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Abstract

Dielectric interfaces are crucial to the behavior of charged membranes, from graphene to synthetic and
biological lipid bilayers. Understanding electrolyte behavior near these interfaces remains a challenge,
especially in the case of rough dielectric surfaces. A lack of analytical solutions consigns this problem to
numerical treatments. We report an analytic method for determining electrostatic potentials near curved
dielectric membranes in a two-dimensional periodic ’slab’ geometry using a periodic summation of Green’s
functions. This method is amenable to simulating arbitrary groups of charges near surfaces with two-
dimensional deformations. We concentrate on one-dimensional undulations. We show that increasing
membrane undulation increases the asymmetry of interfacial charge distributions due to preferential
ionic repulsion from troughs. In the limit of thick membranes we recover results mimicking those for
electrolytes near a single interface. Our work demonstrates that rough surfaces generate charge patterns
in electrolytes of charged molecules or mixed-valence ions.

1 Introduction

Dielectric interfaces are ubiquitous in the physical world. They are essential to a wide variety of important
systems including biological proteins1,2,3,4,5,6, electrochemical capacitors7,8,9,10, quantum dots11, clays12,13,
and ionomers14. These interfaces are especially important in nanoconfined15,16,17,18,19 systems, influencing
the development of new electronic materials in the field of iontronics. Due to the dielectric mismatch at
these interfaces, it is challenging to understand exact electrostatic behavior in their vicinity. One typical way
to study this behavior is the Poisson-Boltzmann equation, which renders the mathematics more analytically
tractable by removing correlations between charged particles and ignoring finite-size effects. While exact
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solutions exist for simple, flat geometries, only approximate solutions exist for more complex interfaces.20,21,22

Even for exact solutions, errors due to assumptions of the Poisson-Boltzmann theory become relevant at high
charge concentrations where charge correlations become important.23,24,25 There have been attempts made
to extend Poisson-Boltzmann theory to include correlations and finite-size effects using methods such as
hypernetted chain theory and charge renormalization, but these remain accurate only in certain regimes such
as those of low fluctuations.26,27,28,29,30 In addition to exact Poisson-Boltzmann theory, methods employing
a linearized Poisson-Boltzmann (Debye-Hückel) theory have been able to successfully describe the electric
double layer near bent interfaces. These efforts led to both perturbative and iterative approximate solutions
to the linearized Poisson-Boltzmann equation describing deformed membranes, as well as exact solutions for
closed surfaces using multiple scattering expansions.31,32. This work additionally allowed for determinations
of electric double layer free energy for rough fractal surfaces.33

In addition to theoretical investigation, experimental characterization of electric double layers
arising from dielectric mismatch has been attempted; this also proves challenging.34,35 Due to these ex-
perimental and theoretical difficulties, numerical methods are often the only way to study these systems.
Typically, these methods rely on computing the charge accumulated at dielectric interfaces based on the dis-
continuity of the normal gradient of the electrostatic potential.36,37,38,39,40,41,42,43 While they can be effective,
they are often quite slow, limiting simulations to short timescales and small numbers of particles. To circum-
vent this limitation, dos Santos and Levin have in the past developed methods considering periodic image
charge contributions in two-dimensional periodic ’slab’ geometries.44 Building upon these ideas, they have
also developed methods which take advantage of periodic Green’s functions to solve the Poisson equation and
calculate polarization contributions to the electrostatic potential for systems in these slab geometries.45,46,47

These calculations are typically faster than numerical methods while additionally being analytical. Although
these methods require a summation over all periodic images of the system, they converge very quickly in
practice.

In this work, we introduce a first-order perturbation scheme to calculate electrostatic potentials
arising from a system of point charges near a bent membrane interface in a system with periodicity in two
dimensions. Using this method, we present theoretical self-interaction energies of particles near a dielectric
interface. In addition to these single-particle results, we consider systems of highly concentrated electrolytes
in the vicinity of a rough interface using Langevin dynamics. Highly concentrated electrolytes in confinement
are particularly important in neuromorphic applications as well as in the field of iontronics.48,49,50,51 We
study systems with divalent positive and monovalent negative ions to explore charge asymmetry effects,
additionally varying the interfacial roughness to determine the impact of surface curvature on electrolyte
structure.

