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Abstract

In recent years, there has been a growing interest in leveraging deep learning
and neural networks to address scientific problems, particularly in solving
partial differential equations (PDEs). However, many neural network-based
methods like PINNs rely on auto differentiation and sampling collocation
points, leading to a lack of interpretability and lower accuracy than tradi-
tional numerical methods. As a result, we propose a fully unsupervised ap-
proach, requiring no training data, to estimate finite difference solutions for
PDEs directly via small linear convolutional neural networks. Our proposed
approach uses substantially fewer parameters than similar finite difference-
based approaches while also demonstrating comparable accuracy to the true
solution for several selected elliptic and parabolic problems compared to the
finite difference method.

Keywords: Convolutional neural networks, unsupervised learning, partial
differential equations, finite difference

1. Introduction

Partial differential equations (PDEs) of elliptic and parabolic type are
ubiquitous in the mathematical modeling of many physical phenomena and
thus see wide application to many real-world problems. Classical numerical
methods (i.e., finite difference and element methods) introduce a compu-
tational mesh over which we define representations of differential operators
with matrices. This results in large linear systems whose efficient solution
presents several computational challenges. Physics informed neural networks
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Figure 1: Properties of classical PINNs, numerics informed neural networks (NINNs), and
numerical PDEs.

(PINNs) have recently gained popularity in solving PDEs [1, 2, 3, 4, 5, 6].
This approach uses the universal approximation property of deep neural net-
works to train a surrogate model (i.e., the neural network) of the solution to
a given PDE.

A vital aspect of PINNs is using auto differentiation to compute a residual-
based loss function for a set of sampled collocation points [7]. While PINNs
represent a mesh-free solution and have shown promise in multiple fields like
biology [8, 9], meteorology [10], and optimal control [11, 12], this reliance
on auto differentiation and sampling results in a lack of interpretability and
lower accuracy than traditional numerical methods [13]. Choosing colloca-
tion points involves sampling random points from a uniform distribution on
the computational domain, and it is unclear how many points are required
to achieve acceptable results for a given PDE [13, 7, 14]. Additionally, while
networks can express very complex functions, determining the appropriate
architecture and number of parameters to solve a specific PDE can be chal-
lenging [15, 16, 17]. If a specific PDE requires a neural network with many
parameters, it will increase the memory and time costs required for train-
ing. Finally, the generalization capability of PINNs to points outside their
training domains is unclear, and a topic of ongoing research [18].

While traditional numerical methods (such as finite difference and finite
element methods) are computationally expensive, they are highly structured
and can guide the design of neural network-based methods so that they
output explainable solutions and are more computationally efficient. If we
constrain a neural network-based approach to mirror a numerical method,
it is reasonable to expect solutions from the neural network to be close to
those of a numerical method with known error bounds. Additionally, the
structure of numerical methods makes it possible to get away with using
simpler neural networks that converge to small loss values. Examples of such
neural network-based methods include the Deep Ritz and Deep Galerkin
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methods [19, 20, 21]. Both of these methods incorporate aspects of finite
element methods, allowing for faster convergence during training by utilizing
the structure and properties of the numerical method that inspired them.

This work proposes a finite difference-based approach to approximating
solutions to elliptic and parabolic PDEs that utilizes small, linear convolu-
tional neural networks (CNNs). Figure 1 displays the properties of our pro-
posed method which we call a “numerics informed neural network” (NINN),
classical PINNs, and numerical PDEs. Our choice of architecture, inspired
by the PocketNet paradigm [22], uses CNNs that closely mirror geometric
multigrid methods to almost exactly recover finite difference solutions with
fewer parameters than other CNN-based methods. To the best of our knowl-
edge, we are also the first to propose using linear CNNs, which do not use
non-linear activation functions, to learn finite difference solutions.

Finite difference methods have inspired the construction of various neural
networks [13, 23], but these methods require training data. The recent work
[24] solves elliptic PDEs with constant diffusion, and it shares the following
similarities with our proposed numerical method: no training data is needed,
and the loss function is derived from the five-point stencil of the finite differ-
ence approximation. However, our loss function is different as it incorporates
the Dirichlet boundary condition in a weighted fashion, whereas [24] directly
enforces the boundary condition outside of the loss function (more details in
Section 4). We also define the method for elliptic PDEs with non-constant
diffusion coefficients and extend it to time-dependent problems. Another
key feature of our method is using small neural networks, which makes it
computationally efficient.

An outline of the paper is as follows. Section 2 introduces the model
problem, the network architecture and the loss function. Section 3 describes
the algorithms for both steady-state and time-dependent problems. Results
and discussion are presented in Section 4. Conclusions follow.

2. Material and Methods

We propose a fully unsupervised method for estimating finite differences
solutions to partial differential equations via convolutional neural networks.
In contrast to existing deep learning-based methods, our approach is fully
unsupervised. In other words, our approach does not require training data
and estimates the solution to a given PDE directly via the optimization
process, also called the training process.

3



2.1. Elliptic Problems

Let Ω ⊂ R2 be an open set. Given a function f : Ω → R and diffusion
coefficients κ, we consider the 2D Poisson problem with solution u : Ω → R
such that

−∇ · (κ∇u) = f in Ω,

u = g on ∂Ω.
(1)

We begin with the case when κ is constant and assume that κ = 1. For read-
ibility, we assume that Ω is the square domain (0, L)2, that is partitioned
into a uniform grid of N × N squares with size h = L/N . The methodol-
ogy presented in the paper can be easily extended to rectangular domains.
We first recall the standard finite difference method based on the five-point
stencil, applied to (1). Let V0 (resp. V∂) be the set of indices (i, j) such that
the point (xi, yj) = (ih, jh) belongs to the interior (resp. boundary) of Ω.

