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Abstract— In recent years, the field of legged robotics has
seen growing interest in enhancing the capabilities of these
robots through the integration of articulated robotic arms. How-
ever, achieving successful loco-manipulation, especially involv-
ing interaction with heavy objects, is far from straightforward,
as object manipulation can introduce substantial disturbances
that impact the robot’s locomotion. This paper presents a
novel framework for legged loco-manipulation that considers
whole-body coordination through a hierarchical optimization-
based control framework. First, an online manipulation planner
computes the manipulation forces and manipulated object task-
based reference trajectory. Then, pose optimization aligns the
robot’s trajectory with kinematic constraints. The resultant
robot reference trajectory is executed via a linear MPC con-
troller incorporating the desired manipulation forces into its
prediction model. Our approach has been validated in simu-
lation and hardware experiments, highlighting the necessity of
whole-body optimization compared to the baseline locomotion
MPC when interacting with heavy objects. Experimental results
with Unitree Aliengo, equipped with a custom-made robotic
arm, showcase its ability to lift and carry an 8kg payload and
manipulate doors.

I. INTRODUCTION

Legged robots have garnered increasing attention for their
potential to perform versatile locomotion tasks across chal-
lenging terrains [1], [2], [3], [4], [5]. To enhance their prac-
tical applicability, researchers have explored two approaches
to perform loco-manipulation: utilizing the robot’s body or
existing limbs [6], [7], [8] and integrating articulated robotic
arms into legged platforms, enabling them to execute loco-
manipulation tasks [9], [10], [11], [12]. The combination
of locomotion and manipulation capabilities opens up ex-
citing opportunities for legged robots in various real-world
applications, from search and rescue missions to industrial
automation [13], [14], [15], [16].

However, achieving successful loco-manipulation in the
context of legged robotics is a formidable challenge. Unlike
traditional wheeled or tracked robots [17], [18], [19], legged
robots face unique dynamics and control intricacies when
engaging in object manipulation. The introduction of manip-
ulation forces and object interactions can introduce substan-
tial disturbances that disrupt robot stability and locomotion
[20], [21].
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Fig. 1: Snapshots of Aliengo lifting and carrying a 5kg payload. Supple-
mental video: https://youtu.be/0hYDa94F78E

While recent years have witnessed increased atten-
tion towards learning-based methods for addressing loco-
manipulation problems [22], [23], [24], classic control frame-
works remain prevalent. Loco-manipulation challenges entail
coordinating manipulation actions with the robot’s envi-
ronment and locomotion. This typically involves two core
components: a manipulation planner, often computing plans
offline, and a locomotion tracking controller responsible
for generating torque commands to track the high-level
references established by the planner [25], [26], [27], [28].
The tracking problem is typically tackled through various
optimization frameworks that accommodate crucial system
constraints [29], [30]. In contrast, the planning module
strives to strike a balance between physical accuracy and
computational complexity, frequently relying on simplified
models of the problem under consideration [31], [32]. Never-
theless, exceptions exist where the full system dynamics are
employed [33], [34]. However, a common limitation prevails:
most of these formulations do not allow real-time solutions,
rendering them unsuitable for rapid online replanning.

Recent studies have adopted a unified non-linear loco-
manipulation framework, such as [35] and [36]. These works
utilize a nonlinear Model Predictive Control planner, capable
of computing real-time trajectories for the Center of Mass
(CoM), limbs, and forces. A whole-body controller then
tracks these reference trajectories. In [36], the authors intro-
duce an offline planner that computes a sequence of locomo-
tion and manipulation actions. Guided by a predefined library
of interactions, this process facilitates the completion of user-
defined tasks incorporating the environment model. However,
it is important to note that while nonlinear MPC offers the
advantage of considering more detailed predictive models
or constraints, it typically requires significant computational
power due to the complexity of the nonlinear optimization
problem.
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Fig. 2: Block diagram for the proposed framework. Highlighted in green are the novel components that, together with the swing leg controller, form
the high-level controller for the quadruped

This paper presents a novel framework for legged agile
loco-manipulation that leverages whole-body coordination to
tackle the inherent complexities of the task. Our approach
integrates elements from Model Predictive Control (MPC)
and pose optimization to synthesize a control strategy that co-
ordinates locomotion and manipulation, as illustrated in Fig.
1. We have devised a control structure capable of executing
loco-manipulation tasks by decomposing the nonlinear prob-
lem into elementary components that interact hierarchically.
Utilizing online pose optimization enables full coordination
between manipulation and locomotion, demonstrated by the
complex tasks we can perform with the custom-made 1-DOF
robot arm introduced in this paper.

