCTION

In recent years, neural text-to-speech (TTS) synthesis has rapidly
progressed in speech quality and naturalness [1, 2, 3]. With the wide
applications of TTS, there have been increasing demands for expres-
sive speech synthesis systems to provide more human-like speech in
diverse scenarios. Transfer learning has been the favored method for
expressive speech synthesis, which aims to transfer expressiveness
from speech recorded by other speakers to the target speaker [4, 5].

In previous works of expressive speech synthesis, speech ex-
pressiveness usually refers to specific speaking styles or emotional
expressions. These works usually leverage a reference encoder to ex-
tract style or emotional expression from reference speech [6, 7]. The
critical factor for style or emotion transfer is to decouple the speaker
timbre and expressive aspects from speech, as their entanglement
usually leads to low speaker timbre similarity or expressiveness [8]
for the generated speech. There are many approaches to achieve dis-
entanglement, such as domain adversarial training (DAT) [9], mutual
information (MI) [10], and information perturbation [11]. Although
researchers utilizing the above approaches have achieved good per-
formance on style or emotion transfer, they have unclear definitions
of style and emotion and sometimes consider emotion as a type of
speaking style. This indiscriminate treatment of style and emotion
restricts them from being extended to real scenarios requiring the
combination of different emotions and styles.

* Corresponding author.

Therefore, this paper considers transfer style and emotion from
different reference speech simultaneously following the prior inves-
tigation [12], which has pointed out that speaking style is a gen-
eral distinctive style of speech in different usage scenarios, such as
news reading, storytelling, poetry recitation, and spontaneous con-
versation. By contrast, emotion mainly reflects the mood state of the
speaker, related to attitudes and intentions, such as happy, angry, and
sad. Building a system that focuses on both speaking style and emo-
tion transfer in multi-speaker expressive speech synthesis usually
requires multi-domain datasets containing diverse styles, emotions,
and speakers. Meanwhile, speaking style, emotion, and speaker tim-
bre are highly entangled as they all affect the prosody patterns of
speech. Even in a reference-based model, the linguistic content of
reference speech and texts is consistent during training, which causes
entanglement of linguistic content and performance degradation in
inference [13], further increasing the difficulty of disentanglement.
To solve these problems, this previous study [12] designed a two-
stage framework to conduct the disentanglement with neural bottle-
neck (BN) features as the intermediate representation. Specifically,
it proposed a sophisticated disentanglement mechanism by extract-
ing a style/emotion/speaker representation for each category. The
disentangled style/emotion/speaker attribute is treated as temporal
irrelevant since it is aggregated to a fixed-length vector for the same
category. With this assumption, different segments of the same ut-
terance (utterance level) could be involved in extracting the disen-
tangled representations, but this has not been explored in previous
works. Moreover, this two-stage framework has many subsystems in
which the error accumulation of BN prediction results in the degra-
dation of synthetic speech naturalness.

Contrastive learning is a method to learn the desired features
of the data via constructing positive and negative samples. Re-
cently, approaches based on contrastive learning have shown remark-
able performance in many fields, such as computer vision (SIM-
CLR [14], CLIP [15]), reinforcement learning (CURL [16]), and
speech processing (MULAN [17], CLAPSpeech [18]). Besides,
contrastive learning has shown superiority in speech emotion recog-
nition [19, 20], achieving state-of-the-art performance. By respec-
tively minimizing and maximizing the distances of positive and neg-
ative samples [21], contrastive learning has the advantage of extract-
ing latent representations for specific attributes. Besides, through
constructing sample pairs from multiple levels, contrastive learning
exhibits the potential for performance improvements [22].