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

h2
= f(xi, yj), ∀(i, j) ∈ V0, (2)

ui,j = g(xi, yj), ∀(i, i) ∈ V∂. (3)

The finite difference solution uh is a vector with entries ui,j satisfying (2)-(3)
and it is known that for smooth enough solutions u and small enough h, the
value ui,j is a good approximation of u(xi, yj). One can rewrite (2) in terms
of a discrete convolutional operator ⋆ and convolutional kernel K∆ defined
as:

K∆ =
1

h2

 0 −1 0
−1 4 −1
0 −1 0

 . (4)

We use the shorthand notation fi,j = f(xi, yj). The equivalent form for (2)
is

(K∆ ⋆ uh)i,j = fi,j, ∀(i, j) ∈ V0. (5)

For a given kernel K ∈ R3×3, the convolution operator ⋆ is defined by

(K ⋆ uh)i,j =
1∑

p=−1

1∑
q=−1

Kp,q ui+p,j+q. (6)
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With this convolution-based discretization, we can now reformulate the finite
difference approximation of (1) as a convex optimization problem given by

(7)argmin
uh

∑
(i,j) ∈V0

(
(K∆ ⋆ uh)i,j − fi,j

)2

+
∑

(i,j) ∈V∂

(
(uh)i,j − gi,j

)2

.

We obtain an approximate solution û to (7) by training a neural network
Nθ : RN×N → RN×N with trainable parameters θ ∈ RM . We propose to
train Nθ using the unsupervised loss function Lα : RN×N → R given by

Lα(û) = α
∑

(i,j)∈V0

(
(K∆ ⋆ û)i,j − fi,j

)2

+ (1− α)
∑

(i,j)∈V∂

(ûi,j − gi,j)
2 , (8)

where α = h2/4 is a weighting term. The idea behind this loss function is
to directly estimate the finite difference approximation to (1) without using
any training data. Specifically, we use f as the input to the CNN and we
performM updates of the parameters in the neural network Nθ, using the
loss function defined above. Algorithm 1 in Section 3 outlines this training
procedure in more detail.

In the case where κ is piecewise constant, κ = (κi,j), we use the following
finite difference discretization

− 1

h2

(
κi+ 1

2
,j(ui+1,j − ui,j)− κi− 1

2
,j(ui,j − ui−1,j)

)
− 1

h2

(
κi,j+ 1

2
(ui,j+1 − ui,j)− κi,j− 1

2
(ui,j − ui,j−1)

)
= fi,j, (9)

where the interface values κi+ 1
2
,j, κi− 1

2
,j, κi,j+ 1

2
, and κi,j− 1

2
are the harmonic

averages of κi,j given by

κi+ 1
2
,j =

2
1

κi+1,j
+ 1

κi,j

κi− 1
2
,j =

2
1

κi,j
+ 1

κi−1,j

κi,j+ 1
2
=

2
1

κi,j+1
+ 1

κi,j

κi,j− 1
2
=

2
1

κi,j
+ 1

κi,j−1

.
(10)

The interface values necessitate the imposition of a half-grid (also called
dual grid) onto our original grid. As a result, we modify our neural network
prediction via a dilation operator D : RN×N → R(2N−1)×(2N−1) such that

D(û)i,j =

{
û1+ i−1

2
,1+ j−1

2
, if i and j are odd

0, otherwise.
(11)
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Additionally, we map κ from the original grid to the dual grid by applying
the following steps:
Step 1: apply the dilation operator to obtain κ∗ ∈ R(2N−1)×(2N−1):

κ∗ = D(κ). (12)

Step 2: update the values of κ∗ on the half-grid:

κ∗i,j =

2
(

1
κ∗
i−1,j

+ 1
κ∗
i+1,j

)−1
, if i odd and j even

2
(

1
κ∗
i,j−1

+ 1
κ∗
i,j+1

)−1
, if i even and j odd

(13)

Step 3: set to zero the values of κ∗ that would correspond to the values on
the original grid:

κ̃ =
(
1(2N−1)×(2N−1) −D(1N×N)

)
⊙ κ∗. (14)

In the equation above, 1N×N is an N × N matrix with all entries equal to
one, and ⊙ is the Hadamard or pointwise product.

We now introduce the following convolution kernels

T↑ =


0 0 1 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0

 P↑ =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


T← = −T T

↑ P← = P T
↑

T↓ =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 −1 0 0

 P↓ =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0


T→ = −T T

↓ P→ = P T
↓ ,

(15)

which will allow us to rewrite (9) as follows:

− 1

h2
((T↑ ⋆ D(u))⊙ (P↑ ⋆ κ̃)− (T↓ ⋆ D(u))⊙ (P↓ ⋆ κ̃)

+ (T→ ⋆ D(u))⊙ (P→ ⋆ κ̃)− (T← ⋆ D(u))⊙ (P← ⋆ κ̃))i,j = fi,j, ∀i, j ∈ V0,

(16)
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which is then used in the first term of the loss function (8) to train our
neural network. The same training process outlined in Algorithm 1 applies
here. Note that in (16), the convolution operator ⋆ uses a stride of two
because of the dual grid and the use of larger convolution kernels.

