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Abstract

We study high-probability convergence guarantees of learning on streaming data in
the presence of heavy-tailed noise. In the proposed scenario, the model is updated in
an online fashion, as new information is observed, without storing any additional data.
To combat the heavy-tailed noise, we consider a general framework of nonlinear stochas-
tic gradient descent (SGD), providing several strong results. First, for non-convex costs
and component-wise nonlinearities, we establish a convergence rate arbitrarily close to
O
(
t−1/4

)
, whose exponent is independent of noise and problem parameters. Second, for

strongly convex costs and component-wise nonlinearities, we establish a rate arbitrarily
close to O

(
t−1/2

)
for the weighted average of iterates, with exponent again independent

of noise and problem parameters. Finally, for strongly convex costs and a broader class
of nonlinearities, we establish convergence of the last iterate, with a rate O

(
t−ζ
)
, where

ζ ∈ (0, 1) depends on problem parameters, noise and nonlinearity. As we show analyt-
ically and numerically, ζ can be used to inform the preferred choice of nonlinearity for
given problem settings. Compared to state-of-the-art, who only consider clipping, require
bounded noise moments of order η ∈ (1, 2], and establish convergence rates whose expo-
nents go to zero as η → 1, we provide high-probability guarantees for a much broader class
of nonlinearities and symmetric density noise, with convergence rates whose exponents are
bounded away from zero, even when the noise has finite first moment only. Moreover,
in the case of strongly convex functions, we demonstrate analytically and numerically
that clipping is not always the optimal nonlinearity, further underlining the value of our
general framework.

1 Introduction

Learning on streaming data is a paradigm in which incoming samples are processed incre-
mentally, while using limited memory and time, e.g., Gama (2012); Krawczyk et al. (2017).
Formally, it can be represented as an optimization problem, with the goal of solving

argmin
x∈Rd

{
f(x) ≜ Eω[ℓ(x;ω)]

}
, (1)
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where x ∈ Rd represents model parameters, ℓ : Rd×W 7→ R is a loss function, while ω ∈ W is
a random sample. The function f : Rd 7→ R is commonly known as the population loss. Many
modern machine learning applications, such as classification and regression, can be modeled
using (1). Learning on streaming data can be seen as a special case of stochastic optimization
(SO), e.g., Robbins and Monro (1951); Nemirovski et al. (2009); Ghadimi and Lan (2013), with
some important constraints. While the goal of both is to solve (1), SO approaches utilize both
stochastic and mini-batch estimators, e.g., Bottou et al. (2018); Woodworth et al. (2020a,b),
while streaming algorithms use only stochastic estimators and update the model parame-
ters as each new sample arrives in the stream, without storing any additional information1,
e.g., Harvey et al. (2019); Nguyen et al. (2023a); Jakovetić et al. (2023).

Perhaps the most popular method to solve (1) is Stochastic Gradient Descent (SGD) Rob-
bins and Monro (1951), with its popularity stemming from low computation cost and incredible
empirical success, e.g., Bottou (2010); Hardt et al. (2016). Theoretical convergence guaran-
tees of SGD have been studied extensively, e.g., Moulines and Bach (2011); Rakhlin et al.
(2012); Ghadimi and Lan (2012, 2013); Bottou et al. (2018). The classical convergence results
are mostly in expectation2, characterizing the average performance across many runs of the
algorithm. However, due to significant computational costs of a single run of an algorithm in
many modern large-scale machine learning applications, it is often infeasible to perform mul-
tiple runs, e.g., Harvey et al. (2019); Davis et al. (2021). As such, the classical in expectation
results do not fully capture the convergence behavior of these algorithms. More fine-grained
results, like high-probability convergence, characterizing the behaviour of an algorithm with
respect to a single run, offer better guarantees when multiple runs are infeasible.

Another striking feature of existing works is assuming that the gradient noise is light-
tailed or has uniformly bounded variance, e.g., Rakhlin et al. (2012); Ghadimi and Lan (2012,
2013). As we discuss next, this is a major limitation in many modern applications. It has
been observed in applications like training attention models that SGD performs worse than
adaptive methods, even after extensive hyperparameter tuning, e.g., Simsekli et al. (2019);
Zhang et al. (2020). In Zhang et al. (2020), it is shown that the gradient noise distribution
during training of large attention models resembles a Levy α-stable distribution with α < 2,
which has unbounded variance. The authors show that SGD fails to converge due to presence of
large stochastic gradients. The clipped variant of SGD solves the problem and achieves optimal
convergence rate in expectation for smooth non-convex costs. Subsequently, clipped stochastic
methods have been extensively analyzed in recent years to solve stochastic minimization, e.g.,
Gorbunov et al. (2020); Sadiev et al. (2023). Along with addressing heavy-tailed noise, clipped
SGD also helps address non-smoothness of the objective function, e.g., Zhang et al. (2019),
achieve differential privacy, e.g., Chen et al. (2020); Zhang et al. (2022); Yang et al. (2022)
and robustness to malicious nodes in distributed learning, e.g., Yu and Kar (2023).

Despite its popularity, clipping is not the only nonlinear transformation of SGD employed
in practice. Sign and quantized variants of SGD improve communication efficiency in dis-
tributed learning, e.g., Alistarh et al. (2017); Bernstein et al. (2018a); Gandikota et al. (2021).
Sign SGD achieves performance on par with state-of-the-art adaptive methods, e.g., Crawshaw
et al. (2022), and is robust to faulty/malicious users, e.g., Bernstein et al. (2018b). Normalized
SGD is empirically observed to accelerate neural network training, e.g., Hazan et al. (2015);
You et al. (2019); Cutkosky and Mehta (2020), facilitate private learning, e.g., Das et al.

1Such as the samples themselves, or stochastic gradients.
2Also commonly referred to as the mean-squared error.
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(2021); Yang et al. (2022), and is effective in solving distributionally robust optimization,
e.g., Jin et al. (2021). Zhang et al. (2020) observed empirically that component-wise clipping
converges faster than joint clipping, exhibiting a better dependence on problem dimension.

Table 1: Comparison of streaming SGD methods. Lower-case t indicates a streaming method, upper-case T
indicates a preset time horizon is needed, β ∈ (0, 1) is the failure probability, while Õ hides logarithmic factors.

Cost Work Nonlinearity Noise Rate

Non-convex

Nguyen et al. (2023a) Clipping only bounded moment of
order η∈(1,2] Õ

(
t
η−2η
3η−2

)
Sadiev et al. (2023) Clipping only bounded moment of

order η∈(1,2] O
(
T

1−η
η

)1
This paper Component-wise

bounded first moment
pdf symmetric,

positive around zero
O
(
tδ−1

)2

Strongly convex

Tsai et al. (2022) Clipping only bounded growth
second moment3 O

(
t−1
)

Sadiev et al. (2023) Clipping only bounded moment of
order η∈(1,2] O

(
T

2(1−η)
η

)
This paper - weighted
average of iterates Component-wise

bounded first moment
pdf symmetric,

positive around zero
O
(
t2(δ−1)

)4
This paper - last iterate Component-wise and joint

bounded first moment
pdf symmetric,

positive around zero
O
(
t−ζ
)5

1 The method in Sadiev et al. (2023) uses a preset time horizon T to tune algorithm parameters, (e.g., step-size). As such, it is not a streaming
algorithm per se, however, it can be adapted to the streaming setting with minor tweaks (e.g., time-varying step-size).

2 The parameter δ ∈ (3/4, 1) is user-specified. As such, our rate can be made arbitrarily close to O
(
t−1/4

)
, by setting δ = 3

4
+ ϵ, for ϵ < 1

4
small.

3 The gradient noise z at a point x satisfies E∥z∥2 ≤ C +B∥x− x⋆∥2, where x⋆ is the solution to (1) and C,B > 0 are constants.
4 The parameter δ ∈ (3/4, 1) is user-specified. As such, our rate can be made arbitrarily close to O

(
t−1/2

)
, by setting δ = 3

4
+ ϵ, for ϵ < 1

4
small.

5 The rate ζ ∈ (0, 1) depends on the choice of nonlinearity, noise and problem related parameters, see Sections 3, 4 and Appendix D. We provide
examples of noise for which ζ > 2(η−1)/η, see Examples 1-4 ahead.

Literature review. We now review the literature on high-probability convergence of SGD
and its variants. Initial works on high-probability convergence of stochastic gradient methods
considered light-tailed noise (see Definition 1) and include Nemirovski et al. (2009); Lan (2012);
Hazan and Kale (2014); Harvey et al. (2019) for convex, and Ghadimi and Lan (2013); Li
and Orabona (2020) for non-convex costs. Subsequent works Gorbunov et al. (2020, 2021);
Parletta et al. (2022) generalized these results to noise with bounded variance. Tsai et al.
(2022) study the behaviour of clipped SGD under the assumption that the noise variance
is bounded by iterate distance (see Table 1), while Li and Liu (2022); Eldowa and Paudice
(2023) considered sub-Weibull noise. Recent works Liu et al. (2023a); Eldowa and Paudice
(2023) remove restrictive assumptions, like bounded stochastic gradients and bounded domain.
Sadiev et al. (2023) show that even with bounded variance and smooth, strongly-convex
functions, vanilla SGD cannot achieve a logarithmic dependence on the failure probability β ∈
(0, 1)3, implying that the complexity of achieving a high-probability bound for SGD is much
worse than the complexity of converging in expectation. As such, nonlinear SGD is required
to handle tails heavier than sub-Gaussian. Recent works consider a broad class of heavy-
tailed noises with bounded moments of order η ∈ (1, 2], e.g., Nguyen et al. (2023a,b); Sadiev
et al. (2023); Liu et al. (2023b). Nguyen et al. (2023a,b) study high-probability convergence of
clipped SGD for convex and non-convex minimization, Sadiev et al. (2023) study clipped SGD
for optimization and variational inequality problems, while Liu et al. (2023b) study accelerated
variants of clipped SGD for smooth costs. It is worth mentioning a recent work Puchkin

3For high-probability convergence guarantees of type “with probability at least 1− β”.
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et al. (2023), which shows clipped SGD can achieve the optimal O
(
T−1

)
rate for smooth

strongly convex costs and a class of heavy-tailed noises with possibly unbounded first moments.
However, they use a median-of-means gradient estimator, which requires storing multiple
stochastic gradients prior to performing the update and it is not clear how such an approach
can be extended to the streaming setting considered in this paper.

