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Abstract

The theory of quantum states over time provides an approach to the dynamics of quan-

tum information which is in direct analogy with spacetime and its relation to classical dy-

namics. In this work, we further such an analogy by formulating a notion of general covari-

ance for the theory of quantum states over time. We then associate a canonical state over

time with a density operator which is to evolve under a sequence of quantum processes

modeled by completely positive trace-preserving (CPTP) maps, and we show that such a

canonical state over time satisfies such a notion of covariance. We also show that the dy-

namical quantum Bayes’ rule transforms covariantly with respect to states over time, and

we conclude with a discussion of what it means for a physical law to be generally covariant

when formulated in terms of quantum states over time.
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1 Introduction

There is a prevailing viewpoint that fundamental physics should be based on a primitive no-

tion of information. The theory of quantum states over time is a nascent approach to quantum
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theory that stems directly from such a viewpoint, formulating the dynamics of quantum infor-

mation in a way which is directly analogous to spacetime and its relation to classical dynamics

[3, 4, 6, 8, 11]. As opposed to a density operator which only encodes spatial correlations in

quantum systems, quantum states over time encode spatio-temporal correlations which arise

as a result of a quantum system evolving under quantum processes modeled by completely

positive trace-preserving (CPTP) maps. And similar to how spacetime is a single object en-

compassing the dynamical evolution of space, a quantum state over time is a single operator

encoding the dynamical evolution of a quantum state. As such, quantum states over time serve

as a quantum-informational analog of spacetime, and in analogy with the Lorentzian signature

of the spacetime metric, spatial and temporal correlations combine to yield quantum states

over time which are not positive in general (though still self-adjoint). Furthermore, in analogy

with how Cauchy hypersurfaces of spacetime correspond to space at a fixed point in time, the

reduced operators of a quantum state over time yield genuine density operators, representing

the state of the associated quantum system at a fixed point in time.

We emphasize here that "time" in the theory of quantum states over time is fundamentally

discrete, and is viewed as an emergent property associated with the correlations which result as

a consequence of a quantum system evolving according to general CPTP dynamics. As such, a

continuous universal time parameter as that which appears in the Schrödinger equation is then

viewed as a smooth approximation to an underlying discrete flow of time which is intrinsic to

the dynamical evolution of the system of interest.

While the study of quantum states over time is still in its formative stages, viewing quantum

dynamics through the lens of states over time has already led to insights into the nature of time

reversal in quantum theory [11], quantum Bayesian inference and retrodiction [7,11,13], virtual

quantum broadcasting [12], and dynamical measures of quantum information [5]. Quantum

states over time have also been shown to coincide with the pseudo-density matrices associated

timelike separated Pauli measurements performed on systems of qubits [2, 9].

In this work, we further extend the analogy between spacetime and quantum states over

time by formulating an analog of general covariance for the theory of quantum states over time.

As general covariance in the context of general relativity is the requirement that the dynamical

equations of the theory should be diffeomorphism invariant, we take general covariance in the

context of quantum theory to be the requirement that dynamical equations governing quantum

systems should be unitarily invariant. To formulate general covariance for states over time, we

then associate a canonical quantum state over time with an initial density operator which is to

evolve according to the Liouville-von Neumann equation, and analyze how such a state over

time transforms in accordance with a unitary transformation of the algebra of operators con-

taining the initial state and the associated Hamiltonian. Such analysis then yields a natural

notion of covariance for quantum states over time which generalizes the covariance property

for virtual broadcasting introduced in Ref. [12]. Moreover, we show that such a notion of co-

variance for quantum states over time holds for systems evolving according to general CPTP

dynamics, as opposed to strictly unitary transformations as determined by the Liouville-von

Neumann equation.
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The present paper is organized as follows. In Section 2, we lay the mathematical foundation

for the study of states over time, providing all necessary definitions and setting the notational

conventions. In Section 3 we formally introduce quantum states over time associated with

general CPTP dynamics, and show that there is a canonical "propagating" system of quantum

states over time (Theorem 3.5). In Section 4, we formulate a precise notion of general covariance

for quantum states over time, and show that the canonical propagating system of quantum

states over time is indeed covariant (Theorem 4.4). In Section 5, we show that the dynamical

Quantum Bayes’ rule of [11] is also covariant in the sense established in Section 4 (Theorem 5.6).

We then make some concluding remarks in Section 6, before ending with an appendix of some

technical results required for the proofs our main theorems.

2 Preliminaries

In this work, all mathematics will take place in the category of finite-dimensional C∗-algebras.

Any such algebra is ∗-isomorphic to an algebra of block diagonal matrices, which we view as

an algebra of linear operators on an abstract Hilbert space. In what follows, the caligraphic

letters A , B . . . will be used to denote finite-dimensional C∗-algebras.

Definition 2.1. Given finite-dimensional C∗-algebras A and B , the set of trace-preserving lin-

ear maps from A to B will be denoted by TP(A , B), the set of hermitian-preserving, trace-

preserving linear maps from A to B will be denoted by HPTP(A , B), and the set of com-

pletely positive, trace-preserving linear maps from A to B will be denoted by CPTP(A , B).

The Hilbert-Schmidt adjoint of a linear map E : A → B is the map E∗ : B → A uniquely

determined by the condition

tr
(
E(A)†B

)
= tr

(
A†E∗(B)

)

for all A ∈ A and B ∈ B , where † is used to denote the ∗-operation in a finite-dimensional

C∗-algebra.

Notation 2.2. Given U ∈ A , the mapping A 7→ UAU† will be denoted by AdU : A → A .

Definition 2.3. A self-adjoint element A ∈ A of unit trace is said to be a virtual state in A , and

the set of all virtual states in A will be denoted by V(A). A virtual state A ∈ A is said to be a

state if and only if A is positive, and the set of all states in A will be denoted by S(A).

