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Abstract. We look into the problem of stochastic resetting with refractory periods.

The model dynamics comprises diffusive and motionless phases. The diffusive phase

ends at random time instants, at which the system is reset to a given position—where

the system remains at rest for a random time interval, termed the refractory period.

A pathway formulation is introduced to derive exact analytical results for the relevant

observables in a broad framework, with the resetting time and the refractory period

following arbitrary distributions. For the paradigmatic case of Poissonian distributions

of the resetting and refractory times, in general with different characteristic rates,

closed-form expressions are obtained that successfully describe the relaxation to the

steady state. Finally, we focus on the single-target search problem, in which the

survival probability and the mean first passage time to the target can be exactly

computed. Therein, we also discuss optimal strategies, which show a non-trivial

dependence on the refractory period.

Keywords: stochastic resetting, first passage time, optimal search process

1. Introduction

Stochastic resetting [1–3] has become a very prolific topic within the field of non-

equilibrium statistical mechanics. Stochastic resetting or restart can be thought of

as one of the most elementary examples of an intermittent search strategy [4–7], simple

enough to analytically address the study of many physical quantities of interest. On

the one hand, it has been successfully used in many different applications, ranging from

economics [8–14] to biochemical reactions [15–19] or ecology [20–23], mostly motivated
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by the beneficial effect of restart for lowering the first passage time [1, 2, 24–29]. On

the other hand, it constitutes an excellent test bench for performing non-equilibrium

research, providing comprehensive models to study non-equilibrium steady states

(NESS) [30–37], stochastic thermodynamics and fluctuation theorems [17, 38–42], large

deviations [43–48], or quantum restart [49–54], to name just a few.

Originally, stochastic resetting was introduced as instantaneous events that restart

a given natural dynamics without any respite [1,2]. Nevertheless, this instantaneousness

cannot represent a real physical situation, since the resets are cost-free—and any actual,

physical, implementation thereof must involve some cost. This has led to investigate

more refined and realistic models, where resetting ceases to be a costless operation for

the system. Depending on the phenomena, different strategies—mainly, the insertion

of new phases—have been proposed to tackle this flaw in the simplest resetting model.

On the one hand, return phases that alternate with the natural dynamics have been

introduced [37, 42, 55–59]. On the other hand, a motionless phase [60, 61], termed as

refractory period, may be introduced after the resetting, which can be envisioned as

a recovery time payed after performing the reset. Even though the latter strategy

still involves an instantaneous reset, models of instantaneous resetting with refractory

period phases are physically sound approaches to describe certain chemical and biological

reactions. A paradigmatic example is that of the action potential in neurons, where its

firing is followed by a quiescent state, i.e. an ineffective time to any stimulus [62,63].

In particular, the study of stochastic resetting with refractory periods has been

shown to be useful in the context of enzymatic reactions following the Michaelis-Menten

scheme [15–18]. Therein, an enzyme binds to a substrate in a reversible binding-

unbinding reaction, which, in a second step from the bound state, release a certain

product. Here, the unbinding step may facilitate the production of products, i.e.

interruption of a task may improve its accomplishment—which is the essence of optimal

restart strategies.

This work focuses on the detailed analysis of stochastic resetting with refractory

periods. Specifically, we provide a pathway formulation based on the statistics of any

possible reset history of the system. Such a formulation is related to renewal theory

[34,64–66], being inspired by similar techniques in different resetting setups [42,64]. We

prove the validity of our pathway approach in a very broad framework, which allows

us to obtain general results for the case of stochastic resetting with refractory periods.‡
Moreover, exact results for the case of Poissonian resets with Poissonian refractory

periods are derived. For that relevant situation, the evolution of the probability density

distribution (PDF) of a resetting Brownian particles in an infinite domain with refractory

periods is explicitly worked out. Also, we obtain the mean first passage time (MFPT)

as a function of the rates governing the exponential distributions for both dynamical

phases. Interestingly, the minimization of the MFPT that we carry out reveals that the

optimal restart rate depends on the typical duration of the refractory periods after the

‡ Our general framework reproduces the specific results derived for some particular cases already

considered in the literature [60,61].
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interruption.

The rest of the article is organised as follows. The fundamental ingredients of the

model are described in section 2. Section 3 is devoted to the detailed analysis of the PDF

of the system through our pathway formulation. We explicitly obtain the whole evolution

of the system, which reaches a NESS in the long-time limit. Section 4 deals with the

MFPT. In addition to reobtaining a general expression for the MFPT wih refractory

periods within our framework, an explicit formula in the case of both Poissonian resets

and refractory periods is derived. Additionally, the optimal resetting rate is obtained as

a function of the rate governing the duration of the refractory periods. The conclusions

of our work are summarised in section 5. Finally, extensions of our results and some

technicalities are discussed in the appendices.

2. Stochastic model

We consider a quite general stochastic resetting process. Let the system be represented

by a particle that, in absence of resetting, stochastically propagates following a

distribution p(f)—governed by a Fokker-Planck equation, which we call “natural” or

“propagation” dynamics. On top of this natural dynamics, random resets to a certain

position xr occur. Time events at which the particle instantaneously goes back to xr
are named resetting events, and denoted by ti, where the subscript i = 1, 2, . . ., stands

for the order of occurrence. The probability that a resetting event takes place in the

time interval (t, t+ dt), is dt f(t), so the integral

F (t) =

∫ ∞

t

dt′ f(t′), (1)

is the probability that no resetting events have occurred up to time t. In other words,

F (t) is the probability of having an uninterrupted propagation phase lasting t at least.

In the simplest resetting process, the particle is instantaneously reset to xr and

carries on its natural dynamics—described by p(f)—right after. Instantaneous resets

are difficult to motivate within the context of a realistic dynamics, since they involve

an infinite energetic payment which is followed by no recuperation phase. With this

problem in mind, we thoroughly analyse herein the effect of refractory periods—random

resting times after the reset [60, 61]. Specifically, the particle is assumed to be at rest

at xr after the i-th resetting event up to time τi, for an independent random time

σi = τi − ti. It is handy to introduce the number of renewals n that the system has

completed up to time t: specifically, n = i when τi < t < τi+1, where τ0 = 0 is defined

for consistency. The refractory period duration σ is characterised by the PDF w(σ),

and the integral

W (σ) =

∫ ∞

σ

dσ′w(σ′), (2)

is the probability of having a refractory period longer than σ. In other words, W (σ)

is the probability of having a minimum refractory period equal to σ. An illustrative
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Figure 1. Single trajectory for stochastic resetting with refractory periods. The labels

ti, i = 1, 2, . . . , mark a new reset to x0 where the propagation phase (blue line) ends

with an instantaneous reset (dashed black line) and the refractory period begins (red

line). Analogously, τi marks the end of the refractory phase after ti, i = 1, 2, . . . Herein,

n stands for the number of times the system is renewed, n = i for τi < t < τi+1. The

duration σ of each propagation (refractory) phase comes from the PDF f(σ) (w(σ)).