The works closest to ours are Nguyen et al. (2023a); Sadiev et al. (2023) for non-convex
and Tsai et al. (2022); Sadiev et al. (2023) for strongly convex costs. For non-convex costs, the
optimal rate Õ

(
t
2−2η
3η−2

)
is achieved in Nguyen et al. (2023a). For the same costs, we consider a

broad class of component-wise nonlinearities (e.g., sign, cclip and quantization) in the presence
of noise with symmetric density and bounded first moment, achieving the rate O

(
t−1/4+ϵ

)
, for

any ϵ > 0. As such, our rate exponent is independent of noise or problem related parameters,
which is not the case with Nguyen et al. (2023a); Sadiev et al. (2023), with our rate dominating
that from Nguyen et al. (2023a) whenever η < 6+8ϵ

5+12ϵ .
4 Furthermore, Nguyen et al. (2023a);

Sadiev et al. (2023) require knowledge of noise moment η and other problem parameters to
tune the step-size and clipping radius, whereas our analysis requires no knowledge of problem
or noise related parameters. For strongly convex costs, Tsai et al. (2022); Sadiev et al. (2023)
study the convergence of the last iterate for clipped SGD, with Sadiev et al. (2023) allowing
for a more general class of noise, achieving the rate O

(
T 2(1−η)/η

)
. Compared to them, we

consider a more general framework for nonlinear SGD (both component-wise and joint), es-
tablishing a rate O

(
t−ζ
)
, for some ζ ∈ (0, 1) that depends on the noise, nonlinearity and other

problem parameters. We give examples of noise regimes where our rate is better than the one
in Sadiev et al. (2023) (see Examples 1-4). Moreover, we demonstrate both analytically and
numerically that ζ is informative for choosing the best nonlinearity for given problem and
noise settings and that clipping is not always the best chocice of nonlinearity (see Section 4),
further highlighting the importance and usefulness of our general framework. The comparison
is summed up in Table 1. Finally, it is worth mentioning Jakovetić et al. (2023), who study
the same general framework for nonlinear SGD and strongly convex costs, in expectation and
almost sure sense. Our work differs in that we study high-probability convergence and allow
for non-convex costs. The latter is achieved by providing a novel characterization of the inter-
play of the “denoised” nonlinear gradient and the true, noiseless gradient for component-wise
nonlinearities (see Section 3). For strongly convex costs, naively combining the in expectation
bound from Jakovetić et al. (2023) and Markov inequality results in a sub-optimal 1/β depen-
dence on the failure probability β, with our work closing this gap, by showing the optimal
log(1/β) dependence.

Contributions. Our contributions can be summarized as follows.

• We provide a unified framework for studying convergence in high probability of nonlinear
streaming SGD under heavy-tailed noise. In the proposed framework, the nonlinearity
is treated in a black-box manner, subsuming many popular nonlinearities, like sign,
normalization, cclip and quantization. To the best of our knowledge, we provide the first

4This does not contradict the optimality of the rate achieved in Nguyen et al. (2023a), as their assumptions
slightly differ from ours. Whereas Nguyen et al. (2023a) require bounded noise moment of order η ∈ (1, 2], we
require noise with symmetric density, but allow for bounded first moment only. As such, our work shows that
additional structure in the noise leads to improved results, while allowing for relaxed moment conditions and
heavier tails (see Examples 1-3).
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high-probability results under heavy-tailed noise for methods such as sign, quantized and
component-wise clipped SGD.

• For non-convex costs and component-wise nonlinearities, we show a convergence rate of
O
(
t−1/4+ϵ

)
, for any ϵ > 0. The exponent in our rate is independent of noise and problem

parameters, which is not the case for state-of-the-art rate in Nguyen et al. (2023a), with
our rate dominating the state-of-the-art whenever the noise has bounded moments of
order η < 6+8ϵ

5+12ϵ . Additionally, our analysis requires no knowledge of problem parameters
to tune the step-size, whereas the analysis in Nguyen et al. (2023a) requires knowledge
of noise moments and problem parameters to tune the step-size and clipping radius.

• For strongly convex costs and component-wise nonlinearities we show convergence of the
weighted average of iterates with the same rate O

(
t−1/2+ϵ

)
, with our rate dominating

the state-of-the-art Sadiev et al. (2023), whenever the noise has bounded moments of
order η < 4

3+2ϵ . Next, we show convergence of the last iterate for a broader class of
nonlinearities, with rate O

(
t−ζ
)
, where ζ ∈ (0, 1) depends on noise, nonlinearity and

other problem parameters. As such, the exponent ζ is shown to be informative in choos-
ing the best nonlinearity for the given problem and noise settings, both analytically and
numerically. We provide examples of noise regimes in which our exponent ζ dominates
the one instate-of-the-art Sadiev et al. (2023).

• Compared to state-of-the-art Nguyen et al. (2023a); Sadiev et al. (2023), who only
consider clipping, require bounded noise moments of order η ∈ (1, 2] and vanishing rates
as η → 1, we consider a much broader class of nonlinearities under noise with symmetric
density, while relaxing the moment condition and providing non-vanishing convergence
rates even for noise with finite first moment only. Moreover, for strongly convex costs,
we provide analytical and numerical results that show clipping is not always the optimal
choice of nonlinearity, further reinforcing the importance of our general framework.

Paper organization. The rest of the paper is organized as follows. Section 2 outlines
the nonlinear streaming SGD framework. Section 3 presents the main results of the paper.
Section 4 provides analytical and numerical results demonstrating that clipping is not always
the optimal choice of nonlinearity. Section 5 concludes the paper. The Appendix presents
some useful facts and results omitted from the main body. The remainder of this section
introduces the notation.

Notation. We denote the set of positive integers by N, while N0 denotes the set of non-
negative integers, i.e., N0 ≜ N ∪ {0}. We use R, R+ and Rd to denote the sets of real
numbers, non-negative real numbers and the d-dimensional real vector space, respectively.
For a ∈ N, [a] denotes the set of integers up to and including a, i.e., [a] = {1, . . . , a}. Regular
and bold symbols denote scalars and vectors, respectively, i.e., x ∈ R and x ∈ Rd. The
Euclidean inner product is denoted by ⟨·, ·⟩, while ∥ · ∥ denotes the induced norm.

2 Proposed Framework

To solve (1) in the streaming setting and in the presence of heavy-tailed noise, we use the
nonlinear SGD framework. The algorithm starts by choosing a deterministic initial model

5



Algorithm 1 Nonlinear SGD on Streaming Data

Require: Choice of nonlinearity Ψ : Rd 7→ Rd, model initialization x0 ∈ Rd;
1: at time t = 0,1,2,. . . do:
2: Observe a new sample ω(t) and compute the gradient ∇ℓ(x(t);ω(t));
3: Update the model x(t+1) ← x(t) − αtΨ

(
∇ℓ(x(t);ω(t))

)
;

x(0) ∈ Rd and a nonlinear map Ψ : Rd 7→ Rd. In iteration t = 0, 1, . . ., the method performs
as follows: a new sample ω(t) is observed and the gradient of the loss ℓ at the current model
x(t) and sample ω(t) is computed5. Then, the model is updated as

x(t+1) = x(t) − αtΨ
(
∇ℓ(x(t);ω(t))

)
, (2)

where αt > 0 is the step-size at iteration t. The method is summed up in Algorithm 1. We
make the following assumption on the nonlinear map Ψ.

Assumption 1. The nonlinear map Ψ : Rd 7→ Rd is either of the form Ψ(x) = Ψ(x1, . . . , xd) =
[N1(x1), . . . ,N1(xd)]

⊤ or Ψ(x) = xN2(∥x∥), where N1, N2 : R 7→ R satisfy

1. N1,N2 are continuous almost everywhere (with respect to the Lebesgue measure), with
N1 piece-wise differentiable, while the mapping a 7→ aN2(a) is non-decreasing.

2. N1 is monotonically non-decreasing and odd function, while N2 is non-increasing.

3. N1 is either discontinuous at zero, or strictly increasing on (−c1, c1), for some c1 > 0,
with N2(a) > 0, for any a > 0.

4. N1 and xN2(∥x∥) are uniformly bounded, i.e., |N1(x)| ≤ C1 and ∥xN2(∥x∥)∥ ≤ C2, for
some C1, C2 > 0, and all x ∈ R, x ∈ Rd.

Note that the fourth property implies ∥Ψ(x)∥ ≤ C, where C = C1

√
d or C = C2, de-

pending on the form of nonlinearity. We will use the general bound ∥Ψ(x)∥ ≤ C for ease of
presentation, and specialize where appropriate. Assumption 1 is satisfied by a wide class of
nonlinearities, including:

1. Sign: [Ψ(x)]i = sign(xi), i = 1, . . . , d,

2. Component-wise clip (cclip): [Ψ(x)]i = xi, for |xi| ≤ m, and [Ψ(x)]i = m · sign(xi), for
|xi| > m, i = 1, . . . , d, for some constant m > 0.

3. Component-wise quantization: for each i = 1, . . . , d, let [Ψ(x)]i = rj , for xi ∈ (qj , qj+1],
with j = 0, . . . , J − 1 and −∞ = q0 < q1 < . . . < qJ = +∞, where rj ’s and qj ’s are chosen
such that each component of Ψ is an odd function, and we have maxj∈{0,...,J−1} |rj | < R,
for R > 0.

4. Normalization: Ψ(x) = x
∥x∥ , with Ψ(x) = 0 if x = 0.

5. Clipping : Ψ(x) = min
{
1, M

∥x∥

}
x, for some constant M > 0.

5Equivalently, we have access to a first-order oracle that directly streams gradients of ℓ, instead of samples.
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3 Main Results

In this section we present the main results of the paper. Subsection 3.1 presents the pre-
liminaries and assumptions, Subsection 3.2 presents the main theoretical results for general
non-convex costs, while Subsection 3.3 presents the main theoretical results for strongly convex
costs. All the proofs can be found in Appendix C.

