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Eigenvector continuation is a computational method for parametric eigenvalue problems
that uses subspace projection with a basis derived from eigenvector snapshots from
different parameter sets. It is part of a broader class of subspace-projection techniques
called reduced-basis methods. In this colloquium article, we present the development,
theory, and applications of eigenvector continuation and projection-based emulators. We
introduce the basic concepts, discuss the underlying theory and convergence properties,
and present recent applications for quantum systems and future prospects.
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I. MOTIVATION

The challenges of nuclear few- and many-body physics
have been addressed theoretically with a wide range of ac-
curate but often computationally expensive high-fidelity
methods. However, when we need to change the param-
eters characterizing the problem, such as Hamiltonian
coupling constants, it can become computationally pro-
hibitive to repeat high-fidelity calculations many times
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FIG. 1 Schematic classification of model order reduction em-
ulators into data-driven methods, including Gaussian pro-
cesses, artificial neural networks, and dynamic mode de-
composition; model-driven methods, including reduced-basis
methods (RBMs); and hybrid methods. Eigenvector continu-
ation (EC) approaches are a subset of RBM.

and challenging to reliably extrapolate. An alternative
is to replace the high-fidelity model with an emulator,
which is an approximate computer model, in the litera-
ture sometimes referred to as a “surrogate.” We focus in
this colloquium on the recent development and applica-
tion of emulators that exploit a technique called eigenvec-
tor continuation (EC) and its extensions. Our illustrative
examples are primarily drawn from nuclear structure and
reactions, for which there has been an explosion of EC
applications in the last few years. We emphasize, how-
ever, the general scope of the methods, which are broadly
applicable to physics problems.

Even more broadly, being able to efficiently vary the
parameters in high-fidelity models to enable design, con-
trol, optimization, inference, and uncertainty quantifi-
cation is a general need across engineering and science
fields (Benner et al., 2020a,b, 2021). A common theme
in these endeavors is that much of the information in
high-fidelity models is superfluous. This can be exploited
when tracing parametric dependencies by reducing the
complexity through a so-called reduced order model, i.e.,
an emulator. The universe of model order reduction
methods is relatively mature but continues to expand,
along with their applications.

We can put EC emulators in perspective by consid-
ering a high-level classification of reduced order models
into data-driven and model-driven categories (see Fig. 1).
Data-driven methods typically interpolate the outputs
of high-fidelity models without requiring an understand-
ing of the underlying model structure; examples include
Gaussian processes, artificial neural networks, and dy-
namic mode decomposition. Model-driven methods solve
reduced-order equations derived from the full equations,
so they are physics-based and respect the underlying
structure; examples include the broad class of reduced-
basis methods or RBMs (Hesthaven et al. (2016) and
Quarteroni et al. (2016)). Increasingly, there are hybrid
approaches drawing from knowledge about the underly-
ing physics problem and thereby combining both data-

and model-driven aspects (e.g. Chen et al. (2021)).

Although originally developed independently, the
model-driven EC method has long-established an-
tecedents among RBMs (e.g., eigenvalue problems in
structural engineering in Aktas and Moses (1998) and
Nair et al. (1998) and applied mathematics in Machiels
et al. (2000), with more recent applications in Fumagalli,
Ivan et al. (2016); Horger, Thomas et al. (2017); and
Pichi et al. (2020)). EC uses a basis derived from selected
eigenvectors from different parameter sets, called snap-
shots in the RBM world, to project into a much smaller
subspace than the original problem. In its simplest form,
EC generates a highly effective variational basis. Typ-
ically, EC applications exploit the RBM offline-online
workflow, in which expensive high-fidelity calculations
are performed once in the offline phase, enabling inex-
pensive but still accurate emulator calculations in the
online phase.

When the offline-online workflow is applied to calculate
observables for many parameters characterizing Hamilto-
nians or other operators, the EC emulators can achieve
tremendous speed-ups over high-fidelity computational
methods. This facilitates large-scale parameter explo-
ration and calibration as well as uncertainty quantifica-
tion, sensitivity analysis, and experimental design that
would otherwise be infeasible. The model-driven nature
of the EC approach ensures not only accurate interpola-
tion in the parameter space, but in many cases provides
accurate extrapolations in the spaces of control parame-
ters such as coupling strengths, energies, and boundary
conditions. A consequence is that problems that are dif-
ficult or even intractable for some range of control pa-
rameters can be attacked by calculating in a range that
can be more easily solved, and then extrapolating using
the emulator.

Reliable emulator technology is also useful for collab-
oration as it enables the development of self-contained
and accurate mini-applications that mimic the output of
complex model calculations (Tews et al., 2022; Zhang and
Furnstahl, 2022). These emulators are easy to distribute
given their typically small memory footprint. This allows
other researchers to generate fast and accurate model
predictions, even without the in-depth knowledge and
significant computational resources typically required to
create applications from complex or closed-source code-
bases.

In Sec. II we review the basic concepts of EC and
the early work in nuclear physics. A brief overview of
the RBM formulation and the offline-online workflow is
given in Sec. III, along with alternative approaches to
generalized eigenvalue problems from a nuclear physics
perspective. EC convergence properties are covered in
Sec. IV, including the application to many-body pertur-
bation theory. A major EC application is to large Hamil-
tonian eigensystems (Sec. V), which include adaptations
to the shell model and the coupled cluster method. As
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illustrations of the wide range of EC applications, exten-
sions are described for scattering (Sec. VI.A), finite vol-
ume dependence and resonances (Sec. VI.B), and quan-
tum Monte Carlo simulations (Sec. VI.C). A summary
and consideration of future directions are presented in
Sec. VII.

II. BACKGROUND

The development of EC in Frame et al. (2018) was
inspired by the quantum many-body problem and the
desire to find the extremal eigenvalues and eigenvectors
of a Hamiltonian matrix too large to store in computer
memory. While there are numerous quantum many-body
methods used to solve such problems, they all fail when
some control parameter in the Hamiltonian matrix ex-
ceeds some threshold value. Monte Carlo methods break
down when there are strong sign oscillations and positive
and negative amplitudes cancel. Simple order-by-order
summations of diagrammatic expansions and perturba-
tion theory are divergent when the magnitude of the ex-
pansion parameter exceeds unity. Variational methods
are not effective if there are strong correlations not ade-
quately captured by some wave-function ansatz or trun-
cated set of basis states.

In the following, we review some of the concepts of EC
as well as the early literature. Let us consider a family
of matrix Hamiltonians H(θ) that depends analytically
on some vector of control parameters θ, which we write
in vector notation. We assume that the matrix Hamilto-
nians are Hermitian for all real values of the parameters.
One particularly interesting and important example is
the affine case where the dependence on each parameter
decomposes as a sum of terms

H(θ) =
∑
α

fα(θ)Hα, (1)

for some functions fα and Hermitian matrices Hα. We
will be interested in the properties of some particular
eigenvector of H(θ) and its corresponding eigenvalue
E(θ),

H(θ) |ψ(θ)⟩ = E(θ) |ψ(θ)⟩ . (2)

The basic idea of eigenvector continuation is that |ψ(θ)⟩
is an analytic function for real values θ, and the smooth-
ness implies that it approximately lies on a linear sub-
space with a finite number of dimensions. The smoother
and more gradual the undulations, the fewer dimensions
needed. A good approximation to |ψ(θ)⟩ can be found
efficiently using a variational subspace composed of snap-
shots of |ψ(θi)⟩ for parameter values θi. We note that
for complex values of the parameters, the guarantee of
smoothness no longer holds.

At this point we note that other methods exist that
are based on projecting a large-scale linear algebra prob-
lem into a low-dimensional subspace. Krylov methods,

and in particular Lanczos/Arnoldi iteration for calculat-
ing extremal eigenvalues of linear operators, are well es-
tablished (see for example Saad (2011) for an excellent
textbook discussion) and very broadly used, not only
in Physics. An important distinction compared to EC
is, however, that these Krylov methods are employed at
fixed θ, and thus they solve a much more limited prob-
lem. In fact, many of the EC applications discussed in
Sec. V would typically use Lanczos iteration to determine
the individual |ψ(θ)⟩ snapshots for the EC offline stage.

Following Frame et al. (2018), we consider the
Bose-Hubbard model for identical bosons on a three-
dimensional cubic lattice as an illuminating example of
EC, specializing to four bosons on a 4× 4× 4 spatial lat-
tice. The parameter t is the coefficient for the kinetic en-
ergy, and the parameter U is the coefficient for the point-
like interaction between pairs of bosons. For this system
the relevant control parameter is the dimensionless ra-
tio θ = U/t. A variational subspace is constructed from
snapshots of the eigenvectors for selected training param-
eters θj . With the shorthand |ψj⟩ = |ψ(θj)⟩, the norm

matrix Ñij and projected Hamiltonian matrix H̃ij(θ) are
given by

Ñij = ⟨ψi|ψj⟩ , (3)

H̃ij(θ) = ⟨ψi|H(θ)|ψj⟩ . (4)

The generalized eigenvalue problem is then solved as dis-
cussed in Sec. III.

In Fig. 2 we show the ground-state energy E divided
by t versus U/t, along with an excited state. The ex-
act ground state energies are shown with open circles,
which reveal a sharp bend near U/t = −3.8. The sharp
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FIG. 2 Ground state energy E of the Bose-Hubbard model
divided by t versus U/t. The exact ground-state energies are
shown with open circles, while the EC results are shown for
variational subspace dimensions varying from 2 to 4. In order
to highlight the avoided level crossing, the exact excited state
energies are also shown as open squares. Adapted from Frame
et al. (2018).
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bend is caused by an avoided level crossing of eigenval-
ues, and the abruptness of the bend indicates that there
are branch points located near the real axis. EC re-
sults are shown for subspace dimensions varying from
2 to 4. With snapshot parameter values at U/t =
−2.0,−1.9,−1.8,−1.7, the EC calculation is capable of
extrapolating past the sharp bend.

We can understand how eigenvector continuation is
able to extrapolate in this case by exploring the connec-
tion with analytic continuation. Let us consider a power
series expansion of the eigenvector |ψ(θ)⟩ around θ = 0,

|ψ(θ)⟩ = lim
M→∞

M∑
m=0

|ψ(m)(0)⟩ θ
m

m!
. (5)

When the series converges, we can approximate |ψ(θ)⟩
to any desired accuracy as a finite sum of M + 1 vectors
|ψ(m)(0)⟩ with m ranging from 0 to M .

The series will diverge when |θ| exceeds the magni-
tude of the nearest non-analytic point. If H(θ) is a
finite-dimensional matrix that depends analytically on θ,
then the non-analytic behavior is associated with branch
points where two or more eigenvectors become the same
vector (Kato, 2013). If H(θ) is a Hermitian matrix for
real θ, then all of the branch points lie away from the real
axis and come in complex conjugate pairs. In Fig. 3 we
show an example where z and z̄ are the nearest branch
points to the origin. While the power series expansion
around θ = 0 converges only for |θ| < |z|, we can choose
a secondary point w with |w| < |z| and expand around
w,

|ψ(θ)⟩ = lim
N→∞

N∑
n=0

|ψ(n)(w)⟩ (θ − w)n

n!
. (6)

The derivatives at w can in turn be expanded using power
series about the origin. This yields the double sum,

|ψ(θ)⟩ = lim
N→∞

N∑
n=0

lim
M→∞

M∑
m=0

|ψ(n+m)(0)⟩ w
m(θ − w)n

m! n!
.