2.2. Parabolic Problems

We generalize the method described in the previous section to time-
dependent problems. We propose a modified loss function that incorporates
the backward Euler method to address the time derivative. Consider the
following parabolic problem on a square domain Ω and for the time interval
[t0, T ].

∂u

∂t
−∆u = f in Ω× (t0, T ],

u = g on ∂Ω× (t0, T ],

u(·, t0) = u0 in Ω× {t0}.

(17)

Let τ > 0 be the time step size. At each time step, tn = nτ , the finite
difference solution denoted by un

h solves the following optimization problem

argmin
un
h

∑
(i,j)∈V0

(
un
i,j − un−1

i,j − τ
(
fn
i,j − (K∆ ⋆ un

h)i,j

))2

+
∑

(i,j)∈V∂

(
un
i,j − gni,j

)2
. (18)

Above we use the short-hand notation fn
i,j = f(xi, yj, t

n) and gni,j = g(xi, yj, t
n).

Here, the unknowns un
i,j are the approximations of the solution u evaluated

at the point (xi, yj) and time tn. We then use the following loss function to
train our CNN at each time step

Lα,τ (û
n, ûn−1, tn) =α

∑
(i,j)∈V0

(
ûn
i,j − ûn−1

i,j − τ
(
fn
i,j − (K∆ ⋆ ûn)i,j

))2

+ (1− α)
∑

(i,j)∈V∂

(
ûn
i,j − gni,j

)2
. (19)

Again, we will choose the weight α = h2/4. The key difference between (8)
and (19) is that we minimize at each time step. The input to the CNN at
each time step is the previous solution ûn−1 and the output is the solution at
the time step tn. Algorithm 2 in Section 3 outlines this training procedure
in more detail.
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2.3. Network Architecture

We select as our architecture the widely used U-Net [25]. The U-Net was
initially designed for image segmentation tasks but is successful in several
scientific machine learning tasks [26, 27, 28]. The architecture consists of
convolution block operators (blocks), a downsampling (or encoding) path,
and an upsampling (or decoding) path. A channel-wise concatenation opera-
tion links each layer in the downsampling and upsampling paths. Each block
consists of two 2D convolution layers. Unlike most implementations of the
U-Net architecture [25, 29, 30], we omit normalization (i.e., batch or instance
normalization) and do not apply a non-linear activation function like ReLU
and use the identity function instead (see Section 4). Additionally, we use
the PocketNet approach proposed in [22] and leave the number of feature
maps (channels) at each resolution within our architecture constant, namely
32. Figure 2 sketches the U-Net architecture for different network depths.
We define the depth, d, of each network to be the number of downsampling
operations present in the network. The size of the feature tensor is halved
from depth d to depth d+ 1.

Figure 2: Sketch of U-Net architecture for different network depths: 0 ≤ d ≤ 4.

2.4. Data

2.4.1. Elliptic Problem Data

We test our proposed approach for elliptic problems on four different test
cases. Unless otherwise specified, the domain is the unit square.

The Bubble Function. In the first test case, (1) is solved with data chosen
such that the exact solution is the bubble function

u(x, y) = x(x− 1)y(y − 1). (20)
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This function is symmetric, and we apply homogeneous zero Dirichlet bound-
ary conditions. Note that for this function, one can show that the five-point
stencil scheme given by (2) applied to the bubble function gives exactly −∆u
evaluated at the grid point (xi, yj), which implies that the finite difference
approximation is exact.

The “Peak” Function. In the second case, we want to test the effectiveness
of our strategy when the solution has high gradients and is non-symmetric.
Hence, we select data such that the exact solution is the “peak” function

u(x, y) = 0.0005 (x(x− 1)y(y − 1))2 e10x
2+10y. (21)

The Exponential-Trigonometric Function. We test our approach on a func-
tion with non-homogeneous Dirichlet boundary conditions in the third case.
We select data such that the exact solution is the exponential-trigonometric
function given by

u(x, y) = e−x
2−y2 sin(3πx) sin(3πy) + x. (22)

Non-Constant and Discontinuous Diffusion. To test how our approach fairs
on problems with low regularity, we consider an example with a non-constant,
discontinuous diffusion coefficient taken from [31]. The problem is posed on
the square domain Ω = (−1, 1)2 which we divide into four subdomains Ωi

corresponding to the quadrants of the Cartesian plane. On each subdomain,
κ is constant and takes the values κ1 = κ3 = 5 and κ2 = κ4 = 1. The exact
solution takes the form

rβ(ai sin(βθ) + bi cos(βθ)), (23)

where (r, θ) are the polar coordinates of a given point in Ω, ai, bi are constants
that depend on the subdomains (see [31] for exact values). This discontinuity
in the diffusion coefficient introduces a singularity in the solution at the
origin, namely the function belongs to the Sobolev space H1+β(Ω), with
β ≈ 0.5354.

2.4.2. Parabolic Problem Data

We test our proposed approach for parabolic problems on three different
test cases.
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The Trigonometric Function. In the first two cases, (17) is solved with data
such that the exact solution is given by the trigonometric function

u(x, y, t) = cos(t) sin(nπx) sin(nπy). (24)

In the first case, we select n = 1, which gives a symmetric function with a
single peak. In the second case, we set n = 4, which results in 16 peaks and
troughs in our domain.