The remainder of the paper is organized as follows.
Section II introduces the proposed control architecture ex-
plaining briefly the hierarchical interactions between the
components. Each of these components is explained in detail
in Sections III,IV,V. Then, Section VI shows the results of
simulation and hardware experiments.

II. CONTROL SYSTEM OVERVIEW
In this section, we present the control system architecture,

illustrated in Fig. 2, that underlies our proposed whole-body
coordination framework. Loco-manipulation problems are
usually described with nonlinear models due to the mutual
interactions between robot and object. Nevertheless, solving
nonlinear optimization problems is a computational burden
and requires powerful on-board capabilities for the robot. We
split the loco-manipulation problems into three elementary
sub-problems that work hierarchically to circumvent this
issue. Our approach begins by defining a user-specified task
and the corresponding commands for the manipulated object.
The initial phase of our method treats the object as an
isolated entity subjected to manipulation forces. Using an
MPC structure with a linear prediction model for object
dynamics, we calculate the optimal object states and manip-
ulation forces, aligning them with the desired manipulation
task commands. Subsequently, we introduce pose optimiza-
tion, a critical step to coordinate the loco-manipulation.

Pose optimization takes as input the desired object states,
which we aim to track, and the manipulation force derived
from the manipulation planner. It then generates a sequence
of poses that define the robot’s reference trajectory. Pose
optimization also offers the advantage of enabling flexible
loco-manipulation, accommodating various object parameter
configurations, such as dimensions and gripping points.
With the robot’s reference trajectory now defined through
pose optimization, the whole-body loco-manipulation MPC
efficiently tracks this trajectory while considering the impact
of manipulation forces on the robot’s dynamic stability. The
sections III, IV, V provide a detailed breakdown of each
component of our proposed approach.

III. PLANNER FOR OBJECT MANIPULATION

The first component of our framework focuses on comput-
ing the necessary manipulation actions to achieve pre-defined
tasks. We employ a linear Model Predictive Controller
(MPC) structure that shares the same control horizon as
the final robot controller, ensuring seamless coordination be-
tween manipulation and locomotion. Each manipulation task
specifies the object states to be planned and the manipulation
forces to be optimized. For instance, if the task involves
opening a hinged door, we plan the opening angle and the
force required to manipulate the handle. The chosen task also
dictates the dynamics of the object under consideration. We
can apply the same MPC planner to accommodate various
tasks while adjusting the object states and manipulation
forces accordingly.

The general dynamic formulation for the manipulated
object in our linear MPC is expressed as follows:

AmẊo = fµ + fm (1)

Here, Xo encompasses the object states we optimize, Am

represents the diagonal matrix for the system linear dynam-
ics, fµ denotes external forces acting on the object (e.g.,
frictional forces), and fm stands for the manipulation force
exerted on the object.



Different tasks involve different object dynamics and the
corresponding commands. For example, lifting an object may
require a command in terms of lifting velocity or lifting
time. The desired command for each task produces reference
values for the states of the objects, denoted as X⃗ ref

o , which
are incorporated into the cost function of the linear MPC
problem to minimize deviations from these references. We
also include equality and inequality constraints tailored to
the specific task at hand, such as guaranteeing that the
manipulation force maintains its perpendicular orientation to
the door surface while opening the door.

The desired manipulation force for the entire time horizon
is passed to the quadruped loco-manipulation MPC and
the pose optimization for whole-body coordination. In the
former, the force is treated as a known quantity representing
the interaction between the robot and the object over the
prediction horizon. In the latter, the force is used to compute
the arm joint torques needed to manipulate the object and
minimize them. More details about how to use these forces
are presented in the respective sections. The optimized object
trajectory from the MPC planner plays a crucial role in the
subsequent pose optimization phase, where it coordinates the
robot’s locomotion to execute the desired manipulation task
effectively.

IV. POSE OPTIMIZATION FOR COORDINATED
LOCO-MANIPULATION

In this section, we present the details of pose optimiza-
tion and its role in bridging the gap between the object
manipulation planner and the whole-body loco-manipulation
controller. The fundamental idea is to translate the computed
manipulation forces and optimal object states into robot-
centric states and dynamics. To achieve this, we perform
optimized pose computations for the robot at each MPC
horizon, accounting for the manipulation force and system
kinematic constraints. Our approach is inspired by the work
in [37], with the necessary modifications to adapt it to real-
time execution while maintaining meaningful constraints.
The pose optimization problem is formulated as a Non-
Linear Programming (NLP) problem, with the optimization
variable X encompassing the robot’s Center of Mass (CoM)
location pr, body Euler angles Θ, arm joint angles qarm, and
the manipulation force fm acting at the end-effector location.
However, we exclude the leg joint angles and ground reaction
forces from the optimization variables, which are computed
by the swing leg controller and loco-manipulation MPC,
allowing the solution of the NLP problem to be computed
in real-time. The problem is defined as follows:

min
X

Qp(pr,z − pref
r,z)

