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NOON-state interference in the frequency domain
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The examination of entanglement across various degrees of freedom has been pivotal in augment-
ing our understanding of fundamental physics, extending to high dimensional quantum states, and
promising the scalability of quantum technologies. In this paper, we demonstrate the photon num-
ber path entanglement in the frequency domain by implementing a frequency beam splitter that
converts the single-photon frequency to another with 50% probability using Bragg scattering four-
wave mixing. The two-photon NOON state in a single-mode fiber is generated in the frequency
domain, manifesting the two-photon interference with two-fold enhanced resolution compared to
that of single-photon interference, showing the outstanding stability of the interferometer. This
successful translation of quantum states in the frequency domain will pave the way toward the
discovery of fascinating quantum phenomena and scalable quantum information processing.

INTRODUCTION

Photonic entanglement plays a crucial role in re-
solving fundamental questions in quantum mechanics
and exploiting quantum information technology’s mer-
its1. Extensive investigations have been conducted into
entanglement in various degrees of freedom, including
polarization2, path3, orbital angular momentum4, and
time-bin5. These studies have been key in investigat-
ing diverse quantum phenomena, enhancing the perfor-
mance of quantum communications6,7, protecting quan-
tum states from environment noise8, and surpassing clas-
sical limitations in metrology9–12.
The NOON state, denoted as |ψ〉 = (|N〉1 |0〉2 +

|0〉1 |N〉2)/
√
2, is commonly referred to as the photon

number path entangled state. This state represents a
superposition betweenN photons in path 1 and zero pho-
tons in path 2 and vis-versa. A distinctive feature of the
NOON state is its N-fold enhancement in phase sensitiv-
ity, which allows it to surpass the limitations of classi-
cal light measurement9,13. This attribute has made the
NOON state a fundamental resource in quantum applica-
tions, including quantum lithography10, quantum imag-
ing14, and quantum metrology11,15. Moreover, unique
entanglement properties of the NOON state pave the way
toward the exploration of diverse topics in quantum in-
formation science, such as nonlocality16, quantum error
correction17, and tight-binding model18,19.
Recently, the focus on quantum states in the fre-

quency domain has intensified due to its potential for
high-dimensional state extensibility, spatial single-mode
propagation, stability, miniaturization, and compatibil-
ity with fiber networks20–24. The potential benefits have
spurred extensive research into a variety of techniques for
photon creation and manipulation within the frequency
domain20,22–26. Furthermore, frequency-domain classical
light controls have facilitated the demonstration of com-
plex physical phenomena, including three-dimensional
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photonic topological insulator27 and complex long-range
coupling28,29.
In this work, we demonstrate the NOON-state inter-

ference in the frequency domain for the first time, which
is a crucial resource in quantum optics, to the best of
our knowledge. A quantum frequency translation pro-
cess acts like a 50:50 beam splitter with about a 50%
probability of converting a single-photon frequency to an-
other and enables the creation of the N = 2 NOON state
in the frequency domain using a nondegenerate photon
pair. The state is subsequently reintroduced into the
frequency beam splitter through reflection, and the rel-
ative phase of the NOON state is controlled via a vari-
able delay line. We observe two-photon bunching and
anti-bunching effects in the frequency domain against
the relative phase, with the oscillation frequency of the
NOON state displaying a two-fold enhancement com-
pared to single-photon interference. Furthermore, our
approach ensures an extremely stable interferometer due
to the single-mode propagation of two-color components,
even without any stabilization method. Consequently,
our work represents a significant step toward exploring
novel quantum effects and facilitating new tools for quan-
tum information processing.

RESULTS

Fig. 1 illustrates our experimental diagram. The tra-
ditional NOON-state interference in the spatial domain
is shown in Fig. 1a. Here, 1○ two indistinguishable sin-
gle photons are simultaneously introduced into two input
modes of a beam splitter, yielding the Hong-Ou-Mandel
(HOM) effect and creation of a NOON state (N = 2). 2○
We can control the relative phase between the two paths
by sliding a mirror, and 3○ the NOON state can be com-
bined by the second beam splitter. The resultant state
exhibits two-photon bunching and anti-bunching effects
in the path modes, contingent on the relative phase. The
bunching cycles of the NOON state (N = 2) display a
two-fold enhancement compared to single-photon inter-
ference.

http://arxiv.org/abs/2311.00338v2
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Figure 1. Schematic diagram. a, Traditional NOON-state
interference (N = 2) scheme in the spatial domain. b, BS-
FWM frequency diagram. fxx (xx = p1,p2, s, i,ZGVD) indi-
cates the frequencies of two pump fields, signal photon, idler
photon, and the zero-group-velocity dispersion (ZGVD) of a
nonlinear medium, respectively. c, Schematic diagram of a
frequency beam splitter through the BS-FWM process with
two pump fields, an input photon, and a target photon. FBS:
frequency beam splitter. d, Proposed NOON-state interfer-
ence scheme in the frequency domain.

In this study, we generate the NOON state in the fre-
quency domain using optical elements that serve func-
tions analogous to those in traditional methods. We
utilize frequency beam splitters based on quantum fre-
quency translation, akin to the spatial beam splitters.
The frequency translation method used in this study is
BS-FWM20,21,30, which facilitates the simultaneous an-
nihilation of an input photon and the creation of a target
photon, driven by two classical pump fields31,32, as seen
in Fig. 1b. From now on, we denote the input and tar-
get modes as signal and idler modes, respectively. The
idler photon’s frequency obeys the energy conservation
and phase-matching conditions, which can be fulfilled by
symmetrically placing the four fields around the ZGVD
frequency of the nonlinear material. The idler photon’s
frequency is determined by fi = fs + fp1 − fp2, where
fl (l = i, s, p1, p2) represents the frequency of the idler,
signal, pump1, and pump2, respectively. Vertical arrows
pointing upwards signify the creation process, while those
pointing downwards represent the annihilation process.
The evolution of the annihilation mode operators via BS-
FWM is dictated by21,31,32

âs,out = cos(gL)âs,in + ieiφ sin(gL)âi,in (1)

âi,out = ie−iφ sin(gL)âs,in + cos(gL)âi,in (2)

where âm,n (m = s, i, n = in, out) denotes the annihila-
tion operators of signal and idler modes in the input and
output modes, respectively. L symbolizes the length of

the nonlinear medium, and φ signifies the phase differ-
ence between the two pump beams. The parameter g is
defined as g ≡ γP , where γ is the nonlinear coefficient
and P1 and P2 are the powers of the pump beam 1 and 2,
respectively. In this study, P is the total power of the two
pump beams, which are set to be equal (P/2 = P1 = P2).
This ensures the attainment of the phase-matching con-
dition, independent of the total pump power31. Eq. (1)
and Eq. (2) equate to operators describing the function-
ality of a frequency beam splitter. A frequency beam
splitter allows frequency translation of a signal photon
to the desired idler frequency with a translation prob-
ability, as shown in Fig. 1c. For an initial insertion of
a signal portion, the probability of persisting in the sig-
nal frequency, similar to transmittance in a spatial beam
splitter, is cos2(gL), while that of translating to the idler
frequency, like reflectance in a spatial beam splitter, is
sin2(gL). Control of the splitting ratio in the frequency
domain is achievable by changing the BS-FWM pump
power. Consequently, the BS-FWM effect enables the
implementation of frequency beam splitters analogous to
spatial beam splitters21,33. In this work, we have taken
the frequency beam splitter a step further by creating the
NOON state in the frequency domain, which is a signif-
icant milestone in quantum optics, for the first time to
the best of our knowledge.