For the sake of simplicity, the initial condition is equal to the resetting position xr = x0.

portrayal of this resetting dynamics for a one-dimensional model is shown in figure 1,

where blue and red stand for the propagation and refractory phases, respectively.

In the following, we take the renewal structure of the resetting mechanism into

account, where the first resetting event at t1 and the first renewal at τ1 are considered.

The PDF p(x, t|x0) of finding the particle in x, starting from x0, after a time evolution

of duration t can be built as

p(x, t|x0) = F (t)p(f)(x, t|x0)

+

∫ t

0

dt1 f(t1)W (t− t1)δ(x− xr)

+

∫ t

0

dt1 f(t1)

∫ t

t1

dτ1w(τ1 − t1) p(x, t− τ1|xr). (3)

where p(f)(x, t|x0) is the free propagator of the natural dynamics in absence of resetting

and δ(x) is the Dirac delta distribution. This is the renewal equation, which is an

implicit equation for the PDF p(x, t|x0). Note that our writing for the renewal equation

relies on the approach based on the first resetting, in opposition to approaches relying on
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the last resetting event, which are often used [3]. The first term on the right hand side

in equation (3) is the contribution from trajectories where there has been no resetting

up to time t, thus weighted by the probability F (t). The second term stems from paths

for which there has been a resetting event in the interval (0, t) and the subsequent

refractory phase has not ended at time t; therefore it contributes with δ(x − xr). The

last term comes from trajectories where the particle has been reset at t1 ∈ (0, t), has

had a subsequent refractory period finishing at τ1 ∈ (t1, t), and has reached x at time t

following its renewed dynamics in the interval (τ1, t). For the sake of simplicity, we are

going to take xr = x0 in the remainder of the paper, i.e. the particle starts at the very

beginning of the process from the resetting location.

3. Pathway formulation for the probability density function

3.1. General framework

We aim at working out an explicit expression for p(x, t|x0) for all times, thus going

beyond the solution of the PDF in the Laplace domain that can be found in the

literature [60, 61]. First, the density probability can be split into different pathways,

based on how many renewals of the dynamics have occurred from the beginning,

p(x, t|x0) =
∞∑
n=0

[
p(p)n (x, t|x0) + p(r)n (x, t|x0)

]
. (4)

On the right-hand side (rhs) of equation (4), we have distinguished between the

contribution of each phase—propagation (p) and refractory (r), depending on the final

stage of the evolution at time t. Specifically, they are defined as follows: p
(s)
n is the

joint probability density function of observing the particle at position x after exactly n

renewals of the dynamics, being s ∈ {p, r} the current phase at time t.

The particular case n = 0 corresponds to the no-renewed evolution,

p
(p)
0 (x, t|x0) = F (t)p(f)(x, t|x0), p

(r)
0 (x, t|x0) = δ(x−x0)

∫ t

τ0

dt1f(t1−τ0)W (t− t1), (5)

where the system has not undergone the first resetting yet or has not finished the first

refractory period, respectively. For generic n ≥ 0, both p
(p)
n and p

(r)
n can be built in a

systematic way,

p(p)n (x, t|x0) =
n∏
i=1

[∫ t

τi−1

dti f(ti − τi−1)

∫ t

ti

dτiw(τi − ti)

]
× F (t− τn)p(f)(x, t− τn|x0), (6a)

p(r)n (x, t|x0) = δ(x− x0)
n∏
i=1

[∫ t

τi−1

dti f(ti − τi−1)

∫ t

ti

dτiw(τi − ti)

]
×
∫ t

τn

dtn+1 f(tn+1 − τn)W (t− tn+1), (6b)
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where we recall that τ0 = 0 has already been introduced for the sake of a compact

notation.§
The construction of our solution is physically guided by the concept of resetting

pathway: the total probability is the sum of the probabilities corresponding to each

possible resetting pathway, weighted by the probability of that pathway. Pathways that

are in propagation and refractory period phases at time t contribute with the conditional

evolution during this last phase: the free propagator p(f)(x, t−τn|x0) and the Dirac delta

distribution δ(x− x0), respectively. These contributions are weighted with the product

of the having finished all the previous phases and having not finished the last one. Thus,

our pathway formulation allows us to obtain an explicit solution of the renewal equation

in the time domain, which constitutes an advantage with respect to previous approaches

that rely on Laplace transforming the implicit renewal equation to find the solution in

the Laplace domain.

The equations above can be simplified if we rewrite them as convolutions,

p(p)n (x, t|x0) =
{

[f ∗ w]∗n ∗ p(p)0

}
(x, t|x0), (7a)

p(r)n (x, t|x0) = δ(x− x0) {[f ∗ w]∗n ∗ f ∗W} (t), (7b)

where p
(p)
0 is defined in equation (5). Note that we have introduced the asterisk notation

for the convolution product

[A ∗B](t) =

∫ t

0

dt′A(t′)B(t− t′) (8)

and the convolution power A∗2 = A ∗ A.

Taking advantage of our expressing p
(p)
n and p

(r)
n as convolutions, their Laplace

transforms are written in a straightforward way:

p(p)n

∼
(x, s|x0) =

(
f
∼

(s)w∼(s)
)n
p
(p)
0

∼
(x, s|x0), (9a)

p
(r)
n

∼
(x, s|x0) =

(
f
∼

(s)w∼(s)
)n
f
∼

(s)W
∼

(s)δ(x− x0). (9b)

The sum over n gives us the total contribution,

p(p)
∼

(x, s|x0) =
∞∑
n=0

p(p)n

∼
(x, s|x0) =

p
(p)
0

∼
(x, s|x0)

1 − f
∼

(s)w∼(s)
, (10a)

p(r)
∼

(x, s|x0) =
∞∑
n=0

p(r)n
∼

(x, s|x0) =
f
∼

(s)W
∼

(s)

1 − f
∼

(s)w∼(s)
δ(x− x0). (10b)

This expression, obtained within our pathway formulation of the resetting process with

refractory periods, was obtained in [61] by a different approach.∥ Note that, in order

§ Note that (6a) and (6b) admit a recursive relation between two consecutive renewals, specifically

p
(s)
n (x, t|x0) =

∫ t

0
dt1 f(t1)

∫ t

t1
dτ1 w(τ1 − t1)p

(s)
n−1(x, t− τ1|x0).

∥ This general expression reduces to equation (4) in [60] when diffusive propagation and Poissonian

resetting are assumed.
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to derive equation (10), we have considered that resetting and refractory periods are

independent. However, our pathway framework can also be used to address the case

in which resetting and refractory periods are correlated. Although we focus on the

uncorrelated case, we show how to apply the introduced framework in the following

subsection.

