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We study the solution V of the Poisson equation LV + f = 0 where L is the

backward generator of an irreducible (finite) Markov jump process and f is a given

centered state function. Bounds on V are obtained using a graphical representation

derived from the Matrix Forest Theorem and using a relation with mean first-passage

times. Applications include estimating time-accumulated differences during relax-

ation toward a steady nonequilibrium regime.
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I. INTRODUCTION

A fascinating part of mathematical physics concerns the connection between certain

(partial) differential equations and stochastic processes, [1]. Famous examples include the

heat equation which is associated to Brownian motion, and the telegraph equation which

connects with run-and-tumble dynamics. As a general technique, Feynman-Kac formulæ

provide a relation between the (semi)group kernel generated by a (quantum) Hamiltonian

and a stochastic representation, aka path-integral, allowing perturbative analysis and

diagrammatic developments. Summing over walks or paths and their higher-dimensional

versions is indeed a typical subject of stochastic geometry. The associated arborification,

i.e., the possible restriction of those sums to (spanning sets of) trees is often a major

simplification. That is the subject of the Matrix Tree and Matrix Forest Theorems,

which, while mainly in linear algebra, has things to offer in stochastic analysis as well.

That is also a main theme of the present paper, viz., to give a graphical representation

in terms of trees of the solution of Poisson equations in the context of Markov jump processes.

A second and related subject is to connect solutions of the Poisson equation with mean
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first-passage times. The study of first-passage times comes with a useful intuition, and their

behavior is obviously strongly tied to graph properties, [2]. In the end, that connection with

mean first-passage times combined with graphical representations allows to give estimates

on the solution of the Poisson equation. We refer to [3–5] for the case of diffusions. Such

bounds are relevant for a number of applications, including the low-temperature properties

of excess heat and of relaxational behavior, and all that within the context of finite Markov

jump processes. In that respect, we emphasize that the techniques of the present paper

apply outside the traditional context of reversibility, and indeed are motivated by problems

in nonequilibrium statistical mechanics.

In the next section, the setup within the framework of the Markov jump process is intro-

duced.

The Poisson equation is presented, in various forms, in Section III, where we focus on rela-

tions between different concepts relating quasipotentials with mean first-passage times.

In Section IV, we give the graphical representation of solutions of the various Poisson

equations. The main graphical representations are formulated as Theorem IV.2 and Theo-

rem IV.3.

Section V is an application of these relations and graphical representations. It gives bounds

on the solutions of the Poisson equation. We mention there an application for nonequilib-

rium thermal physics when the Markov jump process depends on parameters such as the

inverse temperature. We have three main estimates presented in inequalities (V.3), (V.6),

and (V.9).

The Appendix presents the broader context of the graphical representations and in particular

Appendix B enters into more mathematical details related to the Matrix Forest Theorem.

II. SETUP

Given a finite set K of states x, y, z, . . . ∈ K, we consider a Markov jump process Xt ∈ K

with transition rates k(x, y), x ̸= y, for the jump x → y. We speak about Xt as the position

of a random walker at time t ≥ 0, but obviously, from a physics perspective, the states

x ∈ K do not need to model positions but can correspond to many-body configurations.

It naturally gives rise to a finite digraph, i.e., an ordered pair of sets G = (V , E), where the
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vertex set V = K and E is the set of ordered pairs (arcs) (x, y) of vertices x, y ∈ V for which

k(x, y) > 0. We assume that the resulting graph G is irreducible (strongly connected). The

latter implies the exponentially fast convergence, for time t ↑ ∞,

⟨h(Xt)⟩x := ⟨h(Xt) |X0 = x⟩ −→ ⟨h⟩s =: hs (II.1)

of expectations in the Markov process for every real-valued function h onK and independent

of the initial condition x, toward the stationary expectation

hs =
∑
x

h(x)ρs(x), ρsL = 0

for the unique stationary probability distribution ρs > 0, and with L the backward generator

having matrix elements

Lx,y = k(x, y), x ̸= y

Lx,x = −
∑
y

k(x, y) (II.2)

In other words,

Lh (x) =
∑
y

k(x, y) [h(y)− h(x)] (II.3)

gives rise to the semigroup eL t, t ≥ 0, with

eL th(x) = ⟨h(Xt)|X0 = x⟩ , ⟨etLh⟩s = ⟨h⟩s (II.4)

as appears in (II.1) as well.

