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Structure of 3D gravastars in the context of massive gravity
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In this paper, we investigate a new model of (2+1)−dimensional (3D) gravitational vacuum stars
(gravastars) with an isotropic matter distribution anti-de Sitter (AdS) spacetime in the context
of massive gravity. For this purpose, we explore free singularity models with a specific equation of
state. Using Mazur-Mottola’s approach, we predict 3D gravastars as alternatives to BTZ black holes
in massive gravity. We find analytical solutions to the interior of gravastars free of singularities and
event horizons. For a thin shell containing an ultra-relativistic stiff fluid, we discuss length, energy,
and entropy. In conclusion, the parameter of massive gravity plays a significant role in predicting
the proper length, energy contents and entropyand parameters of gravastars.

I. INTRODUCTION

Some of the observational pieces of evidence (by the advanced LIGO/Virgo collaboration) imposed a tight bound
on the graviton mass [1, 2]. In addition, there are many theoretical and empirical limits on the graviton’s mass [3–7].
So one may be motivated to investigate the effects of massive gravitons on various branches related to gravitation.
On the other hand, the general relativity (GR) is the theory of a non-trivially interacting massless helicity 2 particles.
One of the interesting modified theories of gravity is related to massive gravity, which is a modification of GR based
on the thought of equipping the graviton with mass. In theories of massive gravity, the massless helicity 2 particle
of GR becomes massive [8]. In this regard, Fierz and Pauli first proposed the idea of massive gravitons that are not
self-interacting [9, 10]. As a result of tests on the Solar system, van Dam, Veltman and Zakharov (vDVZ) concluded
that this original model differed from GR even at small distance scales [11–13]. This problem was later solved by
Vainshtein [14], who argued that massive gravity could be recovered at small distances by including nonlinear terms
in the field equations. Several nonlinear completion of massive gravity has shown that this is indeed the case (see Ref.
[15]). Nonlinear Fierz-Pauli theories, while able to recover GR through the Vainshtein mechanism, have also revealed
another pathology, the Boulware-Deser ghost [16]. The ghost problem has only recently been solved in some papers
[17–21]. In this regard, de Rham, Gabadadze and Tolley (dRGT) developed a theory, one of the interesting ghost-free
theories of massive gravity [8, 17]. This theory uses a reference metric to construct massive terms [17, 19, 21]. These
massive terms are inserted in the action to provide massive gravitons. In 2013, dRGT massive gravity theory was
extended by Vegh [22]. A ghost-free theory was established by using holographic principles and a singular reference
metric. Many works were done in this model of massive gravity. Cosmological results, black hole solutions, and their
thermodynamic properties in this massive gravity were investigated by many authors [23–42]. Also, there are some
interesting results of massive gravity from the astrophysical point of view, for example, the existence of neutron stars
with three times the solar mass [43], and white dwarfs with masses more than Chandrasekhar’s limit [44]. To name a
few of cosmological points, one can mention: describing the accelerating expansion of our Universe without requiring
any dark energy [45, 46], a suitable description of rotation curves of the Milky Way, spiral galaxies, and low surface
brightness galaxies [47], explaining the current observations related to dark matter [48, 49]. From a black hole physics
point of view, one can point out interesting features such as the existence of a remnant for a black hole which may
help to ameliorate the information paradox [50, 51], the existence of van der Waals-like behavior in extended phase
space for non-spherical black holes [52, 53], triple points, and also N-fold reentrant phase transitions [54].
Gravitational vacuum stars (gravastars) are astronomical substances hypothesized to replace black holes. Gravastars

were first proposed by Mazur and Mottola in Refs. [55, 56]. This new form of the solution was introduced as a result
of gravitational collapse by expanding the Bose-Einstein theory. According to this hypothesis, such models contain no
event horizons. By using such structures, we might be able to explain how dark energy accelerates the expansion of
the universe. This could help explain why some galaxies are more concentrated in dark matter than others [57]. Visser
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developed a simple mathematical model for describing the Mazur-Mottola scenario, and for describing the stability of
gravastars by exploring some realistic values of the equation of state (EoS) parameter [58]. Cattoen et al. [59] extended
their results based on the equations of motion for spherically symmetric spacetime, the anisotropic factor calculated,
and pressure anisotropy analyzed as a factor that can support relatively high compact gravastars. Carter studied the
stability of gravastar and investigated the existence of thin shells based on the ranges of parameters involved [60].
Specifically, he investigated the role of EoS in the modeling of gravastar structure. Two different theoretical models
for gravastars in an electromagnetic field were presented by Horvat et al. [61]. Researchers investigated the effects
of electromagnetic fields on the formulations as well as graphical representations of EoS, the speed of sound, and the
surface redshift. In addition, charged slowly rotating gravastars were studied by Turimov et al. [62].
With a theory of massive gravity, one hopes that the fine-tuning problem encountered in the cosmological constant