3.1.1. Correlated PDF of resetting and refractory period Above, we have considered

the time interval between resetting events and the refractory periods to be independent.

Nevertheless, we may consider a more general situation, as done in [60], in which

resetting events and refractory periods are correlated.

With the just described perspective, we define h(∆1,∆2) as the joint PDF of having

a propagation phase of duration ∆1 and a subsequent refractory period of duration ∆2.

Clearly, the marginal distributions correspond to those introduced before,

f(∆1) =

∫ ∞

0

d∆2 h(∆1,∆2), w(∆2) =

∫ ∞

0

d∆1 h(∆1,∆2). (11)

Now, the probabilities for the corresponding phases lasting a time interval shorter than

t can be rewritten as

F (t) =

∫ ∞

t

d∆1 f(∆1) =

∫ ∞

t

d∆1

∫ ∞

0

d∆2 h(∆1,∆2), (12)

W (t) =

∫ ∞

t

d∆2w(∆2) =

∫ ∞

t

d∆2

∫ ∞

0

d∆1 h(∆1,∆2). (13)

In the correlated case we are considering, the probability density of finding the

particle at position x at time t follows a renewal equation

p(x, t|x0) = F (t)p(f)(x, t|x0)

+ δ(x− xr)

∫ t

0

dt1

∫ ∞

t

dτ1 h(t1, τ1 − t1)

+

∫ t

0

dt1

∫ t

t1

dτ1 h(t1, τ1 − t1) p(x, t− τ1|xr), (14)

which we underline that is an implicit equation for the PDF p(x, t|x0). Analogously

to the uncorrelated case, here we apply our pathway formulation to explicitly compute

p(x, t|x0). Therefore, p(x, t|x0) is split into the sum (4), with the n-th order propagation

and refractory contributions given now by

p(p)n (x, t|x0) =
n∏
i=1

[∫ t

τi−1

dti

∫ t

ti

dτi h(ti − τi−1, τi − ti)

]
× F (t− τn)p(f)(x, t− τn|x0), (15a)

p(r)n (x, t|x0) = δ(x− x0)
n∏
i=1

[∫ t

τi−1

dti

∫ t

ti

dτi h(ti − τi−1, τi − ti)

]
×
∫ t

τn

dtn+1

∫ ∞

t

dτn+1h(tn+1 − τn, τn+1 − tn+1), (15b)
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which provide explicit expressions in the time domain, with no need of resorting to

Laplace transformation.

In this case, we do not have a clear convolution structure because of the correlation.

Notwithstanding, it is possible to simplify these expressions going to the Laplace domain,

as shown below. We do so in order to compare with previous results [60]. Let us start

with the propagation phase,

p(p)n

∼
(x, s|x0) =

∫ ∞

0

dt e−st
n∏
i=1

[∫ t

τi−1

dti

∫ t

ti

dτi h(ti − τi−1, τi − ti)

]
× F (t− τn)p(f)(x, t− τn|x0),

=
n∏
i=1

[∫ ∞

τi−1

dti

∫ ∞

ti

dτi h(ti − τi−1, τi − ti)

]
×
∫ ∞

τn

dt e−stF (t− τn)p(f)(x, t− τn|x0). (16)

Introducing a new integration variable t′ = t− τn, the last integral turns to∫ ∞

0

dt′ e−s(t
′+τn)F (t′)p(f)(x, t′|x0) = e−sτnFp(f)

∼
(x, s). (17)

Afterwards, introducing τ ′n = τn − tn and t′n = tn − τn−1,∫ ∞

τn−1

dtn

∫ ∞

tn

dτn h(tn − τn−1, τn − tn)e−sτFp(f)
∼

(x, s) = e−sτn−1h
∼

(s, s)Fp(f)
∼

(x, s), (18)

where we have employed the notation

h
∼

(s,m) =

∫ ∞

0

dt e−st
∫ ∞

0

dτ e−mτh(t, τ). (19)

for the bivariate Laplace transform of the joint probability h(t, τ). Note that f
∼

(s) =

h
∼

(s, 0) and w∼(s) = h
∼

(0, s). Iterating this procedure n times, we obtain

p(p)n

∼
(x, s) = h

∼n(s, s)Fp(f)
∼

(x, s), (20)

and the Laplace transform of p(p)(x, t) is given by

p(p)
∼

(x, s) =
1

1 − h
∼

(s, s)
Fp(f)
∼

(x, s). (21)

A similar procedure can be carried out for the refractory contribution. The Laplace
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transform of equation (15b) is

p
(r)
n

∼
(x, s|x0) =δ(x− x0)

∫ ∞

0

dte−st
n∏
i=1

[∫ t

τi−1

dti

∫ t

ti

dτi h(ti − τi−1, τi − ti)

]
×
∫ t

τn

dtn+1

∫ ∞

t

dτn+1h(tn+1 − τn, τn+1 − tn+1)

=δ(x− x0)
n+1∏
i=1

[∫ ∞

τi−1

dti

∫ ∞

ti

dτi h(ti − τi−1, τi − ti)

] ∫ τn+1

tn+1

dt e−st

=δ(x− x0)
n+1∏
i=1

[∫ ∞

τi−1

dti

∫ ∞

ti

dτi h(ti − τi−1, τi − ti)

]
e−stn+1 − e−sτn+1

s
.

(22)

Integrating in an iterative way as before, one gets

p
(r)
n

∼
(x, s) = δ(x− x0)

h
∼

(s, 0) − h
∼

(s, s)

s
h
∼n(s, s) =⇒ p(r)

∼
(x, s) = δ(x− x0)

h
∼

(s, 0) − h
∼

(s, s)

s
[
1 − h

∼
(s, s)

] .
(23)

Taking both contributions into account, the Laplace transform of the total PDF p(x, t)

results to be

p∼(x, s) =
1

1 − h
∼

(s, s)

[
Fp(f)
∼

(x, s) + δ(x− x0)
h
∼

(s, 0) − h
∼

(s, s)

s

]
, (24)

which exactly agrees with equation (26) in [60]. This alternative derivation illustrates

that our pathway formalism provides a powerful tool to address the study of physical

quantities of interest in intermittent dynamics.

3.2. Poissonian resetting and refractory period

Let us consider now that the resettings events and the refractory periods both follow

exponential distributions, but with a different rate:

f(t) = r1e
−r1t =⇒ F (t) = e−r1t, (25a)

w(t) = r2e
−r2t =⇒ W (t) = e−r2t. (25b)

The Laplace transform of f(t) and its integral are, respectively, f
∼

(s) = r1/(r1 + s) and

F
∼

(s) = 1/(r1 + s), with analogous expressions for w∼ and W
∼

with the change r1 → r2.