Definition 2.4. Given a finite set X, the commutative C∗-algebra consisting of complex-valued

functions on Xwill be denoted by CX, which will be referred to as a classical algebra.

Remark 2.5 (Classical states are probability distributions). Given a classical algebra CX, we

note that there is a canonical bijective correspondence between states on CX and probability

distributions on X. For every x ∈ X, the state on CX which takes the value 1 on x and 0 otherwise

will be denoted by δx. △
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Remark 2.6 (Classical channels as CPTP maps). If X and Y are finite sets and E : CX → CY is a

CPTP map, then for all x ∈ X it follows that there exists elements Eyx ∈ [0, 1] such that

E(δx) =
∑

y∈Y

Eyxδy.

Moreover, by the trace-preserving condition on E it follows that
∑

y∈Y Eyx = 1. As such, the

elements Eyx are viewed as conditional probabilities of y given x, thus any E ∈ CPTP(CX, CY)

is equivalent to a classical channel from X to Y. △

We now define fundamental mappings that will play a prominent role in this work.

Definition 2.7. Given a finite-dimensional C∗-algebra A , let µA : A ⊗A → A and µ̃A : A ⊗A →

A denote the maps corresponding to the linear extensions of the assignments

µA(A1 ⊗A2) = A1A2 & µ̃A(A1 ⊗A2) = A2A1.

The canonical broadcasting map is then the linear map BA : A → A ⊗A given by

BA =
1

2

(
µ∗

A
+ µ̃∗

A

)
, (2.8)

where µ∗
A

and µ̃∗
A

denote the Hilbert-Schmidt adjoints of µA and µ̃A .

Remark 2.9 (Explicit formula for canonical broadcasting). If A is a matrix algebra, it was

shown in Ref. [5] (Lemma A.3) that for all A ∈ A ,

µ∗
A
(A) = (A⊗ 1)SWAP,

where SWAP ∈ A ⊗ A is the unique matrix satisfying SWAP(A1 ⊗ A2)SWAP = A2 ⊗ A1 for all

A1,A2 ∈ A . If we denote the matrix units in A by |i〉〈j|, then

SWAP =
∑

i,j

|i〉〈j|⊗ |j〉〈i|.

And since µ̃A = µA ◦ γ (where γ : A ⊗ A → A ⊗ A is the lexicographic swap isomorphism), it

follows that µ̃∗
A
= γ ◦ µ∗

A
, thus for all A ∈ A ,

µ̃∗
A
(A) = γ

(
(A⊗ 1)SWAP

)
= SWAP

(
(A⊗ 1)SWAP

)
SWAP = SWAP(A⊗ 1)

where the final equality follows from the fact that γ(A1 ⊗ A2) = SWAP(A1 ⊗ A2)SWAP for all

A1,A2 ∈ A . It then follows that the canonical broadcasting map BA : A → A ⊗ A is given by

BA(A) =
1

2

{

(A⊗ 1), SWAP
}

∀A ∈ A , (2.10)

where {∗, ∗} denotes the anti-commutator. △

Remark 2.11 (The Virtual Broadcasting Theorem). In Ref. [12], it was shown that in the cate-

gory of matrix algebras, the canonical broadcasting map BA : A → A ⊗ A is uniquely charac-

terized by the following three conditions:
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• Covariance: For every unitary U ∈ A , and for all A ∈ A ,

BA(UAU
†) = (U⊗U)BA(A)(U⊗U)†.

• Permutation Invariance: For every A ∈ A ,

BA(A) = SWAPBA(A)SWAP.

• Classical Consistency: If D : A → A is the decoherence map given by D(|i〉〈j|) = δij|i〉〈i|,

then

(D⊗D) ◦BA ◦D = Bcl,

where Bcl is the classical broadcasting map on diagonal matrices given by Bcl(|i〉〈i|) =

|i〉〈i|⊗ |i〉〈i|. △

Definition 2.12. Given a pair (A , B) of finite-dimensional C∗-algebras, the bloom of a map

E ∈ TP(A , B) is the map

!

(E) ∈ TP(A , A ⊗ B) given by

!

(E) = (idA ⊗ E) ◦BA , (2.13)

where we recall BA is the canonical broadcasting map given by (2.8).

Remark 2.14 (The bloom map is HPTP). While the map

!

(E) is trace-preserving for all E ∈

TP(A , B), it is rarely positive. For example, if E = idA with A a matrix algebra and ρ ∈ S(A) is

a state, then it was shown in Ref. [5] that

!

(E)(ρ) has negative eigenvalues. However, in Ref. [3] it

was shown that

!

(E) is hermitian-preserving if and only if E is hermitian-preserving, thus

!

(E) ∈

HPTP(A , A ⊗B) for all E ∈ HPTP(A , B). △

Notation 2.15. Given a positive natural number n ∈ N, we let [n] = {1, ...,n}.

Definition 2.16. Let (A0, ..., An) be an (n + 1)-tuple of finite-dimensional C∗-algebras. An n-

chain consists of an n-tuple (E1, ...,En) such that Ei : Ai−1 → Ai is a linear map for all i ∈

[n]. The set of all such n-chains with Ei ∈ TP(Ai−1, Ai) for all i ∈ [n] will be denoted by

TP(A0, ..., An), the set of all such n-chains with Ei ∈ HPTP(Ai−1, Ai) for all i ∈ [n] will be

denoted by HPTP(A0, ..., An), and the set of all such n-chains with Ei ∈ CPTP(Ai−1, Ai) for all

i ∈ [n] will be denoted by CPTP(A0, ..., An).

Definition 2.17. The bloom of an n-chain (E1, ...,En) ∈ TP(A0, ..., An) is defined recursively as

the map

!

(E1, ...,En) ∈ TP(A0, A0 ⊗ · · · ⊗ An) given by

!

(E1, ...,En) =

!

(

!

(E2, ...,En) ◦ E1). (2.18)

Remark 2.19 (A closed form expression for the bloom). In Ref. [3] it was shown that

!