Our proposed concept of NOON-state interference in
the frequency domain is illustrated in Fig. 1d. 1○ Instead
of feeding two identical single photons into the two input
ports of a spatial beam splitter, we introduce two sin-
gle photons — one embodying the signal frequency, the
other the idler frequency — into a frequency beam split-
ter. Here, different frequencies entering the frequency
beam splitter correspond to the two input ports of the
spatial beam splitter. A translation probability of 50%
induces the HOM effect in the frequency domain, and
the resultant NOON state of N = 2 in the frequency
domain signifies the frequency two-photon bunching ei-
ther in the signal frequency or the idler frequency. 2○
We control the relative phase of the NOON state by
adjusting the position of the secondary frequency beam
splitter as the length difference between the signal and
idler wavelengths causes a relative phase shift between
them. 3○ The final state, after traversing the secondary
frequency beam splitter, exhibits periodic two-photon
bunching and anti-bunching effects in the frequency do-
main, influenced by the relative phase. The bunching
effect can be observed by placing a filter to separate the
signal and idler photons. Therefore, we are able to im-
plement the NOON-state interference in the frequency
domain via Bragg scattering four-wave mixing.

In the interferometer depicted in Fig. 1d, the output
state after the second frequency beam splitter is given by
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|ψNOON〉 =
1√
2
ei(∆φ+φ) sin(∆φ) |2〉s |0〉i

− 1√
2
ei(∆φ−φ) sin(∆φ) |0〉s |2〉i

− ei∆φ cos(∆φ) |1〉s |1〉i ,

(3)

where |N〉m,out (m = s, i) represent the Fock states (N -

photon-number states) at the output signal and idler
modes, respectively. The relative phase ∆φ is defined
as ∆φ = 2π∆fL/c, where ∆f is the frequency difference
between the signal and idler modes (∆f = fs − fi). The
parameter L represents the distance between the two fre-
quency beam splitters. This formulation reveals the oscil-
lating two-photon bunching probability with a period of
c/(2∆f). In contrast, when classical light or single pho-
tons are injected into the same interferometer, the oscilla-
tion period doubles, becoming c/∆f . Notably, while the
coefficient φ in Eqs. (1) and (2) is necessary for the beam
splitter operators, it does not influence the measurement
outcomes for the HOM effect, NOON-state interference,
or single-photon interference in the frequency domain.
See Supplementary Information, Sec. I, for details about
analytic calculations.
Our experimental setup for observing NOON-state in-

terference in the frequency domain is shown in Fig. 2.
Non-degenerate photon pairs are created via sponta-
neous four-wave mixing in a 200-m-long single-mode fiber
(Corning, SMF-28). The pump laser has a center wave-
length of 1269.50 nm and temporal duration of 0.1 ns.
Details about the photon-pair generation is described in
the Methods section. The signal and idler photons have
center wavelengths of 1267.89 nm and 1271.11 nm, re-
spectively, with a bandwidth of about 0.7 nm. After
combining them with a combining filter (CF1), they are
introduced to the frequency beam splitter. The relative
delay between them is controlled using a delay line (DL1).
The two BS-FWM pump lasers (LASER1 and

LASER2) have wavelengths of 1551.16 nm (193.27 THz)
and 1546.36 nm (193.87 THz), yielding a translation fre-
quency of 600 GHz, and both of them have a repeti-
tion rate of 20 MHz and a temporal duration of 0.5
ns. After combining the two BS-FWM pump lasers us-
ing a combining filter (CF2) and equalizing their power,
they are synchronized with the photon-pair generation
pump electronically. The generated photon pairs and BS-
FWM pumps are directed through a 100-m-long non-zero
dispersion-shifted fiber (NZDSF) with a ZGVD wave-
length of 1401 nm, where the BS-FWM effect with 50%
conversion efficiency serves as a frequency beam splitter,
facilitating the HOM effect in the frequency domain. The
temporal overlaps and polarization direction between the
pair photons and BS-FWM pumps are optimized. After
the first pass through the frequency beam splitter, the
two photons possess identical frequencies, either at the
signal or idler frequency, creating the N = 2 NOON state
in the frequency domain. The photon pairs and BS-FWM

pumps are separated by a bandpass filter (BF1) and re-
flected back by Faraday mirrors (FM1 and FM2), en-
abling their backward propagation through the NZDSF.
Additionally, we adjust the optical path length (DL2) to
ensure temporal overlap between the pair photons and
BS-FWM pumps during the backward propagation.

The relative phase within the NOON state is controlled
by a delay line (DL2). Note that both signal and idler
photons traverse a single-mode fiber. Given the wave-
length discrepancy between the signal (1267.89 nm) and
idler (1271.11 nm) photons, which is approximately 3.22
nm, a path length variation equivalent to the idler wave-
length would generate a relative phase shift of approx-
imately 0.253% between the signal and idler. A 0.5-
mm path length variation to DL2 corresponds to one
idler wavelength of the relative phase shift. This path
length variation is identical to a temporal change of 1.67
ps, much smaller than the pump duration of BS-FWM,
guaranteeing still good temporal overlap between the BS-
FWM pumps and the pair photons. Under our experi-
mental conditions, where the pair photons pass the DL2
twice, a delay-line change of about 0.25 mm would cause
one period in a classical interference pattern.

A circulator (CR) extracts the backward photons from
the NOON-state interferometer. BS-FWM pumps are
initially filtered out by a combining filter (CF3), and any
residual pumps are further suppressed by a bandpass fil-
ter (BF2) with a bandwidth of 16.9 nm centered at 1270
nm, achieving a rejection rate exceeding -120 dB. The sig-
nal and idler photons are separated by additional band-
pass filters (BF3 and BF4), each with a bandwidth of 0.7
nm centered at 1267.89 nm and 1271.11 nm, respectively.
At each path, a beam splitter along with two super-
conducting nanowire single-photon detectors (SNSPDs;
Scontel, HED model) facilitate the post-selection of two-
photon events. Given that the SNSPDs are optimized for
C-band photons, their measurement efficiency diminishes
to around 40% in the O-band. Furthermore, their dark
count rates are maintained around 100 Hz. The data
is collected via a time-correlated single photon counting
(TCSPC, Swabian instruments) module with a coinci-
dence window of 0.3 ns. The total transmission of the
quantum frequency translation setup is about 59% (-2.3
dB), including the transmissions from the combining fil-
ter (CF3: 93%, -0.3 dB), NZDSF and bandpass filter
(NZDSF and BF1: 87%, -0.6 dB), and noise block filter
for the BS-FWM effect (BF2: 72%, -1.4 dB). Note that
the intrinsic transmission from a 100-m-long NZDSF is
negligible (∼ 99%, -0.05 dB).

In our study, we meticulously characterize the splitting
ratios of a frequency beam splitter for both the forward
and backward directions. The splitting ratio can be de-
termined by monitoring the converted and non-converted
signal single-photon counts while we isolate the idler pho-
tons. First, we ensure BS-FWM operates in a single di-
rection, achieved by carefully adjusting the optical de-
lay (DL2) and BS-FWM pump arrival time. The DL2
is varied by about 4.5 ns from its optimum position for
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Figure 2. Experimental setup of the NOON-state interference. PC: polarization controller, DL: delay line, CF:
combining filter, CR: circulator, NZDSF: non-zero dispersion-shifted fiber, BF: bandpass filter, FM: Faraday mirror, P: polarizer,
BS: beam splitter, D: superconducting nanowire single-photon detector.
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Figure 3. Splitting ratio in a frequency beam split-

ter for forward and backward propagation. The varia-
tion in splitting ratios as a function of input BS-FWM pump
power is depicted for a forward and b backward propagation.
The experimentally measured transmittance and reflectance
are presented by blue squares and red diamonds, respectively.
The fitting of these data points is achieved through solid blue
lines for transmittance and dashed red lines for reflectance,
both of which are modeled as envelopes of sinusoidal func-
tions.

both the forward and backward BS-FWM. To activate
BS-FWM only in the forward direction, the pumps and
signal photons arrive at the frequency beam splitter at
their first passing. Due to the double passing of the 4.5-ns
delay, the photons and BS-FWM pumps are separated by
9.0 ns, which is 18 times longer than the BS-FWM pump
duration, causing no BS-FWM in backward propagation.
Similarly, to achieve only backward BS-FWM, we post-
pone the BS-FWM pumps electronically by 9.0 ns. Then,
the pumps coincide with signal photons at the frequency
beam splitter at the second passing.