(7)
We can now approximate |ψ(θ)⟩ in the shaded region in
Fig. 3 to any desired accuracy as a finite sum of N+M+1
vectors |ψ(n+m)(0)⟩, with n ranging from 0 to N and
m ranging from 0 to M . This process of analytic con-
tinuation shows that the approximation of |ψ(θ)⟩ using
a finite linear subspace can extend beyond the nearest
branch point. By including additional expansion points,
this can be extended to all values of θ where |ψ(θ)⟩ is
analytic.

We now return to the general problem where H(θ)
depends on a vector of control parameters θ. When the
eigenvector snapshots |ψ(θi)⟩ are chosen with θi infinites-
imally close to some common limit point θ̄, the varia-
tional subspace is spanned by gradients and higher-order
gradients of |ψ(θ)⟩ at θ̄. The EC calculation is then

FIG. 3 While the power series expansion at θ = 0 converges
only for |θ| < |z|, we can choose a secondary point w with
|w| < |z|. The power series expansion at θ = w converges in
the shaded region shown and can be re-expressed as a double
series around θ = 0. (Frame et al., 2018).

equivalent to a variational subspace calculation with ba-
sis states

∇i1∇i2 · · · ∇in |ψ(θ)⟩|θ=θ̄ . (8)

These are the same terms that appear in the perturbation
theory expansion of the eigenstate wave function (Frame
et al., 2018). The difference is that we are performing
a variational calculation rather than evaluating partial
sums of a power series. In Demol et al. (2020), eigenvec-
tor continuation is used to accelerate the convergence of
Bogoliubov many-body perturbation theory; this is dis-
cussed in Section IV.B.

The application of EC to quantum Monte Carlo sim-
ulations is considered in detail in Frame (2019). Since
quantum Monte Carlo simulations use the Euclidean
time evolution operator, e−H(θ)t, one produces eigen-
states |ψ(θ)⟩ together with exponential factors of e−E(θ)t.
This produces some technical challenges in applications
to large quantum many-body systems. The resolution of
such problems is described in Section VI.C.

In König et al. (2020), it was realized that EC could be
used as a fast and accurate emulator for quantum many-
body calculations by taking relatively few snapshots θi
to cover a compact domain of the parameter space. In
Ekström and Hagen (2019), the use of EC as an emula-
tor was extended to non-Hermitian matrices as encoun-
tered in coupled cluster calculations. This is discussed in
Section V.B. Applications of EC emulators for quantum
scattering problems in nuclear physics were first explored
in Furnstahl et al. (2020). This work and several subse-
quent works extending the method and improving the
performance are discussed in Section VI.A.

As noted in Bonilla et al. (2022) and Melendez et al.
(2022), EC should be considered as a special case of a
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more general area of RBMs, which has been well devel-
oped in applied mathematics over several decades, espe-
cially in the area of partial differential equations, see for
example, Hesthaven et al. (2016) and Quarteroni et al.
(2016). Although the early development of EC empha-
sized quantum many-body systems and extrapolations
for eigenvalue problems where the eigenvectors are too
large to store in memory, the use of EC as an emulator is
very much in line with many other applications of RBMs.

III. REDUCED BASIS METHODS

The literature on RBMs is extensive (Benner et al.,
2020a,b, 2021), with recent guides from the perspective of
nuclear physicists (and EC), including pedagogical code
examples, given in Drischler et al. (2023) and Melendez
et al. (2022). Here we touch upon some key features
common to EC applications.

A. RBM workflow for a Hamiltonian eigenvalue problem

The basic ingredients of an RBM workflow, which is
built on a separation into offline and online stages, are
illustrated for a familiar Hamiltonian eigenvalue problem
in Fig. 4.

Formulation in integral form. First we cast the
equations for the Schrödinger wave function or other
quantities of interest (such as a scattering matrix) in in-
tegral form. For the Hamiltonian eigenvalue problem in
Fig. 4a (left) with parameters θ, solving the finite ma-
trix problem of a (large) basis size Nh ×Nh is equivalent
to finding Nh (approximate) stationary solutions to the
variational functional

E [ψ] = ⟨ψ|H(θ)|ψ⟩ − E(θ)
(
⟨ψ|ψ⟩ − 1

)
, (9)

in the space spanned by the Nh basis elements. This
is our high-fidelity model. Other RBM formulations are
discussed in Sec. III.B.

Offline stage. Next we reduce the dimensionality of
the problem by substituting for the general solution a
trial basis of size nb. RBMs start with a snapshot ba-
sis, consisting of high-fidelity solutions |ψi⟩ at selected
values {θi; i = 1, . . . , nb} in the parameter space, as
in Fig. 4a (right). When seeking the ground state en-
ergy and wave function for arbitrary θ, these |ψi⟩ are
ground-state eigenvectors from diagonalizing H(θi). For
many EC applications in nuclear physics to date it has
been sufficient to choose this basis randomly, e.g., with a
space-filling sampling algorithm such as Latin hypercube
sampling. This basis spans a reduced space and can be
used directly (after orthonormalizing the snapshots),

|ψ̃⟩ =

nb∑
i=1

βi |ψi⟩ , (10)

FIG. 4 Reduced-basis model workflow for a matrix eigen-
value problem. a) High-fidelity calculations of snapshots, each
of large size Nh, are b) projected in the offline stage to a
reduced-basis matrix of small size nb × nb. In the c) online
stage, the emulator only uses size nb operations. Adapted
from a figure in Drischler et al. (2023).

with basis expansion coefficients βi. The Hamiltonian is
then projected to a much smaller nb×nb space, as shown
in Fig. 4b.

More generally in RBM applications, one first com-
presses the snapshot basis by applying some variation of
principle component analysis (known as proper orthogo-
nal decomposition or POD in this context), which builds
on the singular value decomposition (SVD) of the snap-
shots and enables a smaller basis size than nb. Alterna-
tively, or in conjunction with POD, one can efficiently
select snapshots by applying an active learning proto-
col (greedy algorithm) that aims to minimize the overall
error of the emulator (Hesthaven et al., 2016). For a re-
cent application of a greedy algorithm to quantum spin
systems, including an efficient mapping of ground-state
phase diagrams, see Brehmer et al. (2023) and Herbst
et al. (2022). These approaches are the standard in RBM
applications, but are not yet widely applied in nuclear
physics (Bonilla et al., 2022; Sarkar and Lee, 2022).
Online stage. For variational formulations, we en-

force stationarity with respect to the trial basis expansion
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coefficients. This leads to a nb×nb generalized eigenvalue
problem for the basis coefficients,

H̃(θ)β⃗(θ) = Ẽ(θ)Ñ(θ)β⃗(θ),

H̃ij(θ) = ⟨ψi|H(θ)|ψj⟩ ,
Ñij(θ) = ⟨ψi|ψj⟩ , (11)

as already introduced in Sec. II and visualized in Fig. 4c.
Note that if the basis has been orthonormalized, then
Ñ is an identity matrix. Extending such an emulator to
matrix elements of other operators and even transitions is
straightforward; see Wesolowski et al. (2021) for a nuclear
example.

In uncertainty quantification, for which sampling of
very many parameter sets are usually required, it is es-
sential that the emulator be many times faster than the
high-fidelity calculations. This is achieved for RBM em-
ulators by the offline and online separation because the
online stage only requires computations scaling with nb
(small) and not Nh (large). An affine operator structure,
meaning a factorization of parameter dependence as in
Eq. (1), is needed to achieve the desired online efficiency
because size-Nh operations such as ⟨ψi|Hα|ψj⟩ are in-
dependent of θ and only need to be calculated once in
the offline stage. If the problem is non-affine, then the
strategy is to apply a so-called hyperreduction approach,
which leads to an approximate affine form (Quarteroni
et al., 2016). A nuclear scattering example that treats a
non-affine Hamiltonian is given in Odell et al. (2023).

B. Variational and Galerkin formulations

More generally, an RBM can be formulated in terms
of a functional that is stationary at the desired solu-
tion (variational approach) or via a weak form arising
from multiplying the underlying equations and bound-
ary conditions by arbitrary test functions and integrat-
ing over the relevant domains (Galerkin approach) (Bren-
ner and Scott, 2008; Hesthaven et al., 2016; Zienkiewicz
et al., 2013). To date, EC in nuclear physics has most
often been implemented with a variational formulation,
which for bound energy eigenstates is familiar from in-
troductory physics. Less familiar, but well established,
are various variational approaches to quantum scatter-
ing, where each approach leads to a different emulator,
see Sec. VI.A.

The Galerkin approach starts with the schematic form

⟨ζ|H(θ) − E(θ)|ψ⟩ = 0, ∀ ⟨ζ| , (12)

with arbitrary test functions |ζ⟩. The reduced dimension-
ality for Galerkin RBM formulations enforces orthogonal-
ity with a restricted set of nb test functions,

⟨ζi|H(θ) − Ẽ(θ)|ψ̃⟩ = 0, i = 1, · · · , nb. (13)

If the test functions are chosen to be the trial basis func-
tions, ⟨ζi| = ⟨ψi|, then this is called Bubnov-Galerkin or
Ritz-Galerkin (or just Galerkin). If a different basis of
test functions is used, this is called Petrov-Galerkin. For
eigenvalue problems with Hamiltonians that are bounded
from below, the Ritz-Galerkin procedure yields the same
equations as the variational approach. The Petrov-
Galerkin option means that the Galerkin procedure is
more general.

For boundary-value partial or ordinary differential
equations, there are general variational and Galerkin
RBM formulations. A projection-based emulator seeks
the solution ψ to

D(ψ;θ) = 0 in Ω; B(ψ;θ) = 0 on Γ, (14)

where D and B are operators in the domain Ω and its
boundary Γ, respectively. There are many good refer-
ences on Galerkin methods, see e.g., Brenner and Scott
(2008) and Zienkiewicz et al. (2013). The canonical ex-
ample of a Poisson equation with Neumann boundary
conditions is worked out in Melendez et al. (2022).

The same RBM ingredients as for the eigenvalue prob-
lem apply here, with an integral formulation using a sta-
tionary functional such as an action S[ψ], with δS = 0
yielding Eq. (14), or starting with∫

Ω

dΩ ζ D(ψ) +

∫
Γ

dΓ ζ B(ψ) = 0, (15)

and integrating by parts to reach a Galerkin weak for-
mulation (Zienkiewicz et al., 2013), which for arbitrary
test functions ζ and ζ also yields Eq. (14). With the
snapshot trial basis (10), δS = 0 can be solved for the
optimal βi (for linear operators this is just a matrix equa-
tion). The Galerkin formulation needs a choice for the
test basis, ⟨ζ| =

∑nb

i=1 δβi ⟨ζi|, where the δβi organize the
orthogonalization conditions for each i:

δβi

[∫
Ω

dΩ ζiD(ψ̃) +

∫
Γ

dΓ ζiB(ψ̃)
]

= 0. (16)

(For notational simplicity we leave partial integrations
implicit here.) Again we have Ritz-Galerkin and Petrov-
Galerkin options. For a broad set of engineering and
science applications of these approaches, good starting
points are Benner et al. (2017, 2020a,b); Hesthaven et al.
(2016); and Quarteroni et al. (2016). Galerkin meth-
ods for quantum scattering are discussed in Sec. VI.A,
including an application to a non-affine Hamiltonian pa-
rameterization.