With these choices, the Laplace transforms of p(p) and p(r) in equation (10) turn

out to be

p(p)
∼

(x, s|x0) = p(f)
∼

(x, s+ r1|x0)

+
r1r2
r1 + r2

(
1

s
− 1

s+ r1 + r2

)
p(f)
∼

(x, s+ r1|x0), (26a)

p(r)
∼

(x, s|x0) =
r1

r1 + r2

(
1

s
− 1

s+ r1 + r2

)
δ(x− x0), (26b)
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which can be readily inverted,

p(p)(x, t|x0) = e−r1tp(f)(x, t|x0)

+
r2

r1 + r2
r1e

−r1t
∫ t

0

dτ
(
er1τ − e−r2τ

)
p(f)(x, t− τ |x0),(27a)

p(r)(x, t|x0) =
r1

r1 + r2

(
1 − e−(r1+r2)t

)
δ(x− x0). (27b)

Therefore, we have obtained the exact evolution of the system in the time domain—

although still in terms of an integral term. Later on, specifically in section 3.2.3, an

approximation leading to a closed-form expression is provided. Note that the “standard”

expressions—i.e. those corresponding to the case without refractory period—are

reobtained by taking the limit r2 → ∞ in equation (27).

3.2.1. The case r1 = r2 When the Poissonian rates for resetting and refractory periods

are equal, r1 = r2 = r, the above expressions become especially simple,

p(p)(x, t|x0) = e−rtp(f)(x, t|x0) + re−rt
∫ t

0

dτ sinh (rτ) p(f)(x, t− τ |x0),(28a)

p(r)(x, t|x0) = e−rt sinh (rt) δ(x− x0). (28b)

We would like to highlight that these expressions may be directly obtained in the time

domain, without resorting to the Laplace transform. Let us go back to equation (6) and

substitute the exponential distributions therein,

p
(p)
0 (x, t|x0) = e−rtp(f)(x, t|x0) (29a)

p(p)n (x, t|x0) = r2ne−rt
∫ t

0

dt1

∫ t

t1

dτ1

∫ t

τ1

dt2 . . .

∫ t

tn

dτn p
(f)(x, t− τn|x0),

= r2ne−rt
∫ t

0

dτn
τ 2n−1
n

(2n− 1)!
p(f)(x, t− τn|x0), n ≥ 1, (29b)

p(r)n (x, t|x0) = e−rt
(rt)2n+1

(2n+ 1)!
δ(x− x0). (29c)

Summing over all n yields equation (28).

3.2.2. Non-equilibrium steady state. Now, the asymptotic long-time behaviour is

derived. For doing so, we assume a specific functional form of the free propagator

p(f)(x, t|x0). Specifically, we consider the most usual case, which is pure diffusion.

Therein, p(f) is the Green function for the diffusion equation,

p(f)(x, t|x0) =
1√

4πDt
exp

[
−(x− x0)

2

4Dt

]
, (30)

with D being the diffusion coefficient.

The long-time behaviour of p(x, t|x0) can be found by making use of the final value

theorem

lim
t→∞

z(t) = lim
s→0

s z∼(s). (31)
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Figure 2. PDF of the propagation phase. Numerical integration of p(p)(x, t|x0)

(colourful dashed lines), given by equation (27a), at different times and the infinite

time NESS (32a) (solid black line) are shown. All the results are shown using x0 = 0,

D = 1, r1 = r2 = 1 as parameters.

Hence, taking into account equation (26), the long-time behaviour for arbitrary (r1, r2)

is achieved,

lim
t→∞

p(p)(x, t|x0) = lim
s→0

s p(p)
∼

(x, s|x0) =
1

2

r2
r1 + r2

√
r1
D

exp

[
−
√
r1
D
|x− x0|

]
, (32a)

lim
t→∞

p(r)(x, t|x0) = lim
s→0

s p(r)
∼

(x, s|x0) =
r1

r1 + r2
δ(x− x0). (32b)

Of course, these results are consistent with those obtained by taking the infinite time

limit in equation (27), as well as with the results found in [60, 61]. Note that the

normalization of propagation and refractory phases in the stationary are given by the

fraction of the average time spent in the corresponding phase, as physically expected.

In figure 2, the convergence of the integral expression (27a) of p(p) to its NESS (32a) is

shown.

3.2.3. Relaxation to the steady state. We have already obtained exact expressions

for the PDFs of each phase in the time domain, equations (27a) and (27b), as well

as their long-time behaviour, equations (32a) and (32b). Still, equation (27a) is not

particularly illuminating, since one cannot infer how the relaxation to the NESS occurs

in the propagation phase in a transparent way. Figure 2 provides a hint on this issue, it

can be observed that p(p)(x, t|x0) reaches the steady state gradually in a central region

|x− x0| < x̂(t). The typical length around the reset point in which the NESS has been
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already reached, x̂(t), grows as t increases, establishing a dynamic separation between

a transient outer region, |x − x0| > x̂(t), and the aforementioned relaxed inner region,

|x − x0| < x̂(t). Similar phenomena have already been observed in other resetting

setups [30,35].

In order to obtain the long-time behaviour of equation (27a), we start by rewriting

it as

p(p)(x, t|x0) =
1√

4πDt
exp

[
−tΦ1

(
1;
x− x0
t

)]
+

r1r2
r1 + r2

√
t

4πD

∫ 1

0

dω√
ω

exp

[
−tΦ1

(
ω;
x− x0
t

)]
− r1r2
r1 + r2

√
t

4πD
e−(r1+r2)t

∫ 1

0

dω√
ω

exp

[
tΦ2

(
ω;
x− x0
t

)]
(33)

where we have introduced the change of variable ω = 1 − τ/t, and defined

Φ1(ω; y) ≡ r1ω +
y2

4Dω
, Φ2(ω; y) ≡ r2ω − y2

4Dω
. (34)

Note that we assume pure diffusion, as stated in equation (30), for the sake of simplicity.

For long times, taking constant (x−x0)/t, the main contribution to the integrals over ω

stem from the maximum of the exponents, i.e. the minimum for Φ1(ω; (x− x0)/t) and

the maximum for Φ2(ω; (x − x0)/t)—as given by the so-called Laplace method for the

asymptotic evaluation of integrals [67]. In the following, we give a simplified picture of

the derivation of the dominant behaviour of equation (27a)—or (33)—stemming from

the Laplace method, emphasising the intuitive ideas. A rigorous derivation of a more

complex, but still explicit, formula for the long-time behaviour, which properly takes

into account all the terms involved in equation (33), as well as the subtleties stemming

from the correct application of Laplace’s method when the maximum is close to the

boundaries of the integration interval, is relegated to Appendix A.