problem could get a technically natural explanation. The argument for technical naturalness is based on ’t Hooft
[63]. The general idea is that a small parameter in a theory is called technically natural if there exists a symmetry
that appears when the value of that parameter is set to zero. In other words, the principle of naturalness states that
is an underlying theory becomes more symmetric when a parameter involved is set to zero, only then should this
quantity be small in nature. For example, small masses of fermions (such as electrons) are technically natural because
if they were put to zero, say in the theory of quantum electrodynamics (QED), then chiral symmetry appears [64].
In regard to the extremely small seemingly fine-tuned value of the bare cosmological constant Λ, no such symmetry
is known and hence their low values do not conform to ’t Hooft’s principle of naturalness. On the other hand, in a
theory of massive gravity with graviton mass m the fine-tuning problem in Λ can be redressed into the fine-tuning
issue of m

Mpl
(Mpl is the Planck mass). When m in a theory is set to zero, it will regain its symmetry under general

coordinate invariance, which is the punchline. With a massive graviton, there is hope and sincere motivation that the
cosmological constant problem can be solved.
In order to overcome computational and conceptual challenges related to quantum gravity, one can consider simple

models that prevail over these significant challenges, ideally ones that retain some of the original conceptual complexity
while simplifying the computational process. An example of such a model is general relativity (GR) in 3D spacetime.
GR with dimensions of (2+1) is a good example of such a model. The geometry of spacetime in (2+1)−dimensions has
many fundamental similarities with theories in (3 + 1)−dimensions, which is a great laboratory for many theoretical
ideas. Several fundamental physics issues, including quantum hall effects, cosmic topologies, parity violations, cosmic
strings, and induced masses have peculiar properties that invite detailed inquiry [65–71]. Banados, Teitelboim, and
Zanelli at first studied 3D black holes, known as BTZ black holes [72]. Different aspects of physics have been
impacted by the discovery of BTZ black holes, such as the thermodynamic properties of these black holes [73–78]
(which contributes to our understanding of gravitational systems), interactions in lower dimensions [79], the existence
of specific relations between BTZ black holes and effective action in string theory [80–82], and possible existence of
gravitational Aharonov-Bohm effect due to the non-commutative BTZ black holes [83]. Additionally, several studies
were carried out in the context of AdS/CFT correspondence [84–86], quantum aspects of 3D gravity, entanglement,
and quantum entropy [87–89]. Considering the importance of 3D spacetime study, in this paper, we will investigate
3D gravastars as a suitable alternative to BTZ black holes. The existence of charged gravastars in a 3D spacetime
is discussed by Rahaman et al. [90]. The researchers examined various physical properties of the charged gravastars,
including length, energy, and entropy. Rahaman et al. [91] considered the 3D gravastar whose exterior region is
elaborated by BTZ metric. The author discussed various physical features and presented a non-singular and stable
model. Lobo and Garattini [92] studied linearized stability analysis with non-commutative geometry of gravastars
and concluded a few exact solutions of gravastars. In Ref. [93], Usmani et al. studied a charged gravastar undergoing
conformal motion, examining the dynamics of thin shell formation and the system’s entropy. Barzegar et al. [94]
studied AdS 3D gravastar in the context of gravity’s rainbow. They extended their results by adding Maxwell’s
electromagnetic field and calculated the physical properties of gravastars, such as proper length, energy, entropy, and
binding conditions. The obtained results show that the physical parameters for the charged and uncharged states
depend significantly on the rainbow functions. Alternatively, it was shown that classical black holes (such as BTZ
black holes) are not possible in the de Sitter spacetime [95]. So, in this paper, we will consider the AdS case for 3D
gravastars in the context of a modified theory of gravity, namely dRGT-like massive gravity.
In this paper, we investigate gravastar under spherically symmetric spacetime with massive gravity. The paper

is arranged as follows. Section II describes the basic framework for massive gravity in 3D and their conservation
equation. In section III, we study gravastar structure in the context of massive gravity in 3D, and compute the
solutions in the three regions of the gravastar model. In this study, we examine the match between the interior and
exterior regions. Based on the junction conditions, we compute the gravastar’s stability. In the following, we discuss
the effects of massive parameters on the various physical features of gravatar. Finally, we summarize the results of
our investigation.
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II. FIELD EQUATIONS IN MASSIVE GRAVITY

The action of massive gravity in 3D spacetime with the cosmological constant (Λ) can be written as [37],

I = − 1

16π

∫

d3x
√−g[R− 2Λ +m2

4
∑

i

ciUi(g, f)] + Imatter , (1)

where m, R, g and f are the mass of graviton, the Ricci scalar, the metric and fixed symmetric tensors, respectively.
In Eq. (1), ci’s are constants and Ui’s are the symmetric polynomials of the eigenvalues of d×d matrix κµν =

√
gµαfαν

where they can be written in the following form,

ui =
i

∑

y=1

(−1)y+1 (i− 1)!