2 Model and Calculations

Our system consists of charges Q in some dielectric medium near a membrane of thickness 2d. The dielectric
constant outside of the membrane is ϵ1, while the dielectric constant inside the membrane is ϵ2. This system
is considered to be infinitely periodic in the x and y directions, an example of so-called ’slab’ geometry.
The volume of this periodic box is LxLyLz. This membrane problem is readily amenable to solutions using
previously developed methods using periodic Green’s functions.46 The problem at hand is complicated by
the fact that the membrane surface is not perfectly flat; it is subject to some small deformation s(x, y). Since
this deformation is periodic, we cast it in the form s(x, y) = Hei(qxx+qyy) as shown in Equation 5 where H
is the amplitude of the deformation and qx and qy are the inverse wavelengths of undulation.
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Figure 1: Schematic of the system. An ion with charge Qi is in the vicinity of a flat membrane subjected to
some small deformation s(z) of amplitude H. The dielectric constant inside the membrane is different than
that outside. The horizontal black lines show the periodicity of both the system and the perturbation to the
flat surface. The system is additionally divided into four regions.

To describe the electrostatic potential throughout the system, we must solve the Poisson equation:

∇2ϕ = −4πρ

ϵ1
, (1)

where ϕ is the electrostatic potential, ρ is the charge density, and ϵ1 is the dielectric constant of the system.
Rather than immediately considering the collective potential of all charges, it is simpler to consider the
potential from a single point charge and its periodic images in x and y as shown in Figure 1. We consider
this point charge to have charge Qi and position r⃗i = (xi, yi, zi). This results in the following expression:

∇2G(r⃗, r⃗i) = −4πQi

ϵ1

∞∑
mx,my=−∞

δ(r⃗ − r⃗i +mxLxx̂+myLy ŷ), (2)

where G(r⃗, r⃗i) represents the Green’s function for the system. The periodic delta functions in x and y can
be expressed in the Fourier transform representation such that we obtain the following equation:

∇2G(r⃗, r⃗i) = − 4πQi

ϵ1LxLy
δ(z − zi)

∞∑
m⃗=−∞

e
2πi

[
mx
Lx

(x−xi)+
my
Ly

(y−yi)
]
, (3)

where m⃗ = (mx,my). To solve Equation 3, we employ the following ansatz :

G(r⃗, r⃗i) =
1

LxLy

∞∑
m⃗=−∞

(
g
(0)
m⃗ (z, zi) + h(x, xi, y, yi)g

(1)
m⃗ (z, zi)

)
e
2πi

[
mx
Lx

(x−xi)+
my
Ly

(y−yi)
]

(4)

We take a perturbative approach of expanding the Green’s function to first order in the small
parameter h, which we can use to reduce the problem to a set of coupled differential equations and boundary
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conditions as shown in perturbative solutions to the Debye-Hückel equation.31 The zero-order contribution

to the Green’s function is denoted as g
(0)
m⃗ , while the first order contribution is represented by hg

(0)
m⃗ . Since

we are considering a sinusoidal deformation of the surface, it appears natural to express our potential as a
sinusoidal perturbation h(x, y) = Hei(qxx+qyy) about a flat membrane. This is a useful approximation for
particles far from the membrane; however this does not accurately describe particles close to the membrane
surface.52 For this reason, instead of expanding around z = ±d, we expand around z = ±d + h0 where h0

is the local undulation height at the particle position. For a sinusoidal deformation of amplitude H taking
the form s(x, y) = Hei(qxx+qyy), the potential felt from a particle above a peak would be expanded around
z = d +H using a perturbation h(x, y) = H(ei(qxx+qyy) − 1). For a trough, this would take the form of an
expansion around h0 = −H using a perturbation h(x, y) = H(ei(qxx+qyy) +1). This concept is illustrated in
Figure 2.

Figure 2: Schematic of the perturbative scheme. A particle above a peak in a rough interface is imagined
as being above some flat surface with a location corresponding to the local height of the particle above the
membrane. This is modified by both constant (hc) and sinusoidal (hs) perturbations to approximate particle
behavior near the peak of a deformed interface.