The measured splitting ratio in the forward and back-
ward direction is shown in Fig. 3. The transmittance
(blue squares, T ) of the splitting ratio is defined as the
ratio between non-converted photon counts and total
(converted and non-converted) photon counts at each
pump power. As we assume that the frequency trans-
lation occurs only between signal and idler wavelengths,
the reflectance (red diamonds) of the splitting ratio is
R = 1 − T . In reality, a small percentage of photons
are diverted due to scattering into higher-order modes,
but this loss is minor and does not significantly affect the
calculation of the splitting ratio30.

Here, the background counts are measured at the sig-
nal and idler channels by blocking the input photons and
then subtracted from the raw data when calculating the
splitting ratio. See Supplementary Information, Sec. II,
for details on the measurement of the splitting ratio. The
solid blue and dashed red lines represent the fitted curves
of the envelopes, which exhibit a sinusoidal waveform.
As illustrated in Fig. S1, the maximum depletion rates
are achieved at pump powers of 10.4 W and 12.7 W for
the forward and backward directions, respectively. These
discrepant pump powers indicate the pump power loss
during the journey through the interferometer, which is



5

Input BS-FWM pump power (W)

100
H

O
M

 v
is

ib
ili

ty
 (

%
)

0

50

5 6 7

Data, forward

Simulation, forward

Data, backward

Simulation, backward

Figure 4. HOM interference using the frequency beam

splitter. Blue squares and red diamonds represent the net
visibilities for the forward and backward directions of the
HOM effect, respectively. The error bars are calculated from
the fit coefficients and confidence bounds of the HOM inter-
ference. Solid blue and red dashed curves are the simulation
results.

approximately 18% loss (-0.85 dB).

We observe the maximum translation efficiencies of
85.9±1.6% and 81.5±1.5% for the forward and backward
directions, respectively. See Supplementary Information,
Sec. II, for details on the translation efficiencies. These
high efficiencies are attributed to the dispersion property
of the NZDSF, which constraints the leakage to the unin-
tended frequency bands and increases the translation effi-
ciencies, given by the narrow phase-matching bandwidth
of 1.32 nm31. We expect that higher translation efficien-
cies are available by engineering the dispersion property
of optical fibers. Additionally, In the quantum frequency
translation process, the generation of noise photons via
spontaneous four-wave mixing34 and spontaneous Raman
scattering is negligible. This is attributed to the separa-
tion of more than 270 nm between the BS-FWM pumps
and signal/idler photons. See Supplementary Informa-
tion, Sec. II, for the measured noise counts.

Fig. 4 represents the net visibility of the HOM inter-
ference versus the input BS-FWM pump power. Blue
squares and red diamonds depict the net visibilities for
the forward and backward directions of BS-FWM, re-
spectively. The solid blue and dashed red lines corre-
late to the numerical simulations using a Green-function
method30,35, modeling the effect of BS-FWM36,37 as an
input-output relation. See Supplementary Information,
Sec. III.A. for the simulation method and Sec. IV for the
frequency-domain HOM interference without accidental
subtraction. The experimental results match well with
the simulation results.

Creating a NOON interferometer requires two 50:50
beam splitters. Due to a NOON-interferometer transmis-
sion of 82% (-0.85 dB) for the BS-FWM pumps, the HOM
visibility for forward and backward propagation peaks
at different powers of 5.20 W and 6.32 W, respectively,
where the splitting ratio is close to 50%, and their max-
imum net (raw) visibility is 97.5±4.2% (90.5±3.8%) and
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Figure 5. Frequency-domain NOON-state interfer-

ence. a, The true coincidence counts versus the temporal
delay (DL2) for the NOON-state interference (N = 2). The
blue and red points indicate the true coincidence counts of
the SNSPDs D1 & D2 and D3 & D4, respectively, which en-
ables to post-select two-photon events. The solid blue and
dashed red lines are simulation results. b, The true coinci-
dence counts versus the temporal delay (DL2) for the single-
photon interference. The blue and red points represent the
true coincidence counts of the SNSPDs D1 & D5 and D3 &
D5. The solid blue and dashed red lines are simulation results.
The error bars are calculated assuming Poissonian statistics
of the detection.

91.3±3.4% (83.9±3.0%), respectively, as seen in Fig. 4.
As the 82% transmission incurred through the NOON
interferometer makes it difficult to obtain a 50% trans-
mittance for both the forward and backward directions,
we utilize an input BS-FWM power of 5.76 W, achieving
a transmittance of 45% in the forward direction, leading
to a 60% transmittance in the backward direction, where
the corresponding net (raw) visibilities are 93.0±3.4%
(86.5±3.2%) and 85.5±3.2% (80.2±2.9%), respectively.
These unbalanced splitting ratios will lead to non-ideal
visibility in the NOON-state interference.

The frequency-domain NOON-state interference and
single-photon interference patterns are shown in Fig. 5.
The NOON interference is gauged using the experimen-
tal setup described in Fig. 2. Fig. 5a depicts the NOON-
state interference, where the blue squares and red dia-
monds indicate the true coincidence counts between the
SNSPDs D1 & D2 and D3 & D4, respectively. Each point
is accumulated for 60 seconds. The solid blue and dashed
red lines are the simulation results, which align closely
with the experimental findings. See Supplementary In-
formation, Sec. III.B, for the simulation method of the
frequency-domain NOON-state interference. Notably,
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Figure 6. Stability analysis of the frequency-domain

NOON-state interferometer. a, Normalized coincidence
counts over 25 hours-time periods using heralded signal-
photons. The blue and red curves represent the coincidence
detections between the SNSPDs D1 & D5 and D3 & D5, re-
spectively. The inset provides a magnified view over a 1-hour
period, which is shown as a dashed gray box. b, Tempera-
ture measurements from our laboratory, captured during the
identical time window of the stability test.

the HOM interference in Fig. 4 and the two-fold enhanced
quantum resolution in Fig. 5 are the signature of the gen-
eration of the 2002 state, |ψ〉 = 1√

2
(|2〉s |0〉i + |0〉s |2〉i),

commonly referred to as the photon number path en-
tangled state. Our results demonstrate the achievement
of super-resolution within this framework. However, it
is important to note that super-sensitivity was not ob-
served, which is attributable to system losses. See Sup-
plementary Information, Sec. V for detailed calculations
about Fisher Information and super-sensitivity.

In comparison, Fig. 5b presents the single-photon in-
terference, which has been implemented using a slightly
modified version of the setup depicted in Fig. 2. Rather
than deploying both signal and idler photons into the
interferometer, the idler photon is employed as a trigger
photon using a heralding detector D5, which is not shown
in Fig. 2, and the heralded signal photon is directed to-
ward the interferometer. Two beam splitters preceding
the detectors D1 and D3 are removed to enhance the
count rates. The blue circles and red triangles indicate
the true coincidence counts between the SNSPD D1 &
D5 and D3 & D5, respectively. Each data point is ac-
quired for one second. The solid blue and dashed red
lines are the theoretical results, which correlate closely
with the experimental data. See Supplementary Informa-
tion, Sec. III.C for the simulation method of the single-
photon interference and Sec. VI for the measurement re-

sults without subtracting the accidental counts. By fit-
ting the oscillations with a sinusoidal function, we ex-
tracted the oscillation periods as 0.125±0.001 mm for
the NOON state and 0.248±0.001 mm for the single-
photon state. Theoretically, these periods are calculated
to be 0.125 mm and 0.250 mm, respectively, derived us-
ing the relation Period = c/(2N∆f). The factor of two
in this formula arises from the double pass of the delay
line in our experiment. The experimentally determined
oscillation periods align well with these theoretical ex-
pectations. While our current measurements focus on
the 2002-interference pattern, our experiment setup is
adaptable for the measurement of the 4004-interference
pattern via post-selection9,11.