(i− y)!
ui−y [K

y] , (2)

where ui−y = 1, when i = y. It is worthwhile to mention that in the above relations, the bracket marks indicate the
traces in the form; [K] = Ka

a and [Kn] = (Kn)aa.
Variation of Eq. (1) with respect to the metric tensor, gµν the equation of motion for massive gravity, leads to

(rendering G = c = 1)

Gµν + Λgµν +m2χµν = 8πTµν , (3)

where Gµν is the Einstein tensor, Tµν denotes the energy-momentum tensor, and χµν is the massive term with the
explicit form of the following,

χµν = −
D−2
∑

i=1

ci
2

[

uigµν +

i
∑

y=1

(−1)
y i!

(i− y)!
ui−y

[

Ky
µν

]

]

, (4)

where D is related to the dimensions of spacetime. We work on 3D spacetime, and so D = 3. Here, ci’s are constants.
For 3D gravastar, let us consider a static metric as

ds2 = f(r)dt2 − dr2

g(r)
− r2dθ2 (5)

where f(r) and g(r) are unknown metric functions of the radial coordinate. An exact solution of the metric (5) can
be obtained by choosing a reference metric as given by

fµν = diag(0, 0,−C2), (6)

in which C is a positive constant. Considering the metric ansatz (6), Ui’s can easily be computed as U1 = C/r, and
U2 = U3 = U4 = 0, which indicates that the contribution of massive gravity in 3D spacetime is arising only from the
U1.
We assume that the matter distribution in the interior of the gravastar is a perfect fluid type, given by

Tµν = (ρ+ p)uµuν − pgµν , (7)

where ρ represents the energy density, p is the isotropic pressure, and ui are the components of velocity of the fluid.
Using the spacetime described by the metric (5) together with the energy-momentum tensor given in Eq. (7), we can
obtain the nonzero components of field equation (3) as

g′

2r
+
m2c1C

2r
= Λ− 8πρ, (8)

gf ′

2fr
+
m2c1C

2r
= Λ+ 8πp, (9)

g′f ′

4f
+
gf ′′

2f
− gf ′2

4f2
= Λ+ 8πp, (10)

where the prime and double prime are representing the first and second derivatives with respect to r, respectively.
Combining Eqs. (8)-(10), we get

p′ + (ρ+ p)
f ′

2f
= 0, (11)

which is the conservation equation in 3D spacetime.
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III. 3D GRAVASTARS STRUCTURE

The gravastars can be described with the help of three different zones, in which zone I is the interior region
(0 < r < r1), zone II is the intermediate thin shell, with r1 < r < r2, while zone III is an exterior region (r2 < r).
In zone I, the isotropic pressure produces a force of repulsion over the intermediate thin shell, which is equal to
−ρ (where ρ is the energy density). This intermediate thin shell is supposed to be supported by fluid pressure and
ultra-relativistic plasma (p = ρ). However, zone III can be represented by the vacuum solution of the field equations.
The pressure has zero value in this zone. It contains a thermodynamically stable solution and maximum entropy
under small fluctuations [55, 56]. In this section, we derive the equations of 3D gravastar field of massive gravity for
different regions and analyze them.

A. Interior Spacetime

The interior region (0 < r < r1 = R) of the gravastar follows the EoS p = −ρ. Hence by using the result given in
Eq. (11), we obtain the following interior,

ρ = constant = ρv, (12)

and

p = −ρv. (13)

By using the Eq. (8), one can get the solutions for g(r) and f(r) from the field equations as

g(r) = f(r) = A+ Λr2 − 8M(r)−m2c1Cr, (14)

where A is an integration constant and M(r) =
∫

2πρrdr. From Eq. (14), we arrived at the important conclusion
that the spacetime metric thus obtained is a singularity free solution of the gravastars at the centre. Hence, the active
gravitational mass M(r) can be expressed at once in the following form,

M(R) =

∫ R

0

2πrρdr = πR2ρv. (15)

Here, we note that for the interior region, the physical parameters, viz. density, pressure and gravitational mass in
no way are dependent on the massive parameter (m2c1). We also observe that the quantities g(r) and f(r) depend
on the massive parameter (m2c1).

B. Intermediate Thin Shell

It is very difficult to solve the field equations within the non-vacuum region, i.e., within the shell. However, one
can obtain an analytic solution within the framework of thin shell limit, 0 < g(r) ≡ h << 1. The advantage of using
this thin shell limit is that in this limit we can set h to be zero to the leading order. Then the field equations (8)-(10),
with p = ρ, may be recast in the forms

h′ = 4Λr − 2m2c1C, (16)

f ′

f
=

2m2c1C

rh′
. (17)

Integrating Eq. (16) immediately yields

h = g(r) = B + 2Λr2 − 2m2c1Cr, (18)

where B is an integration constant. So the other function is

f(r) = F0

(

2Λ− m2c1C

r

)

, (19)

where F0 is an integration constant. Also, from the conservation Eq. (11) and using the EOS p = ρ, one may get

p = P0

(

2Λ− m2c1C

r

)−1

, (20)

where p0 being an integration constant.
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C. Exterior Region

The vacuum exterior region EoS is given by p = ρ = 0. Solution corresponds to a static BTZ black hole in massive
gravity is written in the following form as [37]

f(r) = g(r) = Λr2 −m0 −m2c1Cr, (21)

the parameter m0 is an integration constant related to the total mass of black holes.