Based on this concept of splitting the perturbation into sinusoidal and constant components, we
define the perturbation h in the following way:

h = H
(
ei(qxx+qyy) − ei(qxxi+qyyi)

)
= hs + hc, (5a)

hs = Hei(qxx+qyy), (5b)

and
hc = −Hei(qxxi+qyyi), (5c)

where H is the amplitude of the deformation, xi and yi represent the x and y positions of particle i, and x and
y represent the coordinates where we wish to evaluate the electrostatic potential ϕ The perturbation h can be
further divided into two separate terms hs and hc; these represent the sinusoidal and constant components
of the deformation respectively. Plugging our expressions into Equation 3, we obtain the following:

1

LxLy

∞∑
m⃗=−∞

[
∂2g

(0)
m⃗ (z, zi)

∂z2
− k2g

(0)
m⃗ (z, zi) + hs

(
∂g

(1,s)
m⃗ (z, zi)

∂z2
− κ2g

(1,s)
m⃗ (z, zi)

)

+hc

(
∂g

(1,c)
m⃗ (z, zi)

∂z2
− k2g

(1,c)
m⃗ (z, zi)

)]
e
2πi

[
mx
Lx

(x−xi)+
my
Ly

(y−yi)
]
=

− 4πQi

ϵ1LxLy
δ(z − zi)

∞∑
m⃗=−∞

e
2πi

[
mx
Lx

(x−xi)+
my
Ly

(y−yi)
]
,

(6)

where k = 2π
√
m2

x/L
2
x +m2

y/L
2
y and κ =

√
(qx + 2πmx/Lx)2 + (qy + 2πmy/Ly)2. The first-order contribu-

tion to the Green’s function hg
(1)
m⃗ is further decomposed into hsg

(1,s)
m⃗ and hcg

(1,c)
m⃗ , representing the constant
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and sinusoidal components of the deformation respectively. We solve this equation by considering each term
in the summations over m⃗ separately. Moreover, we consider independently the terms proportional to h0,
h1
s, and h1

c . This leads to the following three equations which can be evaluated to determine the electrostatic
potential:

∂2g
(0)
m⃗ (z, zi)

∂z2
− k2g

(0)
m⃗ (z, zi) = − 4πQi

ϵ1LxLy
δ(z − zi), (7a)

∂2g
(1,s)
m⃗ (z, zi)

∂z2
− κ2g

(1,s)
m⃗ (z, zi) = 0, (7b)

and
∂2g

(1,c)
m⃗ (z, zi)

∂z2
− k2g

(1,c)
m⃗ (z, zi) = 0. (7c)

The general solutions to these equations are as follows:

g
(0)
m⃗ (z, zi) = A(0)e−k(z−h0) +B(0)ek(z−h0), (8a)

g
(1,s)
m⃗ (z, zi) = A(1,s)e−κ(z−h0) +B(1,s)eκ(z−h0), (8b)

and
g
(1,c)
m⃗ (z, zi) = A(1,c)e−k(z−h0) +B(1,c)ek(z−h0). (8c)

where the constants A and B are determined by the boundary conditions. We additionally note that we have
transformed z to z−h0 to reflect the unperturbed case of a particle above a surface with local deformation h0.
The exact constants and implementation details for many-particle simulations can be found in the Appendix.

3 Computational Methods

For all self-energy calculations, particles are assumed to be to the right of the membrane to simplify calcu-
lations. The self-energy of such particles is then set equal to

Uself =
lBϵ1Q

2
i

2σLxLy

(∑
m⃗′

{
A

′(0)
IV e−2k(zi−h0) + hcA

′(1,c)
IV e−2k(zi−h0)

}
+ hs

∑
m⃗′′

A
′(1,s)
IV e−(k+κ)(zi−h0)

)
, (9)

where h is given in Equation 5, lB is the Bjerrum length, σ is the particle diameter, the primed constants are
equal to the A and B constants with the dependence on zi and Q removed, the primed summation implies
a sum over all m⃗ except m⃗ = 0, and the doubly primed summation implies a sum over all m⃗ except m⃗ = 0
and m⃗ + q⃗ = 0. For the purposes of all self-energy experiments, the Bjerrum length is set to 0.7nm to
approximate the behavior of particles in water and the ionic diameter is set to 0.35nm. For this system,
the unit of length used for all calculations is the particle diameter σ, but results are reported in the more
universally reported Bjerrum length. For the purposes of the self-energy calculations, Lx and Ly are set
to 5lB , qx is set to 2π/Lx, qy is set to zero, the valence of the ions is set to one, ϵ1 is set to 80 (to mimic
water), ϵ2 is set to 2 (to mimic a phospholipid bilayer), and the intermembrane distance is set to 7lB .

53 A
deformation amplitude H of 0.25lB is employed, and summations over mx and my are performed over the
interval [−10, 10] excluding zero.