3.1 Preliminaries

In this section we provide the preliminaries and assumptions used in the analysis. To begin
with, we state the assumptions on the behaviour of the population loss f used in the paper.

Assumption 2. The population loss f is bounded from below, has at least one stationary
point and Lipschitz continuous gradients, i.e., infx∈Rd f(x) > −∞, there exists a x ∈ Rd such
that ∇f(x) = 0, and for some L > 0 and every x,y ∈ Rd

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Remark 1. Boundedness from below and Lipschitz continuous gradients are standard for non-
convex costs, e.g., Ghadimi and Lan (2013); Madden et al. (2020); Liu et al. (2023a). Since
the goal in non-convex optimization is to reach a stationary point, it is natural to assume at
least one such point exists.

Remark 2. It can be readily shown that Lipschitz continuous gradients imply, for any x,y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥2,

know as L-smoothness inequality/property, see, e.g., Nesterov (2018); Wright and Recht (2022).

Assumption 3. The population loss f is strongly convex, i.e., for some µ > 0 and every
x,y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥x− y∥2.

Remark 3. Combined with Assumption 3, it follows that µ ≤ L.

Denote the infimum of f by f⋆, i.e., f⋆ ≜ infx∈Rd f(x). Denote by X ⊂ Rd the set of
stationary points of f , i.e., X ≜

{
x ∈ Rd : ∇f(x) = 0

}
. Then, by Assumption 2, it follows

that X ≠ ∅. Assumption 3 implies the existence of a unique global minimizer, i.e., we have
f⋆ = f(x⋆), for some unique x⋆ ∈ Rd. Equivalently, we have X = {x⋆}. Next, rewrite the
update (2) as

x(t+1) = x(t) − αtΨ(∇f(x(t)) + z(t)), (3)

where z(t) ≜ ∇ℓ(x(t);ω(t)) − ∇f(x(t)) is the stochastic noise at iteration t. To simplify the
notation, we use the shorthand Ψ(t) ≜ Ψ(∇f(x(t))+z(t)). We make the following assumption
on the sequence of noise vectors {z(t)}t∈N0 .

Assumption 4. Noise vectors {z(t)}t∈N0 are zero mean, independent, identically distributed
and integrable, with symmetric probability density function (PDF) p : Rd 7→ R+, strictly
positive in a neighborhood of zero, i.e., p(z) > 0, for all ∥z∥ ≤ B0 and some B0 > 0.

7



Remark 4. Assumption 4 relaxes the noise moment condition made in Nguyen et al. (2023a);
Sadiev et al. (2023), at the expense of requiring a symmetric PDF, positive in a neighborhood
of zero. PDF symmetry and positivity around zero are mild assumptions, satisfied by many
noise distributions, such as Gaussian, as well as a broad class of heavy-tailed zero-mean α-
stable distributions, Bercovici et al. (1999); Şimşekli et al. (2019), or the ones in Examples 1-3
below.

We now give some examples of noise PDFs satisfying Assumption 4.
Example 1. The noise PDF p(z) = ρ(z1)× . . .× ρ(zd), where ρ(z) = α−1

2(1+|z|)α , for some α > 2.
It can be shown that the PDF only has finite η-th moments for η < α− 1.
Example 2. The noise PDF p(z) = ρ(z1) × . . . × ρ(zd), where ρ(z) = c

(z2+1) log2(|z|+2)
, with

c =
∫

1/[(z2+1) log2(|z|+2)]dz being the normalizing constant. It can be shown that p has a finite
first moment, but for any η ∈ (1, 2], the η-th moments do not exist.
Example 3. The PDF p : Rd 7→ R+ with “radial symmetry”, i.e., p(z) = ρ(∥z∥), where
ρ : R 7→ R+ is itself a PDF. If ρ is the PDF from Example 2, then p inherits the properties of
ρ, i.e., it does not have finite η-th moments, for any η > 1.

Note that, while the noise from Example 1 satisfies the moment condition from Nguyen
et al. (2023a); Sadiev et al. (2023), the noise from Example 2 clearly does not. Next, define
the function Φ : Rd 7→ Rd, given by Φ(x) ≜ Ez[Ψ(x + z)] =

∫
Ψ(x + z)p(z)dz,6 where

the expectation is taken with respect to the gradient noise at a random sample, i.e., z ≜
∇ℓ(x;ω) − ∇f(x). We use the shorthand Φ(t) ≜ Φ(∇f(x(t))). The vector Φ(t) can be seen
as the denoised version of Ψ(t). Using Φ(t), we can rewrite the update rule (3) as

x(t+1) = x(t) − αtΦ
(t) + αte

(t), (4)

where e(t) ≜ Φ(t) −Ψ(t), represents the effective noise term. As we show next, the effective
noise is light-tailed, even though the original noise may not be. This allows us to establish
exponential concentration inequalities and tight control of the behaviour of MGFs. Prior to
that, we define the concept of sub-Gaussianity, e.g., Vershynin (2018); Jin et al. (2019).

Definition 1. A zero-mean random vector v ∈ Rd is said to be sub-Gaussian, if there exists
a constant N > 0, such that, for any x ∈ Rd

E [exp (⟨x,v⟩)] ≤ exp
(
N∥x∥2

)
.

It can be shown that any bounded random variable is sub-Gaussian, a fact used in the
following sections (see Appendix B for a proof). Define Ft to be the natural filtration, i.e.,
Ft ≜ σ

(
{z(0), . . . , z(t−1)}

)
, with F0 ≜ σ({∅,Ω}) being the trivial σ-algebra. Next, we state

some properties of the effective noise e(t).

Lemma 3.1. Let Assumptions 1 and 4 hold. Then, the effective noise vectors {e(t)}t∈N0

satisfy

1. E[e(t)| Ft] = 0 and ∥e(t)∥ ≤ 2C,

2. The effective noise is sub-Gaussian, i.e., for some N > 0 any x ∈ Rd, we have
E
[
exp

(
⟨x, e(t)⟩

)
| Ft

]
≤ exp

(
N∥x∥2

)
Note that the bound on the effective noise e(t) comes from the nonlinearity, therefore, the

constant N depends only on the nonlinearity, not the noise.
6If Ψ is a component-wise nonlinearity, then Φ is a vector with components ϕi(xi) = Ezi [N1(xi+zi)], where

Ezi is the marginal expectation with respect to the i-th noise component, i ∈ [d] (see Lemma 3.2 ahead).
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3.2 Non-convex Costs

In this section we establish the convergence in high-probability for general non-convex func-
tions and component-wise nonlinearities. This is made possible by establishing a novel charac-
terization of the behaviour of Φ(x) with respect to the original (noiseless) vector x. To begin
with, we state a result from Polyak and Tsypkin (1979), that provides some basic properties
of the mapping Φ for component-wise nonlinearities.

Lemma 3.2. Let Assumptions 1 and 4 hold, with the nonlinearity Ψ : Rd 7→ Rd being compo-
nent wise, i.e., of the form Ψ(x) =

[
N1(x1), . . . ,N1(xd)

]⊤. Then, the function Φ : Rd 7→ Rd

is of the form Φ(x) =
[
ϕ1(x1), . . . , ϕd(xd)

]⊤, where ϕi(xi) = Ezi [N1(xi + zi)] is the marginal
expectation of the i-th noise component, i ∈ [d], with the following properties:

1. ϕi is non-decreasing and odd, with ϕi(0) = 0;

2. ϕi is differentiable in zero, with ϕ′
i(0) > 0.

Define ϕ′(0) ≜ mini∈[d] ϕ
′
i(0). We then have the following result on the interplay of the

“denoised” nonlinearity Φ(x) and x.

Lemma 3.3. Let Assumptions 1 and 4 hold, with the nonlinearity Ψ : Rd 7→ Rd being com-
ponent wise, i.e., of the form Ψ(x) =

[
N1(x1), . . . ,N1(xd)

]⊤. Then, for any x ∈ Rd, we
have

⟨Φ(x),x⟩ ≥ ϕ′(0)

2
min{ξ∥x∥/√d, ∥x∥2/d},

where ξ > 0 is a global constant depending only on the choice of nonlinearity and noise.

Lemma 3.3 provides a novel characterization of the inner product of the “denoised” non-
linearity Φ at vector x and vector x itself. For any k = 0, . . . , t − 1, define α̃k ≜ αk∑t−1

j=0 αj
,

so that
∑t−1

k=0 α̃k = 1, and for any x ∈ Rd define DX (x
(0)) ≜ infx∈X ∥x(0) − x∥2 to be the

set distance function. We are now ready to state our high-probability convergence bound of
component-wise nonlinear SGD for non-convex costs.

Theorem 1. Let Assumptions 1, 2 and 4 hold, with the nonlinearity Ψ : Rd 7→ Rd being
component-wise, i.e., of the form Ψ(x) =

[
N1(x1), . . . ,N1(xd)

]⊤. Let {x(t)}t∈N0 be the se-
quence generated by (3), with step-size αt =

a
(t+2)δ

, for any δ ∈ (3/4, 1) and a > 0. Then, for
any t ∈ N0, and any β ∈ (0, 1), with probability at least 1− β, it holds that

t−1∑
k=0

α̃k min{ξ∥∇f(x(k))∥/
√
d, ∥∇f(x(k))∥2/d} ≤ R(a, β, δ)

(t+ 2)1−δ − 21−δ
,

where R(a, β, δ) ≜ 2(1−δ)
ϕ′(0)

[
(f(x(0))−f⋆+log(1/β))/a + a(dLC2

1/2+2NL2DX (x(0)))
(2δ−1) +

2a3dNC2
1L

2

(1−δ)2(4δ−3)

]
.

Some remarks are now in order.

Remark 5. The bound from Theorem 1 can be used to provide a bound on the best iterate,
i.e., on the quantity min0≤k≤t−1 ∥∇f(x(k))∥. In particular, one can show that Theorem 1
implies

min
0≤k≤t−1

∥∇f(x(k))∥ = O

(√
dR(a, β, δ)

(t+ 2)1−δ − 21−δ

)
,
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i.e., in order to ensure we reach an ϵ-stationary point7 (with high probability), we require at
least O

(
ϵ−

2
1−δ

)
iterations. Derivations connecting the bound from Theorem 1 to the best

iterate can be found in Appendix F.