III. POISSON EQUATION

By Poisson equation (in the above setup) we mean in general an equation for a real-valued

function U on K, solving

LU(x) + f(x) = 0, x ∈ H; U(x) = g(x), x /∈ H (III.1)

for a given subset H ⊂ K and given functions f : H → R, g : K \H → R.
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A. Quasipotential

As a special but important case, we can consider H = K, where we deal with the Poisson

equation

LV (x) + f(x) = 0, x ∈ K (III.2)

writing then V instead of U , and we call V the quasipotential with given source f , where

we must require ⟨f⟩s = f s = 0 to have a solution. The solution to (III.2) is unique up to an

additive constant. If we require that ⟨V ⟩s = 0, then, clearly,

V (x) =

∫ ∞

0

dt etLf (x), x ∈ K (III.3)

which can be viewed as the accumulated excess of (II.1), in the sense that,

V (x) =

∫ ∞

0

dt [ ⟨h(Xt) |X0 = x⟩ − ⟨h⟩s ] (III.4)

for f = h− ⟨h⟩s.

In the case where f = LE for some potential function E, we have V = E−⟨E⟩s, which is one

reason to call, more generally, the solution (III.4) V of (III.2) a quasipotential. Obviously,

the physical interpretation of V in (III.4) strongly depends on the meaning of h. In the case

where h(x) is the expected instantaneous heat flux when the state is x, the quasipotential

is closely related to the so-called excess heat; see [6, 7].

B. Stopped accumulation

As an immediate generalization and for nonempty H, we introduce the random escape

time

TH := inf{t ≥ 0, Xt /∈ H}, TH = 0 if X0 /∈ H

and consider the expected accumulation till that (random) stopping time:

VH(x) = ⟨ϕH |X0 = x⟩ ; ϕH(x) :=

∫ TH

0

dt f(Xt) (III.5)

The function VH is the unique solution of the Poisson equation

LVH(x) + f(x) = 0, x ∈ H; VH(x) = 0, x /∈ H (III.6)

That reduces to (III.2) when H = K.

For completeness, we give the proof of (III.6).
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Proof of (III.6). Define the stopped process which quits running after escaping from H:

XH(t) =

X(t) for t ≤ TH

X(TH) for t > TH

(III.7)

It is again a Markov process with modified transition rates

kH(x, y) =

k(x, y) for x ∈ H, y ∈ K

0 for x ̸∈ H
(III.8)

and the corresponding generator is denoted by LH . That process is not ergodic and its (in

general nonunique) stationary distributions have support in K \H ̸= ∅. We have

P(TH > t |X(0) = x) = P(XH(t) ∈ H |XH(0) = x)

= (etLH1H)(x)
(III.9)

By irreducibility of the original process, the largest eigenvalue of LH (which is real by

the Perron-Frobenius theorem) is strictly negative, and hence TH has exponentially tight

distribution, P(TH > t) ≤ e−ct for some c > 0 and t large enough, uniformly with respect to

the initial condition. It means that any distribution in H will vanish in the limit t ↑ ∞. As

a result, the function fH(x) = f(x)1H(x) (where 1H is the indicator for the set H) can be

integrated to obtain (III.5):

VH(x) =

∫ ∞

0

etLHfH(x) dt

or

LHVH(x) = −fH(x)

which is (III.6).

C. First-passage times

As a special case we take f = 1 in the above (III.5), to introduce the mean escape time

SH(x) from H when started from x:

SH(x) = ⟨TH |X0 = x⟩ (III.10)

It satisfies

LSH(x) + 1 = 0, x ∈ H; SH(x) = 0, x /∈ H (III.11)
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For x ̸∈ H we have

LSH (x) =
∑
y∈H

k(x, y)SH(y) (III.12)

By combining with (III.11) and using the stationarity ⟨LSH⟩s = 0, we get∑
x̸∈H

∑
y∈H

ρs(x)k(x, y)SH(y) = ρs(H) (= Probs[x ∈ H]) (III.13)

which relates the escape times from H when starting from (inner boundary) states in H,

with the expected stationary number of jumps to H from outside (outer boundary).

As a special case, we fix a state z ∈ K and take H = K \ {z}. We put τ(x, z) := SH(x)

and then from (III.11),∑
y

k(x, y)[τ(y, z)− τ(x, z)] + 1 = 0, x ̸= z, τ(z, z) = 0 (III.14)

which is the Poisson equation characterizing the mean first-passage time to reach z when

started from some x ∈ K.

There is a useful relation between the quasipotential, solution of the Poisson equation

(III.2), and the mean first-passage times:

Proposition III.1.

V (x) = −
∑
z

ρs(z) f(z) τ(x, z) + constant (III.15)

where the additive constant is fixed, if needed, by the condition ⟨V ⟩s = 0.