A pedagogical illustration of Galerkin methods
adapted to nuclear physics energy density functionals
for uncertainty quantification is given in Giuliani et al.
(2023). Figure 5 shows the singular values from snap-
shots of various functions that arise in the coupled non-
linear differential equations to be solved in minimizing
such an energy density functional. The efficacy of a basis
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FIG. 5 Normalized singular values from 50 snapshots of vari-
ous functions that enter a nuclear physics energy density func-
tional. The snapshots correspond to different parameter sets
to be used in a Galerkin formulation of the energy density
functional, which will be solved many times with different
sets for Bayesian parameter estimation. The rapid decrease
with principal component number k indicates that a small
basis size will be accurate, leading in this case to speed-ups
of several thousand compared to the original solver. Adapted
from a figure in Giuliani et al. (2023).

obtained by POD from snapshots is implied by the rapid
decrease in magnitude of the singular values, leading to
high accuracy from a relatively small basis and speed-
ups of order several thousand (the actual speed-up will
be implementation dependent).

C. Other approaches to generalized eigenvalue problems

As already emphasized, the key to fast emulation with
EC is a decomposition into one-time offline tasks and
repeated, computationally efficient, online tasks. In this
context, the key equations to be solved online are the low-
dimensional generalized eigenvalue problem of Eq. (11)
and Fig. 4(c). The non-orthogonality of the high-fidelity

snapshots yields a non-trivial norm matrix Ñ(θ) on the
right-hand side of Eq. (11). This type of secular equa-
tion is routinely encountered in nuclear physics in the
discretized version of the projected generator coordinate
method (Brink and Weiguny, 1968; Frosini et al., 2022b;
Griffin and Wheeler, 1957; Ring and Schuck, 1980) and
in the Monte Carlo shell model (Otsuka et al., 2001;
Shimizu et al., 2012). The same is true for the non-
orthogonal configuration interaction (Thom and Head-
Gordon, 2009) in quantum chemistry.

Because the norm matrix is Hermitian and the EC on-
line problem is low dimensional, the norm matrix Ñ(θ)
can be diagonalized to transform Eq. (11) into a stan-
dard matrix diagonalization problem1. Still, near-linear

1 Different numerical methods are called for when the dimension

redundancies between the high-fidelity snapshots make
the norm matrix poorly conditioned numerically. Con-
sequently, its kernel L0 must be explicitly separated
from its orthogonal complement L⊥ before transforming
Eq. (11) unitarily. In fact, 0 being an accumulation point
of the eigenspectrum of the norm matrix in the limit of in-
finite dimension, very small non-zero eigenvalues can gen-
erate instabilities even for the finite dimensions presently
under consideration. The practical remedy to this prob-
lem consists of removing eigenvectors in L0 associated
with eigenvalues smaller than a given threshold ϵth cho-
sen such that the end results do not depend on its specific
value.2

There are several other methods used to deal with the
inversion of poorly-conditioned norm matrices. Tikhonov
regularization is one popular approach (Tikhonov, 1943).
The simplest form of Tikhonov regularization is ridge re-
gression or nugget regularization. In this approach, a
small positive multiple of the identity is added to the
norm matrix that needs to be inverted. However, it is
often not clear how to estimate the systematic bias in-
troduced using this approach.

A new approach called the trimmed sampling algo-
rithm was introduced in Hicks and Lee (2023). Trimmed
sampling uses physics-based constraints and Bayesian
inference to reduce errors of the generalized eigen-
value problem. Instead of simply regulating the norm
matrix, probability distributions are sampled for the
Hamiltonian and norm matrix elements, weighted by
likelihood functions derived from physics-informed con-
straints. These physics-informed constraints include
well-motivated physics principles such as positivity of the
norm matrix and the smooth convergence of extremal
eigenvalues with respect to variational subspace size. The
posterior distribution is determined for the Hamiltonian
and norm matrix elements, and eigenvectors and observ-
ables are then sampled from that distribution.

In Fig. 6 a schematic diagram of trimmed sampling is
displayed. The raw uncertainty of some observable ob-
tained from solving the generalized eigenvalue problem
is sketched. The raw uncertainty centered around the
starting estimate is used as the prior probability distri-
bution. The posterior probability is proportional to the
product of the prior probability and the likelihood as-
sociated with the enforcement of some physics-informed

is large enough to forbid a straight diagonalization of the norm
matrix; see, e.g., (Frosini et al., 2022a). Notice further that
the equivalence of the original and transformed secular equa-
tions is not guaranteed in the continuous version of the projected
generator coordinate method (Broeckhove and Deumens, 1979;
de Toledo Piza et al., 1977). However, none of these two issues
occur in the present context.

2 This is effectively equivalent to removing the singular values be-
low ϵth in a (truncated) POD/SVD algorithm and is standard
practice in the RBM approach.
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FIG. 6 Schematic diagram of trimmed sampling. The raw
uncertainty of some observable obtained from solving the gen-
eralized eigenvalue problem is sketched. The raw uncertainty
is centered around the starting estimate, and is used as the
prior probability distribution. The posterior probability is
proportional to the product of the prior probability and the
likelihood associated with the enforcement of some physics-
informed constraints. The exact solution is located at a point
where both the prior probability and the likelihood are not
small (Hicks and Lee, 2023).

constraints. The posterior probability distribution does
not give a rigorous estimate of the error. However,it can
be concluded that the exact solution is located at a point
where both the prior probability and the likelihood are
not small (Hicks and Lee, 2023).

IV. CONVERGENCE PROPERTIES OF EC

An important and fundamental question regarding EC
is how fast it converges to the exact answer as a function
of the number of snapshots.

A. Bounds on the EC convergence rate

We are interested in the rate of convergence of EC
for interpolation as well as the more difficult problem
of extrapolation. We start with the problem of inter-
polation and consider a Hamiltonian H(θ) with a sin-
gle control parameter, θ. Let B be a compact real-
valued domain for θ and |ψ(θ)⟩ be the eigenvector of
interest. Let d(θ, SN ) be the norm of the residual vec-
tor when approximating |ψ(θ)⟩ using EC with snapshots
SN = {|ψ(θ1)⟩ , · · · , |ψ(θN )⟩} chosen from B. We let
dN denote the best possible uniform error bound for
d(θ, SN ). This means that we optimize the selection of
snapshots for fixed N such that maxθ∈B d(θ, SN ) is mini-
mized. Our dN is an example of a Kolmogorov N -width,

which is used to characterize the error and convergence
of linear subspace approximations (Kolmogoroff, 1936;
Pinkus, 2012; Tikhomirov, 1960).

Within its radius of convergence, a power series expan-
sion converges exponentially fast with respect to trunca-
tion order. For example, if we truncate the power series
around θ = 0 in Eq. (5) at order M , the resulting error
will be O(|θ/z|M+1) in the limit of large M , where z is
the nearest non-analytic point. If |ψ(θ)⟩ is analytic on
B, we can use this fundamental property of power series
to derive an upper bound on EC errors when used for
interpolation.

First, we select a set of points such that all parts of B
lie within the radius of convergence of one of these points,
which we will call anchor points. We then take snap-
shots at these anchor points as well as points infinitesi-
mally close to the anchor points. Linear combinations of
the snapshots can be used to construct derivatives and
higher-order derivatives of |ψ(θ)⟩ at each anchor point.
If we take N snapshots, then, in the limit of large N , we
have enough basis vectors to express the power series at
each anchor point up to a truncation order that scales
as O(N). It follows that dN is O(xN ) for some posi-
tive x < 1. The generalization to compact real-valued
domains in d dimensions is straightforward. We have
O(kd) gradients and higher-order gradients for the multi-
parameter power series in θ1, · · · , θd at truncation order

k. For the multi-dimensional case, dN is O(xN
1/d

) for
some positive x < 1. In the RBM literature, snapshots
composed of high-fidelity solutions and their first deriva-
tives at different anchor points have been used for partial
differential equations and this is known as the Hermite
subspace approach (Ito and Ravindran, 2001).

In general, EC extrapolation converges more slowly
than interpolation. Consider the case where the EC snap-
shots lie in the neighborhood of some point, but extrap-
olation is required beyond the radius of convergence at
that point. As illustrated in Fig. 3, we can perform sec-
ondary expansions and analytically continue past branch
points in the complex plane. We can bound the EC ex-
trapolation error in terms of the convergence of multi-
series expansions such as that shown in Eq. (7). These
secondary expansions result in slower convergence, and
the problem is most severe when there are branch points
at θ = z and θ = z̄ that pinch the real axis. The number
of secondary expansions needed will scale inversely with
the imaginary part of z. The smaller Im z, the sharper
the resulting avoided level crossing. For systems under-
going a quantum phase transition, Im z will decrease with
system size and this limits the ability of EC to extrapo-
late across the transition point in large systems (Franzke
et al., 2024).

The analysis described above based on power series se-
ries and perturbation theory gives an upper bound on
the asymptotic error of EC for Hamiltonians H(θ) that
are analytic in θ. However, the actual convergence rate
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FIG. 7 The convergence of perturbation theory is impacted
by a phenomenon called differential folding, where cancella-
tions occur between terms in the power series expansion for
|ψ(θ)⟩ (Sarkar and Lee, 2021). Differential folding does not
occur in EC calculations, since the linear subspace is expand-
ing along new orthogonal directions.

of EC is typically faster than that of perturbation theory
when selecting snapshots infinitesimally close to some an-
chor point. This stems from the fact that the gradients
and higher-order gradients in Eq. (8) are not orthogonal
to each other. As described in Sarkar and Lee (2021) and
illustrated in Fig. 7, this results in a phenomenon called
“differential folding” by the authors, where cancellations
occur between terms in the power series expansion for
|ψ(θ)⟩. No such phenomenon occurs in subspace projec-
tion methods such as EC. As new snapshots are included,
the linear subspace is expanding along directions that are
orthogonal to the previous snapshots. This produces a
faster convergence for EC than perturbation theory.

The faster convergence of EC versus perturbation the-
ory can be seen in three different matrix examples de-
noted as Models 1A, 1B, and 1C in Sarkar and Lee (2021).
Each of these matrix models have an affine dependence
on one parameter. In Fig. 8, we show the logarithm of
the error for the eigenstate wave function versus trun-
cation order for perturbation theory (PT), vector con-
tinuation (VC), and eigenvector continuation (EC). Vec-
tor continuation corresponds to simple projection of the
exact eigenvector onto the subspace spanned by the EC
snapshots. For all three cases, we see that the VC and EC
are converging significantly faster than perturbation the-
ory. In Sarkar and Lee (2021), it is proven that VC and
EC approximations agree up to terms that scale quadrat-
ically with the error of the VC and EC approximations.

FIG. 8 The logarithm of the error for the eigenstate wave
function versus truncation order for perturbation theory
(PT), vector continuation (VC), and eigenvector continuation
(EC). The results are for three different matrix examples de-
scribed in Sarkar and Lee (2021) and labelled as Model 1A,
1B, and 1C. We see that EC and VC both converge faster
than perturbation theory.

B. Improved Many-Body Perturbation Theory

A natural application of EC relates to overcoming
some critical limitations of many-body perturbation
theory(ies) applied to nuclear systems. While more
advanced (e.g., non-perturbative) expansion methods
are nowadays employed to obtain accurate solutions of
the nuclear many-body Schrödinger equation (Hergert,
2020), many-body perturbation theories of various flavors
happen to be of great use for many applications (Tichai
et al., 2020).