Remark 6. The rate achieved by our analysis is of the order O
(
tδ−1

)
, where δ ∈ (3/4, 1) is

user-specified. As such, the exponent in our convergence rate is independent of any problem
related parameters, like the choice of nonlinearity, noise, etc. This is not the case with state-
of-the-art methods, e.g., Nguyen et al. (2023a); Sadiev et al. (2023), whose rate exponent
explicitly depends on noise moment η ∈ (1, 2] and vanishes as η → 1. By choosing δ = 3/4+ ϵ,
for some ϵ ∈ (0, 1/4), it follows that our method can achieve the rate O

(
t−1/4+ϵ

)
, which can

be made arbitrarily close to t−1/4, for small ϵ. In this case R(a, β, 3/4 + ϵ) = O
(
ϵ−1
)
, with

the convergence rate being O
(
ϵ−1t−1/4+ϵ

)
. We can see an inherent trade-off with respect to

ϵ, where smaller value of ϵ results in a convergence rate closer to t−1/4, at the cost of a larger
constant factor (i.e., ϵ−1). Compared to the convergence rate O

(
t
2−2η
3η−2

)
, achieved in Nguyen

et al. (2023a), our rate is better if 2η−2
3η−2 < 1

4 − ϵ, i.e., whenever η < 6+8ϵ
5+12ϵ .

Remark 7. The constant R(a, β, δ) depends on multiple problem related quantities, such as
the problem dimension d, the optimality gap f(x(0)) − f⋆, the distance of the initial model
from the set of stationary points DX (x

(0)), choice of nonlinearity and noise through C1, N
and ϕ′(0). The step-size parameter a > 0 offers an inherent trade-off, as choosing a ≈ 0
alleviates the dependence of R on multiple problem parameters (e.g., initial model from set
of stationary points, or the effect of small ϵ discussed in Remark 6), making it approximately
R(a, β, δ) ≈ 2(1−δ)

ϕ′(0)
(f(x(0))−f⋆+log(1/β))/a, while simultaneously resulting in small step-sizes and

larger constant factor (of the order 1/a), slowing convergence down.

Proof of Theorem 1. For ease of notation, let Z(∥∇f(x(t))∥) ≜ min{ξ∥∇f(x(t))∥/
√
d, ∥∇f(x(t))∥2/d}.

Applying the L-smoothness property of f and the update rule (4), to get

f(x(t+1)) ≤ f(x(t))− αt⟨∇f(x(t)),Φ(t) − e(t)⟩+ α2
tL

2
∥Ψ(t)∥2

≤ f(x(t))− αtϕ
′(0)

2
Z(∥∇f(x(t))∥) + αt⟨∇f(x(t)), e(t)⟩+ α2

t dLC
2
1

2
,

where the second inequality follows from Lemma 3.3 and Assumption 1. Rearranging and
summing up the first t terms, we get

ϕ′(0)

2

t−1∑
k=0

αkZ(∥∇f(x(k))∥) ≤ f(x(0))− f⋆ +
dLC2

1

2

t∑
k=1

α2
k︸ ︷︷ ︸

=:B1

+
t∑

k=1

αk⟨∇f(x(k)), e(k)⟩︸ ︷︷ ︸
=:B2

. (5)

Denote the right-hand side of (5) by Zt, i.e., Zt ≜
ϕ′(0)
2

∑t
k=1 αkZ(∥∇f(x(k))∥) and note that

B1 is independent of the noise, i.e., is a deterministic quantity. We then have

E [exp(Zt)]
(5)
≤ E [exp (B1 +B2)] = exp (B1)E [exp(B2)] .

7A point x ∈ Rd such that ∥∇f(x)∥ ≤ ϵ.
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We now bound E[exp(B2)]. Denote by Et[·] ≜ E[· | Ft] the expectation conditioned on history
up to time t. We then have

E[exp(B2)] = E

[
exp

(
t−1∑
k=0

αk⟨∇f(x(k)), e(k)⟩

)]

= E

[
exp

(
t−2∑
k=0

αk⟨∇f(x(k)), e(k)⟩

)
Et−1

[
exp(αt−1⟨∇f(x(t−1)), e(t−1)⟩)

]]

≤ E

[
exp

(
t−2∑
k=0

αk⟨∇f(x(k)), e(k)⟩

)
exp

(
Nα2

t−1∥∇f(x(t−1))∥2
)]

≤ . . . ≤ E

[
exp

(
N

t−1∑
k=0

α2
k∥∇f(x(k))∥2

)]
,

where we repeatedly use Lemma 3.1. Next, consider ∥∇f(x(k))∥, for any k ≥ 0. Define
At ≜

∑t−1
k=0 αk and use L-smoothness, to get

∥∇f(x(k))∥ ≤ L∥x(k) − x⋆∥ = L∥x(k−1) − αk−1Ψ
(k−1) − x⋆∥ ≤ L

(
∥x(k−1) − x⋆∥+ αk−1

√
dC1

)
≤ . . . ≤ L

(
∥x0 − x⋆∥+

√
dC1

k−1∑
s=0

αs

)
= L

(
∥x(0) − x⋆∥+

√
dC1Ak

)
,

where we recall that x⋆ ∈ X =
{
x ∈ Rd : ∥∇f(x)∥ = 0

}
is any stationary point of f . There-

fore, we have

E [exp(B2)] ≤ exp

(
2NL2DX (x

(0))

t−1∑
k=0

α2
k + 2dNC2

1L
2

t∑
k=1

α2
kA

2
k

)
,

where DX (x
(0)) = infx∈X ∥x(0)−x∥2 is the distance of the initial model estimate from the set

of stationary points. Combining everything, we get

E [exp(Zt)] ≤ exp

(
f(x(0))− f⋆ +

(
dLC2

1/2 + 2NL2DX (x
(0))
) t∑

k=1

α2
k + 2dNC2

1L
2

t∑
k=1

α2
kA

2
k

)
.

Define Gt ≜ f(x(0))−f⋆+
(
dLC1/2 + 2NL2DX (x

(0))
)∑t

k=1 α
2
k+2dNC2

1L
2
∑t

k=1 α
2
kA

2
k. Using

Markov’s inequality, it then follows that, for any ϵ > 0

P(Zt > ϵ) ≤ exp(−ϵ)E[exp(Zt)] ≤ exp(−ϵ+Gt) ⇐⇒ P(Zt > ϵ+Gt) ≤ exp(−ϵ).

Finally, for any β ∈ (0, 1), with probability at least 1− β, we have

Zt ≤ log(1/β) +Gt ⇐⇒ A−1
t Zt ≤ A−1

t (log(1/β) +Gt) . (6)

Consider the step-size schedule αt =
a

(t+2)δ
, for δ ∈ (3/4, 1). Using upper and lower Darboux

sums, we get
a

1− δ
((t+ 2)1−δ − 21−δ) ≤ At ≤

a

1− δ
((t+ 1)1−δ − 1),

a2

2δ − 1
(21−2δ − (t+ 2)1−2δ) ≤

t∑
k=1

α2
k ≤

a2

2δ − 1
(1− (t+ 1)1−2δ).

11



Plugging in (6), we then get, with probability at least 1− β

ϕ′(0)

2

t−1∑
k=0

α̃kZ(∥∇f(xk)∥) ≤
(1− δ)

(
f(x(0))− f⋆ + log(1/β)

)
a((t+ 2)1−δ − 21−δ)

+
a(1− δ)(dLC2

1/2 + 2NL2DX (x
(0)))

(2δ − 1)((t+ 2)1−δ − 21−δ)
+

2a3dNC2
1L

2
∑t−1

k=0(k + 2)2−4δ

(1− δ)((t+ 2)1−δ − 21−δ)
.

Using the upper Darboux sum once more, we have

t−1∑
k=0

(k + 2)2−4δ ≤
∫ t+1

1
k2−4δdk ≤ 1

4δ − 3
,

therefore, combining everything, we finally get

t−1∑
k=0

α̃kZ(∥∇f(xk)∥) ≤
R(a, β, δ)

(t+ 2)1−δ − 21−δ
,

where R(a, β, δ) = 2(1−δ)
ϕ′(0)

[
(f(x(0))−f⋆+log(1/β))/a + a(dLC2

1/2+2NL2DX (x(0)))
(2δ−1) +

2a3dNC2
1L

2

(1−δ)2(4δ−3)

]
.

3.3 Strongly Convex Costs

In this section we establish the convergence in high-probability for strongly convex functions.
First, recall the definition of the Huber loss Hλ : R 7→ [0,∞), parametrized by λ > 0,
e.g., Huber (1964), which is given by

Hλ(x) ≜

{
1
2x

2, |x| ≤ λ,

λ|x| − λ2

2 , |x| > λ.

By the definition of Huber loss, it is not hard to see that it is a convex, non-decreasing function
on [0,∞). Moreover, it follows that

min{ξ∥∇f(x(k))∥/
√
d, ∥∇f(x(k))∥2/d} ≜ Z(∥∇f(x(k))∥) ≥ Hξ(∥∇f(x(k))∥/

√
d) =

1

d
Hξ

√
d(∥∇f(x

(k))∥),
(7)

where the last inequality follows by noticing that Hξ(x/d) =
1
dHξ

√
d(x). Next, recall that µ-

strongly convex costs satisfy the gradient domination property, i.e., µ∥x(k) − x⋆∥ ≤ ∥∇f(x)∥,
for any x ∈ Rd, e.g., Nesterov (2018). Combining (7) with the gradient domination property,
we get

t−1∑
k=0

α̃kZ(∥∇f(x(k))∥) ≥ 1

d

t−1∑
k=0

α̃kHξ
√
d(µ∥x

(k) − x⋆∥) ≥ µ2

d
Hξ

√
d/µ(∥x̂

(t) − x⋆∥),

where x̂(t) ≜
∑t−1

k=0 α̃kx
(k) is the weighted average of the first t iterates, the first inequality

follows from (7), the gradient domination property and the fact that H is non-decreasing,
while the second property follows from the fact that H is convex and non-decreasing H and
applying Jensen’s inequality twice. Therefore, we have just shown the following.
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Theorem 2. Let Assumptions 1-4 hold, with the nonlinearity Ψ : Rd 7→ Rd being component-
wise, i.e., of the form Ψ(x) =

[
N1(x1), . . . ,N1(xd)

]⊤. Let {x(t)}t∈N0 be the sequence generated
by (3), with step-size αt =

a
(t+2)δ

, for any δ ∈ (3/4, 1) and a > 0. Then, for any t ∈ N0, and
any β ∈ (0, 1), with probability at least 1− β, it holds that

Hξ
√
d/µ(∥x̂

(t) − x⋆∥) ≤ R̃(a, β, δ)

(t+ 2)1−δ − 21−δ
,

where R̃(a, β, δ) ≜ 2d(1−δ)
µ2ϕ′(0)

[
(f(x(0))−f⋆+log(1/β))/a + a(dLC2

1/2+2NL2DX (x(0)))
(2δ−1) +

2a3dNC2
1L

2

(1−δ)2(4δ−3)

]
.