Furthermore, our interferometer shows outstanding
stability due to the use of a single-mode spatial path.
Two frequency modes propagate a single-mode fiber, and
this guarantees that the phase shifts of the two fre-
quency modes will be almost identical, effectively neu-
tralizing the phase difference between them. Such at-
tributes enable the frequency-domain interferometer with
exceptional stability. Fig. 6a illustrates the experimen-
tal results of a single-photon interferometer stability test
conducted over a 25-hour period. The blue and red
curves represent the normalized coincidence counts be-
tween SNSPDs D1 & D5 and D3 & D5, respectively,
where D5 is the heralding detector. Each data point is
accumulated in one-minute intervals. For the first 0.5
hours, we introduce a two-cycle of phase change by tun-
ing the temporal delay line (DL2). Then, for the re-
mainder of the test duration, this path-length variation
is halted. The inset of Fig. 6a represents an expanded
view of Fig. 6a, captured during the first hour of mea-
surement. The measured interference patterns display
remarkable stability. Of particular note, this experiment
was performed on an unfloated optical table with a hun-
dred meters of optical fibers. Moreover, the setup was
located under an air conditioner without any active tem-
perature/phase control or wind protection. The expected
temperature stability of our interferometer, including the
double-pass propagation of the 100-m NZDSF and ad-
ditional meters of single-mode fibers, is roughly ∼ 0.4
π/°C, which is calculated as 1.4 × 10−3 ps/nm/km/°C
× 3.2 nm × 0.2 km × 2πc/1270 nm. This calculation
is based on a chromatic dispersion thermal coefficient of
1.4 × 10−3 ps/nm/km/°C, derived from measurements
on a single-mode fiber at 1550 nm38. Fig. 6b represents
the measured temperature stability within our labora-
tory during the same time frame as our stability test.
The average temperature is 20.6±0.2°C throughout this
25-hour period. Under these conditions, the frequency-
domain interferometer exhibits unprecedented stability.

In conclusion, we demonstrated the pioneering NOON-
state interference in the frequency domain by employ-
ing frequency beam splitters and non-degenerate photon
pairs. The NOON state’s relative phase is controlled by
a delay line, resulting in two-photon interference. The
resulting observations include the two-photon frequency
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bunching and anti-bunching effects depending on the rel-
ative phase between the two frequency modes, two-fold
enhancement in the oscillation period compared to that
of a single-photon interference, and unprecedented sta-
bility of the interferometer.

DISCUSSION

The NOON state exhibits a non-sinusoidal interference
pattern, while the single-photon state shows a sinusoidal
pattern. In addition, both patterns exhibit non-ideal
visibility. The following three factors contribute to this
non-sinusoidal pattern and non-ideal visibility: 1) asym-
metricity in the joint-spectral intensity, 2) dispersion ef-
fect of the NZDSF causing a walk-off between the two
photons, and 3) Unbalanced BS-FWM pump powers for
forward and backward propagation. These three effects
can be mitigated by the following strategies: 1) Reduc-
ing the length of the nonlinear medium (SMF) for the
photon-pair generation to relax the phase-matching con-
dition34. 2) Placing a dispersion compensation compo-
nent to avoid the walk-off effect, such as a pair of gratings
or an optical Bragg filter. 3) Amplifying the BS-FWM
pumps to compensate for the NOON interferometer in-
sertion loss. See Supplementary Information, Sec. III, for
details on these three factors contributing to non-ideal
visibility.

In this study, a high pump power of up to 15 W was
utilized to compensate for the low nonlinearity coefficient
of the optical fiber. Despite this, the generation of noise
photons remained negligibly low, posing no significant is-
sue. In addition, this high pump power requirement sig-
nificantly decreases when utilizing on-chip platforms. A
demonstration in a silicon waveguide reveals an efficiency
of 12% with the BS-FWM pump power of 1.6 mW39. Ad-
ditionally, silicon nitride resonators report an efficiency
of 60% with a pump power of 60 mW40. This subject

is fascinating but not within our current research scope.
It is, however, a prime candidate for our future research
projects.
With its scalability to high-dimensional multi-

frequency states and the potential for miniaturization
through single-mode propagation, quantum information
processing in the frequency domain has attracted signifi-
cant attention, especially in the context of quantum com-
munications41. As shown in this study, frequency-domain
quantum information processing highlights the compati-
bility with optical fiber networks, in addition to demon-
strating the remarkable stability of our interferometer,
a crucial resource in both fundamental research and ap-
plication42–44, including quantum communications45 and
linear quantum computing46.
Owing to the excellent stability and scalability of our

quantum states, our work can be extended to imple-
ment high-dimensional quantum key distribution (QKD)
through deployed fiber networks. This method enhances
information efficiency and may extend the maximum
transmission distance compared to conventional two-
dimensional QKD systems47. Notably, high-dimensional
states in the frequency domain can be readily generated
by inserting optical filters or a Fabry-Perot cavity af-
ter the creation of photon pairs41. Quantum simulators
can be investigated within the frequency domain, includ-
ing quantum random walks48 and Boson sampling46. By
varying the number of BS-FWM pumps and adjusting
the relative phase and power between them, we can ex-
plore a variety of quantum-circuit configurations and in-
teresting phenomena, including non-local hopping28,29.
These features may offer insights into areas not readily
accessible through conventional path-mode schematics.
Finally, our NOON-state interferometer, exploiting the
quantum interference across different frequencies, is ca-
pable of measuring wavelength-dependent phase shifts.
This feature holds the potential to implement quantum
quantitative phase spectroscopy, which investigates the
properties of organisms or cells, especially those with ex-
tremely low damage thresholds21,49.
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METHODS

Preparation of the photon pair. A non-degenerate
photon pair is created via spontaneous four-wave mixing

within a 200-m-long single-mode fiber (Corning, SMF-
28), mediated by a pump laser under the relaxed phase-
matching condition34. The pump laser features a central
wavelength of 1269.50 nm, a duration of 100 ps, and a
peak power of about 1 W. The laser operates at a rep-
etition rate of 20 MHz, electronically synchronized with
the BS-FWM pump lasers. We employ two strategies
to reduce the noise photons resulting from spontaneous
Raman scattering. First, we cool the single-mode fiber
by submerging it in liquid nitrogen, thereby reducing the
population of excited state phonons. Second, we attach
a polarizer to the output of the single-mode fiber and
align the polarization direction of the pump to that of
the polarizer. This is because the polarization state of
the photon pair is parallel to that of the pump laser,
while noise photons are unpolarized. The pump, sig-
nal, and idler photons are separated by bandpass filters
with a bandwidth of 0.7 nm and centered at 1269.50 nm,
1267.89 nm, and 1271.11 nm, respectively. The setup
ensures a pump rejection ratio exceeding 120 dB. The
resultant coincidence-to-accidental ratio for the photon
pair is 22.2±1.1.
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Supplementary Information for NOON-state interference in the frequency domain
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I. BACKGROUND THEORY

In this section, we will derive analytic solutions of the Hong-Ou-Mandel (HOM) effect, NOON-state interference,
and single-photon interference in the frequency domain. We consider the single-mode inputs to derive the analytic
solutions. The solutions for these effects with pulsed mode inputs will be calculated in Sec. III.