In this context, the generic parametric dependence of
the Hamiltonian takes the simple form

H(θ) = H0 + θH1 , (17)

with θ a complex number, knowing that the case of phys-
ical interest corresponds to θ = 1. Eigenstates of H(θ)
can be accessed via perturbation theory as a Taylor se-
ries around θ = 0, i.e., via an expansion with respect
to eigenstates of H0. Eventually, an eigenstate |Ψn(θ)⟩
of H(θ) and its eigenenergy En(θ) are approximated at
perturbative order P through

|Ψ(P )
n (θ)⟩ ≡

P∑
p=0

θp |Φ(p)
n ⟩ , (18)

E(P )
n (θ) ≡

P∑
p=0

θpE(p)
n , (19)

where the corrections {(|Φ(p)
n ⟩ , E(p)

n ); p ∈ N} can be com-
puted from the eigenstates of H0 (Shavitt and Bartlett,
2009).
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FIG. 9 Ground-state energy of 18O from Bogoliubov many-
body perturbation theory (BMBPT) (blue circles) and
BMBPT-based EC (red squares) as a function of the pertur-
bative order P against exact diagonalization (full line). The
employed Hilbert space dimension is small enough for the ex-
act diagonalization of the nuclear Hamiltonian to be accessi-
ble via configuration interaction (CI) techniques. Top panel:
absolute values. Bottom panel: relative error to exact diago-
nalization. Adapted from (Demol et al., 2020).

The key problem relates to the fact that the sequence

{(|Ψ(P )
n (θ)⟩, E(P )

n (θ));P ∈ N} typically converges to-
wards (|Ψn(θ)⟩ , En(θ)) when P → ∞ only for ||θ|| ∈
[0, Rc], where Rc denotes the convergence radius. In case
Rc < 1, the problem of physical interest is inaccessible
via perturbation theory.

In nuclear many-body calculations, several features
can lead to Rc < 1 (Tichai et al., 2020), e.g., character-
istics of internucleon interactions, choice of H0, and the
closed- or open-shell nature of the nucleus under study.
While appropriately acting on the first two aspects allows
one to bypass the problem in closed-shell nuclei (Tichai
et al., 2016), it is much more challenging to do so in
open-shell systems (Demol et al., 2021). In this context,
EC was shown to provide a systematic framework to en-
large the convergence radius via analytic continuation,
i.e., the EC employing the set of P-order perturbative

snapshots {|Ψ(P )
n (θi)⟩ ; i = 1, . . . , P + 1} acts as a re-

summation technique delivering a controlled and varia-
tional sequence of approximations to En(1) for increasing
nb = P +1 ∈ N (Demol et al., 2020; Franzke et al., 2022).

Figure 9 demonstrates that the sequence of approxi-
mations to the ground-state energy of the open-shell 18O
nucleus obtained via EC converges rapidly from above
towards E0(1) even though the corresponding perturba-
tive series diverges. Because the Hilbert space dimension
employed is small enough, the results can be validated
against the exact value of E0(1) obtained via the exact
diagonalization of the nuclear Hamiltonian based on con-
figuration interaction (CI) techniques. While the use of
EC to resum diverging perturbative series was first ded-
icated to nuclear ground states (Demol et al., 2020), it
was later extended to excited eigenstates (Franzke et al.,
2022).

Another successful application of EC is to pairing in
many-body systems, see Franzke et al. (2024) and Baran
and Nichita (2023). However, the work by Franzke et
al. also manifested a limitation of EC mentioned above,
as they found that they could not extrapolate between
the normal and superfluid regimes if including snapshots
from only one regime. That is, extrapolating between
different phases of large systems will generally fail unless
information on both is included (see also Brehmer et al.
(2023) and Sowiński and Garcia-March (2022)).

V. LARGE HAMILTONIAN EIGENSYSTEMS

A powerful approach to obtaining (part of) the spec-
trum of the Hamiltonian of a quantum system is the ex-
plicit diagonalization of a large (typically sparse) Hamil-
tonian matrix. Such approaches are ideal candidates
for a straightforward application of EC as formulated
by Frame et al. (2018). Since they play a crucial role
in nuclear structure theory, many related applications of
EC arose relatively quickly in this context.

A. No-Core Shell Model Emulators

As a first application that fueled many of the sub-
sequent developments, König et al. (2020) used a no-
core shell model framework (formulated in terms of Ja-
cobi coordinates) to construct EC-based emulators for
A = 3, 4 nucleons, i.e., the nuclei 3H and 4He. In this ap-
proach, the wave function of the Hamiltonian, written as
H = H(θ) with a collection of parameters θ, is expanded
in eigenfunctions of a harmonic-oscillator potential with
a chosen frequency. Truncating the harmonic-oscillator
basis based on a maximum number of oscillator quanta
Nmax yields a (large) finite matrix that can be diagonal-
ized. For A = 3, 4 Hamiltonians formulated in Jacobi co-
ordinates, thereby exactly factorizing the center of mass
components of the wave functions, typical matrix dimen-
sions are 104 × 104. EC for one more states can be set
up directly using the coefficient vectors obtained from
Lanczos diagonalization.



11

The parameters θ considered by König et al. (2020) are
the low-energy constants of the chiral effective field the-
ory (χEFT) potential used in that work. Overall, there
are d = 16 individual parameters subsumed in c⃗ that de-
termine two- and three-nucleon interaction in the poten-
tial. Setting up an EC emulator proceeds following the
online/offline scheme described in Sec. II for the generic
RBM workflow:

i) picking a training set {θi}nb
i=1 of nb parameters, us-

ing space-filling Latin hypercube sampling (McKay
et al., 1979) in the d-dimensional parameter domain
(or some subset thereof);

ii) performing exact calculations (for the ground states
of 3H and 4He, in the case of König et al. (2020)
for each point in the training set, and

iii) constructing a pair of Hamiltonian and norm ma-
trices as described in Sec. II, for each evaluation of
the emulator at a target parameter point θ∗.

An important property of the chiral Hamiltonian is that
it typically can be written as an affine combination as
introduced in Eq. (1),

H(θ) = H0 +

d∑
k=1

θkHk , (20)

where H0 denotes the kinetic energy plus parameter-
independent parts of the chiral Hamiltonian. This form
makes it particularly efficient to evaluate the emulator at
different target points in the parameter space (the last
step in the list above) because each operator Hk can be
individually projected into the EC space, and this is a
one-time cost that is part of the offline emulator setup.

König et al. (2020) provide a detailed analysis of the
numerical performance gain (speed-up factor) that is
achieved via EC, shown in Fig. 10 for a particular ex-
ample. While the details of that analysis are particular
to the employed (Jacobi-coordinate) no-core shell-model
calculation of 4He, which is a light-mass nucleus of man-
ageable computational complexity, much of the discus-
sion applies generally to EC-based emulators with affine
parameter dependence. Most importantly, EC can be
used to greatly reduce the effective dimension of a matrix
problem, and the maximum speed-up factor that follows
is primarily determined by the size of the reduced dimen-
sion compared to the original one. The speed-up factor
as a function of the number of online emulator samples
shown in Fig. 10 approaches a maximum value asymp-
totically because this analysis includes the offline cost
for setting up the emulator. For applications of RBMs
to heavier-mass nuclei (discussed in Sec. V.B), that are
also significantly more costly to solve for computationally
using high-fidelity models, speed-up factors of the order
106 · · · 109 have been observed.
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FIG. 10 Speed-up factor (ratio of estimated required floating-
point operations) of EC emulation compared to direct cal-
culation as function of the number of samples, i.e., number
of calls to the emulator (adapted from König et al. (2020)).
The theoretical limit indicates the maximum speedup reached
asymptotically (as the offline cost becomes amortized) in the
number of samples, which is 614 for this particular example.

Wesolowski et al. (2021) and Djärv et al. (2022) used
EC to construct fast and accurate emulators of no-core
shell-model calculations in the analysis of three-nucleon
forces in χEFT. The latter work analyzed 6Li in the m-
scheme, i.e., laboratory coordinates. Thus, the dimen-
sionality of the Hamiltonian matrix also grew dramat-
ically. Already for Nmax = 8 the matrix dimension is
106 × 106, which requires significant compute efforts to
be diagonalized even using the Lanczos method. Becker
et al. (2023) expressed the Hamiltonian in a symplec-
tic symmetry-adapted no-core shell-model basis and used
EC to further reduce the dimensionality of the Hamilto-
nian to construct accurate emulators for 12C.

B. Subspace-Projected Coupled Cluster

In nuclear physics and quantum chemistry one of-
ten encounters matrix representations of the many-body
Schrödinger equation that are too large to permit an effi-
cient diagonalization. For such cases, the coupled cluster
(CC) method (Shavitt and Bartlett, 2009) can be an ef-
fective tool for approximating solutions in a space with
dimensionality that is significantly reduced compared to
an asymptotically exact method such as the no-core shell-
model. CC is based on a similarity-transformed Hamil-
tonian H(θ) = e−TH(θ)eT , where the cluster opera-
tor T = T1 + T2 + . . . + Tn + . . . + TA is the sum of
n-particle n-hole excitation operators acting on an A-
particle vacuum state |Φ⟩. In nuclear physics, T is usu-
ally truncated at the singles and doubles level (CCSD),
i.e., T = T1 + T2, with triples excitations T3 incorpo-
rated perturbatively (Hagen et al., 2014). This typically
captures 99% of the correlation energy of closed (sub-)
shell systems (Bartlett and Musia l, 2007; Ekström et al.,
2023a).

Truncating T makes the similarity transformation non-
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unitary and H(θ) non-Hermitian. In the CCSD approx-
imation, the biorthogonal left and right eigenstates of H
are obtained as solutions to the CCSD equations, which
can be viewed as a set of Galerkin equations, based
on 1p-1h and 2p-2h test functions |Φa

i ⟩ ≡ a†aai |Φ⟩ and

|Φab
ij ⟩ ≡ a†aa

†
bajai |Φ⟩. CC calculations of atomic nu-

clei belong to a class of ab initio methods that scale
polynomially with system size. Still, high-fidelity and
state-of-the-art calculations beyond the lightest-mass nu-
clei require significant high-performance computing re-
sources. Ekström and Hagen (2019) extended EC to non-
Hermitian Hamiltonian matrices and the CC method.
This has paved the way for fast and accurate emulation
of properties of atomic nuclei and sophisticated compu-
tational statistics analyses.

Subspace-projected CC (SPCC) is an RBM using snap-
shots of the bivariational left and right CC states ob-
tained at nb different values of the parameters θ, e.g., the
coupling constants in the description of the strong inter-
action Hamiltonian. The matrix elements of the nb × nb
SPCC Hamiltonian and norm matrices have been worked
out for the case of reference states built from harmonic os-
cillator single-particle states (Ekström and Hagen, 2019).
Typically, CC calculations exploit a Hartree-Fock refer-
ence state. This embeds a dependence on θ in the basis
states which makes the evaluation of the matrix elements
of the SPCC Hamiltonian and the norm matrices more
cumbersome, but can be done using, e.g., a generalized
Wick’s theorem. The use of SPCC with more complex
reference states are currently being explored. Inspired
by the success of SPCC, an RBM of angular-momentum
projected Hartee-Fock was recently applied to emulate
Hartree-Fock calculations of excited states in axially de-
formed nuclei (Ekström et al., 2023b).