(E1, ...,En) =

!

(En ◦ tr) ◦ · · · ◦

!

(E2 ◦ tr) ◦

!

(E1), (2.20)

where tr denotes the universal partial trace map that maps an iterated tensor product onto its

right-most factor. In fact, there are actually the nth Catalan number cn = 1
n+1

(
2n
n

)
of equivalent

expressions for

!

(E1, ...,En), corresponding to the cn ways of completely parenthesizing the it-

erated tensor product A0 ⊗ · · ·⊗An. And since

!

(E) ∈ HPTP(A , A ⊗B) for all E ∈ HPTP(A , B)

(see Remark 2.14), it follows from (2.20) that

!

(E1, ...,En) ∈ HPTP(A0, A0 ⊗ · · · ⊗ An) for all

(E1, ...,En) ∈ HPTP(A0, ..., An). △
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3 Quantum states over time

Given a virtual state ρ ∈ V(A0) which is to evolve according to an n-chain (E1, ...,En) ∈

CPTP(A0, ..., An), an associated virtual state (E1, ...,En) ⋆ ρ ∈ V(A0 ⊗ · · · ⊗ An) is said to be a

quantum state over time if and only if for all i ∈ {0, ...,n} we have

tr
A0⊗···⊗Âi⊗···⊗An

(
(E1, ...,En) ⋆ ρ

)
= ρi, (3.1)

where ρ0 = ρ, ρi = (Ei ◦ Ei−1 ◦ · · · ◦ E1)(ρ) and tr
A0⊗···⊗Âi⊗···⊗An

: A0 ⊗ · · · ⊗ An → Ai is the

partial trace for all i ∈ {0, ...,n}. An assignment of the form

(E1, ...,En, ρ) 7−→ (E1, ...,En) ⋆ ρ

where (E1, ...,En) ⋆ ρ is a quantum state over time for every n-chain (E1, ...,En) with n > 0

and for every virtual state ρ is then said to be a system of quantum states over time. While we

will mostly consider quantum states over time (E1, ...,En) ⋆ ρ with ρ a state, it will be useful to

also consider states over time associated with the dynamical evolution of virtual states as well.

We note that while (E1, ...En) ⋆ ρ is defined to be a virtual state for all n-chains (E1, ...,En) and

virtual states ρ, there is nothing in the definition of quantum state over time that ensures that

(E1, ...,En) ⋆ ρ is in fact positive, even if ρ is a state (as opposed to a virtual state).

As a quantum state over time (E1, ...,En) ⋆ ρ contains the data of the individual states ρi
which result throughout the dynamical process associated with the n-chain (E1, ...,En), such

a state over time is meant to serve as a quantum analog of a fibration ϕ : S → [t0, t1] of a

local patch S of spacetime into spatial fibers St = ϕ−1(t) for all t ∈ [t0, t1]. However, there

is no continuous time parameter associated with quantum states over time, as time occurs in

discrete time-steps according to the n-chain (E1, ...,En), which one may view as a quantization

of the interval [t0, t1]. And similar to how the manifold S may be viewed as a cobordism from

S0 = ϕ−1(t0) to S1 = ϕ−1(t1), the quantum state over time (E1, ...,En) ⋆ ρ is a single operator

representing the dynamical evolution of ρ0 = ρ into ρn = (En ◦ · · · ◦E1)(ρ). Moreover, similar to

how the metric of S picks up a Lorentzian signature as it extends over time, the state over time

(E1, ...,En) ⋆ ρ may have negative eigenvalues, signifying that it is a state over time, as opposed

to a state at a single time.

Remark 3.2 (Quantum states over time as a resolution of quantum quandaries?). If Hilb, Set

and nCob denote the categories consisting of linear maps between Hilbert spaces, functions be-

tween sets, and cobordisms between n-manifolds respectively, then the aforementioned anal-

ogy between cobordisms and quantum states over time is motivated by Ref. [1], where it is

stated that certain mysterious features of quantum theory, such as local realism and the no-

cloning theorem, "...only seem puzzling when we try to treat Hilb as analogous to Set rather

than nCob, so that quantum theory will make more sense when regarded as part of a theory

of spacetime.". In the approach taken here however, it is not the category Hilb which we are

treating in an analogous manner to nCob, but rather, a closely related category QInf, where the

objects are quantum states, and the morphisms are quantum states over time. △
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If a system of quantum states over time satisfies the condition

(E1, ...,En) ⋆ ρ = (En ◦ tr) ⋆
(
(E1, ...,En−1) ⋆ ρ

)
(3.3)

for all n-chains (E1, ...,En) and virtual states ρ, then the system is said to be a propagating system

of states over time. It then follows that a propagating system of states over time is then completely

determined by its assignment on pairs

(E, ρ) 7−→ E ⋆ ρ

for all channels E and virtual states ρ. Such an assignment on pairs (E, ρ) is said to be a state

over time function [4, 6, 8]. While there are many examples of state over time functions (see e.g.

Ref. [11]), the state over time function given by

E ⋆ ρ =

!

(E)(ρ) (3.4)

has been shown in Refs. [8, 12] to be uniquely characterized by physically motivated axioms

(we recall

!

(E) is the bloom of E as given by (2.13)). As such, we refer to E ⋆ρ as given by (3.4) as

the canonical state over time associated with the channel E and the virtual state ρ. A propagating

system of states over time is then said to be canonical if and only if the associated state over

time function (E, ρ) 7→ E ⋆ ρ outputs the canonical state over time for all channels E and virtual

states ρ. The following theorem establishes an explicit construction of a propagating system of

states over time that is canonical, which by (3.3) is necessarily unique.

Theorem 3.5. Given an n-chain (E1, ...,En) ∈ CPTP(A0, ..., An) and a virtual state ρ ∈ V(A0), let

(E1, ...En) ⋆ ρ ∈ A0 ⊗ · · · ⊗ An be the element given by

(E1, ...,En) ⋆ ρ =

!