D. Junction Condition

The conditions for matching interior and exterior geometry were introduced by Darmois [96] and Israel [97]. The
metric coefficients are continuous at the junction surface, i.e., their derivatives might not be continuous at interior
surfaces. The second fundamental forms associated with the two sides of the shell are given in the literature [98–103].
The surface tension and surface stress energy of the joining surface S may be resolved from the discontinuity of the
extrinsic curvature of S at r = R. The field equation of intrinsic surface is defined by Lanczos equation [104] as

Sαβ = − 1

8π
(kαβ − δαβkγγ) . (22)

Here Sαβ is the stress-energy tensor for surface, kij = K+
ij −K−

ij tells the extrinsic curvatures or second fundamental

form, and (+) sign indicates the interior surface while (−) sign indicates the exterior surface. The second fundamental
form connects the interior and exterior surfaces of the thin shell are defined as follows,

K±
ij =

[

−n±
ν

(

∂2xν
∂ξi∂ξj

+ Γν
αβ

∂xα

∂ξi
∂xβ

∂ξj

)]

, (23)

where ξis represent the intrinsic coordinates on the shell, and −n±
ν s are the unit normal vectors on the surface of

gravastar in the following form,

n±
ν = ±

(

gαβ
∂f

∂xα
∂f

∂xβ

)

−1

2 ∂f

∂xν
. (24)

In above equation, nνnν = 1, and f(r) illustrates the coordinate of exterior metric. Surface tension and surface
stress of the junction surface are determined by the discontinuity in the extrinsic curvature. Now, from Eq. (23) and
Lanczos equation in 3D spacetime, we can get surface energy density (ϕ) and surface pressure (ψ) as

ϕ =
−kφφ
8π

, (25)

ψ =
−kττ
8π

, (26)

where ϕ and ψ are line energy density and line pressure of 3D gravastar in massive gravity, respectively. So, according
to the general formalism for 3D spacetime [104] and employing relevant information into equations (25)-(26), and also
by setting r = R, we obtain

ϕ(R) =

√

A
R2 + Λ− 8πρv − m2c1C

R

8π

−

√

Λ− m0

R2 − m2c1C
R

8π
, (27)

ψ(R) =
ΛR− m2c1C

2

8π
√
ΛR2 −m0 −m2c1CR

− (ΛR− 8πρvR− m2c1C
2

8π
√

A+ ΛR2 − 8πρvR2 −m2c1CR
. (28)

In the following, we can study the equation of state parameter and stability of gravastars by using line energy
density and line pressure of 3D gravastar in massive gravity.
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FIG. 1: Stability of 3D gravastars in massive gravity. We have chosen Λ = −0.1, m = 1, c1 = 0.1, C = 0.1, R = 1,
A = 0 and m0 = 0.01.

1. Equation of State

At a particular radius r = R, the equation of state parameter can be expressed as follows,

ω =
ψ(R)

ϕ(R)
. (29)

By using Eqs. (27) and (28) in the expression (29), the EoS parameter at r = R can be obtained in the following
form,

ω =

Λ−8πρc−
m2c1C

2R
√

A

R2
+Λ−8πρv−

m2c1C

R

− Λ−
m2c1C

2R
√

Λ−
m0

R2
−

m2c1C

R

√

Λ− m0

R2 + m2c1C
R

−
√

A
R2 + Λ− 8πρv − m2c1C

R

. (30)

2. Stability

It is very useful to understand the stability of gravastars by defining a parameter η as the ratio of the derivatives
of ψ and ϕ as follows,

η =
ψ′(r)

ϕ′(r)
. (31)

The stability regions can be explored by analyzing the behavior of η as a function of r = R. This parameter indicates
the squared speed of sound satisfying 0 ≤ η ≤ 1 [105]. It is possible, however, this limitation is not met on the surface
layer when testing the stability of the gravastar [106, 107]. We have investigated the stable gravastars with specific
choices of parameters involved. Fig. 1 describes the stability of 3D gravastar structures in massive gravity.

E. Some Features of Intermediate Thin Shell of 3D Gravastars

This section aims to examine the impact of massive parameter on 3D gravastar’s physical properties in the presence
of massive gravity. In this context, we examine the proper length of the thin shell and the energy of the relativistic
structure of 3D gravastars in massive gravity. Then, we will calculate the entropy of the thin shell of 3D gravastars
in this theory of gravity, too. Also, we will present our results through diagrams.
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FIG. 2: Proper length l of the shell vs thickness of the shell ǫ for different values of m2c1. We have chosen Λ = −0.1,
C = 0.1, R = 1 and B = 1.