The first application (Ekström and Hagen, 2019) of
SPCC to an atomic nucleus, 16O, demonstrated that
nb ≈ 50 CCSD snapshots are sufficient to accurately emu-
late, i.e., with sub-percent precision, realistic predictions
of the energy and charge radius of the ground state in
this nucleus as a function of θ. Here, θ denote the 16
low-energy constants of a nuclear interaction description
at next-to-next-to-leading order in χEFT. As it turns
out, the accuracy of the SPCC emulator is remarkable
even when using few snapshots in a very wide range of
values for θ. Indeed, nb = 64 snapshots θi in a Latin
hypercube design covering an extremely dispersed set of
predictions for the energy and radius in 16O is sufficient
to obtain ∼97% accuracy compared to exact CCSD pre-
dictions (see Fig. 11). Narrowing the set of snapshots to
a physically motivated parameter domain increases the
accuracy significantly while using even fewer snapshots.
SPCC emulators are typically also very fast and the bulk
properties of 16O could be sampled for one million values
of θ in one hour on a standard laptop, while an equivalent
set of exact CCSD calculations would require 20 years of
single-node compute time, i.e., an observed speed-up fac-
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FIG. 11 Comparison of SPCC, based on nb = 64 snapshots,
and exact CCSD calculations for the ground-state energy (top
panel) and charge radius (bottom panel) across a wide range
of values. Adapted from (Ekström and Hagen, 2019)

tor of 105.

Since the first application, SPCC has been extended to
emulate the properties of ground- and excited states in
heavier-mass nuclei (Hu et al., 2022; Kondo et al., 2023)
and infinite nuclear matter (Jiang et al., 2022a) at differ-
ent levels of fidelity up to perturbative triples excitations.
The very low computational cost of the SPCC method,
with observed speed-up factors of 109, has thus enabled a
wide range of exciting computational statistics analyses
expounding how nuclear properties are linked to effective
field theory descriptions of the strong interaction.

The CC method follows a bivariational principle which
renders the SPCC Hamiltonian non-Hermitian. This
may lead to difficulties identifying the target state in the
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spectrum as it is not guaranteed to be the lowest. In-
deed, in heavier-mass nuclei and nuclear matter, where
level densities are higher, the target state can sometimes
appear as an excited state. The interpretation of the
SPCC spectrum under these conditions remains an open
challenge. Using the bivariational principle, Jiang et al.
(2022b) introduced a method called “small-batch voting”
to detect the target state in such scenarios. Much re-
mains to be discovered regarding the convergence prop-
erties of non-Hermitian EC and the advantages of RBMs
applied to the CC method.

C. Phenomenological shell model

While emulating low-energy constants stemming from
χEFT is probably one of the most relevant scenarios in
ab initio nuclear structure theory, EC provides opportu-
nities to enhance phenomenological approaches as well.
One such application is given by the work of Yoshida
and Shimizu (2022), who apply EC in connection with
the nuclear shell model. In a shell-model calculation,
the Hamiltonian is typically split into one- and two-body
terms, H = H(1) + H(2), with natural extensions to in-
clude higher-body terms. H(1) models the effective mean
field that generates nuclear orbitals, while H(2) describes
interaction among valence nucleons. Input parameters
for a shell-model calculation are single-particle energies,
determining the diagonal part of H(1), and two-body ma-
trix elements that parametrize the interaction in H(2).
Both types of parameters need to be fitted to experimen-
tal data within the regime of nuclei that one wishes to
describe with a particular model (e.g., sd shell nuclei).

As a typical starting point, Yoshida and Shimizu
(2022) consider the USDB interaction for sd shell nu-
clei (Brown and Richter, 2006), which spans overall a
66-dimensional parameter space of 3 single-particle en-
ergies and 63 two-body matrix elements, collected into
a vector θ. While each individual diagonalization within
the valence space can be quite cheap, the large number of
parameters implies that there is significant potential for
speeding up the fitting process via EC emulation. Setting
up such an emulator follows the standard EC procedure
based on training points θi with i = 1, · · · , nb together
with the Hamiltonian

H̃ij = ⟨ψ(θi)|H(θ∗) |ψ(θj)⟩
=

∑
k

h
(1)
k × OBTDk +

∑
k

V
(2)
k × TBTDk ,

(21)

where h
(1)
k and V

(2)
k are, respectively, the single-particle

energies and two-body matrix-elements that multiply
one- and two-body transition densities (OBTD and
TBTD), and |ψ(θi)⟩ denotes a particular shell-model
wave function obtained for parameters θi. Importantly,
Eq. (21) has an affine structure that enables the previ-
ously mentioned online/offline decomposition.

A number of benchmark scenarios are considered, vary-
ing the number of training points Ns between 50 and 250,
and also the number of states (lowest part of the spec-
trum starting with the ground state) per training pa-
rameter set, between 1 and 5. Overall, for a selection of
nuclei such as 28Si and 24Mg relative emulator errors of
the order between less than one percent up to a few per-
cent are observed. A Monte Carlo sampling technique is
proposed to assign emulator uncertainties for individual
evaluations.

In line with other work such as König et al. (2020),
Yoshida and Shimizu (2022) find that emulated wave
functions generally show larger emulation discrepancies
than binding energies, leading to a larger spread for em-
ulator evaluations of operators such as magnetic dipole
moments and quadrupole moments. To improve the em-
ulator accuracy and avoid problems in correctly describ-
ing such observables, Yoshida and Shimizu (2022) sug-
gest to use the shell-model emulator as a preprocessor
to generate optimized initial states for a subsequent ex-
act Lanczos diagonalization. More generally, there will
be challenges in applying EC beyond the sd shell (e.g.,
to the pf shell), where there are many more parameters
and the time to generate low-lying states in the offline
training phase will be greater. This is where the expe-
rience from the RBM community in reduced-order sam-
pling (e.g., using SVD methods, see Sec. III) could be
profitably carried over to nuclear problems.

VI. EXAMPLES OF EXTENSIONS

In the following subsections we introduce three exten-
sions of the basic EC method.

A. Emulators for Quantum Scattering

Uncertainty quantification will often require calcu-
lations of scattering observables with many different
Hamiltonian parameterizations. Examples in nuclear
physics include the calibration of χEFT interactions and
of phenomenological optical potentials. This has mo-
tivated the extension of model-driven emulators to the
quantum mechanical two-body scattering problem and
beyond. Of particular importance for nuclear applica-
tions is the ongoing development of three-body scattering
emulators.

Quantum scattering is not an eigenvalue problem,
but the same principles that make EC effective for
bound states carry over to scattering. In the time-
independent formulation of scattering, we still start
with the strong form of the Schrödinger equation,
H(θ) |ψ(θ)⟩ = E |ψ(θ)⟩, but now E is specified rather
than determined (although it can also be treated as a
parameter of the emulator). The freedom to formu-
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late the Schrödinger equation for scattering in different
ways, including homogeneous or inhomogeneous differ-
ential equations for scattering wave functions as well as
integral equations for scattering matrices, leads to many
possible emulators. In addition there is the freedom to
choose trial and test bases for Galerkin projection (see
Sec. III). As such, beyond the intrinsic use of scatter-
ing emulators, the scattering problem is a prototype for
multiple approaches to model reduction in other settings.
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FIG. 12 (a) Scattering wave functions for a model nucleon-
nucleon potential at a fixed energy (Furnstahl et al., 2020).
The dot-dashed curves are for four choices of θi = {V0R, V0s}
that comprise the trial basis, the dashed curve is for the target
values, and the solid curve is the prediction using the KVP
emulator. The curves have a common crossing point at the
value of r where the second term in Eq. (23) is zero. (b)
Scattering phase shifts for the same parameter sets and the
emulator prediction.

There are numerous variational formulations of scat-
tering, such as those due to Kohn, Schwinger, and New-
ton (Newton, 2002). Variational here means that there
is a stationary functional, but in most cases this does not
imply that the result is an upper bound, unlike the case
with bound states. For each of these variational formu-
lations there is a corresponding RBM emulator.

The first implementation of a quantum scattering em-
ulator (Furnstahl et al., 2020) used the Kohn Varia-
tional Principle (KVP) for partial wave scattering (Kohn,

1948). For two-body scattering in a single channel with
angular momentum l at on-shell energy E = q2/2µ, the
KVP functional takes the form

K[ψ̃] = K̃E + ⟨ψ̃|H − E|ψ̃⟩ . (22)

In Eq. (22) the trial scattering wave function |ψ̃⟩ in po-
sition space is constrained to satisfy the asymptotic nor-
malization condition

ψ̃l(r) −→
r→∞

jl(qr) + nl(qr) tan δl, (23)

and

K̃E = − tan δl
2µq

(24)

is the on-shell K-matrix corresponding to phase shift
δl(E). This functional is stationary about the exact so-
lution ψ such that K[ψ + δψ] = KE + O(δK)2.

An EC/RBM emulator for the KVP uses a snapshot
trial basis as in Eq. (10), where each basis wave function
satisfies Eq. (23) and the overall constraint for the trial
wave function, which requires

∑nb

i=1 βi = 1, is enforced
by a Lagrange multiplier. Varying the KVP functional
with this constraint yields a low-dimensional (nb × nb)
linear matrix problem. If the Hamiltonian is affine in the
parameters, all of the relevant matrix elements can be
pre-computed in the offline stage as in Fig. 4. An example
of this emulator from Furnstahl et al. (2020) is shown
in Fig. 12 for a model nucleon-nucleon potential with
two parameters (the strengths of two Gaussians). The
snapshot wave functions for four randomly chosen sets of
θi are shown in panel 12(a) while the corresponding phase
shifts are shown in panel 12(b). Despite no indication
from the figure that this is a good basis, the emulator is
fast and accurate through the full range of energies.

The KVP is sometimes itself used as a high-fidelity so-
lution method, where it is is well-known to be plagued
with numerical issues known as Kohn anomalies. These
can be mitigated for emulators by a more general formu-
lation than Eqs. (22)–(24) that uses multiple scattering
matrices (rather than just the K-matrix); see Drischler
et al. (2023, 2021) for details. This approach has been
extended to coupled channels and to momentum space
in Garcia et al. (2023), with successful tests of the full
range of two-body scattering observables using a state-of-
the-art χEFT Hamiltonian with 25 parameters (up to six
in each partial wave channel). Speed-ups of two orders
of magnitude over high-fidelity calculations were found
even when using basis sizes large enough to achieve a
mean relative emulator error of order 10−10 over a wide
region in parameter space.

Another form of the KVP-type emulator avoids using
a Lagrange multiplier to constrain the normalization of
basis wave functions by introducing a trial basis only for
the second (scattering) term of Eq. (23) rather than the



15

full wave function. The free wave function (first term
in Eq. (23)) fixes the normalization. The Schwinger and
Newton emulators use alternative variational principles,
with the latter having a trial basis of K-matrices rather
than wave function (Melendez et al., 2021); it is applied
to the calibration of χEFT parameters in Svensson et al.
(2023).

Each of these variational formulations has a Galerkin
counterpart, so we can use Galerkin projection as an al-
ternative path to constructing the emulators. This is
worked out for each of the Kohn, Schwinger, and New-
ton emulators in Drischler et al. (2023). This also means
we can directly formulate scattering emulators that do
not have an obvious variational counterpart. With the
normalization fixed at the origin (r = 0) by a free
solution value and first derivative, the snapshot basis
of scattering terms can be used in a Galerkin projec-
tion of Eq. (12). An application of this emulator to
calibrate phenomenological optical potentials in Odell
et al. (2023), implemented with ROSE software from the
BAND project (Beyer et al., 2023), uses proper orthogo-
nal decomposition (see Sec. III.A) to optimize the basis
and an Empirical Interpolation Method to handle the
non-affine parameters of the potential. Yet another for-
mulation builds on R-matrix theory with successful ap-
plications to fusion observables (Bai, 2022; Bai and Ren,
2021). The frontier for scattering emulators is for three-
body problems. A proof-of-principle demonstration using
the KVP for three bosons was given in Zhang and Furn-
stahl (2022) and tests of realistic nuclear scattering are
in progress.