With the above considerations, this paper investigates the ef-
fectiveness of contrastive learning in the challenging expressive
TTS task that enables multi-speaker, multi-style, and multi-emotion
speech synthesis. Specifically, this paper proposes a novel con-
trastive learning-based TTS approach to transfer style and emo-
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tion across speakers by extracting the desired attribute representa-
tions (i.e., style, emotion, and speaker in this paper). First, we
design a Speech Representation Learning (SRL) module to ex-
tract style/emotion/speaker-only-related vectors by conducting con-
trastive learning from both utterance level and category level. Sec-
ond, we introduce a semi-supervised training strategy to the SRL
module, which can effectively leverage multi-domain speech data,
including style-labeled, emotion-labeled, and unlabeled data. With
this strategy, the SRL can be trained on abundant speech corpus and
provide robust style/emotion/speaker representations for TTS. Fur-
thermore, we integrate the learned representations into an improved
VITS [3] model and conduct experiments on a multi-domain dataset.
Experimental results show that our proposed framework can synthe-
size diverse stylistic and emotional speech for a target speaker who
does not have the target style or emotion in the training data. We
suggest readers listen to our online demos 1.

2. PROPOSED APPROACH

The proposed approach comprises an SRL module and a VITS
model. Based on contrastive learning, the SRL module aims to ex-
tract disentangled style, emotion, and speaker representation from
speech. The VITS model synthesizes speech conditioned on the ex-
tracted representation.
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Fig. 1. The architecture of speech representation learning module.

2.1. Semi-supervised positive and negative sample construction

The key to contrastive learning lies in constructing positive and neg-
ative samples. Typically, Positive samples are constructed through
data augmentation or data from the same category, while negative
samples consist of data from different categories [21, 14]. In our
approach, the objective is to learn style, emotion, and speaker rep-
resentations simultaneously. Therefore, multi-domain training data
including labeled and unlabeled speech data is available to obtain
these disentangled representations. With the diverse training data,
we randomly split speech into speech slices and propose a positive
and negative sample construction strategy at different levels.

• Utterance level: The style, emotion, and speaker timbre are
regarded as global attributes, which change slowly alongside

1Demo:https://zxf-icpc.github.io/MSES/

the time axis within each single utterance, so different slices
of the same utterance can be treated as positive examples of
each other.

• Category level: Speech samples from the same category ex-
hibit highly correlated style, emotional expression, or speaker
timbre. Therefore, speech slices of the same category are pos-
itive examples of each other, while speech slices of different
categories are negative examples pairs.

With the above utterance-level and category-level sample con-
struction method, we further introduce a semi-supervised training
strategy to the contrastive learning, which enables the SRL mod-
ule to leverage abundant speech data and improve the robustness of
the SRL module. Specifically, unlabeled speech data can be used to
construct positive samples at the utterance level, while the category-
level sample pairs of unlabeled data are not involved during training
due to the undefined relationships between the sample pairs. More-
over, randomly Selecting negative samples for unlabeled data will
cause adverse effects [23]. Labeled speech data can be leveraged to
construct sample pairs at both utterance level and category level.

2.2. Contrastive learning module

As shown in Figure 1, the SRL module consists of a speech encoder,
a style decoder, an emotion decoder, and a speaker decoder. The
speech encoder comprises a Hubert model and transformer blocks.
The Hubert model is to extract features from speech for its excep-
tional performance across diverse downstream tasks [24]. Trans-
former blocks encode the Hubert features into three hidden features.
These hidden features are then fed to the style, emotion, and speaker
decoders to produce global style, emotion, and speaker representa-
tions, respectively. We normalize all style, emotion, and speaker
representations to a hypersphere by l2-normalizing. This normal-
ization eliminates information related to the magnitude and reserves
information related to the angular [25], effectively improving the su-
pervision of cosine similarity.

During training, given K speech waveforms, we randomly cut
two speech slices from each speech waveform, forming two sets of
speech slices, Set A and Set B. We calculate a K×K cosine similar-
ity matrix M̂ between the representation of Set A and Set B, where
the value at the position of the ith row and jth column indicates
the cosine similarity between the representation of the ith speech
slice in Set A and jth speech slice in Set B. The ground truth ma-
trix M consists of -1, 0, and 1 values, where 1 represents positive,
0 represents negative, and -1 represents unknown. The SRL module
generates M̂style, M̂emotion, and M̂speaker , and calculate the loss
with corresponding the ground truth matrix Mstyle, Memotion, and
Mspeaker , respectively.