(E1, ...,En)(ρ),

where

!

(E1, ...,En) is the bloom of the n-chain as given by (2.18). Then the assignment

(E1, ...,En, ρ) 7−→ (E1, ...,En) ⋆ ρ (3.6)

is a propagating system of states over time which is canonical.

Proof. Let (E1, ...,En) ∈ CPTP(A0, ..., An) be an n-chain with initial virtual state ρ ∈ V(A0). Then

(E1, ...,En) ⋆ ρ =

!

(E1, ...,En)(ρ)
(2.20)
=

( !

(En ◦ tr) ◦ · · · ◦

!

(E2 ◦ tr) ◦

!

(E1)
)
(ρ)

=

!

(En ◦ tr)
(( !

(En−1 ◦ tr) ◦ · · · ◦

!

(E2 ◦ tr) ◦

!

(E1)
)
(ρ)

)

(2.20)
=

!

(En ◦ tr)
( !

(E1, ...,En−1)(ρ)
)

=

!

(En ◦ tr)
(
(E1, ...,En−1) ⋆ ρ

)

= (En ◦ tr) ⋆
(
(E1, ...,En−1) ⋆ ρ

)
.

thus (3.3) holds. It then follows that the assignment (3.6) is a propagating system of states over

time, and since E ⋆ ρ =

!

(E)(ρ), it follows that the the assignment (3.6) is also canonical. �
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4 Covariance of canonical states over time

In general relativity, one of the fundamental principles is that of general covariance, meaning

that the form of equations governing physical laws should be unaltered by arbitrary smooth

coordinate transformations of spacetime. More precisely, if (x,y, z, t) are local coordinates on

spacetime, and a physical law takes the form

G(x,y, z, t) = T(x,y, z, t),

then the equation

G(x ′,y ′, z ′, t ′) = T(x ′,y ′, z ′, t ′)

should also hold, where (x ′,y ′, z ′, t ′) is another set of coordinates on spacetime, differing from

(x,y, z, t) by a smooth coordinate transformation.

In the quantum setting, suppose that a system in an initial state ρ(0) ∈ S(A) with Hamilto-

nian H evolves according to the Liouville-von Neumann equation, so that

i
∂

∂t
ρ(t) =

[
H, ρ(t)

]
. (4.1)

If A is a matrix algebra and U ∈ A is unitary, then setting ρ ′ = UρU† and H ′ = UHU† yields

i
∂

∂t
ρ ′(t) = i

∂

∂t

(
Uρ(t)U†

)

= U
(
i
∂

∂t
ρ(t)

)
U†

(4.1)
= U(Hρ(t) − ρ(t)H)U†

= (UHU†)(Uρ(t)U†) − (Uρ(t)U†)(UHU†)

=
[
H ′, ρ ′(t)

]
,

so that

i
∂

∂t
ρ ′(t) =

[
H ′, ρ ′(t)

]
. (4.2)

As such, if we view AdU : A → A as a coordinate transformation corresponding to a different

choice of an orthonormal basis in which to from a matrix representation of our system, then it

follows that the Liouville-von Neumann equation is unitarily covariant, i.e., applying a unitary

transformation to both sides of equation (4.1) yields equation (4.2)1.

In terms of quantum states over time, we can view the Liouville-von Neumann equation

(4.1) as determining a canonical state over time

(E1, ...,En) ⋆ ρ,

where ρ = ρ(0) and Ek : A → A is the unitary transformation given by

Ek(A) = e
−iHtkAeiHtk

1Certainly any first-order linear differential equation in ρ is also unitarily covariant.
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for all A ∈ A and for all k ∈ [n]. In such a case, we view the continuous time parameter t as

a smooth approximation of the discrete time-steps ∆t = tm+1 − tm associated with the n-chain

(E1, ...,En) for large n. Moreover, if U ∈ A is a unitary operator corresponding to a coordinate

transformation AdU : A → A , then for all k ∈ [n] the operator Ek transforms to the operator

E ′
k = AdU ◦ Ek ◦ AdU† , thus for all A ′ ∈ A we have

E ′
k(A

′) =
(

AdU ◦ Ek ◦ AdU†

)
(A ′)

= AdU

(
Ek(U

†A ′U)
)

= AdU

(
e−iHtkU†A ′UeiHtk

)

=
(
Ue−iHtkU†

)
A ′

(
UeiHtkU†

)

= e−i(UHU
†)tkA ′ei(UHU

†)tk

= e−iH
′tkA ′eiH

′tk ,

where again H ′ = UHU† is the associated transformation of the Hamiltonian H. It then fol-

lows that the transformed Liouville-von Neumann equation (4.2) determines the canonical state

over time (E ′
1, ...,E ′

n) ⋆ ρ
′, where ρ ′ = UρU†. If the theory of quantum states over time is to

be covariant, then it should follow that the canonical state over time (E1, ...,E1) ⋆ ρ associated

with the Liouville-von Neumann equation (4.1) transforms under the unitary transformation

AdU⊗· · ·⊗AdU to the canonical state over time (E ′
1, ...,E ′

n) ⋆ρ
′ associated with the transformed

Liouville-von Neumann equation (4.2), i.e.,

(AdU ⊗ · · · ⊗ AdU)
(
(E1, ...,En) ⋆ ρ

)
= (E ′

1, ...,E ′
n) ⋆ ρ

′. (4.3)

In this section, we establish Theorem 4.4, which states that not only does equation (4.3)

indeed hold, but that equation (4.3) is a special case of a more general covariance relation be-

tween canonical states over time. For this, suppose that a quantum system in an initial state

ρ ∈ S(A0) is to evolve according to an n-chain (E1, ...,En) ∈ CPTP(A0, ..., An). Then for every

(n+ 1)-tuple

(φ0 : A0 −→ A ′
0 , . . . , φn : An −→ A ′

n)

of ∗-isomorphisms, one may equivalently describe the dynamical scenario as the initial state

ρ ′ = φ0(ρ) evolving according to the n-chain (E ′
1, ...,E ′

n) ∈ CPTP(A ′
0, ..., A ′

n), where now E ′
k =

φk ◦ Ek ◦φ
−1
k−1 for all k ∈ [n]. As these two mathematical descriptions of such a dynamical sce-

nario are equivalent, we should expect that the canonical state over time (E1, ...,En) ⋆ ρ trans-

forms to the canonical state over time (E ′
1, ...,E ′

n) ⋆ ρ
′ under the ∗-isomorphism (φ0 ⊗ · · · ⊗φn).