The Gaussian Function. In the third case, we test our approach on a Gaus-
sian function centered on the point

(
1
2
, 1
2

)
u(x, y, t) = cos(t)e−50((2x−1)

2+(2y−1)2). (25)

2.5. Training and Testing Protocols

We use the Adam optimizer [32] and 5×5 convolutional kernels in each
layer. The initial learning rate is 0.001 for the steady-state elliptic prob-
lems and 0.0001 for parabolic problems. During training, we use L2 reg-
ularization with a penalty of 10−7 and the norm of the network’s gradi-
ent is clipped so that it is no greater than 10−2. Our models are imple-
mented in Python using TensorFlow (v2.12.0) and trained on an NVIDIA
Quadro RTX 6000 GPU [33]. All network weights are initialized using
the default TensorFlow initializers. All other hyperparameters are left at
their default values. The code for our network architecture is available at
https://github.com/aecelaya/pde-nets.

To assess the accuracy of our predicted solutions, we use the following
norms of the error between the exact solution u and its approximate û for
steady-state problems:

||u− û||2,h = h

√ ∑
(i,j)∈V0∪V∂

(u(xi, yj)− ûi,j)2 (26)

||u− û||∞ = max
(i,j)∈V0∪V∂

|u(xi, yj)− ûi,j|. (27)

For time-dependent problems, similar errors are computed at the final time
T .

10
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3. Calculation

We use Algorithm 1 to approximate a solution û to (1). In this algorithm,
we start by initializing the neural network Nθ with trainable parameters θ.
In this case, we use the U-Net architecture described in Section 2.3. We
set the maximum number of optimization stepsM as the stopping criterion
for the algorithm. We then begin the minimization (or training) process by
generating a prediction from our neural network with the source term f as the
input. Given the current prediction, we compute the loss value and update
the network weights via backpropagation. If the loss value from the current
prediction is less than the previous best value, we update our best loss and
save the current prediction. Algorithm 1 fully outlines this procedure.

Algorithm 1 Unsupervised CNN Training For (1)

Input Right-hand side f and boundary condition g
Output Approximate solution to (7), û∗

1: Randomly initialize the network parameters θ
2: Set maximum iterationsM
3: k ← 0 ▷ Iteration counter
4: ℓ∗ ← +∞ ▷ Store smallest loss value
5: while k <M do
6: û← Nθ(f) ▷ Get network prediction
7: ℓ← Lα(û) ▷ Compute loss
8: Update θ using backpropagation on ℓ
9: if ℓ < ℓ∗ then

10: û∗ ← û ▷ Save best prediction
11: ℓ∗ ← ℓ ▷ Update smallest loss value

12: k ← k + 1

We use Algorithm 2 to approximate a solution ûNT to (17), whereNT is an
integer such that T = NT τ . Like with Algorithm 1, we randomly initialize
a U-Net and set a maximum number of optimization steps as a stopping
criterion. However, in this case, the maximum number of steps applies to
each time step. We then set the initial condition as the previous solution.
We apply nearly the same steps for each time step as with Algorithm 1.
Namely, we produce a candidate prediction from our neural network with
the previous solution as the input. We compute the loss value and update
the network weights via backpropogation on the loss. If the loss value is lower
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than the previously observed lowest loss value, then we update our lowest
loss value and save the current prediction. At the end of this process, we
set the previous solution to the best current solution. This process continues
for every time step. Algorithm 2 fully outlines this procedure. Note that
in this algorithm, we do not reinitialize our neural network weights at each
time step. Instead, we use the previous network configuration as the initial
state for the next time step.

Algorithm 2 Unsupervised CNN Training For (17)

Input Number of time steps NT , final time T , initial condition u0,
right hand side f , and boundary condition g
Output Approximate solution to (18) at final time ûNT

1: Randomly initialize the network parameters θ
2: Set maximum iterationsM
3: τ ← T/NT ▷ Initialize time step size
4: n← 1 ▷ Time step counter
5: while n ≤ NT do
6: k ← 0 ▷ Iteration counter
7: ℓ∗ ← +∞ ▷ Store smallest loss value
8: while k <M do
9: w ← Nθ(û

n−1) ▷ Get network prediction
10: ℓ← Lα,τ (w, û

n−1, nτ) ▷ Compute loss
11: Update θ using backpropagation on ℓ
12: if ℓ < ℓ∗ then
13: ûn ← w ▷ Save best prediction
14: ℓ∗ ← ℓ ▷ Update smallest loss value

15: k ← k + 1

16: n← n+ 1

4. Results and Discussion

Using the methods described in Section 2 and Algorithm 1, we approxi-
mate the finite difference solution to the elliptic problems defined in Section
2.4.1 with constant diffusion coefficients (i.e., κ = 1). Table 1 shows the
accuracy of our unsupervised predictions for a varying grid size and number
of optimization steps. We fix the depth of our U-Net architecture to three in
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this case. For reference, Table 3 shows the accuracy of the finite difference
method for varying grid sizes. For the peak and exponential-trigonometric
functions, our approach almost exactly recovers the finite difference solution.
We do not, however, see this for the bubble function example. In that case,
the solution of the finite difference method is exact. Under our selected set-
tings (i.e., depth and optimization steps), our method stops at an error of
approximately 10−6 in the ||·||2,h norm for the bubble function example. The
cause of this discrepancy between our method applied to the bubble function
and the finite difference solution is due mostly to the fact that single-precision
is used to train the neural networks. Values of the order 10−6 mean that we
are very close to machine epsilon (10−7). Another factor is the use of stochas-
tic, gradient-based optimizers. While the Adam optimizer is not stochastic
in this case since we are not training with mini-batches of data, it is still true
that we are using non-optimal step sizes. Therefore, we hypothesize that
the method is getting stuck at errors O(10−6) instead of reaching machine
epsilon values O(10−7) in single-precision.