We calculate the contrastive learning loss Lcon between ŷ in
the cosine similarity matrix M̂ and y ground-truth matrix M . Lcon

takes Cross-entropy as the loss function as follows:

Lcon(y, ŷ) =


− log(ŷ) if y = positive,
− log(1− ŷ) if y = negative,
0 if y = unknown.

(1)

Moreover, we further disentangle style, emotion, and speaker rep-
resentation through mutual information (MI) minimization. Given
the random variables u and v, the MI is Kullback-Leibler (KL) di-
vergence between their joint and marginal distributions as I(u, v) =
DKL(P (u, v);P (u)P (v)). We adopt vCLUB [26] to compute the
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upper bound of MI and calculate the MI loss LMI as:

LMI =I(style, emotion) + I(emotion, speaker)

+ I(speaker, style)
(2)

Therefore, the final training objective of the SRL module Lsrl is as
follows:

Lsrl = Lcon + LMI (3)

2.3. Expressive VITS

After training the SRL module, a VITS model is trained on con-
ditioning of the extracted style, emotion, and speaker representa-
tions by contrastive learning. As shown in Figure 2(a), we use
VITS-CLONE [27] as the backbone for its excellent performance
on expressive speech synthesis. Specifically, to improve the control
ability, we replace the stochastic duration predictor and Monotonic
Alignment Search (MAS) module in VITS with the duration pre-
dictor and length regulator in FastSpeech2 [2]. Moreover, we use a
flow-based prosody adaptor, as shown in Figure 2(b), to capture fine-
grained prosody variation of speech and improve the expressiveness
of synthetic speech. The prosody adaptor encodes phoneme level
Zprosody from the reference mel-spectrogram, which is added with
the text encoder output Hin to obtain Hout.

As shown in Figure 2(a), we add the text encoder output and
distribution decoder input with style and emotion representations to
control style and emotional expression. Speaker representations are
conditioned to the flow, posterior encoder, and decoder. The train-
ing objective is the same as that of CLONE. In inference, the SRL
module extracts style, emotion, and speaker representation from ref-
erence speech, which are then sent to the VITS model with text to
synthesize target speech.
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Fig. 2. The architecture of multi-speaker expressive VITS.

3. EXPERIMENTAL SETUPS

3.1. Datasets

There are five corpora involved in the experiments. 1) CN30S3 con-
tains 18.5 hours of Chinese speech from 30 speakers, where each
speaker has one to three styles, including poetry recitation, fairy
tales, and storytelling - novels. 2) CN3E6 contains 21.1 hours of
Chinese speech from 30 speakers, and each speaker in this dataset
has six emotions: anger, fear, happiness, sadness, surprise, and neu-
tral. 3) CN5U has 5.8 hours of Mandarin speech from 5 speakers.

4) EN5U 31.3 hours of English speech from 5 speakers. 5) MIXU
has 900 hours of Chinese and English speech collected from internal
resources without annotations and transcripts.

For all recordings, we down-sample them into 24k Hz and set
the frame and hop size to 1200 and 300, respectively. We cut record-
ings into 3 seconds of speech slices to construct the sample pairs of
contrastive learning. For that speech of less than 3 seconds, we re-
peat them in the time axis until they are more than 3 seconds. We
use a Bilingual TTS front end to encode Chinese text input into
phonemes, tones, word boundaries, and prosodic boundaries while
decoding English text input into phonemes. We leverage Pinyin and
CMU-Dict as the phoneme set. The phoneme duration is obtained
through an HMM-based force alignment model [28].

3.2. Model configuration

To validate the performance of our proposed approach, we imple-
ment the following systems:

• TSEW [12]: A two-stage framework with a Text-to-Style-
and-Emotion module and a style-and-emotion-to-Wave mod-
ule. The former module predicts neural bottleneck features
with style and emotion, while the latter predicts waveforms
from bottleneck features conditioned on the speaker and emo-
tion embedding.

• SCVITS [19]: VITS model with a Supervised-Contrastive
learning module. Specifically, we replace Wav2Vec2.0 with
Hubert for fair comparison and train three models to learn
emotion, style, and speaker representations on the corre-
sponding labeled dataset, respectively. We train the VITS
model on these learned representations with the same con-
figuration as the proposed approach.