For long times, taking constant (x − x0)/t, the main contribution to the integrals

over ω in equation (33) arises from the maximum of the exponents, i.e. the minimum

for Φ1(ω; (x − x0)/t) and the maximum for Φ2(ω; (x − x0)/t). On the one hand, Φ2 is

a monotonically increasing function of ω and its maximum is always at the upper limit

of integration. The corresponding contribution is thus always subdominant against

the first, non-integral, term in equation (33), i.e. the one involving trajectories with no

resetting events, as shown in Appendix A. On the other hand, Φ1(ω; y) is not monotonic

and has a single absolute minimum at ω0 = |y|/
√

4Dr1, since r1 and D are strictly

positive. The minimum of Φ1 within the integration interval (0, 1) is ω0 if ω0 < 1, and

direct application of the Laplace method gives

r1r2
r1 + r2

√
t

4πD

∫ 1

0

dω√
ω

exp

[
−tΦ1

(
ω;
x− x0
t

)]
∼ 1

2

r2
r1 + r2

√
r1
D

exp

[
−
√
r1
D
|x− x0|

]
,

(35)

which corresponds to the NESS (32a). However, if ω0 > 1, the minimum of Φ1 within

the integration interval is reached at the boundaries. Similarly to the situation with Φ2,
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this entails that the corresponding contribution is subdominant against the first term

in equation (33).

Summing up, the PDF of the propagation phase can be roughly estimated as

p(p)(x, t|x0) ∼


1

2

r2
r1 + r2

√
r1
D

exp

[
−
√
r1
D
|x− x0|

]
,

|x− x0|
t

<
√

4Dr1,

1√
4πDt

exp

[
−r1t−

(x− x0)
2

4Dt

]
,

|x− x0|
t

>
√

4Dr1.

(36)

The above discussion explains the observed separation into two regimes: the system has

relaxed to the NESS within a certain spatial region, which increases linearly with t, as

given by the condition |x−x0|/t <
√

4Dr1, whereas the transient behaviour is observed

outside, i.e. for |x− x0|/t >
√

4Dr1.

The comparison between simulations and the exhaustive analytical approach,

obtained in Appendix A, in figure 3 shows an excellent agreement. We remark that,

despite the model and the derivation of the large deviation function in equation (36)

is considerably more involved than in the simpler case of resetting without refractory

periods, the change of behaviour of the large deviation function corresponds to a second-

order dynamical phase transition, where the second derivative of the Large Deviation

Function is discontinuous at the matching point |x−x0|
t

=
√

4Dr1 [30]. Therefore, the

inclusion of the refractory periods does not affect this interesting feature.

4. First passage time with refractory periods

In this section, we consider the first passage time problem to a target point xt. In

the absence of refractory period (r2 → ∞), it is known that there appears an optimal

resetting rate ropt1 that minimises the MFPT [1,2]. Here, we are interested in the analysis

of the effect of the refractory period on the MFPT. On a physical basis, it is clear that the

MFPT will increase as r2 decreases, i.e. as the time spent at rest increases. Still, since

the probability distributions of resetting events and refractory periods are independent,

one might naively think that the optimal resetting rate ropt1 would remain unaffected by

r2. The analysis below shows that this expectation is not fulfilled: in fact, the optimal

resetting rate ropt1 presents a non-trivial dependence on r2.

4.1. General formulation

Including an absorbing boundary at xt in our system makes the former expressions

invalid: normalisation to unity is not preserved anymore. For the sake of clarity, we do

not explicitly add the parametric dependence on xt, but it is important to keep in mind

that all functions depend on it from now on, e.g. p(f)(x, t|x0) refers to the propagator in

absence of resetting of a particle starting at x0 with an absorbing boundary at xt. For

every propagation phase prior to a resetting event, we have to consider that the particle

has not reached the target point xt. Let Q(f)(x0, t) denote the free survival probability,
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Figure 3. Comparison of the numerical and analytical PDFs of the propagation phase.

Parameter values are D = 1, r1 = 1, r2 = 2 and x0 = 0. Symbols stand for numerical

simulations for t = 1.5 (light blue circles) and t = 3 (red squares), while solid black lines

stand for the analytical approximation obtained in Appendix A, which asymptotically

converges to the rough estimation given by equation (36). Vertical dashed lines at

|x|/t =
√

4Dr1 indicate the separation between the inner region, where the NESS

has already been reached, and the outer region, where the transient behaviour is still

observed.

i.e. the probability of not being absorbed by the target for a time interval t in the

absence of resetting, provided that the particle started propagating from x0 at t = 0.

The probability of finding the particle in x at time t fulfills the renewal equation

p(x, t|x0) = F (t)p(f)(x, t|x0)

+

∫ t

0

dt1 f(t1)Q
(f)(x0, t1)W (t− t1)δ(x− x0)

+

∫ t

0

dt1 f(t1)Q
(f)(x0, t1)

∫ t

t1

dτ1w(τ1 − t1) p(x, t− τ1|x0).(37)

Its integral over x gives us the renewal structure of the survival probability with resetting

Qr(x0, t),

Qr(x0, t) = F (t)Q(f)(x0, t)

+

∫ t

0

dt1 f(t1)Q
(f)(x0, t1)W (t− t1)

+

∫ t

0

dt1 f(t1)Q
(f)(x0, t1)

∫ t

t1

dτ1w(τ1 − t1)Qr(x0, t− τ1)

= F (t)Q(f)(x0, t) +
[(
fQ(f)

)
∗ w ∗Qr

]
(x0, t) +

[(
fQ(f)

)
∗W

]
(x0, t).(38)
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Note that now the resetting distribution is weighted with the survival probability when

compared to the expressions obtained before.

To emphasise the power of our pathway formulation, we carry out an analysis

completely similar to that in Section 3. That is, we expand the PDF in a series of terms

p
(p),(r)
n corresponding to a given number of renewals n,

p(p)n (x, t|x0) =
n∏
i=1

[∫ t

τi−1

dti f(ti − τi−1)Q
(f)(x0, ti − τi−1)

∫ t

ti

dτiw(τi − ti)

]
× F (t− τn)p(f)(x, t− τn|x0)

=
{[(

fQ(f)
)
∗ w
]∗n ∗ (Fp(f))} (x, t), (39a)

p(r)n (x, t|x0) =
n∏
i=1

[∫ t

τi−1

dti f(ti − τi−1)Q
(f)(x0, ti − τi−1)

∫ t

ti

dτiw(τi − ti)

]
×
∫ t

τn

dtn+1 f(tn+1 − τn)Q(f)(x0, tn+1 − τn)W (t− tn+1)δ(x− x0)

=
{[(

fQ(f)
)
∗ w
]∗n ∗ (fQ(f)

)
∗W

}
(t)δ(x− x0). (39b)

With this approach, we get

Qr
∼

(x0, s) =
1

1 − fQ(f)
∼

(x0, s)w
∼(s)

[
FQ(f)
∼

(x0, s) + fQ(f)
∼

(x0, s)W
∼

(s)

]
. (40)

Of course, this general result for arbitrary f and w is consistent with the results in the

literature [60,61].