A. Frequency-domain HOM interference

As we discussed in the main text, the evolution of the annihilation mode operators via Bragg scattering four-wave
mixing (BS-FWM) is described by the following equation1–3,

[

âs,out
âi,out

]

=

[

cos(gL) ieiφ sin(gL)
ie−iφ sin(gL) cos(gL)

] [

âs,in
âi,in

]

. (S1)

Here, the coefficient g is defined by g ≡ γP , where γ and P denote the nonlinear coefficient of the nonlinear medium
and the total pump power of BS-FWM, respectively. The term φ denotes the phase difference between the two
pump beams. This equation resembles the transformations in beam splitters, allowing us to interpret BS-FWM as a
frequency beam splitter3,4. While the coefficient φ appears unusual, we will confirm that this coefficient does not affect
the measured outcomes. For ease of calculation, we rewrite Eq. (S1) by representing the input-creation operators in
terms of the output-creation operators,

[

â†s,in
â†i,in

]

=

[

cos(gL) ie−iφ sin(gL)
ieiφ sin(gL) cos(gL)

]

[

â†s,out
â†i,out

]

. (S2)

When inserting two single photons of different frequencies (signal and idler) into a frequency beam splitter, the
state is transformed as

â†s,inâ
†
i,in |0〉 = [cos(gL)â†s,out + ie−iφ sin(gL)â†i,out][ie

iφ sin(gL)â†s,out + cos(gL)â†i,out] |0〉
= ieiφ cos(gL) sin(gL)â†s,outâ

†
s,out |0〉+ ie−iφ cos(gL) sin(gL)â†i,outâ

†
i,out |0〉+

[

cos2(gL)− sin2(gL)
]

â†s,outâ
†
i,out |0〉 .

(S3)
At the splitting ratio of 50% (gL = π/4), the HOM effect in the frequency domain can be observed, as indicated by

â†s,inâ
†
i,in |0〉 =

i

2
eiφâ†s,outâ

†
s,out |0〉+

i

2
e−iφâ†i,outâ

†
i,out |0〉

=
i√
2
eiφ |2〉s,out |0〉i,out +

i√
2
e−iφ |0〉s,out |2〉i,out ,

(S4)

where |N〉m,out (m = s, i) represent the Fock states (N-photon-number states) at the output signal and idler modes,
respectively.
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B. Frequency-domain NOON-state interference

The function of the interferometer in Fig. 1d can be represented by the following matrix multiplications,

[

â†s,in
â†i,in

]

=
1

2

[

1 ie−iφ

ieiφ 1

] [

exp[− i2πfsL
c ] 0

0 exp[− i2πfiL
c ]

] [

1 ie−iφ

ieiφ 1

]

[

â†s,out
â†i,out

]

, (S5)

where the first and third terms represent the frequency beam splitters, and the second term indicates the phase term,
introduced by the distance between the two splitters. We assumed that the splitting ratios of the beam splitters are
50% (gL = π/4). The terms fs and fi are the frequencies of the signal and idler modes, respectively, and L is the
distance between the two splitters. The resultant result from Eq. (S5) is expressed as

[

â†s,in
â†i,in

]

=
1

2
exp

[

− i2πfsL
c

] [

1 ie−iφ

ieiφ 1

] [

1 0
0 ei∆φ

] [

1 ie−iφ

ieiφ 1

]

[

â†s,out
â†i,out

]

=
1

2
exp

[

− i2πfsL
c

] [

1− ei∆φ ie−iφ(1 + ei∆φ)
ieiφ(1 + ei∆φ) −1 + ei∆φ

]

[

â†s,out
â†i,out

]

,

(S6)

where ∆φ = 2π∆fL/c and ∆f = fs−fi. We will ignore the global phase factor for further calculations, as it does not
influence the measurement results. Inserting two single photons (signal and idler photons) into the interferometer,
the output state is given by

â†s,inâ
†
i,in |0〉 =

i

4
eiφ[1− e2i∆φ]â†s,outâ

†
s,out |0〉 −

i

4
e−iφ[1− e2i∆φ]â†i,outâ

†
i,out |0〉 −

1

2
[1 + e2i∆φ]â†s,outâ

†
i,out |0〉

=
1√
2
ei(∆φ+φ) sin(∆φ) |2〉s,out |0〉i,out −

1√
2
ei(∆φ−φ) sin(∆φ) |0〉s,out |2〉i,out − ei∆φ cos(∆φ) |1〉s,out |1〉i,out .

(S7)
The oscillation period for the two-photon detection for the NOON-state interference (N = 2) is c/(2∆f).

C. Frequency-domain single-photon interference

The single-photon interference can be calculated with Eq. (S6). When a signal photon is injected into the interfer-
ometer, the output state is expressed as

â†s,in |0〉 =
1

2
[1− ei∆φ]â†s,out |0〉+

i

2
e−iφ[1 + ei∆φ]â†i,out |0〉

= −iei∆φ/2 sin(∆φ/2) |1〉s,out |0〉i,out + iei∆φ/2−iφ cos(∆φ/2) |0〉s,out |1〉i,out ,
(S8)

where the oscillation period is c/(∆f), twice as long as that for the NOON-state interference (N = 2).

In conclusion, we have calculated the Hong-Ou-Mandel effect, NOON-state interference, and single-photon interfer-
ence in the frequency domain. Despite the presence of the coefficient φ in Eq. (S1), which differs from typical beam
splitter operators, it does not affect the outcome of the measurements.
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II. DETAILED INFORMATION ABOUT THE SINGLE-PHOTON TRANSLATION

The single-photon translation of the BS-FWM effect for the forward direction (a) and the backward direction (b)
is described in Fig. S1. The experimental setup in Fig. 2 is slightly modified to measure the translation. The signal
photons are used as the input photons, while the idler photons are blocked. The delay line (DL2) is increased as much
as 4.5 ns to activate the BS-FWM effect only for the single direction. The output of each channel is measured by an
SNSPD without the beam splitter to increase the count rate. The blue squares and red diamonds are the measured
counts at the signal (input) and idler (translation) wavelength, respectively. To measure the noise of the BS-FWM
effect, the background counts are measured at the signal and idler wavelength while the input photons are blocked.
As the background counts at each wavelength are similar, we represent the background counts (green triangles) at
only the idler (translation) wavelength. Notably, the background counts can be reduced by cooling the DSF with
liquid nitrogen, decreasing noise photons originating from spontaneous Raman scattering3,5. The solid blue, dashed
red, and dotted green lines represent the best-fit curves of the input, translation, and background counts where the
fit functions are given by a cos2(bp) + cp, a sin2(bp) + cp, and ap, respectively. a, b, c are the fit parameters and p is
the total power of the BS-FWM.

We calculate the calibrated counts by compensating the background counts and the relative efficiency between the
channels. The relative efficiency of the idler channel is 85% (-0.7 dB) compared to that of the signal channel. With
the calibrated counts, we achieve the efficiencies and the fit depletion rates of the BS-FWM effect. The efficiencies
are 85.9±1.6% and 81.5±1.5%, and the fit depletion rates are 95.2% and 92.6% for the forward and the backward
directions, respectively. The maximum depletion occurs at the different input powers for the forward (10.4 W)
and backward directions (12.7 W), respectively, as the NOON-state interferometer introduces the loss to the BS-
FWM pump. We attribute the discrepancy between the translation efficiencies to the imperfection in polarization
compensation. We use two Faraday mirrors, denoted as FM1 and FM2 in Fig. 2, with the optimized wavelengths
of 1310 nm and 1550 nm. While the BS-FWM pumps are within FM1’s operation wavelength range at near 1550
nm, but the signal photon is far from FM2’s optimized wavelength of 1310 nm. This leads to imperfect polarization
compensation, which results in slightly lower translation efficiency for the backward pumping. We expect that the
translation efficiency and splitting ratio are identical for the input idler photons. Theoretically, we can identify from
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Figure S1. Single-photon translation of the BS-FWM effect. The single-photon translation is measured by blocking the
idler photons and increasing the delay line (DL2) to allow the quantum frequency translation for the single direction. The blue
squares and red diamonds indicate the measured counts at the signal (input) and idler (translation) wavelength, respectively.
The background counts (green triangle) represent the measured counts at the idler wavelength while the signal photons are
blocked. The lines represent the best-fit curves. a, the forward direction. b, the backward direction.
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Eq. (1) and (2) in the main text that the operator forms for the signal and idler modes are equivalent. Experimentally,
Clark et al.6 demonstrate equivalent translation efficiencies of 99.1%±4.9% and 98.0±5.0% for the input idler and
signal photons, respectively.
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III. SIMULATION METHOD