• Proposed: The proposed framework with an SRL module
and VITS model.

In our implementation, we use the Chinese-Hubert-Large 2 to
extract features from layer 6 to layer 18. We find that the Hubert
features from a single layer, such as layer 6, perform worse than
those from multiple layers in our experiments. Transformer blocks
consist of 3 layers, 2 attention heads, an embedding dimension of
256, a feed-forward layer dimension of 1024, and a dropout of 0.2.
The structure of style, emotion, and speaker decoders is the same and
follows the structure of the reference encoder in the prior work [12].
The mutual information estimator also follows the settings of [12].
The backbone of expressive VITS keeps the same configuration as
CLONE.

We train the SRL module with a batch size of 96 and the expres-
sive VITS model with a batch size of 48. To balance the labeled and
unlabeled data during the training of the SRL module, the batch is
divided into four equal parts. One-fourth of the batch comes from
style-labeled data, another-fourth comes from emotion-labeled data,
and the third and fourth parts come from speaker-labeled and unla-
beled data, respectively.

3.3. Evaluation metrics

For monolingual TTS evaluation, given 20 reserved transcripts for
each style, we generate samples respectively for each emotion cat-
egory, resulting in 360 listening samples per person (20 texts × 3
styles × 6 emotions). We randomly select two speakers from CN5U

2HuBERT:https://github.com/TencentGameMate/chinese speech pretrain
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Table 1. Results of monolingual subjective evaluation with 95% confidence interval and objective evaluation.

Model Naturalness↑ Emotion Similarity↑ Speaker Similarity↑ Style Similarity↑ CER(%)↓ SCS↑

TSEW 3.94 ± 0.10 3.91 ± 0.11 3.88 ± 0.07 3.85 ± 0.11 6.2 0.866
SCVITS 3.97 ± 0.08 3.84 ± 0.10 3.75 ± 0.11 3.69 ± 0.11 4.8 0.884
Proposed 4.09 ± 0.08 3.96 ± 0.11 3.97 ± 0.07 4.03 ± 0.11 3.0 0.909

- MI 4.01 ± 0.09 3.88 ± 0.10 3.90 ± 0.09 3.88 ± 0.11 4.5 0.893

as target speakers. For multilingual TTS evaluation, we add 20 En-
glish transcripts and generate samples for each emotion category,
resulting in 120 listening samples. We randomly select a speaker
from each of CN5U and EN5U as target speakers.

For subjective evaluation, We conduct Mean Opinion Score
(MOS) experiments to evaluate speech naturalness and Similar-
ity Mean Opinion Scores (SMOS) to evaluate emotion similarity,
speaker similarity, and style similarity, respectively. Twenty volun-
teers with basic bilingual skills take part in the assessment. Dur-
ing the evaluation, participants are told to focus on specific aspects
while ignoring others. For objective evaluation, we use an ECAPA-
TDNN [29] model trained on 3,300 hours of Mandarin speech and
2,700 hours of English speech from 18,083 speakers to measure
speaker cosine similarity (SCS). Moreover, we use an open-source
U2++ conformer model provided by the WeNet community [30] to
evaluate character error rate (CER), and word error rate (WER). The
U2++ conformer model is trained on 10,000 hours of open-source
Gigaspeech English data and WeNet Mandarin data, respectively.

4. EXPERIMENTAL RESULTS

We first evaluate the performance of the proposed approach on
monolingual corpora (CN30S3, CN3E6, and CN5U). Then, we con-
duct experiments on multilingual corpora (CN30S3, CN3E6, CN5U
and EN5U), examining the effectiveness of the proposed approach
in the cross-lingual transfer setting.

4.1. Monolingual subjective evaluation

As shown in Table 1, the proposed approach outperforms the com-
pared models in terms of naturalness, emotion similarity, speaker
similarity, and style similarity. TSEW gets the lowest naturalness,
which we speculate that the error accumulation of BN prediction
leads to this phenomenon. SCIVTS achieve higher naturalness but
the lowest emotion, speaker, and style similarity. The style, emo-
tion and speaker representations are extracted from three indepen-
dent modules, which are probably entangled and lead to low simi-
larity. These results show that our proposed approach obtains well-
disentangled emotion, style, and speaker representations. Besides,
the end-to-end VITS model avoids the error accumulation of in-
termediate representations, enabling flexible and natural expressive
speech synthesis.