4.2. Poissonian resetting and refractory period

Now we consider the same model as in subsection 3.2, the resetting time and refractory

period distributions are both Poissonian and given by equations (25a) and (25b). The

propagator in the presence of the absorbing boundary is

p(f)(x, t|x0) =
1√

4πDt

{
exp

[
−(x− x0)

2

4Dt

]
− exp

[
−(x+ x0 − 2xt)

2

4Dt

]}
, (41)

which is valid for all xt ∈ R. The free survival probability and its Laplace transform are

Q(f)(x0, t) = erf

(
1

2

√
τd
t

)
, Q(f)
∼

(x0, s) =
1 − e−

√
τds

s
, (42)

where we have defined the characteristic diffusion time between the initial position and

the target as

τd =
(xt − x0)

2

D
≥ 0. (43)
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Note that τd, and thus Q(f) and Q(f)
∼

, only depends on the distance |xt−x0| between the

initial position and the target. As a consequence, equation (40) becomes

Qr
∼

(x0, s) = (s+ r1 + r2)
Q(f)
∼

(x0, s+ r1)

s+ r2 − r1r2Q
(f)
∼

(x0, s+ r1)

(44)

= (s+ r1 + r2)
1 − e−

√
τd(s+r1)

s(s+ r1 + r2) + r1r2e
−
√
τd(s+r1)

. (45)

4.2.1. Mean first passage time. Equation (45) for Qr
∼

(x0, s) cannot be easily inverted to

time domain, but it represents an excellent resource to compute some relevant physical

properties in an exact way. Let us introduce the first passage density of the particle

being absorbed by the target:

fFPT(t; τd) = −∂Qr(x0, t)

∂t
, (46)

where we have introduced explicitly in the notation the parametric dependence on τd.

Therefrom, we derive the MFPT as the mean absorbing time,

T (r1, r2; τd) =

∫ ∞

0

dt t fFPT(t; τd) = lim
s→0

Qr
∼

(x0, s), (47)

which is thus easily computable from equation (45),

T (r1, r2; τd) =
(
e
√
τdr1 − 1

)( 1

r1
+

1

r2

)
. (48)

Since we are interested in the dependence of the MFPT on the parameters controlling the

typical duration of the reset events, r1, and the refractory periods, r2, we have introduced

them explicitly in the notation. As expected on a physical basis, two contributions

appear in the MFPT coming from the two summands in the second parenthesis. The

first one, which depends exclusively on r1, corresponds to the instantaneous resetting

without refractory period [1, 2]. The second one stems from the refractory period that

we have introduced after each resetting event.

Despite its simple functional form, equation (48) exhibits atypical and rich

behaviour. We are interested in how the MFPT changes as a function of r1 and r2—

clearly, it monotonically increases with τd, that is, it increases with the distance |xt−x0|
and the inverse of diffusion coefficient D. With this knowledge, we are able to write

equation (48) as a function which only depends on r1 and r2 introducing dimensionless

parameters r1 = r∗1/τd, r2 = r∗2/τd and T = T ∗τd. Therefore, the MFPT is

T (r1, r2) =
(
e
√
r1 − 1

)( 1

r1
+

1

r2

)
, (49)

where we have dropped the asterisk in order not to clutter the formulae. This

result was also obtained in an apparently different context [68], when considering and
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Figure 4. Mean first passage time T (r1, r2) as a function of the resetting rate r1
for fixed refractory rate r2. An excellent agreement between simulations (symbols)

and theory (solid lines) is found. The optimal resetting rate ropt1 , represented by

five-pointed stars, monotonically increases with r2—in the limit r2 → ∞, the value

r
(0)
1 =

(
2 −W (−2e−2)

)2
= 2.53964 is reached. Inset: Optimal resetting rate as

a function of the refractory period rate. We show the numerical solution of the

implicit equation for ropt1 , as given by equation (52) (solid line), and the analytical

approximation for small r2, as given by equation (54) (dashed line).

intermittent V-shaped potential that was randomly switched on and off with different

rates. Reasonably, in the limit of the stiffness of the potential going to infinity, the

stochastic resetting with refractory periods is recovered.

4.2.2. Optimal resetting rate ropt1 (r2) Let us first look for the minimum of T (r1, r2) as

a function of r2 for fixed r1. We clearly get that r2 → ∞ for the best choice, reobtaining

the MFPT in the absence of refractory period [1, 2],

lim
r2→∞

T (r1, r2) =
e
√
r1 − 1

r1
. (50)

As a function of r1, the minimum of T (r1, r2 → ∞) is reached at r1 = r
(0)
1 =

(2 +W (−2e−2))
2
, where W (x) corresponds to the Lambert W function, which is the

inverse function of equation f(x) = xex, i.e. the solution of W (x) exp[W (x)] = x [1, 2].

Now we focus on looking for the minimum of T (r1, r2) as a function of r1 for fixed r2.

In figure 4, we show a couple of instances of T (r1, r2) as a function of r1 for r2 ∈ {1, 5},

finding an excellent agreement between theory and simulations. The figure highlights
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the existence of a certain optimal curve ropt1 = ropt1 (r2), which is obtained by solving

0 =
∂T (r1, r2)

∂r1

∣∣∣∣
ropt1

=
2r2
(
1 − e

√
r1
)

+
√
r1e

√
r1 (r1 + r2)

2r21r2

∣∣∣∣∣
ropt1

. (51)

Then, ropt1 is implicitly given as a function of r2 by

2r2

(
1 − e

√
ropt1

)
+

√
ropt1 e

√
ropt1
(
ropt1 + r2

)
= 0. (52)

Now we analyse the limiting behaviour of ropt1 for both r2 → ∞ (no refractory

period) and r2 → 0 (infinite refractory period). On the one hand, for r2 → ∞, we

obtain that the limiting value limr2→∞ ropt1 (r2) is determined by

lim
r2→∞

2
[
ropt1 (r2)

]−1/2
[
1 − e−

√
ropt1 (r2)

]
= 1, (53)

i.e. limr2→∞ ropt1 (r2) = r
(0)
1 —which is consistent with the optimal resetting strategy

without refractory period previously introduced. On the other hand, it is clear from

equation (52) that limr2→0 r
opt
1 (r2) = 0, which is logical from a physical point of view:

for infinite refractory period, the best strategy for the MFPT is to avoid resetting. A

dominant balance argument shows that ropt1 ∼ r2 in this limit.

In order to further investigate the dependence of ropt1 on r2 for long refractory

periods (small r2), it is handy to expand ropt1 in a power series of
√
r2. Substituting this

expansion into equation (52), one gets after a little bit of algebra

ropt1 = r2 − r
3/2
2 +

5

6
r22 +O

(
r
5/2
2

)
. (54)

A comparison between the expansion (54) and the numerical estimate for ropt1 is shown

in the inset of figure 4.