The following theorem states that this is indeed the case, which we view as a general covariance

property for canonical states over time.

Theorem 4.4 (Covariance of canonical states over time). Let ⋆ be the operation corresponding to

the canonical propagating system of states over time, let (E1, ...,En) ∈ CPTP(A0, ..., An) be an n-chain,

and let ρ ∈ V(A0). Then for every (n+ 1)-tuple (φ0 : A0 → A ′
0, ...,φn : An → A ′

n) of ∗-isomorphisms,

(φ0 ⊗ · · · ⊗φn)
(
(E1, ...,En) ⋆ ρ

)
= (E ′

1, ...,E ′
n) ⋆ ρ

′, (4.5)
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where E ′
k = φk ◦ Ek ◦φ

−1
k−1 for all k ∈ [n] and ρ ′ = φ0(ρ).

The theorem is essentially a direct corollary of Theorem D.8, which appears in the appendix.

Proof of Theorem 4.4. Since E ′
k = φi ◦ Ek ◦φ

−1
k−1 for all k ∈ [n], it follows from Theorem D.8 that

(φ0 ⊗ · · · ⊗φn) ◦

!

(E1, ...,En) =

!

(E ′
1, ...,E ′

n) ◦φ0. (4.6)

We then have

(φ0 ⊗ · · · ⊗φn)
(
(E1, ...,En) ⋆ ρ

)
= (φ0 ⊗ · · · ⊗φn)

( !

(E1, ...,En)(ρ)
)

=
(
(φ0 ⊗ · · · ⊗φn) ◦

!

(E1, ...,En)
)
(ρ)

(4.6)
=

( !

(E ′
1, ...,E ′

n) ◦φ0

)
(ρ)

=

!

(E ′
1, ...,E ′

n)
(
φ0(ρ)

)

=

!

(E ′
1, ...,E ′

n)(ρ
′)

= (E ′
1, ...,E ′

n) ⋆ ρ
′,

as desired. �

In the next section, we address the covariance of the dynamical quantum Bayes’ rule intro-

duced in Ref. [11].

5 Covariance of the dynamical quantum Bayes’ rule

Let X and Y be discrete random variables with probability mass functions P(x) and P(y). The

classical Bayes’ rule may be formulated as the equality

P(x)P(y|x) = P(y)P(x|y) (5.1)

for all x ∈ X and y ∈ Y. A dynamical generalization of Bayes’ rule using quantum states over

time first appeared in [11], where it was shown that many fundamental notions associated with

time-reversal in quantum theory — such as the state-update rule, the 2-state vector formalism

of Reznik and Aharonov [14], the Petz recovery map [10], the generalized conditional expecta-

tions of Tsang [15], and the quantum Bayes’ theorem of Leifer and Spekkens [7] — may all be

formulated in terms of such a dynamical quantum Bayes’ rule2.

To motivate the dynamical quantum Bayes’ rule, let ϑ : X× Y → [0, 1] be the joint distri-

bution corresponding to first observing the output of X and then observing the output of Y. It

then follows that

ϑ(x,y) = P(x)P(y|x),

2In Ref. [4], the quantum Bayes’ rule is defined with respect to general states over time, while we only consider

canonical states over time as given by (3.4).
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as obtaining the outcome (x,y) corresponds to first obtaining the outcome x, and then obtaining

the outcome y given x. Similarly, there is a joint distribution ϑ∗ : Y × X → [0, 1] associated with

reversing the order of observation (i.e., by observing Y before X), so that

ϑ∗(y, x) = P(y)P(x|y).

Bayes’ rule (5.1) may then be reformulated as

ϑ = γ (ϑ∗) , (5.2)

where γ : Π(Y ×X) −→ Π(X× Y) is the natural isomorphism between probability distributions

on Y ×X and probability distributions on X× Y given by

γ(q)(x,y) = q(y, x)

for all q ∈ Π(Y × X). Moreover, as ϑ∗ is viewed as the distribution associated with the time-

reversal of the the process associated with the distribution ϑ, we view (5.2) as a dynamical

formulation of Bayes’ rule, so that γ is then viewed as a time-reversal map.

To generalize Bayes’ rule to the quantum domain, we recast the dynamical Bayes’ rule (5.2)

in terms of CPTP dynamics. For this, we associate the conditional probabilities P(y|x) and

P(x|y) with classical channels E : CX → CY and E : CY → CX respectively (see Remark 2.6),

and we associate the distributions P(x) and P(y) with states ρ ∈ S(CX) and σ ∈ S(CY), so that

σ = E(ρ). It then follows that ϑ ∈ Π(X× Y) corresponds to the state over time E ⋆ ρ, while

ϑ∗ ∈ Π(Y × X) corresponds to the state over time E ⋆ σ. The dynamical Bayes’ rule (5.2) is then

equivalent to the equation

E ⋆ ρ = γ
(
E ⋆ σ

)
, (5.3)

where now γ : CY ⊗CX → CX⊗CY is the lexicographic swap isomorphism. Note however that

equation (5.3) makes sense for any channels E ∈ CPTP(A , B) and E ∈ CPTP(B , A) with A and

B arbitrary finite-dimensional C∗-algebras. This motivates the following:

Definition 5.4. Let A and B be finite-dimensional C∗-algebras, let E ∈ CPTP(A , B), and let

ρ ∈ S(A) be a state. A map E ∈ CPTP(B , A) is then said to satisfy the quantum Bayes’ rule

with respect to the pair (E, ρ) if and only if

E ⋆ ρ = γ
(
E ⋆ E(ρ)

)
, (5.5)

where γ : B ⊗ A → A ⊗ B is the lexicographic swap isomorphism.