In addition to single particle self-energy calculations, we also perform larger-scale Langevin dy-
namics simulations to elucidate the effects of dielectric mismatch coupled with surface curvature on systems of
many charged particles. These simulations are performed using the velocity-Verlet algorithm with a timestep
of 0.005dσ(mβ)1/2.54,55 The box dimensions of the system are 5 × 5 × 30lB ; this box is periodic in the x
and y directions, while the boundaries in the z direction are treated with reflective boundary conditions.
Each simulation box contains 18 positive ions with a valence of +2 and 36 negative ions with a valence of
−1. These ions are evenly divided between the right and left sides of the membrane. The concentration of
ions is calculated to be approximately 455 mmol; such a high salt concentration is relevant to nanoconfined
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systems. Simulations are run with and without dielectric mismatch; in the case of dielectric mismatch ϵ1 is
set to 80 and ϵ2 is set to 2 to once again mimic a lipid bilayer in water. Since we employ an undulation in
one dimension only, qy = 0 and we define λ = 1/qx based on Equation 5. Simulations are conducted with
surface undulation wavelength λ equal to 5lB and 2.5lB . The force due to dielectric mismatch is determined
using the equations discussed in the Appendix section 11.4, while the standard electrostatic contribution is
calculated using Coulomb potentials for short-range interactions and a slab-corrected Ewald summation for
long-range interactions56. Other particle-particle interactions are calculated via a truncated Lennard-Jones
potential using a cutoff of 21/6σ. Each simulation run consists of 5 × 104 equilibration timesteps followed
by 5 × 105 production timesteps with samples collected every 100 timesteps. 100 independent runs are
performed for each set of parameters studied. Density profiles in x and z are calculated using bins of length
0.025lB in the x direction and 0.03lB in the z direction. All other parameters are identical to those used in
the self-energy calculations.

4 Results and Discussion

4.1 Self-Energy of a Single Particle

Examining the self interaction energy of single particles near a bent dielectric interface is a valuable litmus
test for our solution to the bent membrane problem. Near a dielectric interface, charged particles induce some
surface charge at the dielectric boundary. For the water-lipid interface we are studying, the induced charge
has the same sign as the charge on the particle and repels it; this can be verified with the method of images.57

As has been shown in the literature, the electrostatic force on a particle near a rough surface changes for
particles located above surface deformations52. A positive surface deformation moves the dielectric surface
closer to any charged particle located above it. As a result, a particle near a positive surface deformation
will feel a stronger repulsive force.

In addition to changing the distance between the particle and the surface, surface curvature
itself alters the interfacial interaction of charged particles. The induced charge at a dielectric interface is
proportional to (∇ϕ) · n̂, where n̂ is the unit vector normal to the interface. Given a particle above a convex
surface, the angle between ∇ϕ and n̂ tends to be larger over the surface, causing there to be less charge
accumulated there. The opposite is predicted for a particle above a concave surface.52 Both this curvature
effect and the surface distance effect discussed in the previous paragraph must be accounted for to estimate
the interaction between a charged particle and a rough interface. A particle above a surface peak will have an
increased self-energy due to the decreased distance to the peak surface relative to the undeformed membrane,
but will have a decreased self-energy due to the increased convexity of surface at the peak. This trade-off is
inverted for a particle above a surface trough.

We evaluate our method first by examining the energy of a single particle interacting with the
charge it has induced at a dielectric interface. We first explore the magnitude of curvature effects on the
self-energy. To accomplish this, we examine the effects of the oscillation wavelength λ on the self-interaction
energy for a particle above a peak; we calculate the wavelength of the oscillation from Equation 5. These
results are shown in Figure 3. Since decreasing surface convexity increases particle self-energy, we would
expect increasing oscillation wavelengths to decrease peak convexity and therefore increase particle self-
energy above peaks. This is exactly what we observe. At larger wavelengths, the contribution from peak
convexity diminishes and eventually becomes negligible. At small wavelengths, however, the convexity has
a large influence on self-energy, suggesting the importance of surface curvature in electrolyte structure of
highly deformed charged systems.