As a consequence,

V (x)− V (y) =
∑
z

ρs(z) f(z)(τ(y, z)− τ(x, z)) (III.16)

Proof of Proposition III.1. We show that V in (III.15) is satisfying the Poisson equation

(III.2). Keep H = K \ {z}; the identity (III.13) reads

ρs(z)
∑
x

k(z, x)SH(x) = 1− ρs(z) (III.17)
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Therefore,

LSH(x) = gz(x)− ⟨gz⟩s, for gz(x) :=
δx,z
ρs(z)

(III.18)

valid for all x ∈ K, which means that the τ(x, z)’s of (III.14) play the role of Green functions

for the Poisson equation. In particular, since always f(x) =
∑

z ρ
s(z)f(z)gz(x), we obtain

(III.15) from the following calculation

LV (x) = L [−
∑
z

ρs(z) f(z) τ(x, z) + constant]

= −
∑
z

ρs(z)f(z)LSH(x)

= −
∑
z

ρs(z)f(z)[gz(x)− 1]

= f s − f(x)

(III.19)

which finishes the proof.

IV. GRAPHICAL REPRESENTATIONS

We next turn to a graphical representation of the solution of the Poisson equations

(III.1)–(III.2)–(III.14). To be self-consistent and as a natural introduction to the Matrix

Forest Theorem, if only for notation, we still remind the reader of the Kirchhoff formula;

see [8, 9] for more explanations and examples.

A. Kirchhoff formula

Remember that the Markov jump process, via its transition rates, has defined a digraph

G (V(G), E(G)).

H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). The subgraph is spanning if

V(H) = V(G).

A tree in G is defined as a connected subgraph of G that does not contain any cycles or

loops. The set of all spanning trees rooted in x is denoted by Tx.
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Proposition IV.1. The following Kirchhoff formula gives the unique solution to the sta-

tionary Master Equation ρsL = 0 in terms of spanning trees,

ρs(x) =
w(x)

W
, W :=

∑
y

w(y), (IV.1)

with weights

w(x) =
∑
Tx∈Tx

w(Tx), w(Tx) =
∏

(u,u′)∈Tx

k(u, u′)

where Tx is the set of all spanning trees rooted on x, and Tx ∈ Tx is a rooted spanning tree

with arcs (u, u′) (directed edges).

The usual proof of the Kirchhoff formula (IV.1) proceeds via verification. In Appendix

A we add the heuristics of a more constructive proof, [10].

B. Graphical representation of the solution of the Poisson equation

A (spanning) forest in graph G is a set of trees. For the moment we are only concerned

with two-trees, i.e., forests that consist of exactly two trees with the understanding that a

single vertex also counts as one tree.

Let Fx→y denote the set of all rooted spanning forests with two trees, where x and y are

in the same tree rooted at y. The second tree is rooted as well, and we include all possible

orientations. The two-trees, elements of Fx→y, are denoted by F x→y. The weight of the set

w(x → y) := w(Fx→y) =
∑

Fx→y∈Fx→y

w(F x→y), w(F x→y) =
∏

(u,u′)∈Fx→y

k(u, u′) (IV.2)

We write Fx→x = Fx; see Fig. 1. Moreover, let Fx, y be the set of all (spanning) forests

consisting of two trees such that x and y are located in different trees and y is a root; see

Fig. 1 where Fx, y = Fy \ Fx→y.

Recall the Poisson equation (III.2) for the quasipotential V , where f is a centered function

on K.

Theorem IV.2. The solution to (III.2) for ⟨V ⟩s = 0 is

V (x) =
∑
y

w(x → y)

W
f(y) (IV.3)



9

FIG. 1: A digraph with four vertices (top left) and its simple visualization (down left). Right:

from the top onward, the elements of the sets Ty, Fy and Fx→y are shown.

We proceed with the proof by direct verification. An alternative proof, starting from a

more general setup and using the Matrix Forest Theorem, is presented in Appendix B.

Proof of Theorem IV.2.

LV (x) =
∑
y

k(x, y) [V (y)− V (x)]

=
1

W

∑
y

k(x, y)
∑
z

[w(y → z)− w(x → z)] f(z)

where w(y → z) = w(Fy→z) and w(x → z) = w(Fx→z) as in (IV.2). The intersection of

Fy→z and Fx→z is the set of all forests where x and y are located in the same tree. Here, to

emphasize the positions x and y, we use the notation Fx,y→z to denote the set of all forests

where y is located in the tree rooted in z, and x is in the other tree. Then,

LV (x) =
1

W

∑
u

∑
y

k(x, y) [w(Fx,y→z)− w(Fy,x→z)] f(z) (IV.4)

Fix z ̸= x, take a forest F x,y→z ∈ Fx,y→z and add the edge (x, y) to that forest: one tree is

rooted in z, and corresponding to the root of the second tree there are two cases. Consider

the case that x is not the root, then there exists an edge (x, y′) on the tree. Remove the
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edge (x, y′) from the graph (x, y) ∪ F x,y→z, a new forest is made. The new forest is in the

set F y′,x→z; see Fig. 2.

(a) (x, y) ∪ F x,y→z (b) (x, y′) ∪ F y′,x→z

FIG. 2: Adding (x, y) to F x,y→z and the edge (x, y′) to F y′,x→z, make the same graphs.