Figure 3 shows the true solution, predicted solution, and absolute differ-
ence for the bubble, peak, and exponential-trigonometric cases on a 128×128
grid. This figure shows that for every case, our unsupervised algorithm pro-
duces visually indistinguishable solutions from the true solution in each case.
To give more insight into our method’s performance, we show the loss func-
tion for one of the test cases (the bubble function) in Figure 4. Here, we
observe that our loss function reaches values that are machine epsilon for
single precision (on the order of 10−7). Similar loss function values are ob-
served for the other cases, indicating that we have reached convergence.

We also want to study the network depth’s effect on our predictions’
accuracy. Table 2 shows the accuracy of our unsupervised neural network
predictions for varying grid sizes and U-Net depths. We set the number of
optimization steps to 4,000. Here, we see that the depth of the U-Net archi-
tectures does not appear to have a significant effect on the accuracy of our
predictions. The only notable exceptions are for the bubble and exponential-
trigonometric functions on a 128×128 grid with a depth equal to two. This
discrepancy may be caused by the network not capturing sufficiently rich
features on the finer grid. The fact that we see a decrease in the errors be-
tween our predictions and the true solution to those comparable to the finite
difference method as we increase the depth to three or greater supports this
hypothesis. Note that for coarser grids (i.e., fewer grid points), we do not
test higher network depths since the size of the features (the output of each

13



layer) at the coarser grids in such networks would be smaller than the size
of the convolutional kernels in the network.

The results of Algorithm 1 for the non-constant diffusion problem de-
fined in Section 2.4.1 are shown in Table 4. Here, we see more significant
errors than with the constant diffusion problems. Figure 5 shows the true
solution, predicted solution, and absolute difference for the non-constant dif-
fusion problem on a 128×128 grid. This figure shows that the errors are
mostly concentrated around the discontinuities in κ. We do not compare
this to the finite difference method because the exact solution exhibits a sin-
gularity at the origin. Indeed, the gradient of the exact solution blows up at
the point (0, 0).

Because the finite difference solution solves the convex minimization prob-
lem (7), the finite difference approximation’s accuracy limits our approach’s
accuracy. This explains the relatively poor performance in the case of dis-
continuous diffusion. It is well known that, due to the singularity at the
origin, the exact solution to the discontinuous diffusion problem belongs to
the Sobolev space H1+β(Ω), where β ≈ 0.5354 [31]. Hence, the finite differ-
ence method, which requires more regularity, performs poorly.

Problem M N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Bubble

500 4.7521e-05 5.2953e-04 4.8521e-05 8.2744e-04 4.2407e-04 1.6607e-03

1,000 2.5330e-05 2.4341e-04 2.1550e-05 3.4875e-04 1.3244e-04 5.3431e-04

2,000 1.4457e-05 1.4313e-04 9.1955e-06 1.4581e-04 4.0090e-05 3.0874e-04

4,000 3.2266e-06 3.0962e-05 3.1159e-06 5.4674e-05 7.6852e-06 8.5074e-05

8,000 2.2661e-06 2.9351e-05 3.7016e-06 4.9231e-05 3.7105e-06 4.4149e-05

Peak

500 2.0066e-02 1.2398e-01 1.0361e-02 1.2776e-01 3.2611e-02 2.8655e-01

1,000 2.0603e-02 1.1937e-01 5.3352e-03 3.2162e-02 5.0469e-03 2.6498e-02

2,000 2.0594e-02 1.1934e-01 5.5620e-03 3.2176e-02 1.3510e-03 8.0407e-03

4,000 2.1275e-02 1.1932e-01 5.6542e-03 3.2192e-02 1.3851e-03 8.0365e-03

8,000 2.0616e-02 1.1933e-01 5.5843e-03 3.2196e-02 1.4042e-03 8.0850e-03

Exp-Trig

500 2.8224e-03 1.8145e-02 1.0084e-03 1.5877e-02 2.6316e-03 3.0236e-02

1,000 2.4582e-03 7.8004e-03 6.3506e-04 4.8903e-03 4.0585e-04 1.6215e-02

2,000 2.3809e-03 7.8190e-03 5.9138e-04 1.8863e-03 1.8116e-04 3.6817e-03

4,000 2.4604e-03 7.8169e-03 5.9671e-04 2.4966e-03 1.5110e-04 1.3024e-03

8,000 2.3742e-03 7.8151e-03 5.8227e-04 1.8845e-03 1.4478e-04 5.7032e-04

Table 1: Accuracy of unsupervised predictions for a varying grid size N , number of opti-
mization stepsM, and the depth of the U-Net set to three.
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Figure 3: (Top) Bubble function. (Middle) “Peak” function. (Bottom) Exponential
trigonometric function. From left to right, contour plots of true solution, predicted solu-
tion, and absolute difference. All predictions and solutions are on a 128×128 grid. Note
that µ = 10−6 in the colorbar for the bubble function difference.
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Figure 4: Loss values at each optimization step for the bubble function. Here, we use a
network depth of three, a grid size of 128×128, and 2,000 optimization steps.