In addition to undulation wavelength effects, we explore the consequences of manipulating the
intermembrane distance on particle self-energy. We study this by calculating self-energies for a particle above
an interfacial peak while varying the intermembrane distance. We achieve this by changing the parameter
d which is equal to half the intermembrane distance. As shown in Figure 3, increases in intermembrane
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distance are associated with significant increases in self-energy, but these effects diminish quickly - the
self-energies for the d = 0.5lB and d = 5lB cases are nearly identical. This indicates that intermembrane
distance effects matter only at small separations. The self-energy contribution from charge on the opposite
interface diminishes rapidly for thicker membranes, which agrees with the exponential scaling of polarization
potential terms derived in the 2 section. The contribution of induced charge at the opposite interface
could likely be increased by reducing the dielectric constant inside the membrane, rendering intermembrane
distance relevant for a wider array of length scales. Peristaltic deformations could also make this effect more
relevant for surface troughs in particular by reducing the intermembrane distance at these locations. For the
parameters studied, however, the effects of charge induced on the opposite interface play a significant role
only at small intermembrane distances.

Figure 3: (a) Self-energy of a monovalent charged particle above a peak vs its z position above a dielectric
interface at varying wavelengths of interfacial oscillation. Results are depicted for λ = 2.5lB , λ = 5lB ,
λ = 10lB , and λ = 20lB . Increasing the wavelength increases the self-energy of charges above peaks due to
decreased peak convexity at higher wavelengths. At high wavelengths, curvature effects become small and
contribute little to changing the self-energy above the surface. (b) Self-energy of a charged particle above
a peak vs its z position, plotted for various values of the intermembrane distance. Results are depicted
for intermembrane distances of d = 0.005lB , d = 0.05lB ,d = 0.5lB ,and d = 5lB . Smaller intermembrane
distances decrease particle self-energy due to interactions with charges induced on the opposite face of the
membrane; this effect vanishes at large intermembrane distances, presumably due to a vanishing self-energy
contribution from charge induced on the opposite side of the membrane. The insets highlight the particle
location relative to the curved membrane surface with deformation amplitude H = 0.25lB .

To further examine surface roughness effects, we first calculate the self-energy of particles as a
function of their distance from the unperturbed surface, plotting simultaneously the self-energies for particles
above surface peaks, surface troughs, and above undeformed surface elements. As shown in Figure 4, particles
above surface peaks have higher self-energies than those above an undeformed part of the surface. The
opposite holds true for particles above surface troughs. This is explicable via changes in surface-particle
distance: for a given distance from the unperturbed surface, particles above peaks are closer to the bent
surface than those above troughs, leading to an increased self-energy. These findings agree with recent
literature studying electrostatic effects of bent dielectric interfaces.52 The results confirm the role of surface-
particle distance effects in self-energies near curved dielectrics. However, using distance from the unperturbed
surface as the measure of distance obscures self-energy differences between particles at similar distances from
the local deformed surface. In this case it is more revealing to compare self-energies between particles the
same distance from the perturbed surface than the unperturbed one. These results are also shown in Figure
4.

When distance is measured to the local membrane surface, we find that particles above troughs
have a higher self-energy than particles above peaks or undeformed portions of the membrane. In this case,
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Figure 4: (a) Self-energy of a monovalent charged particle vs its distance from the unperturbed membrane
surface. Results are indicated for a charge directly above a peak (green), a charge above an undeformed
section of membrane (blue), and a charge directly above a trough (orange). The self-energy of a charged
particle is greatest above membrane peaks due to the associated reduction in distance between the particle
and its induced charge. The inset highlights particle locations and distances measured to the undeformed
surface with λ = 5lB and H = 0.25lB . (b) Self-energy of a charged particle vs its distance from the local
perturbed surface. Results are indicated for a charge directly above a peak (green), a charge above an
undeformed membrane element (blue), and a charge directly above a trough (orange). When maintaining
a constant distance from the induced surface charge, the self-energy of a charged particle is greatest above
membrane troughs due to their concavity. These results suggest a local depletion of charged particles from
membrane troughs relative to peaks. The inset highlights particle locations and distances measured to the
deformed membrane surface with λ = 5lB and H = 0.25lB .
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particles above peaks have the lowest self-energies. These findings speak to the effects of surface curvature;
since all particles are the same distance from their respective induced surface charges, the convexity or
concavity of the local surface becomes the dominant factor in determining their relative self-energies. It is
therefore reasonable to conclude that the concavity of the trough and convexity of the peak lead to respective
increases and decreases in the self-energy of particles as described in previous work31,52. Since the surface
curvature determines the energetic asymmetry between peaks and troughs, increasing membrane undulation
should increase this asymmetry and the relative preference of charged particles for surface peaks over troughs.