A. Frequency-domain HOM interference

We first calculate the joint spectral intensity of the photon-pair generation under our experimental conditions as
described in Fig. S2a. One of the reasons for having non-unity visibility in Fig. 4, even in theory, is its asymmetrical
joint-spectral intensity shape of the photon-pair source under our experimental conditions. See the last of the sections
for more details. Note that the asymmetricity in the joint spectral intensity can be resolved by reducing the length
of the single-mode fiber (SMF) to relax the phase matching condition7. As seen from Fig. S2b, we barely observe the
asymmetricity by reducing the length of the SMF from 200 m to 50 m.
For convenience in the simulation, Schmidt decomposition is applied to the joint spectral intensity, which represents

the correlated function in terms of a linear combination,

|ψin〉 =
∫

dωsdωiF (ωs, ωi)â
†
s(ωs)â

†
i (ωi) |0〉 =

∑

k

rk

∫

dωsFk(ωs)â
†
s(ωs)

∫

dωiGk(ωi)â
†
i (ωi) |0〉 , (S9)

where F (ωs, ωi) represents the joint spectral amplitude and Fk(ω) and Gk(ω) are sets of orthonormal basis, known as
Schmidt modes. Schmidt amplitude rk (real number) weights the intensity of each set where

∑

k r
2
k = 1. â†s(ω) is a

creation operator at the signal mode with a frequency of ω + ωs0, and â
†
i (ω) is a creation operator at the idler mode

with a frequency of ω + ωi0. ωs0 and ωi0 are the central frequencies of bandpass filters (FWHM: 0.7 nm) which are
used to refine the joint spectral intensity, where ωs0 = 2π× 236.45 THz (1267.89 nm) and ωi0 = 2π× 235.85 THz
(1271.11 nm), respectively.
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Figure S2. Simulated joint spectral intensity of the photon pair. a, The simulated conditions are identical to our
experimental conditions, where the length of the optical fiber is 200 m. b, The length of the optical fiber is shortened to 50 m,
but all other conditions remain consistent.

The Bragg scattering four-wave mixing (BS-FWM) effect is numerically implemented with a Green-function
method8, which represents the effect in terms of an input-to-output relation. To construct the Green function, we
use Hermite-Gaussian (HG) functions as an orthogonal set of the input amplitudes and calculate the corresponding
output amplitudes with coupled equations governing the BS-FWM effect. The coupled equations are derived from the
nonlinear Schrödinger equation (NLSE)8–10. More details about the construction of the Green function are described
in our previous paper11. As the length of the SMF is different (150 m) in the previous paper, we use an optimal
characteristic length of the HG functions as 29 ps instead of 28 ps to calculate the Green function. The constructed
Green function describes the transformation of the creation operators at the signal and idler modes via BS-FWM as
follows,

â†s(ω) →
∫

dω′Gss(ω, ω
′)â†s(ω

′) +Gsi(ω, ω
′)â†i (ω

′),

â†i (ω) →
∫

dω′Gis(ω, ω
′)â†s(ω

′) +Gii(ω, ω
′)â†i (ω

′),

(S10)
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where Gij(ω, ω
′) (i, j = s, i) is the Green function which indicates the evolution amplitude describing the frequency

component (ω) at the input mode i is translated to the other component (ω′) at the output mode j.

Now, we are ready to calculate the frequency-domain HOM interference. The delay line (DL1) introduces a temporal
delay (∆t1) to the idler photon, transforming equation (S9) as below

|ψin〉 → |ψin,1〉 =
∑

k

rk

∫

dωsFk(ωs)â
†
s(ωs)

∫

dωiG∆t1,k(ωi)â
†
i (ωi) |0〉 , (S11)

where G∆t1,k(ω) = Gk(ω) exp[i(ωi0 + ω)∆t1]. The BS-FWM process, implementing the role of the frequency beam
splitter, evolves the state as

|ψout,1〉 =
∑

k

rk

(
∫

dωsFss,k(ωs)â
†
s(ωs) + Fsi,k(ωs)â

†
i (ωs)

)

×
(
∫

dωiGis,∆t1,k(ωi)â
†
s(ωi) +Gii,∆t1,k(ωi)â

†
i (ωi)

)

|0〉 ,

(S12)
where the amplitudes Fxy,k(ω) andGxy,∆t1,k(ω) (x, y = s, i) indicate Fxy,k(ω) =

∫

dω′Fk(ω
′)Gxy(ω

′, ω) andGxy,∆t1,k(ω) =
∫

dω′G∆t1,k(ω
′)Gxy(ω

′, ω), respectively. Each term (Fxy,k(ω) and Gxy,∆t1,k(ω)) indicates the output amplitude in the
mode y for the given input amplitude (Fk(ω) and G∆t1,k(ω)) in the mode x via the BS-FWM effect.

Lastly, we consider a coincidence detection between the idler and signal modes for the final state (|ψout,1〉). For
convenience, we rewrite the final state in equation (S12) as

|ψout〉 =
∑

k

rk

(
∫

dωsAk(ωs)â
†
s(ωs) +Bk(ωs)â

†
i (ωs)

)

×
(
∫

dωiCk(ωi)â
†
s(ωi) +Dk(ωi)â

†
i (ωi)

)

|0〉 . (S13)

The two-photon detection of the final state at time t1 in the signal mode and at time t2 in the idler mode is described
by

Ês(t1)Êi(t2) |ψout〉 =
∑

k

rk

∫

dω1dω2[Ak(ω1)Dk(ω2) + Ck(ω1)Bk(ω2)] exp[−iω1t1 − iω2t2] |0〉 , (S14)

where the electric-field annihilation operator Ex(t) is Ex(t) =
∫

dωâx(ω)e
−iωt. The probability density of the two-

photon detection is expressed as

||Ês(t1)Êi(t2) |ψout〉 |2 =
∑

k, k’

rkr
∗
k’

∫

dω′
1dω

′
2dω1dω2[A

∗
k’(ω

′
1)D

∗
k’(ω

′
2) + C∗

k’(ω
′
1)B

∗
k’(ω

′
2)]

×[Ak(ω1)Dk(ω2) + Ck(ω1)Bk(ω2)] exp[i(ω
′
1 − ω1)t1 + i(ω′

2 − ω2)t2].

(S15)

The measured coincidence count is proportional to the time-averaged probability as the coherence time of the single
photons (∼ ps) is much finer than the temporal resolution of the single-photon detection (∼ 100 ps). The time-averaged
probability of the two-photon detection is given by

∫

dt1dt2||Ês(t1)Êi(t2) |ψout〉 |2 =
∑

k,k’

rkr
∗
k’

∫

dω1dω2[A
∗
k’(ω1)D

∗
k’(ω2) + C∗

k’(ω1)B
∗
k’(ω2)]

×[Ak(ω1)Dk(ω2) + Ck(ω1)Bk(ω2)].

(S16)

By substituting the parameters in equation (S16) as Ak(ω) = Fss,k(ω), Bk(ω) = Fsi,k(ω), Ck(ω) = Gis,∆t1,k(ω), and
Dk(ω) = Gii,∆t1,k(ω), we can calculate the frequency-domain HOM effect.