Moreover, to verify the advantages of the proposed method, we
remove the mutual information estimator in the SRL module. As
shown in Table 1, the model (-MI) still outperforms the compared
models, showing the effectiveness of contrastive learning. With the
mutual information estimator, the SRL module can better disentan-
gle the style, emotion, and style representation, and the whole model
obtains better performance.

4.2. Monolingual objective evaluation

As shown in Table 1, the proposed approach achieves the lowest
CER, showing the robustness of the proposed framework. More-

over, the proposed approach obtains the highest SCS, indicating the
speaker characteristics are well captured and disentangled. TSEW
gets the worst CER, which we conjecture is due to the two-stage
framework and the error accumulation of BN prediction. Moreover,
SCVITS gets lower speaker cosine similarity, proving that the rep-
resentation learned by SCVITS is not well-disentangled. Removing
MI from the proposed framework leads to a performance decline in
all objective evaluations, demonstrating the effectiveness of MI in
achieving accurate pronunciation and high speaker cosine similarity.

Furthermore, to verify the effectiveness of the SRL module, we
visualize the emotion and style representations through t-SNE [31].
One hundred fifty utterances reserved per emotion and 250 per style
are adopted for test. As shown in Figure 3, the style and emotional
representations are well clustered by corresponding categories, in-
dicating the effectiveness of the SRL model. Moreover, the style
and emotional representations can not be clustered by speaker iden-
tities, showing the good disentanglement between speaker and style,
speaker and emotion.

Fig. 3. T-SNE visualization of style representation (above) and emo-
tion representation (below). We color the results with the corre-
sponding category (left) and speaker category (right).

4.3. Multilingual subjective evaluation

The subjective evaluation results of multilingual TTS are shown in
Table 2; all models exhibit a performance degradation compared to
Table 1, revealing the challenges of cross-lingual expressive speech



Table 2. Results of multilingual subjective evaluation with 95% confidence interval and objective evaluation.

Model Naturalness↑ Emotion Similarity↑ Speaker Similarity↑ Style Similarity↑ CER(%)↓ WER(%)↓ SCS↑

TSEW 3.76 ± 0.12 3.87 ± 0.10 3.61 ± 0.11 3.77 ± 0.10 6.8 9.7 0.847
SCVITS 3.84 ± 0.08 3.80 ± 0.12 3.70 ± 0.11 3.65 ± 0.12 5.7 4.9 0.838
Proposed 4.01 ± 0.07 3.92 ± 0.10 3.90 ± 0.08 4.01 ± 0.09 3.9 2.7 0.896

- MI 3.92 ± 0.10 3.84 ± 0.12 3.77 ± 0.09 3.84 ± 0.12 5.2 3.6 0.852
+ MIXU 4.03 ± 0.08 3.98 ± 0.11 3.95 ± 0.08 4.04 ± 0.10 3.9 2.8 0.903

synthesis. However, the proposed approach demonstrates relatively
minor degradation in performance during cross-lingual expressive
speech synthesis, suggesting its capability to generate fluent and ex-
pressive foreign speech for a given target speaker. TSEW gets the
lowest naturalness due to the unnatural pronunciation in synthetic
English speech, which also affects the listeners’ judgment in speaker
similarity evaluation. Primarily, BN in TSEW is extracted through
a robust TDNN-F model trained with 30k hours of Chinese speech
data, resulting in inaccurate pronunciation in English speech synthe-
sized by TSWE. Moreover, SCVITS obtains a serious performance
degradation. The supervised contrastive learning module of SCVITS
can only be trained on labeled data, which means English speech is
unseen during training and causes performance degradation. These
results show the effectiveness of multi-level contrastive learning and
semi-supervised training strategy in cross-lingual expressive speech
synthesis.