Figure 5: From left to right, contour plots of true solution, predicted solution, and absolute
difference for the non-constant diffusion problem.
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Problem d # Params.
N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Bubble

2 283,713 3.2705e-06 3.8412e-05 2.8414e-06 4.1518e-05 5.4252e-04 1.9439e-03

3 412,225 3.2266e-06 3.0962e-05 3.1159e-06 5.4674e-05 7.6852e-06 8.5074e-05

4 541,889 - - 2.6481e-06 4.1081e-05 3.2062e-06 6.0881e-05

5 669,249 - - - - 2.8731e-06 9.5620e-05

Peak

2 283,713 2.1274e-02 1.1932e-01 5.6116e-03 3.2174e-02 1.4157e-03 7.9525e-03

3 412,225 2.1275e-02 1.1932e-01 5.6542e-03 3.2192e-02 1.3851e-03 8.0365e-03

4 541,889 - - 5.6673e-03 3.2192e-02 1.4087e-03 8.0848e-03

5 669,249 - - - - 1.4042e-03 8.0918e-03

Exp-Trig

2 283,713 2.4689e-03 7.8191e-03 5.9526e-04 1.8814e-03 2.8053e-02 7.5356e-02

3 412,225 2.4604e-03 7.8169e-03 5.9671e-04 2.4966e-03 1.5110e-04 1.3024e-03

4 541,889 - - 5.9509e-04 1.8855e-03 1.5166e-04 1.8679e-03

5 669,249 - - - - 1.4944e-04 1.2124e-03

Table 2: Accuracy of unsupervised predictions for varying grid sizes N and U-Net depths
d. We set the number of optimization steps to 4,000.

Problem
N = 32 N = 64 N = 128

||u− uh||2,h ||u− uh||∞ ||u− uh||2,h ||u− uh||∞ ||u− uh||2,h ||u− uh||∞
Bubble 1.3582e-16 2.8449e-16 2.4524e-16 6.8695e-16 8.1134e-16 1.9776e-15

Peak 1.7597e-02 1.1151e-01 5.3441e-03 3.1282e-02 1.3988e-03 7.9696e-03

Exp-Trig 2.2986e-03 7.3266e-03 5.7262e-04 1.8251e-03 1.4303e-04 4.5588e-04

Table 3: Finite difference errors for selected elliptic problems for comparison.

Problem M N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Non. Const.

Diff.

500 4.6597e-02 1.8380e-01 8.6890e-02 3.7069e-01 5.5651e-01 2.1105e+00

1,000 3.9795e-02 1.6035e-01 4.9640e-02 1.3376e-01 2.0766e-01 6.4809e-01

2,000 3.9718e-02 1.5799e-01 3.1458e-02 1.2455e-01 8.7473e-02 2.8797e-01

4,000 3.9713e-02 1.5794e-01 3.1224e-02 1.2258e-01 4.9868e-02 1.1281e-01

8,000 3.9710e-02 1.5800e-01 3.1045e-02 1.2221e-01 3.1002e-02 9.3761e-02

Table 4: Accuracy of unsupervised predictions on the non-constant diffusion problem for
a varying grid sizes N , number of optimization stepsM, and the depth of the U-Net set
to three.

Using the methods described in Section 2 and Algorithm 2, we approxi-
mate the finite difference solution to the parabolic problems defined in Section
2.4.2. The time step is τ = 0.1. Except for the first time step, we set the
number of optimization steps per time step to 250. Because we start with
randomly initialized weights in the first time step, we set the number of op-
timization steps to 1,000 in the first time step. Table 6 shows the accuracy

17



Problem d # Params.
N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Non. Const.

Diff.

2 283,713 3.9709e-02 1.5798e-01 3.1294e-02 1.2265e-01 3.3859e-02 1.4377e-01

3 412,225 3.9713e-02 1.5794e-01 3.1224e-02 1.2258e-01 4.9868e-02 1.1281e-01

4 541,889 - - 3.1110e-02 1.2282e-01 3.8937e-02 1.0907e-01

5 669,249 - - - - 3.6566e-02 1.0511e-01

Table 5: Accuracy of unsupervised predictions on non-constant diffusion problem for vary-
ing grid sizes N and U-Net depths d. We set the number of optimization steps to 4,000.

of our unsupervised predictions for varying grid sizes. For reference, Table
7 shows the accuracy of the finite difference method with backward Euler
for varying grid sizes. Here, we see that Algorithm 2 achieves comparable
accuracy to the finite difference method with backward Euler. However, we
do not see the same convergence as with the finite difference approach for
the trigonometric functions. The small number of optimization steps can
explain this lack of convergence and, again, the weakness of first-order op-
timizers like Adam. Figures 6 through 8 show the true solution, predicted
solution, and absolute difference for the first ten time steps of each prob-
lem. These figures show that our unsupervised approach produces visually
accurate solutions. Finally, Table 8 displays the errors for several choices
of activation functions at time t = 0.5. The errors are similar for ReLU,
Tanh, Swish [15], and identity activation functions. These results indicate
that linear activation functions (i.e., the identity) are sufficient for learning
solutions to time-dependent problems.