Our result shows that there appears a “resonance” phenomenon, which optimises

the MFPT—making it minimum—for a resetting rate that is linked with the refractory

period rate. When the resetting point x0 and the target xt are close, in the sense that

r2τd ≪ 1, ropt1 ≃ r2. As r2 is increased, ropt1 consequently increases but it asymptotically

saturates for large enough values of r2: for r2τd ≫ 1, the optimum MFPT asymptotically

tends to its limiting value r
(0)
1 corresponding to stochastic resetting without refractory

periods.

5. Conclusions

In this work, we have carried out a thorough analysis of the effects of introducing

a time cost to stochastic resets in a one-dimensional Brownian searcher. First, we

have exploited a pathway formulation to derive general results. This puts forward an

alternative, appealing from a physical point of view, methodology to address the study

of intermittent dynamics. Second, we have particularised the results for the relevant



Stochastic resetting with refractory periods 19

case of Poissonian resetting events and refractory periods. Therein, not only have

we obtained the non-equilibrium stationary state, but also a detailed solution of the

transient dynamics in the time domain. Finally, we have studied in depth the single-

target search problem with refractory period. Specifically, we have investigated the

optimal strategy for resetting, in the sense of minimising the mean first passage time

to the target, finding that the optimal resetting rate depends on the typical duration of

the refractory phase.

From a physical perspective, the final result on the optimal resetting rate to find

a target is especially interesting. The dependence of the optimal resetting rate on the

refractory period is somehow counterintuitive, since the duration of the time intervals

between resetting events and the duration of the refractory phase are independent in

our model. The optimal strategy entails a non-trivial, resonance-like behaviour in

which the optimal resetting rate equals the inverse of the characteristic time of the

refractory period. This phenomenon is reminiscent of resonant activation [69,70] where,

when considering the escape problem in a two-well potential mediated by a fluctuating

barrier, an optimal fluctuation rate that minimises the escape time emerges. Indeed,

our resetting setup with refractory periods can be thought of as a fluctuating potential

that switches between a totally confining potential trap and zero. Just recently, the

potential connection between optimal resetting and resonant activation has started to

be explored [71], which provides an interesting perspective for further research.
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with Ref. 101065902 (ORION). G. Garćıa-Valladares, C. A. Plata and A. Prados

acknowledge financial support from Grant PID2021-122588NB-I00 funded by

MCIN/AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”,

and also from Grant ProyExcel 00796 funded by Junta de Andalućıa’s PAIDI 2020
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Appendix A. Asymptotic analysis of the PDF for the propagation phase in

the long-time limit

In this appendix, we derive an approximate explicit expression for the different integrals

appearing in equation (33). For the sake of compactness, in the remaining of this

appendix, we take x0 = 0. The general result can be reobtained at the end with the

substitution x→ x− x0.

We start by focusing on the first integral term in equation (33),

I1 =

∫ 1

0

dω ω−1/2 e−r1t [ω+x
2/(4Dωr1t2)] =

∫ 1

0

dω ω−1/2 e−ωt
∗−x∗2

ωt∗ , (A.1)

where we have introduced the following dimensionless variables t∗ = r1t and x∗ =

x/
√

4Dr−1
1 . In the following, we drop the asterisks for the sake of a clearer notation.

For long times, Laplace’s method tells us that the integral is dominated by the maximum

of the exponent, i.e. the minimum of ϕ1(ω) = ωt+x2/(ωt) inside the integration interval

(0, 1). Since the function ϕ1(ω) has a relative minimum at ω0 = |x|/t, how to estimate

the integral depends on the value of ω0, specifically on whether ω0 is larger or smaller

than unity. Then, it is handy to introduce the change of variable ω = ω0ν,

I1 = ω
1/2
0

∫ 1/ω0

0

dν ν−1/2 e−ω0t ψ(ν), (A.2)

where we we have introduced ψ(ν) = ν + 1/ν, which attains its relative minimum at

ν0 = 1. Now we asymptotically estimate I1 in the long-time limit t≫ 1, with ω0 = O(1),

i.e. x = O(t). We must discriminate between different cases:

(i) The relative minimum of ψ(ν) at ν = 1 lies inside the interval (0, 1/ω0), i.e. ω0 < 1

or |x| < t, and, in addition, it is far enough from the upper limit, in a sense that is

clarified below.

The idea of Laplace’s method is to expand ψ(ν) around the relative minimum at

ν = 1,

ω0tψ(ν) ∼ 2ω0t+ ω0t(ν − 1)2, (A.3)

which leads to a Gaussian centred at ν = 1 and very small width, proportional to

(ω0t)
−1/2 ≪ 1¶. Therefore, the dominant behaviour of the integral comes from a

narrow interval around ν = 1. Here, we consider that ω0 is such that the whole

Gaussian belongs in the integration interval (0, 1/ω0), i.e. the integral is dominated

by the contribution from (1 − ε, 1 + ε), with ε ≪ 1, because we can choose ε such

that

δin ≡ 1/ω0 − 1 > ε≫ (ω0t)
−1/2. (A.4)

¶ Note that the following term in the Taylor series of ω0tψ(ν) is −ω0t(ν − 1)3, which is negligible

against the retained quadratic term ω0t(ν− 1)2 where the Gaussian contributes to the integral, i.e. for

ν − 1 = O(ω0t)
−1/2.
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With this line of reasoning,

I1 ∼ I
(i)
1 = ω

1/2
0 e−2ω0t

∫ 1+ε

1−ε
dν e−ω0t (ν−1)2 =

1√
t
e−2ω0t

∫ +ε
√
ω0t

−ε
√
ω0t

dz e−z
2 ∼

√
π

t
e−2|x|,

(A.5)

where condition (A.4) allows for the integration limits in the last integral be

extended to ±∞. Note that the obtained expression corresponds to the first case

in equation (36) if we reintroduce dimensions, i.e. the NESS behaviour (32a).

(ii) The relative minimum of ψ(ν) at ν = 1 lies outside the interval (0, 1/ω0), i.e. ω0 > 1

or |x| > t and, in addition, it is far enough from the upper limit, in a sense that is

also clarified below.