Removing the mutual information estimator in the SRL module
encounters a slight performance decline, which is consistent with
monolingual evaluation. Besides, to evaluate the crucial role of the
semi-supervised training strategy, we add the corpus MIXU during
the SRL module training. With enlarged training corpora, the overall
performance of the proposed system is improved, which means the
wealth of variation in abundant unlabeled speech data helps capture
more precise style, emotion and speaker characteristics.

4.4. Multilingual objective evaluation

As shown in Table 2, the proposed approach achieves the lowest
CER and WER and the highest SCS, indicating the robustness of
the proposed approach in cross-lingual expressive speech synthesis.
TSEW gets the worst WER as BN is extracted through the TDNN-F
model trained on Chinese speech data and the pronunciation is in-
accurate. Additionally, SCVITS fails to effectively address the chal-
lenge of emotion, style, and speaker entanglement in multilingual
settings, yielding low SCS and high CER and WER. Removing MI
from the proposed framework leads to a performance decline in all
objective evaluations while adding the corpus MIXU improves over-
all performance. These results confirm the observations from the
subjective evaluation.

Moreover, to study the relationship between style, speaker and
language, we visualize multilingual emotion and style representa-
tions through t-SNE [31]. One thousand utterances reserved per lan-
guage are adopted for test. As shown in Figure 4, the style rep-
resentation tends to be language-specific while the emotion repre-
sentation seems to be language-agnostic. We speculate that basic
emotional expressions such as happiness and sadness are available
in all languages [32, 33], causing the emotion representation to be
language-agnostic. However, different manners of pronunciation in
different languages lead to different speaking styles, which results in
language-specific style representations [34].

English
Chinese

English
Chinese

Fig. 4. T-SNE visualization of style representation (left) and emotion
representation (right) in multilingual settings.

5. CONCLUSIONS

This paper aims to synthesize speech with the desired style and emo-
tion for target speakers by transferring the style and emotion from
reference speech recorded by other speakers. We approach this chal-
lenging problem with a novel contrastive learning-based TTS frame-
work. Specifically, this paper proposes a novel speech representa-
tion learning module based on contrastive learning, which constructs
sample pairs at utterance and category levels and learns disentangled
style, emotion, and speaker representations. Besides, we introduce a
semi-supervised training strategy to the proposed framework, which
leverages multi-domain data and helps learn robust representations.
We integrate the learned style, emotion, and speaker representation
into an improved VITS model and conduct experiments on mono-
lingual and multilingual datasets. Extensive experimental results
demonstrate the proposed framework can synthesize speech with di-
verse speaking styles and emotions for a target speaker, even if the
speaking style or emotion comes from another language.

6. REFERENCES

[1] Xu Tan, Tao Qin, Frank K. Soong, and Tie-Yan Liu, “A survey
on neural speech synthesis,” 2021, vol. abs/2106.15561.

[2] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao,
and Tie-Yan Liu, “Fastspeech 2: Fast and high-quality end-to-
end text to speech,” in Proc. ICLR. 2021, OpenReview.net.

[3] Jaehyeon Kim, Jungil Kong, and Juhee Son, “Conditional vari-
ational autoencoder with adversarial learning for end-to-end
text-to-speech,” in Proc. ICML. 2021, pp. 5530–5540, PMLR.

[4] Alexander Sorin, Slava Shechtman, and Ron Hoory, “Principal
style components: Expressive style control and cross-speaker
transfer in neural TTS,” in Proc. Interspeech. 2020, pp. 3411–
3415, ISCA.

[5] Yi Lei, Shan Yang, Xinsheng Wang, and Lei Xie, “Mse-
motts: Multi-scale emotion transfer, prediction, and control for



emotional speech synthesis,” IEEE ACM Trans. Audio Speech
Lang. Process., vol. 30, pp. 853–864, 2022.

[6] Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju
Hwang, “Meta-stylespeech : Multi-speaker adaptive text-to-
speech generation,” in Proc. ICML. 2021, pp. 7748–7759,
PMLR.

[7] Tao Li, Shan Yang, Liumeng Xue, and Lei Xie, “Controllable
emotion transfer for end-to-end speech synthesis,” in Proc.
ISCSLP. 2021, pp. 1–5, IEEE.