Given a pair (φ : A → A ′,ψ : A → B ′) of ∗-isomorphisms, the maps E ∈ CPTP(A , B) and

E ∈ CPTP(B , A) in the quantum Bayes’ rule (5.5) transform to the maps E ′ = ψ ◦ E ◦ φ−1 ∈

CPTP(A ′, B ′) and E
′
= φ ◦ E ◦ψ−1 ∈ CPTP(B ′, A ′), while the state ρ ∈ S(A) transforms to

ρ ′ = φ(ρ) ∈ S(A ′). The following theorem then states that the dynamical quantum Bayes’

rule is covariant, i.e., (5.5) still holds after replacing E, E, and ρ by their primed counterparts,

namely, E ′, E
′
and ρ ′.
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Theorem 5.6 (Covariance of the Quantum Bayes’ Rule). Let E ∈ CPTP(A , B), ρ ∈ S(A), suppose

E ∈ CPTP(B , A) satisfies the quantum Bayes’ rule (5.5) with respect to (E, ρ), and let φ : A → A ′

and ψ : B → B ′ be ∗-isomorphisms. Then

E ′
⋆ ρ ′ = γ ′

(
E
′
⋆ E ′(ρ ′)

)
, (5.7)

where E ′ = ψ◦E ◦φ−1, E
′
= φ◦E ◦ψ−1, ρ ′ = φ(ρ), and γ ′ : B ′⊗A ′ → A ′⊗B ′ is the lexicographic

swap isomorphism.

Before giving a proof we first prove the following:

Lemma 5.8. Let φ : A → A ′ and ψ : B → B ′ be ∗-isomorphisms, and let γ : B ⊗ A → A ⊗ B and

γ ′ : B ′ ⊗ A ′ → A ′ ⊗ B ′ be the lexicographic swap isomorphisms. Then

(φ⊗ψ) ◦ γ = γ ′ ◦ (ψ⊗φ). (5.9)

Proof. Let A ∈ A and B ∈ B . Then
(
(φ⊗ψ) ◦ γ

)
(B⊗A) = (φ⊗ψ)(A⊗ B)

= φ(A)⊗ψ(B)

= γ ′(ψ(B)⊗φ(A))

=
(
γ ′ ◦ (ψ⊗φ)

)
(B⊗A).

The statement then follows from the linearity of the maps (φ⊗ψ) ◦ γ and γ ′ ◦ (ψ⊗φ). �

Proof of Theorem 5.6. Let φ : A → A ′ and ψ : B → B ′ be a ∗-isomorphisms, E ′ = ψ ◦ E ◦

φ−1, E
′
= φ ◦ E ◦ψ−1, ρ ′ = φ(ρ), and let γ ′ : B ′ ⊗ A ′ → A ′ ⊗ B ′ be the lexicographic swap

isomorphism. Then covariance of states over time (4.5) yields

(φ⊗ψ)(E ⋆ ρ) = E ′
⋆φ(ρ) & (ψ⊗φ)

(
E ⋆ E(ρ)

)
= E

′
⋆ψ(E(ρ)). (5.10)

We then have

E ′
⋆φ(ρ)

(5.10)
= (φ⊗ψ)(E ⋆ ρ)

(5.5)
= (φ⊗ψ)

(
γ
(
E ⋆ E(ρ)

))

= (φ⊗ψ) ◦ γ)
(
E ⋆ E(ρ)

)

(5.9)
=

(
γ ′ ◦ (ψ⊗φ)

) (
E ⋆ E(ρ)

)

= γ ′
(
(ψ⊗φ)

(
E ⋆ E(ρ)

))

(5.10)
= γ ′

(
E
′
⋆ψ(E(ρ))

)

= γ ′
(
E
′
⋆ E ′(φ(ρ))

)

= γ ′
(
E
′
⋆ E ′(ρ ′)

)
,

thus (5.7) holds. �
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6 Concluding remarks

In this work, we formulated a precise mathematical notion of general covariance for the theory

of quantum states over time. We also defined the propagator condition (3.3) for systems of

quantum states over time, which combined with the recent uniqueness results for state over

time functions appearing in [8, 12], yields a canonical system of states over time associated

with quantum systems evolving under general CPTP dynamics. We then proved that such a

canonical system of states over time is indeed covariant, and we were also able to prove that

the dynamical quantum Bayes’ rule is generally covariant as well.

While the theory of quantum states over time has yet to develop fundamental dynamical

laws analogous to general relativity, it is our hope that the establishment of general covariance

will help provide a foundation for the search of physical laws formulated in terms of quantum

states over time. In particular, such a physical law should take the form of

G(ρ,E1, ...,En) = T(ρ,E1, ...,En), (6.1)

where (E1, ...,En) is an n-chain to be determined via (6.1) and initial state ρ. If equation (6.1) is

taking place in A0 ⊗ · · · ⊗ An, then similar to the dynamical quantum Bayes’ rule (5.5), such a

law should transform covariantly with the associated quantum states over time. More precisely,

for every (n+ 1)-tuple of ∗-isomorphisms (φ0 : A0 → A ′
0, ...,φn : An → A ′

n), we should have

(φ0 ⊗ · · · ⊗φn)
(
G(ρ,E1, ...,En)

)
= G(ρ ′,E ′

1, ...,E ′
n)

and

(φ0 ⊗ · · · ⊗φn)
(
T(ρ,E1, ...,En)

)
= T(ρ ′,E ′

1, ...,E ′
n),

where ρ ′ = φ0(ρ) and E ′
k = φk ◦ Ek ◦φ

−1
k−1 for all k ∈ [n]. In such a case, equation (6.1) holds if

and only if the equation

G(ρ ′,E ′
1, ...,E ′

n) = T(ρ ′,E ′
1, ...,E ′

n)

holds as well, which we view as general covariance for the (hypothetical) physical law associ-

ated with (6.1).