In this case, the minimum of ψ(ν) within the interval occurs at the upper limit

1/ω0. Hence, Laplace’s method tells us to expand ψ(ν) around ν = 1/ω0,

ψ(ν) ≃ ω0 + 1/ω0 + (1 − ω2
0)(ν − 1/ω0) + ω3

0(ν − 1/ω0)
2 and restrict the integral

to a narrow interval (1/ω0 − ϵ, 1/ω0), with ε≪ 1. The quadratic term is negligible

against the linear one if
ω2
0 − 1

ω3
0

≫ ε. (A.6)

Assuming this “far enough” condition holds, we have

I1 ∼ I
(ii)
1 = ω0 e

−t(1+ω2
0)

∫ 1/ω0

1/ω0−ε
dν eω0t (ω2

0−1)(ν−1/ω0)

=
e−t(1+ω

2
0)

t (ω2
0 − 1)

∫ 0

−ω0t(ω2
0−1)ε

dz ez ∼ e−t(1+x
2/t2)

t
(
x2

t2
− 1
) , (A.7)

provided that the extension of the lower limit to −∞ can be justified, i.e. we can

choose ε such that

ω0t
(
ω2
0 − 1

)
ε≫ 1. (A.8)

Conditions (A.6) and (A.8) can be fulfilled without problems when ω0 − 1 = O(1),

since they tell us that we have to choose ε small but much larger than (ω0t)
−1 ≪ 1.

As ω0 approaches unity, 1/ω0 = 1− δout, with δout ≪ 1, conditions (A.6) and (A.8)

entail that

δout ≫ ε, ω0tδoutε≫ 1 =⇒ δout ≫ (ω0t)
−1/2. (A.9)

This “far enough” condition makes sense: it is telling us that the separation of the

upper limit from unity (the position of the relative minimum of ψ) must be much

larger than the width of the Gaussian, analogously to condition (A.4).

Equation (A.7) has the same dominant contribution in the exponent that the non-

resetting term p(f)(x, t|x0). However, the tails of the PDF are dominated by the

non-resetting term, as expressed by equation (36), since the coefficient of equation

(A.7), (x2/t)−1, is subdominant compared to that in p(f), t−1/2, for x/t = O(1).

(iii) The relative minimum of ψ(ν) at ν = 1 lies inside the interval (0, 1/ω0), i.e. ω0 < 1

or |x| < t, but it is close to the upper limit, 1/ω0 = 1 + δin with δin not fulfilling
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condition (A.4), i.e. δin = O(ω0t)
−1/2. Herein, we have

I1 ∼ I
(iii)
1 = ω

1/2
0 e−2ω0t

∫ 1+δin

1−ε
dν e−ω0t (ν−1)2 =

1√
t
e−2ω0t

∫ +δin
√
ω0t

−ε
√
ω0t

dz e−z
2

∼ 1

2

√
π

t
erfc

(
|x| − t√

|x|

)
e−2|x|, (A.10)

where we have considered that ε can always be choosen such that ε
√
ω0t≫ 1. Note

that this expression asymptotically converges to I
(i)
1 in equation (A.5) when the

limit δin
√
ω0t≫ 1 is considered. Thus, this expression may be used to approximate

I1 for ω0 < 1, i.e. |x| < t, regardless of the value of δin.

(iv) The relative minimum of ψ(ν) at ν = 1 lies outside the interval (0, 1/ω0), i.e. ω0 > 1

or |x| > t but it is close to the upper limit, i.e. 1/ω0 = 1−δout with δout not fulfilling

condition (A.9), i.e. δout = O(ω0t)
−1/2.

Following the general idea of the Laplace method, we expand ψ(ν) around 1/ω0 =

1 − δout in a narrow interval (1 − δout − ε, 1 − δout). In (ii), ε ≪ δout, but here we

consider that ε is at least O(δout). Therefore, we get

ω0tψ(ν) ≃ ω0t
[
2 + δ2out + 2δout(ν − 1 + δout) + (ν − 1 + δout)

2
]
, (A.11)

neglecting O(ω0tδ
3
out), O(ω0tδ

2
outε), O(ω0tδoutε

2), and O(ω0tε
3) terms.+ Introducing

this expansion, we obtain

I1 ∼ ω0 e
−(2+δ2out)ω0t

∫ 1−δout

1−δout−ε
dν e−ω0t[2δout(ν−1+δout)+(ν−1+δout)

2]. (A.12)

The change of variables 2δoutω0t(ν − 1 + δout) = z allows us to write

I1 ∼
1

2δoutt
e−(2+δ2out)ω0t

∫ 0

−2δoutω0tε

dz ez−z
2/(4δ2outω0t). (A.13)

Now we choose ε such that δoutω0tε ≫ 1, which makes it possible to extend the

lower limit of the integral to −∞, similarly to the other cases we have analysed.∗
Finally, the explicit approximation we get is

I1 ∼ I
(iv)
1 =

1

2δoutt
e−(2+δ2out)ω0t

∫ 0

−∞
dz ez−z

2/(4δ2outω0t)

=
1

2δoutt
e−(2+δ2out)ω0t

√
πδ2outω0t e

δ2outω0terfc
(√

δ2outω0t
)

=

√
π|x|
2t

e−2|x|erfc

(
|x| − t√

|x|

)
. (A.14)

+ Recalling that δout = O(ω0t)
−1/2, we have, on the one hand, O(ω0tδ

3
out) = O(ω0t)

−1/2 ≪ 1,

O(ω0tδ
2
outε) = O(ε) ≪ 1. On the other hand, both O(ω0tδoutε

2) = O((ω0t)
1/2ε2) and O(ω0tε

3)

must be much smaller than unity, so ε≪ (ω0t)
−1/3 .

∗ Taking into account, once again, that δout = O(ω0t)
−1/2, this implies that ε ≫ (ω0t)

−1/2. So our

small parameter ε must verify (ω0t)
−1/3 ≫ ε≫ (ω0t)

−1/2, e.g. we may take ε ∝ (ω0t)
−2/5.
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The other integral term involved in equation (33) has a simpler analysis. We employ

again dimensionless variables, but now those stemming from the natural units evidenced

by Φ2, i.e. x∗ = x/
√

4Dr−1
2 and t∗ = r2t—and drop the asterisks once more. The

exponent Φ2(ω; y) is a monotonically increasing function of ω. Thus, the local maximum

of the exponent within the integration interval occurs for all cases at the upper limit.

Similarly to the case (ii) for I1, direct application of Laplace’s method gives

I2 =

∫ 1

0

dω ω−1/2 eωt−
x2

ωt ∼ et(1−x
2/t2)

t(1 + x2/t2)
=
(
x2/t+ t

)−1
et(1−x

2/t2). (A.15)

In figure 3, the evaluation of the theoretical prediction (33) is performed by

computing the approximated expressions in this appendix for I1 and I2.♯ For the inner

region, I
(iii)
1 is used, while I

(iv)
1 and I

(ii)
1 are used for the outer region. The change

between I
(iv)
1 and I

(ii)
1 is made at the crossing point xcross > 0 where I

(iv)
1 = I

(ii)
1 , which

has been numerically obtained. Hence, the plotted line stands for:

p(p)(x, t|x0) ∼


p(f)(x, t|x0) + I

(iii)
1 − I2, |x| < t,

p(f)(x, t|x0) + I
(iv)
1 − I2, t < |x| < xcross,

p(f)(x, t|x0) + I
(ii)
1 − I2, xcross < |x|.

(A.16)
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