1. Proper Length of the Thin Shell

Since the radius of an interior region of gravastar is r1 = R, while the radius of the exterior region is r2 = R + ǫ,
where ǫ is the thickness of the intermediate thin shell which is assumed to be very small (i.e., ǫ << 1). So, the stiff
perfect fluid propagates between two boundaries of the thin shell region of the gravastar. Now, the proper thickness
between two surfaces can be described mathematically as [55, 56]

l =

∫ R+ǫ

R

√

1

g(r)
dr, (32)

whereas in the shell region, the expression of g(r) is complicated, so the analytic solution of the above expression is
not possible. So, we will solve it by numerical method and examine the behavior of massive parameters. let us assume
√

1
g(r) =

dF (r)
dr

, based on the integral above, we can write

l =

∫ R+ǫ

R

dF (r)

dr
dr = [F (R+ ǫ)− F (R)]

≈ ǫ
dF (r)

dr
|R= ǫ

√

1

g(r)
|R . (33)

Since ǫ << 1, so O(ǫ2) ≈ 0. Therefore in the above manipulation, we considere only the first-order term of ǫ. Thus
for this approximation, the proper length will be

l ≈ ǫ√
B + 2ΛR2 − 2m2c1CR

. (34)

The above result shows that the proper length of the thin shell of 3D gravastar in massive gravity is proportional to
the thickness ǫ of the shell. We observe that the proper length of the thin shell depends on the massive parameters
as well. The behavior of the shell length against its thickness for different values of m2c1 and C is shown in Fig.
2 and Fig. 3, respectively. Our results in the above figures show that there is a linear relationship between the
proper length and thickness of the shell, while the proper length of the system tends to increase by increasing the
corresponding m2c1, and C values.

2. Energy

The energy content within the shell region of 3D gravastar is given as [55, 56]

E = 2π

∫ R+ǫ

R

ρrdr. (35)
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FIG. 3: Proper length l of the shell vs thickness of the shell ǫ for different values of m2C. We have chosen Λ = −0.1,
c1 = 0.1, R = 1 and B = 1.

FIG. 4: Energy E with thickness of the shell ǫ for different values of m2c1. We have chosen Λ = −0.1, C = 0.1,
R = 1 and P0 = 1.

By expanding F (R + ǫ) binomially about R and taking first order of ǫ, we get

E ≈ 2πǫp0R
2

2ΛR−m2c1C
. (36)

The behavior of the shell energy against its thickness for different values of m2c1 and C is shown in Fig. 4 and Fig. 5,
respectively. The results in Fig. 4 and Fig. 5 reveal the same behavior for the shell energy. In other words, there is a
linear relationship between the energy and the thickness of the shell. In addition, this energy of the system increases
by increasing m2c1, and C, similar to the proper length of the thin shell.

3. Entropy

Mazur and Mottola have shown that the entropy density in the interior region of the gravastar is zero [55, 56]. To
calculate the entropy relation for the shell of 3D gravastar, we need to use the following equation [55, 56],

S =

∫ R+ǫ

R

4πr2s(r)

√

1

g(r)
dr, (37)
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FIG. 5: Energy E vs thickness of the shell ǫ for different values of m2C. We have chosen Λ = −0.1, c1 = 0.1, R = 1
and P0 = 1.

FIG. 6: Entropy S vs thickness of the shell ǫ for different values of m2c1. We have chosen Λ = −0.1, C = 1, R = 1,
P0 = 1 and B = 1.

where s(r), describes the entropy density corresponding to a specific temperature T (r), is given by

s(r) =
α2k2BT (r)

4π~2
. (38)

Here α2 is a dimensionless constant, due to the fact that we are using Planck units (KB = ~ = 1) in our computation.
Using Eqs. (37) and (38), the entropy inside a thin shell of 3D gravastar in massive gravity can be written as

S =

αkB
√
2πp0

∫ R+ǫ

R
rdr

√

(B+2Λr2−2m2c1Cr)(2Λ−
m2c1C

r
)

~
. (39)

By expanding F (R + ǫ) binomially about R and taking the first order of ǫ, we get

S ≈ αkB
√
2πp0ǫR

~

√

(B + 2ΛR2 − 2m2c1CR)(2Λ− m2c1C
R

)
. (40)

The behavior of shell entropy against its thickness for different values of m2c1 and C is shown in Fig. 6 and Fig.
7, respectively. Fig. 6 and Fig. 7 show the linear relationship between entropy and thickness of the shell of 3D
gravastars. Also, the entropy of the system decreases by increasing m2c1 and C.
It is notable that the mass of graviton, one of the physical principles of massive gravity, causes such a sensitive

effect on astrophysical consequences such as proper length, energy, and entropy.
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FIG. 7: Entropy S vs thickness of the shell ǫ for different values of m2C. We have chosen Λ = −0.1, c1 = 1, R = 1,
P0 = 1 and B = 1.