The same scenario is true for the set Fy,x→z, see Fig. 3.

(a) (x, y) ∪ F y,x→z (b) (x, y′) ∪ F x,y′→z

FIG. 3: Adding (x, y) to F y,x→z and the edge (x, y′) to F x,y′→zu, make the same graphs.

Hence, when x is not the root, (IV.4) equals zero.

Consider a forest from Fx,y→z. If x is the root of its tree, then adding the edge (x, y) connects

two trees and the new graph is a spanning tree rooted in z; see Fig. 4.

FIG. 4: Adding (x, y) to the forest F x,y→z where x is the root makes a spanning tree rooted in z.

Put z = x, the set of Fx,y→x is empty. Take a forest from the set Fy,x→x. Adding the

edge (x, y) to the forest F y,x→x again is a new spanning tree rooted on a vertex r ̸= x.
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Hence, finally,

LV (x) =
1

W
[
∑
z ̸=x

w(z)f(z)−
∑
r ̸=x

w(r)f(x)]

=
1

W

∑
z ̸=x

[w(z)f(z)− w(z)f(x)]

=
1

W

∑
z ̸=x

[w(z)f(z) + w(x)f(x)− w(x)f(x)− w(z)f(x)]

=
1

W

∑
z

w(z)f(z)− f(x)

W

∑
z

w(z) = ⟨f⟩ − f(x)

= −f(x)

where we used the Kirchhoff formula (IV.1) and the fact that f is centered.

Next, recall the Poisson equation (III.14) for the mean first-passage times. There as well,

we get a graphical representation. The set Fx,y contains all two-trees with the restrictions:

• vertices x and y are in separate trees;

• the tree that contains y is rooted in y, while the second tree is rooted anywhere

(containing x);

• the weight w(x, y) = w(Fx,y) of the set of such two-trees F x,y is

w(x, y) =
∑

Fx,y∈Fx,y

∏
(u,u′)∈Fx,y

k(u, u′)

Theorem IV.3. The mean first-passage time, solution to (III.14), is

τ(x, z) =
w(x, z)

w(z)
x ̸= z; τ(x, x) = 0 (IV.5)

where w(z) appeared in (IV.1).

We again give the proof of Theorem IV.3 by verification.

Proof of Theorem IV.3. We need to show∑
y

k(x, y)[
w(y, z)

w(z)
− w(x, z)

w(z)
] = −1

or ∑
y

k(x, y)[w(x, z)− w(y, z)] = w(z). (IV.6)
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where w(x, z) = w(Fx, z) and w(y, z) = w(Fy, z),

w(x, z)− w(y, z) =
∑

Fx, z∈Fx, z

w(F x, z)−
∑

F y, z∈Fy, z

w(F y, z)

The intersection of the sets Fx, z and Fy, z is a set of forests where x and y are located in

the same tree. We only consider the sets of forests where x and y are in different trees,

w(x, z)− w(y, z) = w(Fx,y→z)− w(Fy,x→z)

Fx,y→z denotes the set of all forests, where x and z are in the different trees and y is in the

same tree with z.

Take a forest F x,y→z from the set Fx,y→z. We consider two cases based on whether x is a

root or not. If x is not the root in forest F x,y→z, then x has a neighbor such as y′. Add the

edge (x, y) where y is located in the same tree as z: a directed graphical object is created;

see Fig. 2 (a). The new graphical object is created also by adding edge (x, y′) to a forest

from the set Fy′,x→z, where x and z are located in the same tree in the forest and y′ is in

another tree; see Fig. 2 (b). The same graphical objects have equal weights.

If x is a root, adding the edge (x, y) connects two trees and creates a new spanning tree

rooted at z; see Fig. 4. Consider a spanning tree rooted at vertex z, where each of the other

vertices has an outgoing edge. Remove the edge that goes out from x: a forest in the set

Fx, z is created. That ends the proof.

Corollary IV.4. Independently of x,∑
y

ρs(y)τ(x, y) =
W2

W
(IV.7)

where W2 is the total weight of all spanning two-tree forests with both trees subsequently

oriented toward all its states.

Proof of (IV.7). ∑
y

ρs(y)τ(x, y) =
∑
y

w(x, y)

w(y)

w(y)

W
=

1

W

∑
y

w(x, y)

and

W2 =
∑
y

w(x, y)

for every y, there is a forest F x,y ∈ Fx,y where x is the root and for all y ̸= x also y is

the root. So then W2 is the weight of the set of all forests with two rooted trees and it is

independent of x.
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V. BOUNDS

One important issue for possible applications of the Poisson equation is to get bounds on

its solution. One could imagine in fact a parameterized family of Poisson equations and the

issue becomes to get bounds that are uniform in that parameterization. The present section

adds such bounds, as a consequence of the previous sections.