Similarly, we are able to calculate the time-averaged probability of the two-photon detection either in the idler
mode or the signal mode. The time-averaged probability in the signal mode is described as
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∫

dt1dt2||Ês(t1)Ês(t2) |ψout〉 |2 =
∑

k,k’

rkr
∗
k’

∫

dω1dω2[A
∗
k’(ω1)C

∗
k’(ω2) + C∗

k’(ω1)A
∗
k’(ω2)]

×[Ak(ω1)Ck(ω2) + Ck(ω1)Ak(ω2)],

(S17)

and the time-averaged probability in the idler mode is represented as

∫

dt1dt2||Êi(t1)Êi(t2) |ψout〉 |2 =
∑

k,k’

rkr
∗
k’

∫

dω1dω2[B
∗
k’(ω1)D

∗
k’(ω2) +D∗

k’(ω1)B
∗
k’(ω2)]

×[Bk(ω1)Dk(ω2) +Dk(ω1)Bk(ω2)].

(S18)

Fig. S3 represents the simulated frequency-domain HOM patterns for various BS-FWM pump powers and optical
fiber lengths. Fig. S3a is calculated with the joint spectral intensity from Fig. S2a where the fiber length is set to 200
m. The simulated HOM-dip visibilities are 90.5%, 95.6%, and 92.9% for the BS-FWM pump powers of 4.74 W, 5.20
W, and 5.76 W, respectively. Fig. S3b is based on the joint spectral intensity from Fig. S2b, where the fiber length
is set to 50 m. The simulated HOM-dip visibilities are 93.7%, 99.0%, and 96.2% for the BS-FWM pump powers of
4.74 W, 5.20 W, and 5.76 W, respectively. As seen from Fig. S3, the joint-spectral intensity of the 50-m optical fiber
shows a more symmetric pattern compared to its 200-m counterpart. This symmetry elevates the visibilities, as a
result of the more balanced interference.
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Figure S3. Simulated frequency-domain HOM effect. a, HOM-dip patterns corresponding to various BS-FWM pump
powers, where the length of the optical fiber is set to 200 m. b, HOM-dip patterns when the length of the optical fiber is set
to 50 m. The BS-FWM pump powers for the blue solid, red dashed, and green dotted curves are 4.74 W, 5.20 W, and 5.76 W,
respectively.

B. Frequency-domain NOON-state interference

The NOON-state interference is experimentally implemented via three steps. First, the NOON state is prepared
with the frequency-domain HOM effect via the BS-FWM effect. Then, the relative phase between the NOON state is
introduced by the delay line (DL2). Finally, the frequency modes of the NOON state are mixed by another BS-FWM
effect, leading to the observation of the NOON-state interference. Starting from the state in equation (S12), which
describes the HOM effect in the frequency domain, the introduced delay ∆t2 transforms the state as

|ψout,2〉 =
∑

k

rk

(
∫

dωsT (ωs, ωs0,∆t2)Fss,k(ωs)â
†
s(ωs) + T (ωs, ωi0,∆t2)Fsi,k(ωs)â

†
i (ωs)

)

×
(
∫

dωiT (ωi, ωs0,∆t2)Gis,∆t1,k(ωi)â
†
s(ωi) + T (ωi, ωi0,∆t2)Gii,∆t1,k(ωi)â

†
i (ωi)

)

|0〉 ,
(S19)

where the temporal delay T (ωx, ωy0,∆t2) = exp[i(ωx + ωy0)∆t2]. The effect of the other BS-FWM is described as
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|ψout,3〉 =
∑

k

rk

(
∫

dω1A
′
k(ω1)â

†
s(ω1) +B′

k(ω1)â
†
i (ω1)

)

×
(
∫

dω2C
′
k(ω2)â

†
s(ω2) +D′

k(ω2)â
†
i (ω2)

)

|0〉 ,

A′
k(ω1) =

∫

dωsG
′
ss(ωs, ω1)T (ωs, ωs0,∆t2)Fss,k(ωs) +G′

is(ωs, ω1)T (ωs, ωi0,∆t2)Fsi,k(ωs),

B′
k(ω1) =

∫

dωsG
′
si(ωs, ω1)T (ωs, ωs0,∆t2)Fss,k(ωs) +G′

ii(ωs, ω1)T (ωs, ωi0,∆t2)Fsi,k(ωs),

C′
k(ω2) =

∫

dωiG
′
ss(ωi, ω2)T (ωi, ωs0,∆t2)Gis,∆t1,k(ωi) +G′

is(ωi, ω2)T (ωi, ωi0,∆t2)Gii,∆t1,k(ωi),

D′
k(ω2) =

∫

dωiG
′
si(ωi, ω2)T (ωi, ωs0,∆t2)Gis,∆t1,k(ωi) +G′

ii(ωi, ω2)T (ωi, ωi0,∆t2)Gii,∆t1,k(ωi).

(S20)

Note that G′
xy(ω1, ω2) is the different Green function from Gxy(ω1, ω2) as the power of the BS-FWM pump for the

second stage may be different. By substituting equations (S17, S18) with the parametersA(ω) = A′(ω), B(ω) = B′(ω),
C(ω) = C′(ω), and D(ω) = D′(ω), we theoretically calculate the NOON-state interference in the frequency domain.
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Figure S4. Simulated frequency-domain NOON-state interference. NOON-state interference patterns under various
conditions. a, The experimental condition. b, Mitigating the three effects. c, Reducing asymmetry in the two-photon state.
d, Compensating walk-off between the two photons. e, Balancing BS-FWM pump powers.

Fig. S4 illustrates the frequency-domain NOON-state interference patterns across various simulated conditions.
The blue solid curve and red dashed curve denote the normalized counts for the signal and idler modes, respectively.
Fig. S4a presents the interference patterns under our experimental condition. We identify three primary contributors
to the observed non-sinusoidal patterns and non-ideal visibilities: 1) asymmetry in the generated two-photon state,
2) walk-off between the two photons in the NZDSF, 3) unbalanced BS-FWM pump powers, 5.76 W for the first stage
and 4.74 W for the second. Fig. S4b represents the interference patterns after rectifying the above three effects.
Here, the fitted visibilities of the fringes are 99.1% for the signal mode and 99.0% for the idler mode. The three
effects are mitigated by the following procedures: 1) Reducing the length of the single-mode fiber from 200 m to
50 m, thereby achieving a symmetrical two-photon state as seen from Fig. S2, 2) Introducing a 3.23 ps delay to the
idler photon after the first-stage BS-FWM process, 3) Equalizing BS-FWM pump powers to 5.20 W for both stages.
Fig. S4(c-e) presents the interference patterns while individually addressing the effects: c) Compensating for the two-
photon state asymmetry, d) Canceling the walk-off effect, e) Balancing the BS-FWM pump powers. Therefore, we
successfully simulate the frequency-domain NOON-state interference patterns and explain the non-sinusoidal patterns
and non-ideal visibilities. The three influential factors for the non-ideal patterns are the asymmetry in the generated
two-photon state, the walk-off effect, and the unbalanced BS-FWM pump powers.
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C. Frequency-domain single-photon inteference

The single-photon interference is implemented by heralding the idler photon while the signal photon evolves in the
interferometer. As the signal and idler photons propagate in the different path modes, equation (S9) is modified as

|ψin,2〉 =
∑

k

rk

∫

dωsFk(ωs)â
†
s1(ωs)

∫

dωiGk(ωi)â
†
i2(ωi) |0〉 , (S21)

where â†s1 indicates the photon creation operator at the signal frequency mode with the path mode 1, and â†i2 is
the creation operator at the idler frequency mode with the path mode 2. After the signal photon evolves in the
interferometer, the final state is expressed as

|ψout,4〉 =
∑

k

rk

(
∫

dω1A
′
k(ω1)â

†
s1(ω1) +B′

k(ω1)â
†
i1(ω1)

)

×
∫

dω2Gk(ω2)â
†
i2(ω2) |0〉 . (S22)

where A′
k(ω) and B′

k(ω) are equivalent with Equation (S20). The two-photon detection of the signal photon at the
path mode 1 and time t1, and the idler photon at the path mode 2 and time t2, is represented as

Ês1(t1)Êi2(t2) |ψout,4〉 =
∑

k

rk

∫

dω1 exp[−iω1t1]A
′
k(ω1)

∫

dω2 exp[−iω2t2]Gk(ω2) |0〉 , (S23)

and the probability density of the two-photon detection is calculated as follows,

||Ês1(t1)Êi2(t2) |ψout,4〉 |2 =
∑

k,k’

rkrk’

∫

dω′
1dω

′
2dω1dω2A

′∗
k’(ω

′
1)G

∗
k’(ω

′
2)A

′
k(ω1)Gk(ω2) exp[i(ω1 − ω′

1)t1 + i(ω2 − ω′
2)t2].