IV. CONCLUSION

In this work, we have investigated a new model of 3D gravastar with an isotropic matter distribution AdS spacetime
in massive gravity. Gravastars are the same gravitational vacuum stars that define a new idea in the gravitational
system. Gravastar consists of three regions, the first is the inner region, the second is the middle thin shell with a
thickness of ǫ, and the third is the outer region. Each of these regions is described and investigated by a specific
EoS. We found a set of singularity-free solutions of gravastars and hence interesting results that can be viewed as
alternatives to BTZ black holes in massive gravity. In the interior region, we observed that the spacetime is the free
singularity. The physical parameters, such as density, pressure, and gravitational mass in no way are dependent on
the massive parameters (m2c1, and C) in the interior region, but the quantities g(r) and f(r) depend on the massive
parameters. The exterior region with EOS p = ρ = 0 is defined by the static BTZ black hole in massive gravity, which
can be seen in Eq. (21). At the junction interface, the interior region joins with the exterior region with smooth
matching at r = R. We derived some aspects like surface energy density, surface pressure, EoS, and stability. The
EoS parameter depends upon the massive parameters, mass, and radius of the metric. Fig. 1 describes the stability
of 3D gravastar structures in massive gravity. It was not easy to find the exact solution in the shell region with EoS,
p = ρ. For this purpose, we used the thin shell approximation as 0 < g(r) ≡ h << 1 to extract the proper length,
energy, and entropy for the shell region. Figs. 2, and 3 are plotted between the proper length of the shell and the
thickness of the shell. These figures indicate the linear relationship between the proper length, and thickness of the
shell, while the proper length of the system increases by increasing m2c1, and C. Our results in Figs. 4, and 5 reveal
that the energy and thickness of the shell are directly proportional to each other, and also, the energy of the system
increases by increasing the value of m2c1 and C. To see the role of entropy, thickness, and massive parameters, we
drew Fig. 6, and Fig. 7. These figures indicate that there is a linear relationship between entropy and the thickness
of the shell as well. In addition, the entropy of the system decreases by increasing m2c1 and C.

Acknowledgments

We would like to thank the referee for the good comments and advice that improved this paper. H. Barzegar
and M. Bigdel wish to thank University of Zanjan research council. G. H. Bordbar wishes to thank the Shiraz
University Research Council. B. Eslam Panah thanks the University of Mazandaran. The University of Mazandaran
has supported the work of B. Eslam Panah by title ”Evolution of the masses of celestial compact objects in various
gravity”.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 061102 (2016).
[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 221101 (2016).
[3] L. S. Finn and P. J. Sutton, Phys. Rev. D 65, 044022 (2002).



11

[4] A. Gruzinov, New Astron. 10, 311 (2005).
[5] A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 82, 939 (2010).
[6] J. B. Jimenez, F. Piazza, and H. Velten, Phys. Rev. Lett. 116, 061101 (2016).
[7] C. de Rham, J. T. Deskins, A. J. Tolley, and S.-Y. Zhou, Rev. Mod. Phys. 89, 025004 (2017).
[8] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).
[9] W. Pauli, and M. Fierz, Phys. 12, 297 (1939).