4.2 Simulations of Many-Particle Systems

Even given self-energy asymmetries between peaks and troughs, interactions are symmetric for electrolytes
of ions with identical valences and radii. Therefore, there can be no net charge at the interface without
introducing asymmetric electrolytes. While single-particle computations permit tractable analytical results,
real systems are far more complicated, often consisting of many ions interacting with one another. To
study these complex behaviors, we turn to Langevin dynamics simulations of 2:1 electrolytes with divalent
positive and monovalent negative ions. It should be noted that our approach neglects the structural effects
of particular solvents as has been shown to be important in the description of ion-adsorption at air-water
interfaces58; we believe that these effects can be important, but that capturing the dielectric effects at these
interfaces can still capture much of the essential physics happening in their vicinity.

To isolate the effects of asymmetric ion valence, we assume the ions have identical radii. First, we
study the effects of dielectric mismatch near a curved membrane with an undulation wavelength of 5lB . We
simulate this system both with and without dielectric mismatch. To elicit the effects of dielectric mismatch,
we compare the density profiles of the ions between the two cases.

In Figure 5, it is evident that the incorporation of dielectric mismatch leads to increased repulsion
of ions from the surface; this effect occurs on both sides of the membrane. For the 2:1 system, the repulsion
is stronger for the positive divalent ions than for the negative monovalent ions, which is expected since
the strength of induced charge repulsion scales with the square of the ion valence. These results assume
identically-sized ions although typically cations are smaller than anions. It should be noted that even without
dielectric mismatch, there is some local depletion of ions from the interface: this is explicable by the fact
that ions in solution experience a net attraction to ions in the bulk. These results agree with those calculated
by Wu et al. using numerical boundary element methods, indicating that our method reproduces all of the
essential effects associated with rough dielectric interfaces.59

According to Figure 3, curvature effects become more potent at lower surface undulation wave-
lengths. The potential to use surface geometry to control ion positions near these curved dielectric interfaces
motivates another set of simulations examining a membrane with an undulation wavelength of 2.5lB . This
smaller wavelength implies an increased importance of peak and trough curvature. By increasing the dif-
ference in curvature between peaks and troughs, we hypothesize that we can more strictly control ionic
concentrations near the interface. These changes in ion adsorption are likely related to an electrostatic
contribution to the surface tension of the membrane and by extension its distribution of height-height corre-
lations.60 By sampling a variety of deformation wavelengths, one could estimate a capillary wavelength for
the system driven by changes in ion behavior near the interface. This analysis reaches beyond the scope of
the current work but is well worth exploring in the future.