The quantity x̂(t) can be seen as a generalized Polyak-Ruppert estimator, e.g., Ruppert
(1988); Polyak (1990); Polyak and Juditsky (1992). Similarly to Remark 5, it can be shown
that the bound from Theorem 2 implies

∥x̂(t) − x⋆∥2 = O
(
t−2(1−δ)

)
,

giving a rate O
(
t−1/2+ϵ

)
, for any ϵ < 1/2, with an exponent independent of noise and prob-

lem parameters (see Appendix F for details). Our rate improves on the state-of-the-art rate
from Sadiev et al. (2023), whenever η < 4

3+2ϵ . Note that Theorem 2 provides a bound on the
weighted average of past iterates and component-wise nonlinearities. However, for strongly
convex functions it is of interest to characterize the convergence guarantees of the last iterate,
e.g., Harvey et al. (2019); Tsai et al. (2022); Sadiev et al. (2023). Moreover, we would like to
establish high-probability convergence guarantees for a wider class of nonlinearities, including
joint ones, like clipping and normalization. To that end, we first characterize the behaviour
of the mapping Φ in the general nonlinearity case.

Lemma 3.4. Let Assumptions 1-4 hold and {x(t)}t∈N0 be the sequence generated by (3), with
step-size αt =

a
(t+2)δ

, for any δ ∈ (0.5, 1), a > 0. Then, for some γ = γ(a) > 0 and any t ∈ N0

⟨Φ(t),∇f(x(t))⟩ ≥ γ(t+ 2)δ−1∥∇f(x(t))∥2.

We are now ready to state the main result.

Theorem 3. Suppose Assumptions 1-4 hold and {x(t)}t∈N0 is the sequence generated by (3),
with step-size αt = a

(t+2)δ
, for any δ ∈ (0.5, 1) and a > 0. Then, for any t ∈ N0, and any

β ∈ (0, 1), with probability at least 1− β, it holds that

∥x(t+1) − x⋆∥2 ≤ 2 log (e/β)

µB(t+ 2)ζ
,

where ζ = min
{
2δ − 1, aµγ/2

}
, B = min

{
1

(f(x(0))−f⋆)
, µγ

aL(2N+C2/2)

}
.

We specialize the value of γ = γ(a) for different nonlinearities and discuss its impact on
the rate in Appendix D. The value of ζ can be explicitly calculated for specific choices of
nonlinearities and noise. We now give some examples.

Example 4. For the noise from Example 1 and sign nonlinearity, it can be shown that ζ ≈
min

{
2δ − 1, µ

L
1−δ√

d
α−1
α

}
, see Jakovetić et al. (2023). For the same noise and cclip, it can
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be shown that ζ ≈ min
{
2δ − 1, µ

L
√
d

(1−δ)(m−1)(1−(m+1)−α)
m

}
. On the other hand, the rate

from Sadiev et al. (2023) for gradient clipping, adapted to the same noise, is 2(r−1)/r, where
r ≤ min{α − 1, 2}. While 2(r−1)/r > ζ for α above a certain threshold, as α → 2, we have
2(r−1)/r→ 0, while our rate ζ stays strictly positive and bounded away from zero for both sign
and cclip. Therefore, for α sufficiently close to 2, we have ζ > 2(r−1)

r , i.e., our rate is better
than the one in state-of-the-art Sadiev et al. (2023).

Proof of Theorem 3. Using L-smoothness of f , the update rule (4) and Lemma 3.4, we have

f(x(t+1)) ≤ f(x(t))− αt⟨∇f(x(t)),Φ(t) − e(t)⟩+ α2
tL

2
∥Ψ(t)∥2

≤ f(x(t))− aγ∥∇f(x(t))∥2

(t+ 2)
+

a⟨∇f(x(t)), e(t)⟩
(t+ 2)δ

+
a2LC2

2(t+ 2)2δ
.

Subtracting f⋆ from both sides of the inequality, defining F (t) = f(x(t))−f⋆ and using µ-strong
convexity of f , we get

F (t+1) ≤
(
1− 2µaγ

t+ 2

)
F (t) +

a⟨∇f(x(t)), e(t)⟩
(t+ 2)δ

+
a2LC2

2(t+ 2)2δ
. (8)

Let ζ = min {2δ − 1, aγµ/2}. Defining Y (t+1) ≜ (t+ 2)ζF (t+1) = (t+ 2)ζ(f(x(t+1))− f⋆), from
(8) we get

Y (t+1) ≤ atY
(t) + bt⟨∇f(x(t)), e(t)⟩+ ctV, (9)

where at =
(
1− 2µaγ

t+2

)(
t+2
t+1

)ζ
, bt = a

(t+2)δ−ζ , ct = a2

(t+2)2δ−ζ and V = LC2

2 . Denote the MGF

of Y (t) conditioned on Ft as Mt+1|t(ν) = E
[
exp

(
νY (t+1)

)
|Ft

]
. We then have, for any ν ≥ 0

Mt+1|t(ν)
(a)

≤ E
[
exp

(
ν(atY

(t) + bt⟨e(t),∇f(x(t))⟩+ ctV )
) ∣∣ Ft

]
(b)

≤ exp(νatY
(t) + νctV )E

[
exp(νbt⟨e(t),∇f(x(t))⟩)

∣∣ Ft

]
(c)

≤ exp
(
νatY

(t) + νctV + ν2b2tN∥∇f(x(t))∥2
)

(d)

≤ exp
(
νatY

(t) + νctV + 2ν2b′2t LNY (t)
)
, (10)

where (a) follows from (9), (b) follows from the fact that Y (t) is Ft measurable, (c) follows

from Lemma 3.1, in (d) we use ∥∇f(x)∥2 ≤ 2L(f(x)− f⋆) and define b′t = a (t+1)
−ζ
2

(t+2)δ−ζ , so that

bt = (t+ 1)
ζ
2 b′t. For the choice 0 ≤ ν ≤ B, for some B > 0 (to be specified later), we get

Mt+1|t(ν) ≤ exp
(
ν(at + 2b′2t LNB)Y (t)

)
exp (νctV ) .

Taking the full expectation, we get

Mt+1(ν) ≤Mt((at + 2b′2t LNB)ν) exp(νctV ). (11)

Similarly to the approach in Harvey et al. (2019), we now want to show that Mt(ν) ≤ e
ν
B , for

any 0 ≤ ν ≤ B and any t ≥ 0. We proceed by induction. For t = 0, we have

M0(ν) = exp(νY (0)) = exp
(
ν(f(x(0))− f⋆)

)
,
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where we simply used the definition of Y (t) and the fact that it is deterministic for t = 0.
Choosing B ≤ (f(x(0))− f⋆)−1 ensures that M0(ν) ≤ e

ν
B . Next, assume that for some t ≥ 1

it holds that Mt(ν) ≤ e
ν
B . We then have

Mt+1(ν) ≤Mt((at + 2b′2t LNB)ν) exp(νctV ) ≤ exp
(
(at + 2b′2t LNB + ctV B)

ν

B

)
,

where we use (11) in the first and the induction hypothesis in the second inequality. For our
claim to hold, it suffices to show at + 2b′2t LNB + ctV B ≤ 1. Plugging in the values of at, b′t
and ct, we have

at + 2b′2t LNB + ctV B =
(
1− 2µaγ

t+ 2

)(
t+ 2

t+ 1

)ζ
+

2a2LNB

(t+ 2)2δ−2ζ(t+ 1)ζ
+

a2V B

(t+ 2)2δ−ζ

≤
(
t+ 2

t+ 1

)ζ (
1− 2µaγ

t+ 2
+

2a2LNB

(t+ 2)2δ−ζ +
a2V B(t+ 1)ζ

(t+ 2)2δ

)
≤
(
t+ 2

t+ 1

)ζ (
1− 2µaγ

t+ 2
+

2a2LNB

(t+ 2)2δ−ζ +
a2V B

(t+ 2)2δ−ζ

)
.

Noticing that 2δ − ζ ≥ 1 and setting B = min
{

1
(t0−1)ζ(f(x(0))−f⋆)

, µγ

aL(2N+C2/2)

}
, gives

at + 2b′2t LNB + ctV B ≤
(
t+ 2

t+ 1

)ζ (
1− µaγ

t+ 2

)
≤ exp

(
ζ

t+ 1
− aµγ

t+ 2

)
≤ 1,

where in the second inequality we use 1 + x ≤ ex, while the third inequality follows from the
choice of ζ. Therefore, we have shown that Mt(ν) ≤ e

ν
B , for any t ≥ 0 and any 0 ≤ ν ≤ B.

By Markov’s inequality, it readily follows that

P(f(x(t+1))− f⋆ ≥ ϵ) = P(Yt+1 ≥ (t+ 2)ζϵ) ≤ e−ν(t+2)ζϵMt+1(ν) ≤ e1−B(t+2)ζϵ,

where in the last inequality we set ν = B. Finally, using strong convexity, we have

P(∥x(t+1) − x⋆∥2 ≥ ϵ) ≤ P
(
f(x(t+1))− f⋆ ≥ µ

2
ϵ
)
≤ ee

−B(t+2)ζ
µ

2
ϵ
,

which implies that, for any β ∈ (0, 1), with probability at least 1− β,

∥x(t+1) − x⋆∥2 ≤ 2 log (e/β)

µB(t+ 2)ζ
,

completing the proof.