[10] W. Pauli, and M. Fierz, Phys. 12, 3 (1939).
[11] H. van Dam, and M. J. G. Veltman, Nucl. Phys. B 22, 397 (1970).
[12] V. I. Zakharov, JETP Lett. 12, 312 (1970).
[13] Y. Iwasaki, Phys. Rev. D 2, 2255 (1970).
[14] A. I. Vainshtein, Phys. Lett. B 39, 393 (1972) .
[15] E. Babichev, and C. Deffayet, Class. Quantum Gravit. 30, 184001 (2013).
[16] D. G. Boulware, and S. Deser, Phys. Rev. D 6, 3368 (1972).
[17] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011).
[18] C. de Rham, and G. Gabadadze, Phys. Rev. D 82, 044020 (2010).
[19] S. F. Hassan, R. A. Rosen, and A. Schmidt-May, JHEP 1202, 026 (2012).
[20] S. F. Hassan, A. Schmidt-May and M. von Strauss, Phys. Lett. B 715, 335 (2012).
[21] S. F. Hassan, and R. A. Rosen, Phys. Rev. Lett. 108, 041101 (2012).
[22] D. Vegh, [arXiv:1301.0537].
[23] M. Fasiello, and A. J. Tolley, JCAP 12, 002 (2013).
[24] Y. -F. Cai, D. A. Easson, C. Gao, and E. N. Saridakis, Phys. Rev. D 87, 064001 (2013).
[25] K. Bamba, M. W. Hossain, R. Myrzakulov, S. Nojiri, and M. Sami, Phys. Rev. D 89, 083518 (2014).
[26] Y. -F. Cai, and E. N. Saridakis, Phys. Rev. D 90, 063528 (2014).
[27] G. Goon, A. E. Gumrukcuoglu, K. Hinterbichler, S. Mukohyama, and M. Trodden, JCAP 08, 008 (2014).
[28] L. Heisenberg, R. Kimura, and K. Yamamoto, Phys. Rev. D 89, 103008 (2014).
[29] H. Kodama, and I. Arraut, Prog. Theor. Exp. Phys. 2014, 023E02 (2014).
[30] E. Babichev, and A. Fabbri, Phys. Rev. D 90, 084019 (2014).
[31] A. R. Solomon, J. Enander, Y. Akrami, T. S. Koivisto, F. Konnig, and E. Mortsell, JCAP 04, 027 (2015).
[32] S. Pan, and S. Chakraborty, Ann. Phys. 360, 180 (2015).
[33] E. Babichev, and R. Brito, Class. Quantum Gravit. 32, 154001 (2015).
[34] S. H. Hendi, B. Eslam Panah, and S. Panahiyan, JHEP 11, 157 (2015).
[35] A. J. Tolley, D. J. Wu, and S. Y. Zhou, Phys. Rev. D 92, 124063 (2015).
[36] S. H. Hendi, B. Eslam Panah, and S. Panahiyan, Class. Quantum Gravit. 33, 235007 (2016).
[37] S. H. Hendi, B. Eslam Panah, and S. Panahiyan, JHEP 2016, 29 (2016).
[38] P. Li, X. -Z. Li, and P. Xi, Phys. Rev. D 93, 064040 (2016).
[39] S. H. Hendi, S. Panahiyan, and B. Eslam Panah, JHEP 01, 129 (2016).
[40] D. J. Wu, and S. Y. Zhou, Phys. Lett. B 757, 324 (2016).
[41] S. H. Hendi, S. Panahiyan, B. Eslam Panah, and M. Momennia, Ann. Phys. (Berl.) 528, 819 (2016).
[42] D. C. Zou, R. Yue, and M. Zhang, Eur. Phys. J. C 77, 256 (2017).
[43] S. H. Hendi, G. H. Bordbar, B. Eslam Panah, and S. Panahiyan, JCAP 07, 004 (2017).
[44] B. Eslam Panah, and H. L. Liu, Phys. Rev. D 99, 104074 (2019).
[45] Y. Akrami, T. S. Koivisto, and M. Sandstad, JHEP 03, 99 (2013).
[46] Y. Akrami, S. F. Hassan, F. Knnig, A. Schmidt-May, and A. R. Solomon, Phys. Lett. B 748, 37 (2015).
[47] S. Panpanich, and P. Burikham, Phys. Rev. D 98, 064008 (2018).
[48] E. Babichev, et al., Phys. Rev. D 94, 084055 (2016).
[49] E. Babichev, et al., JCAP 09, 016 (2016).
[50] B. Eslam Panah, S. H. Hendi, and Y. C. Ong, Phys. Dark Universe. 27, 100452 (2020).
[51] M. -S. Hou, H. Xu, and Y. C. Ong, Eur. Phys. J. C 80, 1090 (2020).
[52] J. Xu, L. M. Cao, and Y. P. Hu, Phys. Rev. D 91, 124033 (2015).
[53] S. H. Hendi, R. B. Mann, S. Panahiyan, and B. Eslam Panah, Phys. Rev. D 95, 021501(R) (2017).
[54] A. Dehghani, S. H. Hendi, and R. B. Mann, Phys. Rev. D 101, 084026 (2020).
[55] P. Mazur, and E. Mottola, Universe. 9, 88 (2023).
[56] P. Mazur, and E. Mottola, Proc. Natl. Acad. Sci. 101, 9545 (2004).
[57] Z. Yousaf, K. Bamba, M. Z. Bhatt, and U. Ghafoor, Phys. Rev. D 100, 024062 (2019).
[58] M. Visser, and D. L. Wiltshire, Class. Quantum Gravit. 21, 1135 (2004).
[59] C. Cattoen, T. Faber, and M. Visser, Class. Quantum Gravit. 22, 4189 (2005).
[60] B. M. N. Carter, Class. Quantum Gravit. 22, 4551 (2005).
[61] D. Horvat, S. Ilijic, and A. Marunovic, Class. Quantum Gravit. 26, 025003 (2009).
[62] B. V. Turimov, B. J. Ahmedov, and A. A. Abdujabbarov, Mod. Phys. Lett. A 24, 733 (2009).
[63] G. ’t Hooft, NATO Sci. Ser. B 59, 135 (1980).
[64] M. Dine, Ann. Rev. Nucl. Part. Sci. 65, 43 (2015).
[65] S. Carlip, Living Rev. Relativ. 8, 1 (2005).
[66] J. J. van der Bij, R. D. Pisarski, and S. Rao, Phys. Lett. B 179, 87 (1986).
[67] E. J. Copeland, and T. W. B. Kibble, Proc. R. Soc. A 466, 623 (2010).