B. Finite Volume Dependence and Resonances

Another extension of EC, developed by Yapa and
König (2022), is concerned with extrapolating or inter-
polating the volume dependence of energy levels in finite
periodic boxes, with the particular application of study-
ing resonance properties via finite-volume (FV) simula-
tions (Klos et al., 2018; Lüscher, 1991; Rummukainen and
Gottlieb, 1995; Wiese, 1989). In this scenario, not only
does the Hamiltonian H = H(L) depend explicitly on the
size of a cubic box L (via the periodic extension of the
interaction part), but, since eigenstates of H(L) have to
satisfy the periodic boundary condition, they also carry
an implicit dependence on L. Specifically, states defined
in boxes with different L are vectors in distinct Hilbert
spaces, which makes it a priori difficult to give a well-
defined meaning to matrices

H̃ij(L∗) = ⟨ψLi
|H(L∗)|ψLj

⟩ , (25a)

Ñij = ⟨ψLi
|ψLj

⟩ (25b)

that appear in a standard EC setup with training points
Li and target volume L∗.

Yapa and König (2022) overcome this issue by defining
a space

H =
⋃

{L>0}

HL . (26)

as a union of Hilbert spaces HL that contain periodic
states with fixed period L. This set H is not a vector
space with the standard pointwise addition of functions
(assuming that the HL are simple function spaces), but it
can be made into one by defining appropriate operations
that combine functions with different periods.

Yapa and König (2022) accomplish this by apply-
ing dilatations (transformations involving stretching and
rescaling) that map states into a common space prior to
applying the standard operations within that space and
show that, when this procedure is applied to a truncated
bases of periodic functions (such as simple plane waves or
a discrete variable representation as used by (Klos et al.,
2018) to study few-body systems in finite volume), ul-
timately the outcome is equivalent to simply operating
within the Rn space of coefficient vectors (where n de-
notes the dimension of the finite space). We note that in
the broader RBM context problems such as the volume
dependence discussed here have been treated by map-
ping the physical domain to a fixed reference domain and
formulating an equivalent problem on this reference do-
main (Rozza, 2005; Rozza and Veroy, 2007).

As mentioned at the outset of this section, studying
resonances in FV was a primary motivation for the de-
velopment of FVEC. Figure 13, taken from Yapa and
König (2022), demonstrates this application with the ex-
ample of a three-boson resonance, generated by a sum
of attractive and repulsive Gaussian potentials (Blandon
et al., 2007). For almost the entire range of volumes
shown in the figure, FVEC produces results that in the
resolution of the plot are virtually indistinguishable from
exact calculations, and the avoided level crossing around
L ∼ 28 fm, indicating the resonance, is well reproduced.

Resonances are a fascinating phenomenon found in
many areas of physics, closely related to the study of
open quantum systems. Numerically studying their prop-
erties is notoriously challenging because accommodating
states that decay with a finite lifetime requires either a
time-dependent treatment, or special “tricks” to describe
them within a time-independent framework. Enclosing
the system in a finite volume and looking for avoided level
crossing in the volume-dependent energy spectrum is an
elegant way of identifying resonances, but this approach
is geared primarily towards few-body systems. In formal
scattering theory, decaying resonances are generally as-
sociated with poles of the scattering matrix (“S-matrix”)
at complex energies E = ER−iΓ/2, located in the fourth
quadrant of the complex plane. The real part ER denotes
the resonance position, while the width Γ > 0 is related
to the inverse of the lifetime.
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FIG. 13 Positive-parity finite-volume energy spectrum of
three bosons exhibiting a resonance state. Solid lines show
the exact states calculated in a certain basis of the discrete
variable representation (see Yapa and König (2022) for de-
tails), whereas dashed lines indicate FVEC results obtained
based on training data at five different box sizes (solid cir-
cles), using the 8 lowest state in the spectrum at each volume
(including the ground state which is not shown in the figure).

While ordinary Hermitian quantum mechanics can
only describe either bound states (real E < 0) or scat-
tering (real E > 0), different options to achieve non-
Hermitian extensions have been developed in order to
allow for complex energy eigenvalues. Yapa et al. (2023)
developed an extension of EC that uses the so-called
(uniform) complex scaling technique to describe reso-
nances, and in particular their trajectories in the com-
plex plane under variation of the Hamiltonian, written
as H = H(θ). Complex scaling is based on rotating ra-
dial coordinates according to r → reiϕ with an angle
ϕ > 0, or, equivalently (Afnan, 1991), the conjugate mo-
mentum variable q according to q → qe−iϕ. Along this
rotated contour, resonance wave functions behave effec-
tively like bound states, and the complex-scaled (rotated)
Hamiltonian allows for complex energy eigenvalues. An
important aspect of complex scaling (as well as other
methods that enable the description of resonance in time-
independent quantum mechanics) is that inner products
of complex-scaled states do not involve complex conju-
gation of the “bra” state. Yapa et al. (2023) show that
eigenvector continuation for resonance states can be im-
plemented by defining the Hamiltonian and norm matrix
elements in terms of the so-called “c-product” (Moiseyev,
2011; Moiseyev et al., 1978), which for eigenstates |ψ1⟩
and |ψ2⟩ with equal angular-momentum quantum num-
bers is given by

⟨ψ1|ψ2⟩ =

∫
dr ψ1(r)ψ2(r) . (27)

Standard EC works well in this way for extrapolating
(or interpolating) the trajectory of a resonance state as
it moves in the fourth quadrant as a function of θ. While
this is relevant for example for constructing EC-based

emulators for resonance properties, Yapa et al. (2023) are
furthermore interested in the case where EC is trained
within a regime of θ where the states is actually bound,
and then extrapolate from there into the resonance do-
main. The key result of this work is that while using the
c-product alone is not sufficient to achieve this, an ex-
tension of EC that includes for each training bound-state
also its complex conjugate (with complex scaling, bound-
state eigenvalues remain real, but the corresponding wave
functions defined along the rotated contour have non-
trivial complex behavior). This “conjugate-augmented
eigenvector continuation (CA-EC)” is then able to per-
form the desired extrapolation from bound states to res-
onances. An example for this is shown in Fig. 14.
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1
FIG. 14 Bound-state-to-resonance extrapolation performed
with CA-EC for a two-body system supporting an S-wave
resonance for certain values of the parameter c. Five training
points were randomly drawn from the region c ∈ (0.9, 1.3)
per dataset, leading to bound states within the shaded line
along the negative real axis. Multiple samples of such five
points were used to obtain extrapolations with uncertainty
estimates, see (Yapa et al., 2023) for details.

While Yapa et al. (2023) consider as proof of concept
only two-body resonances calculated with complex scal-
ing, the authors conjecture that generally CA-EC is ex-
pected to work for quantum systems involving more par-
ticles, as well as in conjunction with techniques other
than complex scaling.

C. Quantum Monte Carlo Simulations

Quantum Monte Carlo simulations are widely used for
first-principles calculations of quantum many-body sys-
tems across many subfields of physics. In cases where
sign oscillations are not a problem, the computational ef-
fort usually scales as a low-order polynomial in the num-
ber of particles. Since quantum Monte Carlo can work
with vectors in extremely large linear spaces, the com-
bination of EC with quantum Monte Carlo methods is
potentially very powerful. The application of EC with
quantum Monte Carlo is discussed in Frame et al. (2018)
as well as in Frame (2019).
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In EC, we need to compute inner products between en-
ergy eigenstates associated with different Hamiltonians.
However, computing the inner product of the different
eigenstates is not straightforward using quantum Monte
Carlo simulations. We illustrate the problem with an
example involving ground state wave functions. Let HA

and HB be two quantum Hamiltonians with ground state
wave functions |v0A⟩ and |v0B⟩, respectively, and ground
state energies E0

A and E0
B , respectively. Let |ϕ⟩ be any

state that is not orthogonal to |v0A⟩ and |v0B⟩. Starting
with the state |ϕ⟩, we can obtain |v0A⟩ by applying the
Euclidean time evolution operator e−HAt and taking t to
be large and positive. Similarly, we can obtain |v0B⟩ by
applying the Euclidean time evolution operator e−HBt.
In the limit of large t, we have

e−HAt |ϕ⟩ ≈ e−E0
At ⟨v0A|ϕ⟩ |v0A⟩ , (28)

e−HBt |ϕ⟩ ≈ e−E0
Bt ⟨v0B |ϕ⟩ |v0B⟩ . (29)

The difficulty arises from the fact that |v0A⟩ and |v0B⟩ ap-

pear with exponential factors of e−E0
At and e−E0

Bt, respec-
tively. Calculations of the magnitude of the inner prod-
uct ⟨v0A|v0B⟩ are prone to large relative errors since the

amplitude is dominated by factors of e−E0
At and e−E0

Bt

for large t.
A technique called the floating block method was intro-

duced in Sarkar et al. (2023) that addresses this problem.
The floating block method is based the observation that

lim
t→∞

⟨ϕ|e−HAte−HBte−HAte−HBt|ϕ⟩
⟨ϕ|e−2HAte−2HBt|ϕ⟩ = | ⟨v0A|v0B⟩ |2.

(30)
We note that the problematic exponential factors of
e−E0

At and e−E0
Bt cancel from this ratio. We can also

calculate the complex phase of the inner product using

lim
t→∞

⟨ϕ|e−2HAte−2HBt|ϕ⟩
| ⟨ϕ|e−2HAte−2HBt|ϕ⟩ | =

⟨v0A|v0B⟩
| ⟨v0A|v0B⟩ |

. (31)

Here we are using the phase convention that ⟨v0A|ϕ⟩ and
⟨v0B |ϕ⟩ are positive.

If we try to compute the ratio of the numerator and
denominator in Eq. (30) directly using Monte Carlo sim-
ulations, the result will still be noisy since the numerator
and denominator are uncorrelated with each other. In or-
der to overcome this problem, the floating block method
instead computes ratios of quantities that are strongly
correlated. Let us define Z(t1, t2, t3, t4) to be the ampli-
tude

Z(t1, t2, t3, t4) = ⟨ϕ|e−HAt1e−HBt2e−HAt3e−HBt4 |ϕ⟩ .
(32)

In the floating block method, we compute ratios of the
form

Z(t1, t2, t3, t4)

Z(t′1, t
′
2, t

′
3, t

′
4)
, (33)

FIG. 15 Schematic diagram showing the intermediate val-
ues for the Euclidean time blocks, gradually interpolating be-
tween ⟨ϕ|e−2HAte−2HBt|ϕ⟩ in the denominator of Eq. (30) and
⟨ϕ|e−HAte−HBte−HAte−HBt|ϕ⟩ in the numerator of Eq. (30)
(Sarkar et al., 2023). This corresponds to gradually changing
the values of t1, t2, t3, t4 in Eq. (32).

for values t1, t2, t3, t4 and t′1, t
′
2, t

′
3, t

′
4 that are close to

each other. We can then form telescoping products of
such ratios,

Z(t1, t2, t3, t4)

Z(t′1, t
′
2, t

′
3, t

′
4)

Z(t′1, t
′
2, t

′
3, t

′
4)

Z(t′′1 , t
′′
2 , t

′′
3 , t

′′
4)

Z(t′′1 , t
′′
2 , t

′′
3 , t

′′
4)

Z(t′′′1 , t
′′′
2 , t

′′′
3 , t

′′′
4 )

· · · .
(34)

In this manner, we can calculate the ratio of the numer-
ator and denominator in Eq. (30). This is illustrated
schematically in Fig. 15.