2 + ∥Θ∥2QΘ
+ ∥τ∥2Qτ

(2)

s.t. pz,min ≤ pihipz
≤ pz,max (3)

Θmin ≤ Θ < Θmax (4)
qarm,min ≤ qarm ≤ qarm,max (5)

Xe = Xobj (6)

fm = f plan
m (7)

Starting from eq. 2, the objectives of pose optimization
are minimizing the difference between robot CoM height
and reference value, minimizing the body rotations, and
minimizing the arm torques τ needed for manipulation,
calculated using the contact Jacobian of the arm Jarm(X).
These objectives are weighted by respective scalar or di-
agonal matrices Qp, QΘ, Qτ of appropriate dimensions,
allowing for tailored control of the robot’s behavior during
manipulation. While the CoM height is directly incorporated
into the cost function, the x − y position is determined by
the optimization process based on problem constraints. We
avoid explicitly including leg joint angles in the pose, relying
instead on Equation 3 to ensure that each hip location’s
height remains within feasible bounds for effective stepping.
Equation 4 restricts robot orientation to physically feasible
values, particularly concerning pitch and roll, while Equation
5 enforces constraints on the arm joint angles. The last
two constraints (Equations 6 and 7) establish the crucial
connections between pose optimization and the MPC manip-
ulation planner. Equation 6 ensures that the end effector’s
pose Xe = Xe(X) matches the optimized object states
computed by the manipulation planner. The specifics of
this constraint depend on the particular task at hand; for
instance, in the case of lifting an object, it constrains the end
effector’s position, whereas for turning a door handle, it also
includes the end effector’s orientation. Equation 7 requires
that the manipulation force in the optimization variable aligns
with the force computed by the manipulation planner f plan

m .
The pose optimization is executed at every MPC horizon,
producing a reference trajectory for the robot’s states for the
whole-body loco-manipulation MPC.

V. WHOLE-BODY LOCO-MANIPULATION MPC

In this section, we present the formulation of our proposed
Loco-Manipulation Model Predictive Controller (MPC). We
have developed this formulation to address a crucial aspect
of our work: the manipulation of heavy objects, which signif-
icantly affects the dynamics of the robot. While the baseline
locomotion MPC for quadruped robots, as introduced in [1],
is designed to handle minor external disturbances to the
robot’s dynamics, it falls short when dealing with heavy
objects. These disturbances need explicit consideration in
the robot’s dynamics. Our model considers a single rigid
body with contact forces applied at the feet locations and a
manipulation force at the arm gripper, as illustrated in Fig.
2. We express the dynamic model in terms of the robot’s
position pr ∈ R3 and angular velocity ωr ∈ R3, both in the
world frame:

mr(p̈r + g) =

4∑
i=1

f ci + fm, (8)

Irω̇r =

4∑
i=1

rci × f ci + rm × fm (9)

In Equation 8, mr represents the combined mass of the robot
and arm, g =

[
0 0 -g

]T
is the gravity vector, f ci denotes

the ground reaction force acting on foot i, and fm is the



external manipulation force. In Equation 9, the derivative
of the angular momentum is simplified retaining only the
term Irω̇r, and Ir is the moment of inertia of the robot in
the world frame, rci is the position vector from the robot’s
Center of Mass (CoM) to the ith foot location, and rm is the
position vector from the robot’s CoM to the gripper location.

The manipulation force fm is a known quantity derived
from the MPC manipulation planner. It represents the force
the robot requires to follow the desired commands for various
tasks. Furthermore, during the discretization of the dynamics
for prediction in the MPC, we have access to the desired
manipulation forces for all prediction horizons. Thus, we
treat it as part of the input vector in the dynamics and enforce
equality constraints at each horizon to match the force to
the desired manipulation force. With the prediction model
defined, we represent it in a state-space form ẋr = Ax+Bu,
where:

xr =
[
Θ pr ωr ṗr g

]
(10)

u =
[
f c1 f c2 f c3 f c4 fm

]
(11)

A =


03 03 Rz(ψ) 03 03×1

03 03 03 I3 03×1

03 03 03 03 03×1

03 03 03 03
g

||g||
01×3 01×3 01×3 01×3 0

 (12)