4 Analytical and Numerical Studies

In this section we present analytical and numerical studies in the case of strongly convex costs,
specializing the rate ζ from Theorem 3 for different nonlinearities. As we proceed to show, the
rates provided by our theory, while general, are able to uncover important phenomena, namely
which choice of nonlinearity is preferred for the given problem settings. Subsection 4.1 provides
the analytical study, while Subsection 4.2 provides the accompanying numerical results.
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4.1 Analytical Study

In this section we provide an analytical study, using the rate ζ obtained in Theorem 3, with
the goal of showing that clipping, exclusively considered in prior works, is not always the
optimal choice of nonlinearity. Recall the constants where ϕ′(0), ξ are constants defined in
Section 3.2. We then have the following result, whose proof can be found in Appendix E.

Lemma 4.1. For any strongly convex cost with Lipschitz continuous gradients and the noise
from Example 1, a component-wise nonlinearity is preferred to joint clipping whenever

ϕ′(0)ξ

C1
≥ 8
√
d

(
1− 1

(1 + B0/
√
d)α−1

)d

. (12)

For sign and cclip it can be shown that the value ϕ′(0)ξ
C1

is approximately α−1
α and m−1

m (1−
(m + 1)−α), respectively, where α > 2 is the constant from Example 1, while m > 1 is the
clipping radius for cclip (see Jakovetić et al. (2023)). Clearly, if B0 is fixed, one can find a
large enough d for which the relation (12) holds for both sign and cclip. On the other hand,
for a fixed d, if B0 → +∞, then the relation does not hold. If both B0 and d grow to infinity,
we notice two regimes:

1. B0 = o(
√
d), e.g., B0 = d1/4, the relation (12) holds for sufficiently large d.

2. d = o(B0), e.g., B0 = d2, the relation (12) does not hold.

Hence, for B0 finite or growing at an appropriate rate, we can always find a d large enough, for
which the relation from Lemma 4.1 holds. We verify this numerically in Figure 1, where we plot
the behaviour of the right-hand side of (12) when B0 = d2, B0 = d1/4 and B0 = 100 (i.e., con-
stant) on the y-axis, versus the problem dimension d on the x-axis. The straight lines show the
left-hand side of (12), when specialized to sign and cclip, i.e., α−1

α and m−1
m (1− (m+ 1)−α),

for α = 2.05 and m = 2. We can clearly see that, as d increases, the right-hand side either
blows up (B0 = d2), rapidly decreases to zero (B0 = d1/4), or initially blows up, but decreases
to zero for d sufficiently large (B0 = const.), as claimed. In the subplot we zoom in on the
lines representing the behaviour of the left-hand side of (12) for sign and cclip, which suggests
that sign is a better choice of nonlinearity in this instance. Therefore, there are regimes for
which our theory suggests clipping is not the optimal choice of nonlinearity. This is in line
with the observations made in Zhang et al. (2020), who noted that, compared to joint clipping,
cclip converges faster and achieves a better dependence on problem dimension.

4.2 Numerical Results

In this section we verify our analytical findings numerically. We consider a quadratic problem
f(x) = 1

2x
⊤Ax+b⊤x, where A ∈ Rd×d is positive definite, with b ∈ Rd a fixed vector. We set

d = 100. The stochastic noise is generated according to the component-wise noise PDF from
Example 1, with α = 2.05. We compare the performance of sign, component-wise and joint
clipped SGD, with all three algorithms using the step-size schedule αt = 1

t+2 . For clipping
based algorithms, we choose the clipping thresholds m and M for which component-wise and
joint clipped SGD performed the best, that being m = 1 and M = 100. All three algorithms
are initialized at the zero vector and perform T = 25000 iterations, across R = 5000 runs. To
evaluate the performance of the methods, we use the following criteria:
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Figure 1: Numerical verification of the inequality from Lemma 4.1, for different values of d and B0. We can
see that the inequality holds for B0 finite or growing at an appropriate rate.

1. Mean-squared error (MSE): we present the MSE of the algorithms, by evaluating the model
gap ∥x(t) − x⋆∥2 in each iteration, averaged across all runs, i.e., the final estimator at
iteration t = 1, . . . , T , is given by MSEt = 1

R

∑R
r=1 ∥x

(t)
r − x⋆∥2, where x

(t)
r is the t-th

iterate in the r-th run, generated by the nonlinear SGD algorithms.

2. High-probability estimate: we evaluate the high-probability behaviour of the methods, as
follows. We consider the events At = {∥x(t) − x⋆∥2 > ε}, for a fixed ε > 0. To esti-
mate the probability of At, for each t = 1, . . . , T , we construct a Monte Carlo estima-
tor of the empirical probability, by sampling n = 3000 instances from the R = 5000
runs, uniformly with replacement. We then obtain the empirical probability estimator
as Pn(A

t) = 1
n

∑n
i=1 Ii(At) = 1

n

∑n
i=1 I

(
{∥x(t)

i − x⋆∥2 > ε}
)
, where I(·) ∈ {0, 1} is the

indicator function, with x
(t)
i the i-th Monte Carlo sample.

The results are presented in Figure 2. We can see that component-wise nonlinearities outper-
form joint clipping, both in terms of MSE and high-probability performance, thus validating
our analytical findings from Section 4, further underlining the usefulness of the exponent ζ.

Figure 2: Performance of sign, cclip and joint clipping for d = 10. Left to right: MSE performance and
high-probability performance for ε = {0.1, 0.01}, respectively.
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5 Conclusion

We present high-probability convergence guarantees for a broad class of nonlinear streaming
SGD algorithms, under heavy-tailed noise. Our results are built on a general framework, that
encompasses many popular nonlinear versions of SGD, such as clipped, normalized, quantized
and sign SGD, providing high-probability convergence guarantees for both non-convex and
strongly convex functions. Compared to state-of-the-art works Nguyen et al. (2023a); Sadiev
et al. (2023), we extend the high-probability convergence guarantees to novel nonlinearities,
relax the noise moment condition, and demonstrate regimes in which our convergence rates
are better than state-of-the-art. Moreover, for strongly convex functions we show that our
rates are informative for the optimal choice of nonlinearity and that clipping, exclusively
considered in prior works, is not always the optimal choice of nonlinearity, further highlighting
the importance of our general framework. Numerical results confirm the theoretical findings
and show the usefulness of our general framework for informing on the optimal choice of
nonlinearity.
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A Introduction

The Appendix presents results omitted from the main body. Appendix B provides some
useful facts and results used in the proofs. Appendix C provides the proofs omitted from
Section 3. Appendix D provides rate expressions for component-wise and joint nonlinearities.
Appendix E presents results omitted from Section 4. Appendix F provides some further
derivations.

B Useful Facts

In this section we present some useful facts and results, concerning L-smooth, µ-strongly
functions, bounded random vectors and the behaviour of nonlinearities.

Fact 1. Let f : Rd 7→ R be L-smooth, µ-strongly convex, and let x⋆ = argminx∈Rd f(x).
Then, for any x ∈ Rd, we have

2µ (f(x)− f(x⋆)) ≤ ∥∇f(x)∥2 ≤ 2L (f(x)− f(x⋆)) .

Proof. The proof of the upper bound follows by plugging y = x, x = x⋆ in equation (2.1.10)
of Theorem 2.1.5 from Nesterov (2018). The proof of the lower bound similarly follows by
plugging y = x, x = x⋆ in equation (2.1.24) of Theorem 2.1.10 from Nesterov (2018).

Fact 2. Let X ∈ Rd be a zero-mean, bounded random vector, i.e., EX = 0 and ∥X∥ ≤ σ, for
some σ > 0. Then, X is sub-Gaussian, i.e., there exists a positive constant N = N(σ) such
that, for any λ ∈ Rd, we have

Ee⟨X,λ⟩ ≤ e
N∥λ∥2

2 .

Proof. We begin by first showing that a scalar Rademacher random variable is sub-Gaussian.
Recall that a random variable ε is a Rademacher random variable, if ε takes the values −1
and 1, both with probability 1/2. We then have, for any t ∈ R

Eeεt (a)
=

1

2

(
et + e−t

) (b)
=

∞∑
k=0

t2k

(2k)!

(c)

≤
∞∑
k=0

t2k

2kk!
=

∞∑
k=0

(t2/2)k

k!
= e

t2

2 , (13)

where (a) follows from the definition of the Rademacher random variable, (b) follows from the
fact that et =

∑∞
k=0

tk

k! , for any t ∈ R, while (c) follows from the fact that 2k! ≥ 2kk!, for any
k ∈ N0. Let X ′ ∈ Rd be an independent, identically distributed copy of X. We then have, for
any λ ∈ Rd

Ee⟨X,λ⟩ (a)
= Ee⟨X−EX′,λ⟩

(b)

≤ EX,X′e⟨X−X′,λ⟩ (c)
= EX,X′Eεe

ε⟨X−X′,λ⟩
(d)

≤ EX,X′e
(⟨X−X′,λ⟩)2

2

≤ EX,X′e
∥X−X′∥2∥λ∥2

2

(e)

≤ e2σ
2∥λ∥2 ,

where (a) follows from the fact that X is zero-mean, in (b) we use Jensen’s inequality, (c) uses
the fact that X,X ′ are i.i.d., therefore X −X ′ has the same distribution as ε(X −X ′), where
ε is a Rademacher random variable, in (d) we use (13), while (e) follows from the boundedness
of X. Choosing N = 4σ2, the desired inequality follows.
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C Missing Proofs

In this section we provide proofs of Lemmas 3.1, 3.3 and 3.4, omitted from the main body.
We begin by proving Lemma 3.1.

Proof of Lemma 3.1. Recall the definition of the error vector e(t) ≜ Φ(t)−Ψ(t), where Φ(t) ≜
Ez(t)

[
Ψ(∇f(x(t)) + z(t))

]
is the denoised version of Ψ(t). By definition, it then follows that

E
[
e(t)| Ft

]
= E

[
Φ(t) −Ψ(t)| Ft

]
= Φ(t) − E

[
Ψ(t)| Ft

]
= 0,

where the last equality follows from the fact that Φ(t) is Ft-measureable and E
[
Ψ(t)| Ft

]
=

Ez(t)
[
Ψ(∇f(x(t)) + z(t))

]
= Φ(t). Moreover, by Assumption 1, we have

∥e(t)∥ = ∥Φ(t) −Ψ(t)∥ ≤ ∥Φ(t)∥+ ∥Ψ(t)∥ ≤ E∥Ψ(t)∥+ C ≤ 2C,

which proves the first claim. The second claim readily follows by using the fact that e(t) is a
bounded random variable and applying Fact 2.