A Covariance of canonical broadcasting

Proposition A.1 (Covariance of canonical broadcasting). Let φ : A → A ′ be a ∗-isomorphism.

Then

BA ′ ◦φ = (φ⊗φ) ◦BA . (A.2)

Proof. First, note that (A.2) is equivalent to the equation

φ−1 ◦B∗
A ′ ◦ (φ⊗φ) = B∗

A
, (A.3)
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where B∗
A

and B∗
A ′ denote the Hilbert-Schmidt adjoints of BA and BA ′ . As such, the statement

is proved if we show (A.3) holds. Indeed, for all A1,A2 ∈ A we have

(
φ−1 ◦B∗

A ′ ◦ (φ⊗φ)
)
(A1 ⊗A2) = φ−1

(
B∗

A ′(φ(A1)⊗φ(A2))
)

= φ−1

(
1

2
(µA ′(φ(A1)⊗φ(A2)) + µ̃A ′(φ(A1)⊗φ(A2)))

)

= φ−1

(
1

2
(φ(A1)φ(A2) +φ(A2)φ(A1))

)

=
1

2
(A1A2 +A2A1)

=
1

2
(µA(A1 ⊗A2) + µ̃A(A1 ⊗A2))

= B∗
A
(A1 ⊗A2),

thus (A.3) holds. �

B Covariance of bloom maps

Theorem B.1 (Covariance of bloom maps). Let φ : A → A ′ and ψ : B → B ′ be ∗-isomorphisms,

and suppose E ∈ TP(A , B) and E ′ ∈ TP(A ′, B ′) are such that ψ ◦ E = E ′ ◦φ. Then

(φ⊗ψ) ◦
!

(E) =
!

(E ′) ◦φ . (B.2)

Proof. Indeed,

(φ⊗ψ) ◦

!

(E) = (φ⊗ψ) ◦ (idA ⊗ E) ◦BA

= (φ⊗ (ψ ◦ E)) ◦BA

=
(
φ⊗ (E ′ ◦φ)

)
◦BA

=
(
(idA ′ ◦φ)⊗ (E ′ ◦φ)

)
◦BA

= (idA ′ ⊗ E ′) ◦ (φ⊗φ) ◦BA

(A.2)
= (idA ′ ⊗ E ′) ◦BA ◦φ

=

!

(E ′) ◦φ,

as desired. �

C Covariance of 2-blooms

Definition C.1. Let (φ : A → A ′, ψ : B → B ′, ϑ : C → C ′) be a 3-tuple of ∗-isomorphisms. Two

2-chains (E,F) ∈ TP(A , B , C ) and (E ′,F ′) ∈ TP(A ′, B ′, C ′) are said to be (φ,ψ, ϑ)-equivalent if

and only if ψ ◦ E = E ′ ◦φ and ϑ ◦ F = F ′ ◦ψ.
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Lemma C.2. Suppose (E,F) ∈ TP(A , B , C ) and (E ′,F ′) ∈ TP(A ′, B ′, C ′) are (φ,ψ, ϑ)-equivalent.

Then

(ψ⊗ ϑ) ◦

!

(F) ◦ E =

!

(F ′) ◦ E ′ ◦φ . (C.3)

Proof. Since (E,F) ∈ TP(A , B , C ) and (E ′,F ′) ∈ TP(A ′, B ′, C ′) are (φ,ψ, ϑ)-equivalent we have

ψ ◦ E = E ′ ◦φ (C.4)

and

ϑ ◦ F = F ′ ◦ψ, (C.5)

thus

(ψ⊗ ϑ) ◦

!

(F) ◦ E = (ψ⊗ ϑ) ◦ (idB ⊗ F) ◦BB ◦ E

= (ψ⊗ (ϑ ◦F)) ◦BB ◦ E
(C.5)
= (ψ⊗ (F ′ ◦ψ)) ◦BB ◦ E

= (idB ′ ⊗ F ′) ◦ (ψ⊗ψ) ◦BB ◦ E
(A.2)
= (idB ′ ⊗ F ′) ◦BB ′ ◦ψ ◦ E

(C.4)
=

!

(F ′) ◦ E ′ ◦φ,

as desired. �

Definition C.6. The bloom of a 2-chain (E,F) ∈ TP(A , B , C ) is the map
!

(E,F) ∈ TP(A , A ⊗

B ⊗ C ) given by

!

(E,F) =

!

(

!

(F) ◦ E).

Theorem C.7 (Covariance of 2-blooms). Suppose (E,F) ∈ TP(A , B , C ) and (E ′,F ′) ∈ TP(A ′, B ′, C ′)

are (φ,ψ, ϑ)-equivalent. Then

(φ⊗ψ⊗ ϑ) ◦

!

(E,F) =

!

(E ′,F ′) ◦φ . (C.8)

Proof. Let Ẽ =

!

(F) ◦ E, Ẽ ′ =

!

(F ′) ◦ E ′, φ̃ = φ and ψ̃ = ψ⊗ ϑ. By (C.3) we have ψ̃ ◦ Ẽ = Ẽ ′ ◦ φ̃,

thus by (B.2) we have (φ̃⊗ ψ̃) ◦

!

(Ẽ) =

!

(Ẽ ′) ◦ φ̃, which when written without the substitutions

yields

(φ⊗ψ⊗ ϑ) ◦

!

(

!

(F) ◦ E) =

!

(

!