B =


03 · · · 03 03

03 · · · 03 03

I−1
r rc1× · · · I−1

r rc4× I−1
r rm×

I3

mr
· · · I3

mr

I3

mr

01×3 · · · 01×3 01×3

 (13)

In equation 12, matrix Rz(ψ) is the rotation matrix cor-
responding to the yaw angle ψ, while, in equation 13,
ri× represents the skew-symmetric transformation matrix of
position vector ri ∈ R3. We can discretize the state-space
formulation to use it as a prediction model in a linear MPC
formulation, with N horizons, defined as follows:

min
xr,u

N∑
i=1

∥xri+1 − xref
ri+1

∥2Qr
+ ∥ui∥2Rr

(14)

s.t. xri+1
= Adxri +Bdui (15)

cf ≤ Cui ≤ cf (16)

f ci = 0 if swing leg (17)
fm = fmdes

(18)

In the cost function of the problem, equation 14, xref
r denotes

the reference values for the robot states, which are computed
from the pose optimization presented in section IV. These
reference values are crucial for coordinating the entire-body
motion to execute the loco-manipulation task accurately.
Equation 15 represents the dynamic constraints for each
prediction horizon, and Ad and Bd are the discrete-time
equivalents of the matrices presented in equations 12 and
13. Equation 16 represents the frictional pyramid constraints
for each leg, equation 17 enforces the vanishing of the

Fig. 3: Unitree Aliengo with custom-made arm used for experimental
validation of the proposed approach

reaction forces on the swing legs, and equation 18 is the
equality constraint that sets the manipulation force in the
dynamics equal to the desired manipulation force from the
MPC manipulation planner for each prediction horizon. The
controller determines optimal ground reaction forces while
accounting for the presence of the manipulation force at each
prediction horizon, enabling precise tracking of desired state
trajectories generated by the pose optimization.

VI. RESULTS
In this section, we present the results we obtained in

both simulation and real hardware to prove the effectiveness
of our approach. Simulations were performed using the
Simscape multibody package in Matlab Simulink, a high-
fidelity environment that accurately simulates contact-rich
scenarios. To test and validate our framework, we conducted
experiments using a Unitree Aliengo robot equipped with a
custom 1-DOF robotic arm, shown in Fig.3. We designed
this arm with three key considerations:

• By limiting it to 1-DOF, we reduced the arm’s weight,
enabling a higher maximum payload capacity.

• By installing a single powerful actuator at the base of
the arm, we can perform highly dynamic tasks with
heavy objects.

• With proper whole-body coordination, we can still
achieve many manipulation tasks even with the reduced
arm DOFs.

Our control architecture, detailed in Section II, efficiently
operates on the robot’s onboard computer. The low-level
controller operates at a frequency of 1 kHz. At the same
time, the object manipulation planner and loco-manipulation
Model Predictive Control (MPC) run at 30 Hz with a time
horizon of T = 0.5 s and N = 10 horizons. We utilize
CasADi and the Ipopt solver to solve the pose optimization
problem. Despite the hierarchical structure of the framework
leading to a higher number of hyperparameters, the linear
formulations facilitate straightforward tuning. Through a
series of experiments, we demonstrate the impact of each
component of our approach compared to baseline controllers.



(a) Snapshot of lifting 3Kg object using
loco-manipulation MPC

(b) Snapshot of lifting 3Kg object using
baseline MPC

(c) Robot COM height

(d) Robot Pitch

Fig. 4: Improvements using loco-manipulation MPC. In the plots, we
compare the results using the loco-manipulation MPC and the baseline MPC.
The robot is lifting from the ground a 3Kg object and reaches a predefined
arm configuration,

A. Effect of Loco-manipulation MPC

In this section, we want to highlight the importance of
considering the object in the robot MPC model, especially
when the object is heavy. To do this, we compare the loco-
manipulation MPC in our approach to a baseline locomotion
MPC, where there is no information about the object the
robot is carrying. We perform this task on the real robot
and during the task, the robot picks up a 3kg object from
the ground using the arm DOF and lifts it to a predefined
arm angle in 2 seconds. We can see snapshots of the task
and COM height and robot pitch tracking with the two
controllers in Fig. 4. Using the proposed loco-manipulation
MPC, the robot can successfully lift the heavy object from
the ground and maintain the desired height and pitch for
the robot throughout the entire task. Instead, the baseline
MPC cannot follow the desired quantities and struggles to
maintain balance. In fact, with objects heavier than 5kg, the
baseline MPC would fail, while our proposed controller can
still handle them. Due to the mass-efficient arm design, we
have a maximum payload capability of 8 kg, which is almost

(a) Using object manipulation planner

(b) Using fixed manipulation force

(c) Pitch angle of the robot during the dynamic lifting task

(d) Height of the robot COM during the dynamic lifting task

Fig. 5: Improvements using object manipulation planning. In the plots,
we compare the results using the loco-manipulation MPC with the object
manipulation planner or a fixed manipulation force without the object
manipulation planner. The robot lifts a 10 Kg object from the ground and
reaches a predefined arm configuration in shorter times, making the lifting
more dynamic.