We next prove Lemma 3.3.

Proof of Lemma 3.3. Using the results from Lemma 3.2, for any x ∈ R, and any i ∈ [d], we
have

ϕi(x) = ϕi(0) + ϕ′
i(0)x+ hi(x)x = ϕ′

i(0)x+ hi(x)x,

where hi : R 7→ R is such that limx→0 hi(x) = 0. Recalling that ϕ′(0) ≜ mini∈[d] ϕ
′
i(0) > 0,

it follows that there exists a ξ > 0 (depending only on Φ) such that, for each x ∈ R and all
i ∈ [d], we have |hi(x)| ≤ ϕ′(0)/2, if |x| ≤ ξ. Therefore, for any 0 ≤ x ≤ ξ, we have

ϕi(x) ≥
ϕ′(0)x

2
. (14)

On the other hand, for x > ξ, since ϕi is non-decreasing, we have from (14) that ϕi(x) ≥
ϕi(ξ) ≥ ϕ′(0)ξ

2 . Therefore, it follows that, for any x ≥ 0

ϕi(x) ≥
ϕ′(0)

2
min{x, ξ}. (15)

Next, for any a ∈ R, using oddity of ϕi, we get

aϕi(a) = |a|ϕi(|a|). (16)

Using (15) and (16), we then have, for any vector x ∈ Rd

⟨x,Φ(x)⟩ =
d∑

i=1

xiϕi(xi)
(16)
=

d∑
i=1

|xi|ϕ(|xi|) ≥ max
i∈[d]
|xi|ϕi(|xi|)

(15)
≥ ϕ′(0)

2
max
i∈[d]

min{ξ|xi|, |xi|2}

=
ϕ′(0)

2
min{ξ∥x∥∞, ∥x∥2∞} ≥

ϕ′(0)

2
min{ξ∥x∥/√d, ∥x∥2/d}, (17)

where the last inequality follows from the fact that ∥x∥∞ ≥ ∥x∥/
√
d.
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In order to prove Lemma 3.4, we first state and prove some intermediate results.

Lemma C.1. Let Assumptions 1-4 hold, with the step-size given by αt = a
(t+t0)δ

, for any
δ ∈ (0.5, 1) and t0 > 1. Then, for any t ∈ N0, we have

∥∇f(x(t))∥ ≤ Gt ≜ L
(
∥x(0) − x⋆∥+ aC

) (t+ t0)
1−δ

1− δ
.

Proof. Using L-smoothness of f and the update (3), we have

∥∇f(x(t))∥ ≤ L∥x(t) − x⋆∥ = L∥x(t−1) − αt−1Ψ
(t−1) − x⋆∥

≤ L
(
∥x(t−1) − x⋆∥+ αt−1∥Ψ(t−1)∥

)
≤ L

(
∥x(t−1) − x⋆∥+ αt−1C

)
. (18)

Unrolling the recursion in (18), we get

∥∇f(x(t))∥ ≤ L∥x(0) − x⋆∥+ LC

t∑
k=1

αk−1 ≤ L
(
∥x(0) − x⋆∥+ aC

) (t+ t0)
1−δ

1− δ
,

completing the proof.

The next result characterize the behaviour of the nonlinearity, when it takes the form
Ψ(x) = [N1(x1), . . . ,N1(xd)]

⊤. It follows a similar idea to Lemma 5.5 from Jakovetić et al.
(2023), with the main difference due to allowing for potentially different marginal PDFs of
each noise component. Since the proof follows the same steps, we omit it for brevity.

Lemma C.2. Let Assumptions 1-4 hold and the nonlinearity Ψ be component-wise, i.e., of
the form Ψ(x) = [N1(x1), . . . ,N1(xd)]

⊤. Then, there exists a positive constant ξ such that,
for any t ∈ N0, there holds almost surely for each j = 1, . . . , d, that |ϕ(t)

i | ≥ |[∇f(x(t))]i|
ϕ′
i(0)ξ
2Gt

,
where Gt is defined in Lemma C.1, while ϕ′

i(0) =
∂
∂xi

EziN1(xi + zi)
∣∣
xi=0

.

The next result is a restatement of Lemma 6.2 in Jakovetić et al. (2023), in the case when
the nonlinearity takes the form Ψ(x) = xN2(∥x∥). We omit the proof for brevity.

Lemma C.3 (Lemma 6.2 from Jakovetić et al. (2023)). Let Assumptions 1-4 hold and the
nonlinearity be of the form Ψ(x) = xN2(∥x∥). Then, the following holds

⟨Φ(x),x⟩ ≥ 2(1− κ)∥x∥2
∫
J (x)
N2(∥x∥+ ∥z∥)p(z)dz,

where J (x) =
{
z ∈ Rd : ⟨z,x⟩

∥z∥∥x∥ ∈ [0, κ]
}

and κ ∈ (0, 1) is a constant.

The next result characterizes the behaviour of the nonlinearity, when it takes the form
Ψ(x) = xN2(∥x∥). It builds on Lemma C.3 and we provide the full proof for completeness.

Lemma C.4. Let Assumptions 1-4 hold and the nonlinearity be of the form Ψ(x) = xN2(∥x∥).
Then, there exists a constant κ ∈ (0, 1) such that for any t ∈ N0, there holds almost surely
that

⟨∇f(x(t)),Φ(t)⟩ ≥ 2(1− κ)λ(κ)N2(1)∥∇f(x(t))∥2

B0 +Gt
,
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where κ ∈ (0, 1) is the constant from Lemma C.3, B0 > 0 is defined in Assumption 4, Gt is
defined in Lemma C.1, with λ(κ) > 0 a constant such that

∫{
z∈Rd:

⟨z,x⟩
∥z∥∥x∥∈[0,κ], ∥z∥≤B0

} p(z)dz >

λ(κ), for any x.

Proof. We start from Lemma C.3, which tells us that, for some κ ∈ (0, 1), almost surely

⟨Φ(t),∇f(x(t))⟩ ≥ 2(1− κ)∥∇f(x(t))∥2
∫
J (∇f(x(t)))

N2(∥∇f(x(t))∥+ ∥z∥)p(z)dz, (19)

where J (∇f(x(t))) =
{
z ∈ Rd : ⟨z,∇f(x(t))⟩

∥z∥∥∇f(x(t))∥ ∈ [0, κ]
}

. Note that, as xN2(x) is a non-decreasing
function (Assumption 1), N2 satisfies

N2(x) ≥ min

{
N2(1)

x
,N2(1)

}
, (20)

for any x > 0. In particular, for any z such that ∥z∥ ≤ B0, we have N2(∥∇f(x(t))∥+ ∥z∥) ≥
min

{
N2(1)

∥∇f(x(t))∥+B0
,N2(1)

}
. We then have

∥∇f(x(t))∥2
∫
J (∇f(x(t)))

N2(∥∇f(x(t))∥+ ∥z∥)p(z)dz ≥ ∥∇f(x(t))∥2
∫
J1

N2(∥∇f(x(t))∥+ ∥z∥)p(z)dz

(a)

≥ ∥∇f(x(t))∥2
∫
Jκ

min

{
N2(1)

∥∇f(x(t))∥+B0
,N2(1)

}
p(z)dz

(b)

≥ ∥∇f(x
(t))∥2N2(1)

Gt +B0

∫
Jκ

p(z)dz

(c)

≥ ∥∇f(x
(t))∥2λ(κ)N2(1)

Gt +B0
, (21)

where Jκ =
{
z ∈ Rd : ⟨z,∇f(x(t))⟩

∥z∥∥∇f(x(t))∥ ∈ [0, κ], ∥z∥ ≤ B0

}
, (a) follows from (20), (b) follows from

Lemma C.1 and the fact that Gt > 1, for every t ≥ 0, while (c) follows from Assumption 4.
Combining (19) and (21), we have that, almost surely

⟨Φ(t),∇f(x(t))⟩ ≥ 2(1− κ)λ(κ)N2(1)∥∇f(x(t))∥2

Gt +B0
,

which is what we wanted to show.

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. First, consider the case when the nonlinearity is of the form Ψ(x) =
[N1(x1), . . . ,N1(xd)]

⊤. We then have

⟨Φ(t),∇f(x(t))⟩ =
d∑

i=1

ϕ
(t)
i [∇f(x(t))]i

(a)
=

d∑
i=1

|ϕ(t)
i ||[∇f(x

(t))]i|

(b)

≥
d∑

i=1

|[∇f(x(t))]i|2
ϕ′
i(0)ξ

2Gt

(c)

≥ ϕ′(0)ξ

2Gt
∥∇f(x(t))∥2 = γ(t+ t0)

δ−1∥∇f(x(t))∥2,
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where γ = (1−δ)ϕ′(0)ξ

2L(∥x(0)−x⋆∥+aC)
, (a) follows from the oddity of N1, (b) follows from Lemma C.2,

(c) follows from ϕ′(0) = mini=1,...,d ϕ
′
i(0). On the other hand, if the nonlinearity is of the form

Ψ(x) = xN2(∥x∥), we get

⟨Φ(t),∇f(x(t))⟩ ≥ 2(1− κ)λ(κ)N2(1)∥∇f(x(t))∥2

Gt +B0
≥ γ(t+ t0)

δ−1∥∇f(x(t))∥2,

where γ = 2(1−δ)(1−κ)λ(κ)N2(1)

L(∥x(0)−x⋆∥+aC)+B0
, the first inequality follows from Lemma C.4, while the sec-

ond follows from the definition of Gt and the fact that Gt + B0 ≤ (L
(
∥x(0) − x⋆∥+ aC

)
+

B0)
(t+t0)1−δ

1−δ . This completes the proof.