A. Via mean first-passage times

Consider the centered solution V of the Poisson equation (III.2), with ||f || :=

maxz∈K |f(z)− ⟨f⟩s|. Fix any two states x, y ∈ K, and put

ṽ(x, y) :=

〈∫ TK\{y}

0

dt [f(Xt)− ⟨f⟩s] |X0 = x

〉
(V.1)

as the expected first-passage accumulation for the centered observable f − ⟨f⟩s.

Theorem V.1. We have

V (x)− V (y) = ṽ(x, y) (V.2)

and the bound

|V (x)− V (y)| ≤ ||f ||min{τ(x, y), τ(y, x)} (V.3)

Proof of Theorem V.1. To prove (V.2), we note that the centered solution V (x) to (III.2)

can be written by fixing state y, and decomposing as

V (x) = lim
t→∞

〈∫ TK\{y}

0

f(X(t′)) dt′ +

∫ t

TK\{y}

f(X(t′)) dt′ − ⟨f⟩st
〉
x

=
〈
ϕK\{y}(x)− ⟨f⟩s ⟨TK\{y}⟩x + lim

t→∞

〈∫ t

0

[f(X(t′))− ⟨f⟩s] dt′
〉
y

= VK\{y}(x)− ⟨f⟩sSK\{y}(x) + V (y)

(V.4)

where in the limit of the second integral we have used the exponential tightness of TK\{y}. As

before,SK\{y}(x) = τ(x, y) is the mean first-passage time to reach y from x, and VK\{y}(x) =:

v(x, y) is the expected accumulation for f up to the first passage a y, as in Section III B.

Therefore, we have the relation

V (x)− V (y) = v(x, y)− ⟨f⟩s τ(x, y)

= ṽ(x, y)
(V.5)
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with ṽ(x, y) defined in (V.1).

Finally, from the very definition of ṽ(x, y)

|ṽ(x, y)| ≤ ||f || τ(x, y)

Moreover, from (V.2), ṽ(x, y) = −ṽ(y, x) is antisymmetric, which yields the bound (V.3).

Note that since ⟨V ⟩s = 0, there are always states x0, x1 ∈ K with V (x0) ≤ 0 ≤ V (x1).

Therefore, for every x ∈ K,

V (x) ≤ V (x)− V (x0) ≤
∑
x0→x

|V (xi)− V (xi+1)|

where the sum is over an arbitrary path in K connecting x0 and x. Similarly,

V (x) ≥ V (x)− V (x1) ≥ −
∑
x1→x

|V (xi)− V (xi+1)|

As a consequence, bounds on the solution V follow from bounds on the differences, as

provided in (V.3).

The bound (V.3) is not always optimal. It still can be improved as follows.

Theorem V.2. Suppose there exists a set D so that f(x) = LE(x) + h(x) where h = hE

depends on E and h(x) = 0 for x /∈ D. Then, the solution of the Poisson equation (III.2)

V satisfies

|V (x)− V (y)| ≤ |E(x)− E(y)|+ ||hE||
∑
z∈D

ρs(z)|τ(x, z)− τ(y, z)| (V.6)

That bound requires to control the accessibility of the set D only. In fact, since there is

a freedom in choosing (E, h), that can be used to optimize the bound (V.6). We observe

that in the case where f ≡ LE, the bound is optimal because then V = E + constant.

Proof of Theorem V.2. The Poisson equation now becomes

L(V + E) + h = 0, with h = 0 on K \ D

Applying (III.15), we get

V (x) + E(x) = −
∑
z∈D

ρs(z)hE(z) τ(x, z) + constant (V.7)

and the bound (V.6) follows directly.
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B. Via graphical representation

We recall the setup where a digraph with n vertices is obtained from a Markov jump

process with transition rates k(u, u′). We define

||f || := max
y

|f(y)|, ||k|| := max
(u,u′)

k(u, u′) (V.8)

Theorem V.3. For all x,

|V (x)| ≤ n ||k||n−2

W
||f || (V.9)

Proof of Theorem V.3. We apply (IV.3) of Theorem IV.2. The product over the weights

over edges is obviously bounded, and the weight of any forest in the graph is bounded as

well. In other words, for any x and y in the graph, w(x → y) is bounded.

Using (V.8),

w(x → y)f(y) ≤ ||f || ||k||n−2

and the result follows from (IV.3).

As an application of (V.9), we can suppose that the rates k(x, y) = kλ(x, y) depend on

a real-valued parameter λ. For simplicity, we consider the limit λ → ∞ (taking for λ the

inverse temperature is a relevant example from statistical mechanics). Observe that there is

a general lower bound onW , i.e., W ≥ maxT,xw(Tx), the largest weight of all spanning trees.