50% of the robot’s weight. Our payload-to-robot weight ratio
is higher than other robotic arms used in state-of-the-art
legged loco-manipulation research.

B. Effect of Planner for Object Manipulation

We then investigated the effectiveness of the planner
for object manipulation. This component of the proposed
approach becomes critical when performing very dynamic
tasks because the effect of the object on the robot cannot
be represented by a fixed manipulation force anymore. To
highlight the importance of the component, we performed
different simulations of dynamic object-lifting tasks, where
various lifting times were specified for each case. The results
are presented in Fig. 5 regarding robot COM height and pitch
angle, using the object planner or without the planner with



(a) Baseline pose (b) Squatted pose

(c) Pitched pose (d) Mix pose for low object picking

Fig. 6: Various optimized poses for object lifting. These figures represent
the optimal poses computed for the task based on the object dimensions
and the weights in the optimization cost function.

fixed manipulation force, together with the loco-manipulation
MPC. We start from a 2-second lifting that can be treated as
a quasi-static movement, and both simulations are successful.
But if we reduce the lifting time to 0.5s, we start to see that
the controller that uses the fixed manipulation force cannot
maintain the robot’s reference height and pitch. When the
lifting time decreases to 0.25s, this controller fails, while
our proposed approach using the manipulation planner can
consider the increased force acting on the robot from the
large acceleration imparted on the object and still maintain
balance to complete the task.

C. Effect of Pose Optimization for Coordination

The next component we want to showcase is the pose
optimization for coordinated loco-manipulation. This part
of the approach is important because it links the output
of the object manipulation planner to the loco-manipulation
MPC. In Fig. 6, we can see various solutions that the pose
optimization block can compute to solve the same task based
on the choice of weights for the objectives in the cost
function. We can consider the pose that tracks COM height
and pitch and only uses the arm to reach the object as the
baseline. Then, if we reduce the weight related to the COM
height in the pose optimization cost function, we obtain the
pose in Fig. 6b, where the controller trades the robot COM
height to reach the object with the gripper. Similarly, in Fig.
6c, we can see the effect of reducing the weight related to
robot body rotation. A balanced choice of weights in the cost
function gives us a pose that uses all possible DOFs of the
system to reach the object with the gripper, as illustrated in
Fig. 6d. All these starting poses can complete the task of
lifting the object to a predefined height.

D. Door Opening Using Proposed Approach

To illustrate the effectiveness of our approach, we con-
ducted tests involving the challenging task of opening a
heavy, resistant hinged door. Fig. 7 presents snapshots of
the task successfully solved in simulation. Within the ma-
nipulation planner, we have subtasks such as turning the

Fig. 7: Door opening with the proposed framework. In the initial phase,
the object manipulation planner and pose optimization dictate the robot
to roll to manipulate the door handle. Subsequently, the robot applies
the necessary force to push the door open, with the manipulation planner
considering kinematic and spatial constraints.

door handle and pushing the door open. The pose opti-
mization orchestrates the robot’s motion to align with the
desired manipulation actions. Notably, in this task, we can
account for potential collisions with the door frame directly
within the pose optimization, resulting in viable collision-
free trajectories for the robot’s COM. One key advantage
of our approach, with its distinct hierarchical components
working together, is the ability to incorporate additional
constraints into the problem without significantly increasing
complexity and computational overhead. This is in contrast
to a unified planner for both the object and robot, where
the nonlinear structure would considerably complicate the
process of obtaining an online planning solution.

VII. CONCLUSIONS

This paper introduces a practical approach for addressing
loco-manipulation challenges in legged robots. Our hierar-
chical approach simplifies the problem by breaking it into
three components that work together effectively. We validate
our approach with numerical and experimental scenarios
investigating the effect of the three components separately.
We show the importance of considering the object’s dynamic
effect on the robot controller, highlight the significance of
our online object manipulation planner, and demonstrate
the flexibility of our pose optimization component. Our
framework, when applied to a Unitree Aliengo equipped
with a custom-made robotic arm, achieves successful tasks
such as lifting and carrying an 8 Kg object and opening a
resistive hinged door, underscoring the significance of our
three components. Future directions include extending the
framework to more practical tasks to explore the boundaries
of the current arm design.
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