In Sarkar et al. (2023), the floating block method is
used to compute the binding energies of 4He, 8Be, 12C,
and 16O using Monte Carlo simulations with a lattice
Hamiltonian of the form Hfree + cLVL + cNLVNL. VL is
a two-nucleon interaction with local interactions, mean-
ing that the interaction does not move the relative po-
sitions of the nucleons. VNL is a two-nucleon interac-
tion composed of nonlocal interactions where the rela-
tive positions of the nucleons are allowed to change. VL
and VNL are normalized so that (cL, cNL) = (1, 0) and
(cL, cNL) = (0, 1) both give realistic results for 4He. In
Fig. 16, we plot the ground state energy of 16O relative
to the four-alpha threshold, E(16O) − 4E(4He) (Sarkar
et al., 2023). The EC calculation is performed with snap-
shots at (cL, cNL) = (0.5, 0.5) and (0, 1) in a periodic
box of length L = 15.76 fm. The dashed line shows
the contour for the observed experimental value. The
zero contour line corresponds with the quantum phase
transition where 16O falls apart into four alpha particles.
These results are consistent with the finding in Elhatis-
ari et al. (2016) that, without sufficiently attractive local
interactions, symmetric nuclear matter forms a Bose gas
of alpha particles rather than a nuclear liquid.

VII. SUMMARY AND FUTURE DIRECTIONS

In this colloquium article, we have presented the his-
torical development, the theoretical framework, and ap-
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FIG. 16 Contour plots for the difference between the EC em-
ulated energy for 16O and the four-alpha threshold energy,
E(16O) − 4E(4He). cL is the coefficient of the local two-
nucleon interaction, and cNL is the coefficient of the nonlocal
two-nucleon interaction. The dashed line shows the contour
for the observed experimental value.

plications of EC and projection-based emulators. The
key concept is that the eigenvector |ψ(θ)⟩ is an analytic
function for real values of the parameters and approxi-
mately lies on a linear subspace with a finite number of
dimensions. The smoother and more gradual the undula-
tions, the fewer dimensions needed. The linear subspace
can be found efficiently by taking snapshots of |ψ(θi)⟩
for the selected parameter values θi and using the corre-
sponding subspace spanned by the snapshots.

EC is part of a larger class of subspace projection tech-
niques called reduced-basis methods (RBMs), and RBMs
are themselves part of a yet larger category of model-
driven reduced-order models. The development of EC
has emphasized applications to quantum systems, from
few-body problems to many-body problems, and from
bound states to scattering states and resonances. Some
of the topics addressed go beyond the traditional class of
problems typically encountered in the reduced-basis lit-
erature, such as parameter extrapolation to domains that
are not directly calculable, accelerating the convergence
of many-body perturbation theory, and working with ex-
tremely large or infinite-dimensional vector spaces. As
noted in Sec. IV, EC can sometimes face challenges when
it is applied to situations where one tries to extrapolate
across boundaries between physically distinct phases.

While the development of EC and projection-based
emulators by the nuclear theory community has quite
naturally focused on problems of interest for nuclear
physics, e.g., uncertainty quantification and other com-
putational statistics analyses of the nuclear Hamiltonian,
the methods are quite general and can be applied to other
fields where quantum wave functions are important. Re-
maining challenges include how to identify EC target
states in the spectrum of non-Hermitian Hamiltonians
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FIG. 17 The potential energy versus bond stretching factor
R/R0 for F2, O2, N2, HF, H2CO, CO obtained using EC with
several snapshots. We show the comparison with exact FCI
calculations (Mejuto-Zaera and Kemper, 2023).

and how to best handle non-affine parameter dependen-
cies in nuclear applications. The usefulness of combin-
ing distributed emulators as mini-applications in, e.g.,
Bayesian inference analyses, also awaits to be capitalized
on.

Other areas where EC and projection-based emulators
should be useful are atomic and molecular physics, ul-
tracold atomic gases, strongly-correlated electronic sys-
tems, quantum spin liquids, and quantum chemistry. In
Mejuto-Zaera and Kemper (2023), EC was applied to
problems in ab initio quantum chemistry. In Fig. 17, we
show the potential energy surface for several molecules
versus bond stretching factor R/R0. The molecules are
F2, O2, N2, HF, H2CO, and CO. We show the EC results
obtained with 3, 4, or 5 snapshots and the comparison
with exact FCI calculations. Eigenvector Continuation
is working well in reproducing all of the potential energy
surfaces.

The potential energy surface calculations described in
Mejuto-Zaera and Kemper (2023) can also be performed
on a quantum computer, and the corresponding algo-
rithm is called quantum EC (Francis et al., 2022). While
much effort in the quantum computing community has
focused on variational methods optimizing a single trial
vector, variational calculations using subspace projec-
tion can in principle provide a better approximation to
the eigenstate of interest for the same computational re-
sources.

In quantum EC, the same general approach is used as
on a classical computer, though there are some techni-
cal differences. On a digital quantum computer with N
qubits, we start from the state where all qubits are in
the |0⟩ state, |00 · · · 0⟩. Let |ψi⟩ denote eigenstate snap-
shots at parameter values θi. We assume that our chosen
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quantum eigenstate algorithm gives us some unitary gate
Ui such that the action on |00 · · · 0⟩ gives us a good ap-
proximation to |ψi⟩.

The norm and Hamiltonian matrix elements can be de-
termined using an ancilla qubit. We use the ancilla qubit
to apply the controlled operations for Ui and U†

j . Such a
controlled operation means that we perform the transfor-
mation only if the ancilla qubit is in the |1⟩ state. After
these controlled unitary operators, we then apply σX or
σY rotations to the ancilla qubit and measure it, with
either a |0⟩ or a |1⟩ as the outcome. This information
is enough to determine the real and imaginary parts of
⟨ψj |ψi⟩. In order to compute the elements ⟨ψj |H(θ)|ψi⟩,
we decompose H(θ) into a sum of tensor products of
Pauli operators. For each tensor product of Pauli opera-
tors, UP , we use the ancilla qubit to apply the controlled
operations for Ui, UP , and U†

j . We then apply σX and
σY rotations to the ancilla qubit and measure it (Francis
et al., 2022).

EC and projection-based emulators can also be com-
bined with data-driven reduced-order model techniques
such as Gaussian processes, neural networks, and
dynamic mode decomposition. The combination of
reduced-basis methods and machine learning is an ac-
tive area of research and can be realized in many dif-
ferent ways. As noted in Sec. III, active learning meth-
ods (e.g., greedy algorithms) are often used to optimize
the offline selection of snapshot parameters and projec-
tion subspaces (Chellappa et al., 2021; Quarteroni et al.,
2016; Sarkar and Lee, 2022). In numerically challeng-
ing problems where convergence with respect to projec-
tion subspace dimension is slow, it is useful to treat the
projection-based emulator as one component embedded
within a larger framework such as a deep neural network
or autoencoder (Brunton and Kutz, 2019; Chen et al.,
2021; Dal Santo et al., 2020; Fresca et al., 2020).
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(2021), “Bogoliubov many-body perturbation theory under
constraint,” Annals Phys. 424, 168358, arXiv:2002.02724
[nucl-th].

T. Djärv, A. Ekström, C. Forssén, and H. T. Johansson
(2022), “Bayesian predictions for A=6 nuclei using eigen-
vector continuation emulators,” Phys. Rev. C 105 (1),
014005, arXiv:2108.13313 [nucl-th].

C. Drischler, J. A. Melendez, R. J. Furnstahl, A. J. Gar-
cia, and X. Zhang (2023), “BUQEYE Guide to Projection-
Based Emulators in Nuclear Physics,” Front. Phys. 10,
92931, arXiv:2212.04912.

C. Drischler, M. Quinonez, P. Giuliani, A. Lovell, and
F. Nunes (2021), “Toward emulating nuclear reactions us-
ing eigenvector continuation,” Phys. Lett. B , 136777.

A. Ekström, C. Forssén, G. Hagen, G. R. Jansen, W. Jiang,
and T. Papenbrock (2023a), “What is ab initio in nuclear
theory?” Front. Phys. 11, 1129094, arXiv:2212.11064 [nucl-
th].

A. Ekström, C. Forssén, G. Hagen, G. R. Jansen, T. Papen-
brock, and Z. H. Sun (2023b), “How chiral forces shape
neutron-rich Ne and Mg nuclei,” arXiv:2305.06955 [nucl-
th].

A. Ekström, and G. Hagen (2019), “Global sensitivity anal-
ysis of bulk properties of an atomic nucleus,” Phys. Rev.
Lett. 123 (25), 252501, arXiv:1910.02922 [nucl-th].

S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du,
N. Klein, B.-n. Lu, U.-G. Meißner, E. Epelbaum, H. Krebs,
T. A. Lähde, D. Lee, and G. Rupak (2016), “Nuclear bind-

ing near a quantum phase transition,” Phys. Rev. Lett.
117, 132501.

D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, and E. Rrapaj
(2018), “Eigenvector continuation with subspace learning,”
Phys. Rev. Lett. 121 (3), 032501, arXiv:1711.07090 [nucl-
th].

D. K. Frame (2019), Ab Initio Simulations of Light Nu-
clear Systems Using Eigenvector Continuation and Auxil-
iary Field Monte Carlo, Ph.D. thesis (Michigan State U.),
arXiv:1905.02782 [nucl-th].

A. Francis, A. A. Agrawal, J. H. Howard, E. Kökcü,
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M. Lüscher (1991), “Signatures of unstable particles in finite
volume,” Nuclear Physics B 364 (1), 237–251.

L. Machiels, Y. Maday, I. Oliveira, A. Patera, and D. Rovas

(2000), “Output bounds for reduced-basis approxima-
tions of symmetric positive definite eigenvalue problems,”
Comptes Rendus de l’Académie des Sciences - Series I -
Mathematics 331, 153–158.

M. D. McKay, R. J. Beckman, and W. J. Conover (1979),
“A Comparison of Three Methods for Selecting Values of
Input Variables in the Analysis of Output from a Computer
Code,” Technometrics 21, 239–245.

C. Mejuto-Zaera, and A. F. Kemper (2023), “Quantum
Eigenvector Continuation for Chemistry Applications,”
arXiv:2305.00060 [physics.chem-ph].

J. A. Melendez, C. Drischler, R. J. Furnstahl, A. J. Gar-
cia, and X. Zhang (2022), “Model reduction meth-
ods for nuclear emulators,” J. Phys. G 49 (10), 102001,
arXiv:2203.05528 [nucl-th].

J. A. Melendez, C. Drischler, A. J. Garcia, R. J. Furnstahl,
and X. Zhang (2021), “Fast & accurate emulation of two-
body scattering observables without wave functions,” Phys.
Lett. B 821, 136608, arXiv:2106.15608 [nucl-th].

N. Moiseyev (2011), Non-Hermitian Quantum Mechanics
(Cambridge University Press).

N. Moiseyev, P. Certain, and F. Weinhold (1978), “Resonance
properties of complex-rotated hamiltonians,” Mol. Phys.
36 (6), 1613–1630.

P. B. Nair, A. J. Keane, and R. S. Langley (1998), “Improved
first-order approximation of eigenvalues and eigenvectors,”
AIAA Journal 36 (9), 1721–1727.

R. G. Newton (2002), Scattering theory of waves and particles
(Dover, Mineola, New York).

D. Odell, P. Giuliani, K. Beyer, M. Catacora-Rios, M. Y. H.
Chan, E. Bonilla, R. J. Furnstahl, K. Godbey, and F. M.
Nunes (2023), “ROSE: A reduced-order scattering emulator
for optical models,” arXiv:2312.12426 [physics.comp-ph].