Algorithm 1 may benefit from transfer learning (i.e., reusing weights from
previous problems) with a supervised counterpart that is trained on a large
labeled dataset. We randomly initialize the neural network weights in Al-
gorithms 1 and 2 (first time step only). This random initialization may
result in predictions with high errors at the beginning of training. With-
out optimal step sizes in our optimizer, these poor solutions may result in
slow convergence towards an optimal solution. Using transfer learning with
a pre-trained network that is trained in a supervised setting (i.e., with la-
beled training data), the initial predictions from our algorithms may be al-
ready close to optimal, resulting in faster convergence. One could view the
use of these pre-trained networks as a sort of preconditioner for our neural
network-based approach. Indeed, we see the benefits of transfer learning with
Algorithm 2 after the first time step. Instead of reinitializing the weights for
the subsequent time steps, we resuse the weights from the previous solution.
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Problem t
N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Trig. (n = 1)

0.5 7.6825e-04 1.5388e-03 1.0661e-03 2.1703e-03 1.1562e-03 2.4109e-03

1.0 5.2059e-04 1.0459e-03 7.0987e-04 1.4189e-03 7.7541e-04 1.5364e-03

2.5 6.1710e-04 1.2354e-03 8.6825e-04 1.7483e-03 9.4440e-04 1.9382e-03

5.0 1.6629e-04 3.3075e-04 2.5692e-04 5.2649e-04 3.0442e-04 6.2141e-04

Trig. (n = 4)

0.5 6.0011e-03 1.1977e-02 1.3953e-03 2.9254e-03 3.2371e-04 9.0033e-04

1.0 3.6984e-03 7.3841e-03 8.5877e-04 1.8117e-03 1.9062e-04 5.3841e-04

2.5 5.4592e-03 1.0897e-02 1.3062e-03 3.1186e-03 8.4891e-04 2.8031e-03

5.0 1.9352e-03 3.8744e-03 4.8639e-04 1.3043e-03 9.8322e-04 2.5854e-03

Gaussian

0.5 3.0932e-03 3.8826e-02 7.1997e-04 1.0341e-02 1.8902e-04 2.5298e-03

1.0 1.9069e-03 2.3921e-02 4.4389e-04 6.3892e-03 1.3421e-04 1.4701e-03

2.5 2.8197e-03 3.5385e-02 6.5362e-04 9.5078e-03 2.7103e-04 2.3168e-03

5.0 1.0004e-03 1.2579e-02 2.8684e-04 2.6686e-03 3.1119e-04 9.0614e-04

Table 6: Accuracy of unsupervised predictions for varying grid sizes and time steps for
parabolic problems. The depth of the network is set to three, the number of optimization
iterations at each time step to 250, and the time step to 0.1.

Problem t
N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Trig. (n = 1)

0.5 7.6693e-04 1.5299e-03 1.0560e-03 2.1106e-03 1.1255e-03 2.2507e-03

1.0 5.2033e-04 1.0380e-03 7.0797e-04 1.4151e-03 7.5314e-04 1.5060e-03

2.5 6.1623e-04 1.2293e-03 8.6455e-04 1.7280e-03 9.2434e-04 1.8484e-03

5.0 1.5534e-04 3.0988e-04 2.3116e-04 4.6204e-04 2.4942e-04 4.9877e-04

Trig. (n = 4)

0.5 5.9961e-03 1.1961e-02 1.3890e-03 2.7763e-03 2.8791e-04 5.7573e-04

1.0 3.7021e-03 7.3852e-03 8.5647e-04 1.7119e-03 1.7638e-04 3.5271e-04

2.5 5.4540e-03 1.0880e-02 1.2656e-03 2.5296e-03 2.6449e-04 5.2889e-04

5.0 2.8215e-03 5.6286e-03 6.5597e-04 1.3111e-03 1.3834e-04 2.7664e-04

Gaussian

0.5 3.0933e-03 3.8814e-02 7.1809e-04 1.0412e-02 1.8424e-04 2.4368e-03

1.0 1.9068e-03 2.3920e-02 4.4286e-04 6.4085e-03 1.1490e-04 1.4920e-03

2.5 2.8194e-03 3.5387e-02 6.5422e-04 9.5075e-03 1.6586e-04 2.2389e-03

5.0 1.4619e-03 1.8355e-02 3.3909e-04 4.9403e-03 8.4882e-05 1.1716e-03

Table 7: Finite differences with backward Euler errors on selected parabolic problems for
comparison. Here, the time step is 0.1.

That allows us to use a small number of optimization steps (i.e.,M = 250)
at each time for parabolic problems.

It is important to note that our methods for estimating the finite differ-
ence solutions do not explicitly construct the finite difference matrix. Instead,
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Problem Activation
N = 32 N = 64 N = 128

||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞ ||u− û||2,h ||u− û||∞

Trig. (n = 1)

ReLU 7.6775e-04 1.5420e-03 1.0746e-03 2.1598e-03 1.2400e-03 2.5946e-03

Tanh 7.6743e-04 1.5391e-03 1.0590e-03 2.1269e-03 1.1478e-03 2.3299e-03

Swish 7.6905e-04 1.5538e-03 1.0623e-03 2.0923e-03 1.1637e-03 2.4307e-03

Identity 7.6825e-04 1.5388e-03 1.0661e-03 2.1703e-03 1.1562e-03 2.4109e-03

Trig. (n = 4)

ReLU 5.9967e-03 1.1968e-02 1.5607e-03 4.1957e-03 9.2973e-04 2.7800e-03

Tanh 5.9970e-03 1.1968e-02 1.3906e-03 2.8266e-03 3.1624e-04 8.8251e-04

Swish 6.0061e-03 1.1990e-02 1.6013e-03 3.9862e-03 4.7380e-04 1.4040e-03

Identity 6.0011e-03 1.1977e-02 1.3953e-03 2.9254e-03 3.2371e-04 9.0033e-04

Gaussian

ReLU 3.0932e-03 3.8828e-02 7.3665e-04 1.0873e-02 3.8312e-04 3.3270e-03

Tanh 3.0930e-03 3.8808e-02 7.1797e-04 1.0419e-02 1.9917e-04 2.4221e-03

Swish 3.0933e-03 3.8830e-02 7.4640e-04 1.0099e-02 6.0038e-04 4.4619e-03

Identity 3.0932e-03 3.8826e-02 7.1997e-04 1.0341e-02 1.8902e-04 2.5298e-03

Table 8: Accuracy of unsupervised predictions for varying grid sizes and activation func-
tions at time 0.5. The depth of the network is set to three, the number of optimization
steps to 250, and the time step is 0.1.