Hence, if there exists a spanning tree with w(Tx) > 0 uniformly in λ, then W = Wλ > 0 is

uniformly bounded, and (V.9) gives a uniform bound on V .

The bound (V.9) can for instance be used in an argument extending the Third Law of

Thermodynamics to nonequilibrium systems; see [6] where the source function f is the

expected heat flux. The quasipotential V in (III.4) is then the time-integral of the difference

between the instantaneous heat flux and the stationary heat flux.

VI. CONCLUSIONS

The Poisson equation is ubiquitous in mathematical physics. We have considered a setup

where the linear operator is the backward generator of a Markov jump process and the

functions are defined on the possible (finite number of) states. We have related the solution

of that discrete Poisson equation to the formalism of mean first-passage times, and we have
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given graphical representations that allow precise estimates—both for the accumulations

before first hitting a particular state when starting from another one, and for the quasipo-

tentials measuring the accumulated excess during relaxation to stationarity. The results do

not assume reversibility, and are ready to be used in extensions of potential theory when

applied to problems in steady-nonequilibrium statistical mechanics. Obvious targets are

reaction rate theory for driven or active systems, and metastability around nonequilibrium

steady conditions.

Appendix A: On proving the Kirchhoff formula

The Kirchhoff formula can be seen as a consequence of the Matrix Tree Theorem,

[11–13]. However, there also exists a more probabilistic approach. The ideas is illustrated

by the algorithm in Fig. 5, where a tree T ′
x is constructed by removing the edge (x, y′) from

the tree Ty, and then adding the edge (y, x). That algorithm is used in [10] to construct

a reversible Markov chain Yn on an ensemble of trees, where the states are the rooted

spanning trees and jumps are possible if and only if the corresponding trees are connected

by the above-mentioned algorithm. Let Qab = q(a, b) be the stochastic matrix of Yn, and put

π the stationary distribution of Q. For example, we can assign states a and b, respectively,

to the trees Ty and T ′
x in Fig. 5, and take transition rates q(a, b). It is shown that putting

q(a, b) = k(y, x), q(b, a) = k(x, y′) produces detailed balance πaq(a, b) = πbq(b, a). We add

a sketch of the proof.

It suffices to show that the Kirchhoff formula (IV.1) satisfies the stationary Master equa-

tion, ∑
y

w(y)k(y, x)− w(x)k(x, y) = 0

Take a spanning tree rooted in y, Ty ∈ Ty. Let x be a vertex located on the tree Ty. In this

case, x is not the root and there exists a vertex y′ (which may be equal to y) and an edge

(x, y′) which goes out from x and connects x to the tree. By removing the edge (x, y′) from

the tree Ty and adding the edge (y, x), a new spanning tree rooted in x is created; see Fig. 5.
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FIG. 5: Removing the edge (x, y′) from the spanning tree Ty and adding the edge (y, x) creates a

spanning tree rooted in x.

It turns out that
w(Ty)

k(x, y′)
=

w(T ′
x)

k(y, x)
. With the same scenario, from every spanning tree

rooted in y we can make a new spanning tree rooted in x. That algorithm makes a spanning

tree rooted in y from a spanning tree rooted in x. Therefore,∑
y

w(y)k(y, x) =
∑
y

∑
Ty∈Ty

w(Ty)k(y, x) =
∑
y′

∑
T ′
x∈Tx

w(T ′
x)k(x, y

′) =
∑
y′

w(x)k(x, y′)

which ends the proof.

Appendix B: Matrix Forest Theorem

The present Appendix gives the broader mathematical context of the graphical represen-

tations.

1. Laplacian matrix and the backward generator

Consider a self edge-free directed graph G(V(G), E(G)), with n vertices and m edges. The

adjacency matrix A(G) is a n× n matrix with elements A(G)x,y = wx,y.

The out-weight of a vertex x ∈ V(G) is the sum
∑

y wx,y, and we define the n× n diagonal

matrix D(G) with Dx,y = 0 if x ̸= y and otherwise Dx,x =
∑

y wx,y.

The Laplacian matrix for a directed graph G is,

L(G) = D(G)− A(G). (B.1)

Clearly, L(G) is not always symmetric, and the backward generator of the Markov jump

process (as we had it in Section II) L = −L is minus the Laplacian matrix of the underlining

graph when putting wx,y = k(x, y). Therefore, all properties of the Laplacian of a weighted
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digraph, as described in section B 1, also hold for the backward generator L, as described in

Section II.

The Laplacian matrix of a (directed) graph has several important properties that have

been extensively studied in the literature [14, 15].

2. Pseudo-inverses of the Laplacian matrix

The Laplacian is not invertible, and different pseudo/generalized-inverses can be defined,

e.g. group inverse, Drazin inverse, Moore–Penrose inverse and resolvent inverse. Depending

on the characteristics of the graph, the different inverses of the Laplacian can be equal or

not; see also [16].