http://arxiv.org/abs/1301.0537


12

[68] J. J. Blanco-Pillado, K. D. Olum, and X. Siemens, Phys. Lett. B 778, 392 (2018).
[69] J. P. Luminet, Universe. 2, 1 (2016).
[70] J. J. van der Bij, Phys. Rev. D 76, 121702 (2007).
[71] J. J. van der Bij, Gen. Relativ. Gravit. 43, 2499 (2011).
[72] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849(1992) .
[73] A. Larranaga, Turk. J. Phys. 32, 1 (2008).
[74] M. Cadoni, and C. Monni, Phys. Rev. D 80, 024034 (2009) .
[75] M. Akbar, H. Quevedo, K. Saifullah, A. Sanchez, and S. Taj, Phys. Rev. D 83, 084031 (2011).
[76] S. Carlip, Class. Quantum Gravit. 12, 2853 (1995).
[77] A. Ashtekar, J. Wisniewski, and O. Dreyer, Adv. Theor. Math. Phys. 6, 507 (2003) .
[78] T. Sarkar, G. Sengupta, and B. Nath Tiwari, JHEP 11, 015 (2006).
[79] E. Witten, ”Three-Dimensional Gravity Revisited”, [arXiv:0706.3359].
[80] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[81] A. Larranaga, Commun. Theor. Phys. 50, 1341 (2008).
[82] H. W. Lee, Y. S. Myung, and J. Y. Kim, Phys. Lett. B 466, 211 (1999).
[83] M. A. Anacleto, F. A. Brito, and E. Passos, Phys. Lett. B 743, 184 (2015).
[84] R. Emparan, G. T. Horowitz, and R. C. Myers, JHEP 01, 021 (2000).
[85] M. R. Setare, Eur. Phys. J. C 49, 865 (2007).
[86] S. Carlip, Class. Quantum Gravit. 22, 85 (2005).
[87] P. Caputa, V. Jejjala, and H. Soltanpanahi, Phys. Rev. D 89, 046006 (2014).
[88] E. Frodden, M. Geiller, K. Noui, and A. Perez, JHEP 05, 139 (2013).
[89] D. V. Singh, and S. Siwach, Class. Quantum Gravit. 30, 235034 (2013).
[90] F. Rahaman, A. A. Usmani, S. Ray, and S. Islam, Phys. Lett. B 717, 1 (2012).
[91] F. Rahaman, S. Ray, A. A. Usmani, and S. Islam, Phys. Lett. B 707, 319 (2012).
[92] F. S. N. Lobo, and R. Garattini, JHEP 12, 065 (2013).
[93] A. A. Usmani et al., Phys. Lett. B 701, 388 (2011).
[94] H. Barzegar, M. Bigdeli, G. H. Bordbar, and B. Eslam Panah, Eur. Phys. J. C 83, 151 (2023).
[95] R. Emparan et al., JHEP 11, 073 (2022).
[96] G. Darmois, Des Sciences Mathematiques XXV, Fasticule XXV (Gauthier-Villars, Paris, France, 1927), chap. V.
[97] W. Israel, Nuovo Cimento B 44, 1 (1966).
[98] W. Israel, Nuovo Cimento B 48, 463 (1967).
[99] A. A. Usmani et al., Gen. Relativ. Gravit. 42, 2901 (2010).

[100] F. Rahaman, K. A. Rahman, Sk. A Rakib, and P. K. F. Kuhfittig, Int. J. Theor. Phys. 49, 2364 (2010).
[101] F. Rahaman et al., Gen. Relativ. Gravit. 38, 1687 (2006).
[102] F. Rahaman et al., Class. Quantum Gravit. 28, 155021 (2011).
[103] G. P. Perry, and R. B. Mann, Gen. Relativ. Gravit. 24, 305 (1992).
[104] C. Bejarano, E. F. Eiroa, and C. Simeone, Eur. Phys. J. C 74, 3015 (2014).
[105] E. Poisson, M. Visserti, Phys. Rev. D 52, 12 (1995).
[106] U. Debnath, Eur. Phys. J. C 136, 442 (2021).
[107] F. S. N. Lobo, and P. Crawford, Class. Quantum Gravit. 21, 391 (2004)

http://arxiv.org/abs/0706.3359

	Introduction
	Field Equations in massive gravity
	3D Gravastars Structure
	Interior Spacetime
	Intermediate Thin Shell
	Exterior Region
	Junction Condition
	Equation of State
	Stability

	Some Features of Intermediate Thin Shell of 3D Gravastars
	Proper Length of the Thin Shell
	Energy
	Entropy


	CONCLUSION
	Acknowledgments
	References