D Rate ζ

Recalling Assumption 1 and the definition of C, it readily follows that γ = (1−δ)ϕ′(0)ξ

2L(∥x(0)−x⋆∥+a
√
dC1)

for nonlinearities of the form Ψ(x) = [N1(x1), . . . ,N1(xd)]
⊤ (i.e., component-wise), while γ =

2(1−δ)(1−κ)λ(κ)N2(1)

L(∥x(0)−x⋆∥+aC2)+B0
, for nonlinearities of the form Ψ(x) = xN2(∥x∥) (i.e., joint). Combined

with Theorem 3, it follows that the rate ζ is given by

ζjoint = min

{
2δ − 1,

2aµ(1− κ)λ(κ)(1− δ)N2(1)

L
(
∥x(0) − x⋆∥+ aC2

)
+B0

}
,

ζcomp = min

2δ − 1,
aµϕ′(0)ξ(1− δ)

4L
(
∥x(0) − x⋆∥+ aC1

√
d
)
 .

We note that ζ depends on the following problem-specific parameters:

• Initialization - starting farther from the true minima x⋆, results in smaller ζ. The effect of
initialization can be eliminated by choosing sufficiently large a.

• Condition number - larger values of L
µ (i.e., a more difficult problem) result in smaller ζ.

• Nonlinearity - the dependence of ζ on the nonlinearity comes in the form of two terms: the
uniform bound on the nonlinearity C1 (C2), and the value ϕ′(0) (N2(1)).

• Problem dimension - for component-wise nonlinearities directly in the form of
√
d; for joint

ones indirectly, in the form of N2(1). As we show in Section 4, the dependence on dimension
for joint nonlinearities, while not explicit, can sometimes be worse than that of component-
wise ones.

• Noise - in the form of ϕ′(0) and ξ for component-wise and B0, λ(κ) for joint ones.

• Step-size - both terms in the definition of ζ depend on the step-size parameter δ ∈ (0, 1).

E Miscellaneous

In this section we prove Lemma 4.1.
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Proof of Lemma 4.1. Consider clipping and a generic component-wise nonlinearity. From Ap-
pendix D we know that the rate ζ is then given by

ζclip = min

{
2δ − 1,

2aµ(1− κ)λ(κ)(1− δ)N2(1)

L
(
∥x(0) − x⋆∥+ aC2

)
+B0

}
,

ζcomp = min

2δ − 1,
aµϕ′(0)ξ(1− δ)

4L
(
∥x(0) − x⋆∥+ aC1

√
d
)
 ,

where C1, C2 > 0 are the bounds on the nonlinearities, ξ > 0 is a constant depending on ϕ,
κ ∈ (0, 1) and λ(κ) > 0 being a constant that satisfies∫

{
z∈Rd:

⟨z,x⟩
∥z∥∥x∥∈[0,κ], ∥z∥≤B0

} p(z)dz > λ(κ).

Our goal is to show that clipping is not the best choice of nonlinearity. We will do so by
showing that ζclip ≤ ζcomp. To guarantee this is the case, it suffices that

2aµ(1− κ)λ(κ)(1− δ)N2(1)

L
(
∥x(0) − x⋆∥+ aC2

)
+B0

≤ aµϕ′(0)ξ(1− δ)

4L
(
∥x(0) − x⋆∥+ aC1

√
d
) ,

or equivalently,
8(1− κ)λ(κ)N2(1)

∥x(0) − x⋆∥+ aM + B0/L
≤ ϕ′(0)ξ

∥x(0) − x⋆∥+ aC1

√
d
,

where we used the fact that C2 = M , where M > 0, is the clipping threshold. Rearranging,
we get

ϕ′(0)ξ ≥ 8(1− κ)λ(κ)N2(1)
∥x(0) − x⋆∥+ aC1

√
d

∥x(0) − x⋆∥+ aM + B0/L
.

Choosing a > 0 sufficiently large, it suffices to verify that the following holds

ϕ′(0)ξ

C1
≥ (1− κ)λ(κ)N2(1)

8
√
d

M
. (22)

Next, recall that the noise PDF from Example 1 is given by

p(x) =
α− 1

2(1 + |x|)α
,

for some α > 2. From the independence of noise components, we know that the joint PDF is
given by

p(z) = p(z1)× p(z2)× . . .× p(zd),

which clearly satisfies Assumption 4 for any B0 > 0. Next, for any x =
[
x1 . . . xd

]⊤ and
κ ∈ (0, 1), define the set J (κ) as

J (κ) =
{
z ∈ Rd :

⟨z,x⟩
∥z∥∥x∥

∈ [0, κ], ∥z∥ ≤ B0

}
.
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Consider the following sets

Ji(κ) =
{
z ∈ R :

z · xi
∥x∥

∈ [0, κ/d], |z| ≤ B0√
d

}
, for all i = 1, . . . , d,

and define the set B1 =
{
z ∈ Rd : ∥z∥ = 1

}
. Then, clearly, for the set

J̃ (κ) = {z ∈ B1 : zi ∈ Ji(κ), for all i = 1, . . . , d} ,

we have J̃ (κ) ⊆ J (κ), hence∫
J (κ)

p(z)dz >

∫
J̃ (κ)

p(z)dz ≜ λ(κ).

To prove our claim, it suffices to show that the relation (22) holds when λ(κ) is replaced by
some upper bound. To that end, by definition, we have J̃ (κ) ⊆

{
z ∈ Rd : zi ∈ Ji(κ), i = 1, . . . , d

}
,

which implies

λ(κ) ≤
d∏

i=1

∫
Ji(κ)

pi(z)dz
(a)
=

(∫
J1(κ)

p(z1)dz

)d
(b)

≤

(∫
|z|≤B0√

d

p(z)dz

)d

≜ λ̃,

where (a) follows from the fact that all components of z are i.i.d., while (b) follows from the
fact that J1(κ) ⊆

{
z ∈ R : |z| ≤ B0√

d

}
. We can compute λ̃ explicitly, by solving the integral,

to get

λ̃ =

(
2

∫ B0/
√
d

0

α− 1

2(1 + z)α
dz

)d

=

(
1− 1

(1 + B0/
√
d)α−1

)d

.

Plugging λ̃ in (22), we get

ϕ′(0)ξ

C1
≥ 8(1− κ)

(
1− 1

(1 + B0/
√
d)α−1

)d

N2(1)

√
d

M
.

Notice that N2(1) = min{1,M}, which implies N2(1)/M ≤ 1. Moreover, since the right-hand
side (RHS) of the above equation is maximized for κ→ 0, we get the following relation

ϕ′(0)ξ

C1
≥ 8
√
d

(
1− 1

(1 + B0/
√
d)α−1

)d

,

completing the proof.

F Further derivations

In this Appendix we show how our bounds from Theorems 1 and 2 lead to bounds on the best
iterate and weighted average of iterates, respectively. We begin by showing the former. In
particular, from Theorem 1 we have

t−1∑
k=0

α̃k min{ξ∥∇f(x(k))∥/
√
d, ∥∇f(x(k))∥2/d} ≤ R(a, β, δ)

(t+ 2)1−δ − 21−δ
. (23)

29



Define U ≜ {k ∈ {0, . . . , t − 1} : ∥∇f(x(k))∥ ≤ ξ
√
d}, with U c ≜ {0, 1, . . . , t − 1} \ U .

From (23), we then have ∑
k∈U

α̃k∥∇f(x(k))∥2 ≤ dR(a, β, δ)

(t+ 2)1−δ − 21−δ
,

∑
k∈Uc

α̃k∥∇f(x(k))∥ ≤ R(a, β, δ)
√
d/ξ

(t+ 2)1−δ − 21−δ
.

It then readily follows that

min
0≤k≤t−1

∥∇f(x(k))∥ ≤
∑
k∈U

α̃k∥∇f(x(k))∥+
∑
k∈Uc

α̃k∥∇f(x(k))∥ ≤
t−1∑
k=0

α̃kzk +
R(a, β, δ)

√
d/ξ

(t+ 2)1−δ − 21−δ
,

where zk = ∥∇f(x(k))∥, for k ∈ U , otherwise zk = 0. Using Jensen’s inequality, we get

min
0≤k≤t−1

∥∇f(x(k))∥ ≤

√√√√ t−1∑
k=0

α̃kz
2
k +

R(a, β, δ)
√
d/ξ

(t+ 2)1−δ − 21−δ
=

√∑
k∈U

α̃k∥∇f(x(k))∥2 + R(a, β, δ)
√
d/ξ

(t+ 2)1−δ − 21−δ

≤

√
dR(a, β, δ)

(t+ 2)1−δ − 21−δ
+

R(a, β, δ)
√
d/ξ

(t+ 2)1−δ − 21−δ
,

giving the bound min0≤k≤t−1 ∥∇f(x(k))∥ = O
(
t(δ−1)/2

)
. Next, from Theorem 2, we have

Hξ
√
d/µ(∥x̂

(t) − x⋆∥) ≤ R̃(a, β, δ)

(t+ 2)1−δ − 21−δ
, (24)

By the definition of Huber loss, it then follows by (24) that, if ∥x̂(t) − x⋆∥ ≤ ξ
√
d/µ, we have

∥x̂(t) − x⋆∥2 ≤ 2R̃(a, β, δ)

(t+ 2)1−δ − 21−δ
. (25)

Otherwise, if ∥x̂(t) − x⋆∥ > ξ
√
d/µ, by (24), we have

ξ
√
d∥x̂(t) − x⋆∥

2µ
< ξ
√
d∥x̂(t) − x⋆∥/µ− ξ2d

2µ2
≤ R̃(a, β, δ)

(t+ 2)1−δ − 21−δ
,

implying that

∥x̂(t) − x⋆∥2 ≤ 4µ2R̃(a, β, δ)2/(ξ2d)

((t+ 2)1−δ − 21−δ)
2 . (26)

Combining (25) and (26), it then follows that

∥x̂(t) − x⋆∥2 ≤ min

{
2R̃(a, β, δ)

(t+ 2)1−δ − 21−δ
,
4µ2R̃(a, β, δ)2/(ξ2d)

((t+ 2)1−δ − 21−δ)
2

}
,

which, for t sufficiently large, implies ∥x̂(t) − x⋆∥2 = O
(
t2(δ−1)

)
.
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