T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Ut-
suno (2001), “Monte Carlo Shell Model for Atomic Nuclei,”
Prog. Part. and Nucl. Phys. 47, 319–400.

F. Pichi, A. Quaini, and G. Rozza (2020), “A reduced order
modeling technique to study bifurcating phenomena: Ap-
plication to the gross–pitaevskii equation,” SIAM Journal
on Scientific Computing 42 (5), B1115–B1135.

A. Pinkus (2012), N-widths in Approximation Theory, Vol. 7
(Springer Science & Business Media).

A. Quarteroni, A. Manzoni, and F. Negri (2016), Reduced
Basis Methods for Partial Differential Equations. An In-
troduction, La Matematica per il 3+2. 92 (Springer Inter-
national Publishing).

P. Ring, and P. Schuck (1980), The Nuclear Many-Body Prob-
lem (Springer, Berlin).

G. Rozza (2005), Shape Design by Optimal Flow Control and
Reduced Basis Techniques: Applications to Bypass Config-
urations in Haemodynamics, Doctoral Thesis (EPFL, Lau-
sanne).

G. Rozza, and K. Veroy (2007), “On the stability of the
reduced basis method for Stokes equations in parametrized
domains,” Comp. Meth. Appl. Mech. Eng. 196 (7), 1244–
1260.

K. Rummukainen, and S. Gottlieb (1995), “Resonance scat-
tering phase shifts on a non-rest-frame lattice,” Nucl. Phys.
B 450 (1), 397–436.

Y. Saad (2011), Numerical Methods for Large Eigenvalue
Problems: Revised Edition, second edition ed. (SIAM).

A. Sarkar, and D. Lee (2021), “Convergence of Eigen-
vector Continuation,” Phys. Rev. Lett. 126 (3), 032501,
arXiv:2004.07651 [nucl-th].

http://dx.doi.org/10.1007/978-3-319-22470-1
http://dx.doi.org/10.1007/978-3-319-22470-1
http://dx.doi.org/10.1103/PhysRevResearch.5.L022001
http://dx.doi.org/10.1103/PhysRevResearch.5.L022001
http://arxiv.org/abs/2209.02083
http://dx.doi.org/10.1051/m2an/2016025
http://dx.doi.org/10.1051/m2an/2016025
http://dx.doi.org/ 10.1038/s41567-022-01715-8
http://dx.doi.org/ 10.1038/s41567-022-01715-8
http://arxiv.org/abs/2112.01125
http://dx.doi.org/10.1080/10618560108970021
http://dx.doi.org/10.1080/10618560108970021
http://dx.doi.org/10.1080/10618560108970021
http://arxiv.org/abs/https://doi.org/10.1080/10618560108970021
http://arxiv.org/abs/2212.13203
http://arxiv.org/abs/2212.13216
http://dx.doi.org/ 10.1103/PhysRevC.98.034004
http://dx.doi.org/10.1103/PhysRev.74.1763
http://dx.doi.org/10.1038/s41586-023-06352-6
http://dx.doi.org/10.1016/j.physletb.2020.135814
http://dx.doi.org/10.1016/j.physletb.2020.135814
http://arxiv.org/abs/1909.08446
http://dx.doi.org/10.1016/0550-3213(91)90584-K
http://dx.doi.org/10.1016/S0764-4442(00)00270-6
http://dx.doi.org/10.1016/S0764-4442(00)00270-6
http://dx.doi.org/ 10.2307/1268522
http://arxiv.org/abs/2305.00060
http://dx.doi.org/10.1088/1361-6471/ac83dd
http://arxiv.org/abs/2203.05528
http://dx.doi.org/10.1016/j.physletb.2021.136608
http://dx.doi.org/10.1016/j.physletb.2021.136608
http://arxiv.org/abs/2106.15608
http://dx.doi.org/ 10.1080/00268977800102631
http://dx.doi.org/ 10.1080/00268977800102631
https://eprints.soton.ac.uk/21198/
http://arxiv.org/abs/2312.12426
http://dx.doi.org/10.1016/S0146-6410(01)00157-0
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.5075/epfl-thesis-3400
http://dx.doi.org/10.1016/j.cma.2006.09.005
http://dx.doi.org/10.1016/j.cma.2006.09.005
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/ 10.1103/PhysRevLett.126.032501
http://arxiv.org/abs/2004.07651


22

A. Sarkar, and D. Lee (2022), “Self-learning emulators and
eigenvector continuation,” Phys. Rev. Res. 4 (2), 023214,
arXiv:2107.13449 [nucl-th].

A. Sarkar, D. Lee, and U.-G. Meißner (2023), “Floating Block
Method for Quantum Monte Carlo Simulations,” Phys.
Rev. Lett. 131 (24), 242503, arXiv:2306.11439 [nucl-th].

I. Shavitt, and R. J. Bartlett (2009), Many-Body Methods in
Chemistry and Physics: MBPT and Coupled-Cluster The-
ory , Cambridge Molecular Science (Cambridge University
Press).

N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshia,
T. Mizusaki, M. Honma, and T. Otsuka (2012), “Monte
Carlo Shell Model for Atomic Nuclei,” Prog. Theor. Exp.
Phys. , 01A205.

T. Sowiński, and M. A. Garcia-March (2022), “Fundamen-
tal limitations of the eigenvalue continuation approach,”
Phys. Rev. C 106 (2), 024002, arXiv:2202.07493 [cond-
mat.quant-gas].

I. Svensson, A. Ekström, and C. Forssén (2023), “Infer-
ence of the low-energy constants in delta-full chiral effec-
tive field theory including a correlated truncation error,”
arXiv:2304.02004 [nucl-th].

I. Tews, et al. (2022), “Nuclear Forces for Precision Nuclear
Physics: A Collection of Perspectives,” Few Body Syst.
63 (4), 67, arXiv:2202.01105 [nucl-th].

A. J. W. Thom, and M. Head-Gordon (2009), “Hartree–Fock
solutions as a quasidiabatic basis for nonorthogonal config-
uration interaction,” J. Chem. Phys. 131, 124113.

A. Tichai, J. Langhammer, S. Binder, and R. Roth
(2016), “Hartree–Fock many-body perturbation theory
for nuclear ground-states,” Phys. Lett. B 756, 283–288,
arXiv:1601.03703 [nucl-th].

A. Tichai, R. Roth, and T. Duguet (2020), “Many-body per-
turbation theories for finite nuclei,” Front. in Phys. 8, 164,

arXiv:2001.10433 [nucl-th].
V. M. Tikhomirov (1960), “Diameters of sets in function

spaces and the theory of best approximations,” Russian
Mathematical Surveys 15 (3), 75.

A. N. Tikhonov (1943), “On the stability of inverse problems,”
Doklady Akademii Nauk SSSR 39, 195–198.

A. F. R. de Toledo Piza, E. J. V. de Passos, D. Galetti,
M. C. Nemes, and M. M. Watanabe (1977), “Properties of
Griffin-Hill-Wheeler spaces,” Phys. Rev. C15, 1477.

S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R. J.
Furnstahl, J. A. Melendez, and D. R. Phillips (2021),
“Rigorous constraints on three-nucleon forces in chiral ef-
fective field theory from fast and accurate calculations
of few-body observables,” Phys. Rev. C 104 (6), 064001,
arXiv:2104.04441 [nucl-th].

U.-J. Wiese (1989), “Identification of resonance parameters
from the finite volume energy spectrum,” Nucl. Phys. B
Proc. Suppl. 9, 609–613.

N. Yapa, K. Fossez, and S. König (2023), “Eigenvector con-
tinuation for emulating and extrapolating two-body reso-
nances,” Phys. Rev. C 107 (6), 064316, arXiv:2303.06139
[nucl-th].

N. Yapa, and S. König (2022), “Volume extrapolation via
eigenvector continuation,” Phys. Rev. C 106 (1), 014309,
arXiv:2201.08313 [nucl-th].

S. Yoshida, and N. Shimizu (2022), “Constructing approx-
imate shell-model wavefunctions by eigenvector continua-
tion,” PTEP 2022 (5), 053D02, arXiv:2105.08256 [nucl-th].

X. Zhang, and R. J. Furnstahl (2022), “Fast emulation of
quantum three-body scattering,” Phys. Rev. C 105 (6),

064004, arXiv:2110.04269 [nucl-th].
O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu (2013), The

Finite Element Method: Its Basis and Fundamentals, sev-
enth ed. (Butterworth-Heinemann, Oxford).

http://dx.doi.org/ 10.1103/PhysRevResearch.4.023214
http://arxiv.org/abs/2107.13449
http://dx.doi.org/10.1103/PhysRevLett.131.242503
http://dx.doi.org/10.1103/PhysRevLett.131.242503
http://arxiv.org/abs/2306.11439
https://doi.org/10.1017/CBO9780511596834
https://doi.org/10.1017/CBO9780511596834
https://doi.org/10.1017/CBO9780511596834
http://dx.doi.org/10.1093/ptep/pts012
http://dx.doi.org/10.1093/ptep/pts012
http://dx.doi.org/ 10.1103/PhysRevC.106.024002
http://arxiv.org/abs/2202.07493
http://arxiv.org/abs/2202.07493
http://arxiv.org/abs/2304.02004
http://dx.doi.org/10.1007/s00601-022-01749-x
http://dx.doi.org/10.1007/s00601-022-01749-x
http://arxiv.org/abs/2202.01105
http://dx.doi.org/10.1063/1.3236841
http://dx.doi.org/ 10.1016/j.physletb.2016.03.029
http://arxiv.org/abs/1601.03703
http://dx.doi.org/ 10.3389/fphy.2020.00164
http://arxiv.org/abs/2001.10433
http://dx.doi.org/10.1070/RM1960v015n03ABEH004093
http://dx.doi.org/10.1070/RM1960v015n03ABEH004093
http://dx.doi.org/ 10.1103/PhysRevC.15.1477
http://dx.doi.org/ 10.1103/PhysRevC.104.064001
http://arxiv.org/abs/2104.04441
http://dx.doi.org/10.1016/0920-5632(89)90171-0
http://dx.doi.org/10.1016/0920-5632(89)90171-0
http://dx.doi.org/10.1103/PhysRevC.107.064316
http://arxiv.org/abs/2303.06139
http://arxiv.org/abs/2303.06139
http://dx.doi.org/10.1103/PhysRevC.106.014309
http://arxiv.org/abs/2201.08313
http://dx.doi.org/10.1093/ptep/ptac057
http://arxiv.org/abs/2105.08256
http://dx.doi.org/10.1103/PhysRevC.105.064004
http://dx.doi.org/10.1103/PhysRevC.105.064004
http://arxiv.org/abs/2110.04269
http://dx.doi.org/ https://doi.org/10.1016/C2009-0-24909-9
http://dx.doi.org/ https://doi.org/10.1016/C2009-0-24909-9

	Eigenvector Continuation and Projection-Based Emulators
	Abstract
	Contents
	Motivation
	Background
	Reduced Basis Methods
	RBM workflow for a Hamiltonian eigenvalue problem
	Variational and Galerkin formulations
	Other approaches to generalized eigenvalue problems

	Convergence Properties of EC
	Bounds on the EC convergence rate
	Improved Many-Body Perturbation Theory

	Large Hamiltonian Eigensystems
	No-Core Shell Model Emulators
	Subspace-Projected Coupled Cluster
	Phenomenological shell model

	Examples of Extensions
	Emulators for Quantum Scattering
	Finite Volume Dependence and Resonances
	Quantum Monte Carlo Simulations

	Summary and Future Directions
	Acknowledgments
	References