(S24)
The time-averaged probability, which is proportional to the measured coincidence count, of the photons at the signal
mode at path mode 1 and the idler mode at path mode 2 is calculated as

∫

dt1dt2||Ês1(t1)Êi2(t2) |ψout,4〉 |2 =
∑

k,k’

rkrk’

∫

dω1A
′∗
k’(ω1)A

′
k(ω1)

∫

dω2G
∗
k’(ω2)Gk(ω2) =

∑

k

r2k

∫

dω1|A′
k(ω1)|2,

(S25)
where the orthogonality between the Schmidt modes leads to a relation,

∫

dωG∗
k’(ω)Gk(ω) = δk,k’. With the same

procedures, the time-averaged probability of the idler mode at the path mode 1 and the idler mode at the path mode
2 is calculated as follows,

∫

dt1dt2||Êi1(t1)Êi2(t2) |ψout,4〉 |2 =
∑

k,k’

rkrk’

∫

dω1B
′∗
k’(ω1)B

′
k(ω1)

∫

dω2G
∗
k’(ω2)Gk(ω2) =

∑

k

r2k

∫

dω1|B′
k(ω1)|2.

(S26)
Fig. S5 depicts the frequency-domain single-photon interference patterns under various simulated conditions. The

blue solid curve and red dashed curve denote the normalized counts for the signal and idler modes, respectively.
Fig. S5a presents the interference patterns under our experimental condition. Similar to the previous discussion,
three primary factors contribute to the observed non-ideal visibilities: 1) asymmetry in the single-photon spectrum
(signal photon), 2) walk-off between the two photons within the NZDSF, 3) Unbalanced BS-FWM pump powers,
5.76 W for the first stage and 4.74 W for the second. Notably, the asymmetry in the two-photon state leads to
asymmetry in the single-photon spectrum. Fig. S5b presents the interference patterns after mitigating the above
three effects, where the fitted visibilities of the fringes are 98.1% for the signal mode and 98.6% for the idler modes.
The three effects are rectified by the following methods: 1) Reducing the length of the single-mode fiber from 200 m
to 50 m, which symmetrize the single-photon spectrum. 2) Introducing a 3.23 ps delay to the idler photon after the
first-stage BS-FWM process, 3) Balancing BS-FWM pump powers to 5.20 W for both stages. Fig. S5(c-e) presents
the interference patterns by individually addressing the effects: c) Reducing the asymmetry in the single-photon
spectrum, d) Compensating the walk-off effect, e) Balancing the BS-FWM pump powers. Therefore, we simulate
the frequency-domain single-photon interference patterns and explain the non-ideal visibilities. The three influential
factors for the non-ideal visibilities are the asymmetry in the single-photon spectrum, the walk-off effect, and the
unbalanced BS-FWM pump powers.
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Figure S5. Simulated frequency-domain single-photon interference. Single-photon interference patterns under various
conditions. a, The experimental condition. b, Mitigating the three effects. c, Reducing asymmetry in the two-photon state.
d, Compensating walk-off between the two photons. e, Balancing BS-FWM pump powers.
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IV. FREQUENCY-DOMAIN HOM INTERFERENCE WITHOUT ACCIDENTAL SUBTRACTION

In Fig. S6, we illustrate the visibilities of the frequency-domain HOM interference as a function of the input BS-FWM
power, which determines the splitting ratio of the frequency beam splitter. The blue squares and the red diamonds
represent the raw visibilities for the forward and backward directions of the BS-FWM processes, respectively. The
error bars are derived from the fitting coefficients and confidence bounds of the measured HOM dips, where the fitting
function is denoted as a Gaussian function multiplied by a sinc function. The blue solid and red dashed curves depict
the simulated HOM visibilities for the forward and backward directions, respectively. Although the experimental
result without the accidental subtraction shows a discrepancy with the simulation result, the overall trends are well
consistent.
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Figure S6. Frequency-domain HOM interference without accidental subtraction. Raw visibility of the HOM inter-
ference against the input BS-FWM power. The blue squares and red diamonds represent the raw visibilities of the HOM effect
for the forward and backward directions, respectively, and the blue solid and red dashed curves indicate the corresponding
simulation results.
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V. FISHER INFORMATION

While we observe super-resolution, a two-fold enhancement compared to single-photon interference in Figure 5,
achieving super-sensitivity remains elusive due to high optical loss in our experimental setup.
In the quantum estimation theory, the lower bound of phase uncertainty, ∆φlow, is linked to quantum Fisher

information, FQ(φ), by the relation ∆φlow = 1/
√

qFQ(φ), where ‘q’ is the number of repeated measurements12,13. For
the NOON state, quantum Fisher information is given by FQ(φ) = N2V 2ηsys,coincidenceηg, where V is the visibility of
the interference fringe, ηsys,coincidence is the system efficiency, and ηg is the generation efficiency of the NOON state14.
Under our experimental conditions, the visibility, system efficiency, and generation efficiency are measured at 67%,
0.0039%, and 100%, respectively. This leads to a calculated quantum Fisher information of 7.0 × 10−5, resulting
in a lower bound of ∆φlow = 120 for a single-shot measurement (q = 1). Since the lower bound exceeds the phase
uncertainty of the single-photon interference, ∆φlow,single = 1/(V

√
ηsys,singleηg) = 13, achieving supersensitivity is

currently unattainable. In the single-photon interference experiment, the visibility, system efficiency (ηsys,single), and
generation efficiency are 70%, 1.2%, and 100%, respectively.
We expect that the high optical loss can be significantly improved through customizing optical components or

implementing the experimental setup on a single chip, such as Silicon or Silicon-nitride platforms. However, we
believe that this is beyond the scope of our current paper.
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VI. FREQUENCY-DOMAIN NOON-STATE INTERFERENCE WITHOUT ACCIDENTAL

SUBTRACTION

Fig. S7 represents the frequency-domain NOON-state interference and single-photon interference without accidental
subtraction. Fig. S7a depicts the NOON-state interference. Blue squares and red triangles, accompanied by error bars,
indicate measured coincidence counts between the SNSPDs D1 & D2 and D3 & D4, respectively. In contrast, markers
without error bars present accidental coincidence counts. Each data point is measured for 60 seconds. Solid blue and
dashed red curves are the simulation results, and the error bars are calculated assuming Poissonian statistics of the
detection. Fig. S7b represents the single-photon interference. Blue squares and red triangles, with error bars, indicate
measured coincidence counts between the SNSPDs D1 & D5 and D3 & D5, respectively. Markers without error bars
present accidental coincidence counts. Each point is measured for a second. The experimental and simulation results
are well consistent.
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Figure S7. Frequency-domain NOON-state interference without accidental subtraction. a, Coincidence counts
against the delay (DL2) for the NOON-state interference (N = 2). Blue squares and red diamonds with error bars represent
coincidence counts between the SNSPDs D1 & D2 and D3 & D4, respectively, where markers without error bars indicate the
accidental coincidence counts. Solid blue and dashed red curves are simulation results. The error bars are calculated assuming
Poissonian statistics of the detection. b, Coincidence counts against the delay (DL2) for the single-photon interference. Blue
circle and red triangles with error bars indicate the coincidence counts between the SNSPDs D1 & D5 and D3 & D5, respectively,
where markers without error bars depict the accidental coincidence counts.
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