As a reminder, for an arbitrary square matrix A, its Drazin inverse is denoted by AD

and is the unique matrix X satisfying the following equations

Aν+1X = X Aν , X AX = X, AX = X A (B.2)

where ν = indA (remember indA is the smallest non negative integer number b such that

rank(Ab+1) = rank(Ab)). If ν = 0, then AD = A−1; if ν ≤ 1, then AD is referred to the

group inverse and it is denoted by A# which is a unique matrix such as X satisfying the

following equations

AX A = A, X AX = X, AX = X A (B.3)

As a consequence, when the index of a matrix is one its Drazin inverse and group inverse

are the same; see B 2.

We refer to [17] for the Matrix Forest Theorem for a Laplacian matrix. We briefly recall

that result.

Consider a weighted digraph G, where n is the number of vertices. I is the identity

matrix, Fx→y
m is the set of all forests with m edges such that x and y are in the same tree

and y is always a root, Fm is the union of all Fx
m, and m is the number of edges making the

forests. For example, if m = n − 1 the forests are made by one spanning tree with n − 1

edges, and when m = n−2 the forest has two trees. w(Fx→y
m ) is the weight of the set Fx→y

m .

γ is the dimension of the forest in G. Forest dimension is the minimum number of rooted
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trees that a spanning rooted forest can have in a directed graph. Note that when the graph

is strongly connected γ = 1.

Consider a weighted digraph G with the Laplacian matrix L. From [18],

Theorem B.1. For any α > 0, the matrix (I + αL(G))−1 has the graphical representation(
1

I + αL

)
x,y

=

∑n−γ
m=0 α

mw(Fx→y
m )∑n−γ

m=0 α
mw(Fm)

(B.4)

For the specific case when γ = 1,(
1

I + αL

)
x,y

=

∑n−2
m=0 α

mw(Fx→y
m )∑n−1

m=0 α
mw(Fm)

+
αn−1w(Ty)∑n−1
m=0 α

mw(Fm)
(B.5)

where we have used Fx→y
n−1 = Ty, i.e., the forest with n − 1 edges is a spanning tree. w(Ty)

is the weight of the set Ty, w(Ty) = w(y).

From [14, 19] the graphical representation for the group inverse of L# is,

Theorem B.2.

L#
x,y =

1

w(Fn−γ)

(
w(Fx→y

n−γ−1)− w(Fn−γ−1)
w(Fx→y

n−γ )

w(Fn−γ)

)
(B.6)

If γ = 1

L#
x,y =

1

w(Fn−1)

(
w(Fx→y)− w(F)

w(Fx→y
n−1 )

w(Fn−1)

)
=

1∑
y w(Ty)

(
w(Fx→y)− w(F)

w(Ty)∑
y w(Ty)

)
(B.7)

=
1

W

(
w(Fx→y)− w(F) ρs(y)

)
(B.8)

where we have used that the set of all rooted spanning forests with n−1 edges is indeed the

set of all rooted spanning trees. F denotes the set of all rooted spanning forests consisting

of two trees. In the last line we used the Kirchhoff formula.

The group inverse of the backward generator is denoted by L# and from Theorem B.2

the graphical representation is

L#
x,y = −w(Fx→y)

W
+ ρ(y)

w(F)

W
(B.9)
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3. Another proof of Theorem IV.2

We can solve the equation (III.2) by utilizing a graphical representation of the pseudoin-

verse of L, which can be obtained through the application of the Matrix Forest Theorem.

Proof. Let us assume that f is centered, meaning
∑

y f(y) ρ
s(y) = 0. Use the graphical

representation (B.4),

V (x) = lim
α→∞

∑
y

(
α

I − αL

)
x,y

f(y)

= lim
α→∞

∑
y

∑n−2
m=0 α

m+1w(Fx→y
m )∑n−1

m=0 α
mw(Fm)

+ lim
α→∞

∑
y

αnw(Ty)∑n−1
m=0 α

mw(Fm)
f(y)

=
∑
y

w(Fx→y)

W
f(y) (B.10)

in the second line we use the Kirchhoff formula where w(Fn−1) = W and apply the centered

property of f and the proof is finished.

As understood in [16], the resolvent inverse and the Drazin inverse of the backward

generator on a centered function f give the same solution to the Poisson equation. The

reason is that the index of the backward generator L equals one; see [20]. We check that

explicitly in their graphical representations.

V = −L#f (x) =
∑
y

w(Fx→y) f(y)

W
− w(F)

W

∑
y

ρs(y) f(y)

=
∑
y

w(Fx→y)

W
f(y)

which is equal to the solution of the Poisson equation via the resolvent inverse; see (IV.3).

Hence, if f is centered, then the resolvent inverse, Drazin inverse and group inverse of L are

all equal giving V = −L−1 f .