[8] Tao Li, Xinsheng Wang, Qicong Xie, Zhichao Wang, and Lei
Xie, “Cross-speaker emotion disentangling and transfer for
end-to-end speech synthesis,” IEEE ACM Trans. Audio Speech
Lang. Process., vol. 30, pp. 1448–1460, 2022.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Ger-
main, Hugo Larochelle, François Laviolette, Mario Marchand,
and Victor S. Lempitsky, “Domain-adversarial training of neu-
ral networks,” J. Mach. Learn. Res., vol. 17, pp. 59:1–59:35,
2016.

[10] Disong Wang, Liqun Deng, Yu Ting Yeung, Xiao Chen, Xuny-
ing Liu, and Helen Meng, “VQMIVC: vector quantization and
mutual information-based unsupervised speech representation
disentanglement for one-shot voice conversion,” in Proc. In-
terspeech. 2021, pp. 1344–1348, ISCA.

[11] Yi Lei, Shan Yang, Xinfa Zhu, Lei Xie, and Dan Su, “Cross-
speaker emotion transfer through information perturbation in
emotional speech synthesis,” 2022, vol. 29, pp. 1948–1952.

[12] Xinfa Zhu, Yi Lei, Kun Song, Yongmao Zhang, Tao Li, and Lei
Xie, “Multi-speaker expressive speech synthesis via multiple
factors decoupling,” in Proc. ICASSP, 2023, pp. 1–5.

[13] Yi Meng, Xiang Li, Zhiyong Wu, Tingtian Li, Zixun Sun,
Xinyu Xiao, Chi Sun, Hui Zhan, and Helen Meng, “CALM:
constrastive cross-modal speaking style modeling for expres-
sive text-to-speech synthesis,” in Proc. Interspeech. 2022, pp.
5533–5537, ISCA.

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey E. Hinton, “A simple framework for contrastive learning
of visual representations,” in Proc. ICML. 2020, vol. 119 of
Proceedings of Machine Learning Research, pp. 1597–1607,
PMLR.

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever, “Learning transferable visual models from nat-
ural language supervision,” in Proc. ICML. 2021, vol. 139, pp.
8748–8763, PMLR.

[16] Michael Laskin, Aravind Srinivas, and Pieter Abbeel, “CURL:
contrastive unsupervised representations for reinforcement
learning,” in Proc. ICML. 2020, vol. 119 of Proceedings of
Machine Learning Research, pp. 5639–5650, PMLR.

[17] Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi Ganti, Ju-
dith Yue Li, and Daniel P. W. Ellis, “Mulan: A joint embedding
of music audio and natural language,” in Proc. ISMIR, 2022,
pp. 559–566.

[18] Zhenhui Ye, Rongjie Huang, Yi Ren, Ziyue Jiang, Jinglin Liu,
Jinzheng He, Xiang Yin, and Zhou Zhao, “Clapspeech: Learn-
ing prosody from text context with contrastive language-audio
pre-training,” in Proc. ACL, 2023, pp. 9317–9331.

[19] Varun Sai Alaparthi, Tejeswara Reddy Pasam, Deepak Abhi-
ram Inagandla, Jay Prakash, and Pramod Kumar Singh, “Scser:
Supervised contrastive learning for speech emotion recognition
using transformers,” in Proc. HSI. 2022, pp. 1–7, IEEE.

[20] Mao Li, Bo Yang, Joshua Levy, Andreas Stolcke, Viktor
Rozgic, Spyros Matsoukas, Constantinos Papayiannis, Daniel
Bone, and Chao Wang, “Contrastive unsupervised learning
for speech emotion recognition,” in Proc. ICASSP. 2021, pp.
6329–6333, IEEE.

[21] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki
Zadeh, Debapriya Banerjee, and Fillia Makedon, “A sur-
vey on contrastive self-supervised learning,” CoRR, vol.
abs/2011.00362, 2020.

[22] Bobo Li, Hao Fei, Lizi Liao, Yu Zhao, Chong Teng, Tat-
Seng Chua, Donghong Ji, and Fei Li, “Revisiting disentan-
glement and fusion on modality and context in conversational
multimodal emotion recognition,” CoRR, vol. abs/2308.04502,
2023.
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