we use our neural networks to map the source term f to the approximate
finite difference solution. In this sense, we are learning the inverse mapping
of the finite difference matrix. From a numerical point of view, this provides
the advantage of not having to construct or store a finite difference matrix.
Instead, we implement the required stencil(s) for our problem in the loss
function and apply them appropriately. Only having to implement the sten-
cils and not construct a finite difference matrix is also an advantage from an
implementation point-of-view.

The justification for the lack of non-linear activation functions in our
network is that the relationship between the source term f and the finite
differences solution uh is given by a system of linear equations of the form
Auh = f . In other words, we know a priori that our goal is to learn a
linear relationship between f and our estimated solution. In many machine
learning applications, the exact nature of the input and output relationship
is unknown and assumed to be highly non-linear. Hence, including non-linear
activation functions results in a network that learns a non-linear relationship
between inputs and outputs. Using the identity function as an activation
puts us outside the scope of the universal approximation theorem [34, 35, 36].
However, in our case, we do not need our neural network to be a universal
approximator. The role of the network is to learn a linear relationship for
a single example. Inputs other than f in Algorithms 1 and 2, like random
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noise or constants, would break our assumption that the relationship between
the network input and output is linear. Hence, a much larger (i.e., more
parameters) non-linear network would be needed to learn such a relationship.

We utilize the PocketNet approach proposed by [22] in our proposed al-
gorithms. This approach takes advantage of the similarity between the U-
Net architecture and geometric multigrid methods to drastically reduce the
number of parameters, while maintaining the same accuracy as conventional
CNNs for medical imaging and scientific machine learning tasks [37, 38, 39].
Additionally, we replace transposed convolution with bilinear upsampling.
We find that these changes save time and memory and yield the same ac-
curacy that we see using conventional CNNs (i.e., doubling the number of
channels at every depth). These results indicate that smaller neural networks
(in terms of parameters) can achieve high accuracy for scientific machine
learning tasks.

We see in Tables 2 and 5 that the depth of the U-Net architecture does
not generally have a significant effect on our results. This indicates that,
regardless of depth, the U-Net architecture is sufficiently expressive to learn
a mapping from the right hand side f to an approximation of the finite
difference solution uh. However, non-U-shaped architectures like the HRNet
may also produce similar or improved results [40]. Additionally, the use of
residual or dense connections within the convolutions of our architecture may
also be beneficial [41, 42]. Such block designs have been shown to speed up
convergence to lower loss values for neural networks [43]. Finally, modifying
our existing architecture by adding deep supervision could also speed up
convergence to lower loss values in fewer iterations [44, 45].

The use of the weighting parameter α in (8) and (19) is necessary to
enforce the given boundary conditions. We arrived at our proposed values of
α via a grid search over a range of possible values. However, finding optimal
values of weighting parameters like α is an open question [16]. Strongly
enforcing the Dirichlet boundary conditions by modifying the network output
to the prescribed values on the boundary is another approach that has been
shown to be effective from an experimental and theoretical perspective [46,
24, 47]. However, both approaches of weakly and strongly enforcing boundary
conditions in neural network-based methods are popular and have their own
strengths and weaknesses [16]. In our case, strongly enforcing boundary
conditions does not have a significant impact on the accuracy of our predicted
solutions. Indeed, even with our weakly enforced approach, the boundary is
not a significant source of error.
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Figure 6: True solution (top), predicted solution (middle) and absolute difference (bottom)
for the first ten time steps of the trigonometric problem presented in Section 2.4 with n = 1.

5. Conclusions

The results presented above show the effectiveness of our proposed un-
supervised approaches for estimating the finite difference solution to elliptic
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Figure 7: True solution (top), predicted solution (middle) and absolute difference (bottom)
for the first ten time steps of the trigonometric problem presented in Section 2.4 with n = 4.

and parabolic problems. Unlike classical PINNs, our approach is influenced
by numerical PDEs (i.e., the finite difference method), resulting in more ex-
plainable solutions. Additionally, unlike other CNN-based approaches, we
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Figure 8: True solution (top), predicted solution (middle) and absolute difference (bottom)
for the first ten time steps of the Gaussian problem presented in Section 2.4.

define the method for elliptic PDEs with non-constant diffusion coefficients
and extend it to time-dependent problems. Finally, we use small linear CNNs,
making our method computationally efficient.

Our approach could benefit finite difference solvers by producing better
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initial guesses and/or acting as a preconditioner. With a few iterations,
Algorithm 1 can produce good initial guesses for iterative solvers, thereby
reducing the number of iterations required to solve the linear system resulting
from (2) or (9). This same idea can also apply to time-dependent problems,
but with initial guesses being produced at each time step. Additionally,
because we employ identity for activation functions, our neural networks are
linear. Hence, it may be possible to represent a pretrained architecture as a
matrix. This resulting matrix could then be used as a preconditioner for finite
difference solvers. This use of preconditioners and further testing on other
kinds of PDEs, like convection-diffusion, coupled, and nonlinear problems,
will be the object of future work.
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