4. Another proof of Theorem IV.3

The equation in (III.14) can be solved by the graphical representation of the group inverse

of the backward generator.
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Theorem B.3. The solution of Lτ + 1 = 0 is

τ = (L# − 1L#
dg)D (B.11)

where 1 is a n × n matrix such that all elements are 1 and D is a diagonal n × n matrix

such that Dxx = 1
ρ(x)

. L#
dg is a matrix made by putting all the entries outside of the main

diagonal of L# equal to zero.

We start by

L τ = L (L# − 1L#
dg)D = LL#D

where L1 = 0 is the n× n matrix with all entries equal to zero. Furthermore,

(LL# D)xz = (LL# )xz
1

ρs(z)

=
1

ρs(z)

∑
y

LxyL
#
yz =

1

ρs(z)
(
∑
y ̸=x

k(x, y)L#
yz − L#

xz

∑
y

k(x, y))

=
1

ρs(z)

∑
y

k(x, y)(L#
yz − L#

xz)

(LL#D)xz = − 1

ρs(z)

∑
y

k(x, y)
1

W

((
w(y → z)− ρs(z)

∑
z,y

w(y → z)
)

−
(
w(x → z)− ρs(z)

∑
x,z

w(x → z)
))

(B.12)

= − 1

w(z)

∑
y

k(x, y)

(
w(y → z)− w(x → z)

)
(B.13)

Fix x and z, consider two sets Fy→z and Fx→z. For the fix y, the intersection of them is a

set of all forests such that x and y are in the same tree rooted at z. As the result, in (B.12),

we only consider the component of the set Fy→z where x is not in the same tree with y and

z, and in the set Fx→z only the components where z is not in a same tree with x and z.

Hence,

w(y → z)− w(x → z) = w(Fx, y→z)− w(Fy, x→z)

where Fx, y→z is set of all forests such that z is on the tree rooted in y and x is located on

the another tree.

Take a forest from the set Fx, y→z. If x is the root, then adding edge the (x, y) connects

two trees such that a new spanning tree rooted in z is created, see Fig. 4. Now consider a
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spanning tree rooted at z, by removing the edge goes out from x a forest in the set Fx, z is

created.

Take a forest from the set F x,y→z ∈ Fx,y→z such that x is not the root. If x is not the root,

then it has a neighbor such as u. Add the edge (x, y) to F x,y→z, a directed graphical object

is created. The new graphical object is created also by adding edge (x, y′) to a forest from

the set Fy′,x→z, see Fig. 2. The same graphical objects have equal weights and as a result∑
y

k(x, y)
(
w(Fx, y→z)− w(Fy, x→z)

)
= w(z)

and

(LL#D)xz = −1 z ̸= x (B.14)

It follows Lτ = −1 for every z ̸= x, which ends the proof of (B.11).

We can get the graphical representation (IV.5) from (B.11):

τ(x, z) =

0 x = z

L#
zz−L#

xz

ρs(z)
x ̸= z

where

L#
zz − L#

xz =
1

W

(
w(z → z)− w(x → z)

)
=

w(x, z)

W

Hence. we get indeed

τ(x, z) =
w(x, z)

w(z)
x ̸= z; τ(x, x) = 0
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la Faculté des sciences de Toulouse : Mathématiques, Ser. 6, 26(2):235–261, (2017).

[14] P. Chebotarev and R. Agaev. Forest matrices around the laplacian matrix. Linear Algebra

and its Applications, 356(1-3):253–274, (2002).

[15] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applications. Springer

New York, NY, (2003).

[16] F. Khodabandehlou and I. Maes. Drazin-Inverse and heat capacity for driven random walks

on the ring. Stochastic Processes and their Applications, 164:337–356, (2023).

[17] R. Agaev and P. Chebotarev. The matrix of maximum out forests of a digraph and its

applications. arXiv, 0602059 [math.CO], (2006).

[18] P. Chebotarev and E. Shamis. Matrix-forest theorems. arXiv, 0602575 [math.CO], (2006).

[19] P. Chebotarev. A graph theoretic interpretation of the mean first passage times. arXiv,

0701359 [math.PR], (2017).

[20] P. Chebotarev and E. Shamis. Matrix-Forest Theorems. arXiv, 0602575 [math.PR], (2006).


	Introduction
	Setup
	Poisson equation
	Quasipotential
	Stopped accumulation
	First-passage times

	Graphical representations
	Kirchhoff formula
	Graphical representation of the solution of the Poisson equation

	Bounds
	Via mean first-passage times
	Via graphical representation

	Conclusions
	On proving the Kirchhoff formula
	Matrix Forest Theorem
	Laplacian matrix and the backward generator
	Pseudo-inverses of the Laplacian matrix
	Another proof of Theorem IV.2
	Another proof of Theorem IV.3

	References