(F ′) ◦ E ′) ◦φ . (C.9)

We then have

(φ⊗ψ⊗ ϑ) ◦

!

(E,F) = (φ⊗ψ⊗ ϑ) ◦

!

(

!

(F) ◦ E)
(C.9)
=

!

(

!

(F ′) ◦ E ′) ◦φ

=

!

(E ′,F ′) ◦φ,

as desired. �
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D Covariance of n-blooms

Definition D.1. Let
(
φ0 : A0 → A ′

0, ...,φn : An → A ′
n

)
be an (n + 1)-tuple of ∗-isomorphisms.

Two n-chains (E1, ...,En) ∈ TP(A0, ..., An) and (E ′
1, ...,E ′

n) ∈ TP(A ′
0, ..., A ′

n) are said to be

(φ0, ...,φn)-equivalent if and only if for all i ∈ [n] we have φi ◦ Ei = E ′
i ◦φi−1.

Lemma D.2. Suppose (E1, ...,En) ∈ TP(A0, ..., An) and (E ′
1, ...,E ′

n) ∈ TP(A ′
0, ..., A ′

n) are (φ0, ...,φn)-

equivalent. Then (E1,

!

(E3, ...,En) ◦ E2) and (E ′
1,

!

(E ′
3, ...,E ′

n) ◦ E ′
2) are (φ0,φ1,φ2 ⊗ · · · ⊗ φn)-

equivalent.

Proof. We use induction on n > 2. The case n = 2 follows by definition. Now suppose the

result holds for n = m− 1 with m > 2. Since we already have φ1 ◦ E1 = E ′
1 ◦φ0, the result then

follows once we show

(φ2 ⊗ · · · ⊗φm) ◦

!

(E3, ...,Em) ◦ E2 =

!

(E ′
3, ...,E ′

m) ◦ E
′
2 ◦φ1. (D.3)

So let Ẽ3 =

!

(E4, ...,Em) ◦ E3, Ẽ ′
3 =

!

(E ′
4, ...,E ′

m) ◦ E
′
3, and let φ̃3 = φ3 ⊗ · · · ⊗φm (if m = 3 then

Ẽ3 = E3 and φ̃3 = φ3). Our inductive assumption applied to the (m − 1)-chain (E2, ...,Em)

yields

φ̃3 ◦ Ẽ3 = Ẽ ′
3 ◦φ2, (D.4)

thus by Theorem B.1 we have (φ2 ⊗ φ̃3) ◦

!

(Ẽ3) =

!

(Ẽ ′
3) ◦φ2, i.e.,

(φ2 ⊗ · · · ⊗φm) ◦
!

(
!

(E4, ...,Em) ◦ E3) =
!

(
!

(E ′
4, ...,E ′

m) ◦ E
′
3) ◦φ2. (D.5)

We then have

(φ2 ⊗ · · · ⊗φm) ◦

!

(E3, ...,Em) ◦ E2 = (φ2 ⊗ · · · ⊗φm) ◦

!

(

!

(E4, ...,Em) ◦ E3) ◦ E2

(D.5)
=

!

(

!

(E ′
4, ...,E ′

m) ◦ E
′
3) ◦φ2 ◦ E2

=

!

(E ′
3,E ′

4, ...,E ′
m) ◦ E

′
2 ◦φ1,

where the final equality follows from the fact that φ2 ◦ E2 = E ′
2 ◦φ1, thus concluding the proof.

�

Lemma D.6. Suppose (E1, ...,En) ∈ TP(A0, ..., An) and (E ′
1, ...,E ′

n) ∈ TP(A ′
0, ..., A ′

n) are (φ0, ...,φn)-

equivalent. Then

(φ1 ⊗ · · · ⊗φn) ◦

!

(E2, ...,En) ◦ E1 =

!

(E ′
2, ...,E ′

n) ◦ E
′
1 ◦φ0 . (D.7)

Proof. Let E = E1 and F =

!

(E3, ...,En) ◦ E2, so that E ′ = E ′
1 and F ′ =

!

(E ′
3, ...,E ′

n) ◦ E
′
2. By

Lemma D.2 it follows that (E,F) and (E ′,F ′) are (φ0,φ1,φ2 ⊗ · · · ⊗ φn)-equivalent, thus by

Lemma C.2 we have

(φ1 ⊗φ2 ⊗ · · · ⊗φn) ◦

!

(F) ◦ E =

!

(F ′) ◦ E ′ ◦φ0

which when written without the substitutions is precisely (D.7), as desired. �
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Theorem D.8 (Covariance of n-blooms). Suppose (E1, ...,En) ∈ TP(A0, ..., An) and (E ′
1, ...,E ′

n) ∈

TP(A ′
0, ..., A ′

n) are (φ0, ...,φn)-equivalent. Then

(φ0 ⊗ · · · ⊗φn) ◦

!

(E1, ...,En) =

!

(E ′
1, ...,E ′

n) ◦φ0 . (D.9)

Proof. Let E =

!

(E2, ...,En) ◦ E1, E ′ =

!

(E ′
2, ...,E ′

n) ◦ E
′
1, φ = φ0, and ψ = φ1 ⊗ · · · ⊗ φn. By

Lemma D.6 equation (D.7) holds, i.e., ψ ◦ E = E ′ ◦ φ. It then follows from Theorem B.1 that

(φ⊗ψ) ◦

!

(E) =

!

(E ′) ◦φ, which when written without the substitutions yields

(φ0 ⊗ · · · ⊗φn) ◦

!

(

!

(E2, ...,En) ◦ E1) =

!

(

!

(E ′
2, ...,E ′

n) ◦ E
′
1) ◦φ0.

And since

!

(E1, ...,En) =

!

(

!

(E2, ...,En) ◦ E1) and

!

(E ′
1, ...,E ′

n) =

!

(

!

(E ′
2, ...,E ′

n) ◦ E ′
1), the result

follows. �
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