The results show that, as proposed, asymmetric dielectric effects become much stronger for a
more oscillatory membrane. As shown in Figure 5 (e), positive charges are even more strongly repelled from
troughs due to the effects of curvature on polarization forces. This confirms the hypothesis that increased
magnitudes of membrane curvature lead to more pronounced asymmetry between peak and trough surface
charge densities. In addition to the density maps in Figure 5, we explicitly calculate the charge densities of
the ionic species above peaks and troughs respectively to quantify any differences between them. We also
calculate the net charge density distribution near the interface. These results are displayed in Figure 6.
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Figure 5: Charge densities of 2:1 electrolytes consisting of divalent positive and monovalent negative ions near
a sinusoidally deformed dielectric interface. Subplots (a)-(d) depict a system with λ = 5lB and amplitude
H = 0.25lB (calculated from Equation 5), where (a) and (b) depict a system without dielectric mismatch
and (c) and (d) depict a system with dielectric mismatch. Subplots (e) and (f) depict a system with
dielectric mismatch, λ = 2.5lB , and H = 0.25lB . For both positive and negative ions, the incorporation of
dielectric mismatch decreases charge density near the surface; this effect is stronger for the divalent positive
charges than for the monovalent negative charges. This asymmetry between the divalent positive charges
and monovalent negative charges is increased by decreasing λ from 5lB to 2.5lB . Surface charge depletion
occurs preferentially from troughs over peaks in subplots (e) and (f); we believe this to be due to trough
concavity and peak convexity increasing and decreasing the induced surface charge respectively.
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Figure 6: Charge densities of divalent positive and monovalent negative ions near a sinusoidally deformed
dielectric surface with λ = 2.5lB . Top: (a) Positive and (b) negative charge densities above peaks (orange)
and troughs (blue) of a deformed surface without dielectric mismatch. (c) Two-dimensional plot of the net
charge density near the surface. Bottom: (d) positive and (e) negative charge densities above peaks (orange)
and troughs (blue) of a deformed surface with dielectric mismatch. (f) Two-dimensional plot of the net
charge density near the surface of a highly deformed dielectric interface. Some preference for surface peaks
over troughs is visible for the system without dielectric mismatch; this can be explained by increased distance
between troughs from the ionic bulk. For the system with dielectric mismatch, increased surface curvature
causes a strong depletion of ions from surface troughs relative to peaks. This depletion is exaggerated for
the positive ions due to their higher valence. The stronger depletion of divalent ions from troughs leads to
net charge patterning in accordance with the interfacial geometry.
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In Figure 6 (d) and (e), we observe that incorporating dielectric mismatch leads to reduced
repulsion for ions above peaks compared to those above troughs. This preference is displayed to a lesser
extent in the system without dielectric mismatch, which could be due to the fact that the divalent ions
near troughs are further from the ionic bulk than those near peaks. Based on the increase in the effect for
the increased ion valency, this appears to be an ionic correlation effect. Correlations arising due to lateral
repulsion between multivalent ions adsorbed to strongly oppositely charged surfaces generate two-dimensional
patterns known as Wigner crystals.61 These Wigner crystals are modified by dielectric mismatch.62. While
the effect is shown to be negligible for neutral surfaces,63 it is possible that some smaller correlations arise
in multivalent salts. Indeed, while this preference exists without dielectric mismatch, it is greatly enhanced
by its incorporation. By comparing Figure 6 (c) and (f), we observe that the magnitude of the net charge
near surface troughs increases substantially for a surface with dielectric mismatch. This is due to excess
depletion of divalent positive charges from troughs and demonstrates that interfacial charge patterning in
asymmetric ionic systems is greatly enhanced by the combination of curvature and dielectric effects. These
results show that simply by changing the curvature of a dielectric interface, it is possible to create a wide
variety of different surface charge patterns. This promises an exciting array of applications in bioinspired
and iontronic materials.

5 Conclusions

To determine the effects of dielectric mismatch near curved membranes, we introduce a perturbative formu-
lation for calculating electrostatic potentials from particles near rough interfaces in slab geometries. This
formulation uses a first-order approximation to estimate electrostatic potentials stemming from individual
particles; linear combinations of these potentials yield results for systems containing many charges. Although
we only consider sinusoidal deformations here, this perturbative scheme can account for general deformations
by combining sinusoidal perturbations in two dimensions. This approach allows for the study of arbitrarily
complex curved interfaces. This can be incorporated into a Langevin approach to study the effects of ionic
size and valence.

Examining the self-energies of individual particles, we find that particles feel two effects from
the deformation of dielectric surfaces. The first is related to changes in distance between a particle and
the surface, while the second is related to the concavity or convexity of the local surface. Taken together,
these phenomena cause troughs to repel particles near the surface more strongly than peaks. We show that
the effects of curvature become more potent with decreasing undulation wavelength of the interface which
is accompanied by increasing the magnitude of the interfacial curvature. We also examine effects of the
intermembrane distance on the self-energy, concluding that opposite interfaces only interact meaningfully
with one another if the intermembrane distance is very small.

Simulations of highly concentrated electrolyte solutions employing Langevin dynamics show that
these single particle self-energy concepts are broadly applicable to larger charged systems. Our Langevin
approach permits incorporation of hard-core repulsion and multi-particle correlation effects, which is well
suited to studying the highly concentrated electrolytes relevant to confined systems. The addition of dielectric
mismatch leads to increased depletion of ions at membrane surfaces, occurring preferentially at troughs due
to their concavity. By employing a 2:1 asymmetric electrolyte with divalent positive and monovalent negative
ions, we can selectively generate net charge densities via preferential depletion of positive ions near surface
troughs. These results present the possibility to create charge patterns at dielectric boundaries by tuning
interfacial geometry.

In this work, we show that particles can be selectively driven from different interfacial locations
depending on surface curvature. Given the ability to tune interfacial roughness in electronics and other
devices, this directly leads to the ability to selectively deplete charged particles from interfaces. The effect
could be especially potent in the presence of multivalent ions, where induced charge effects are stronger. By
altering only boundary conditions, our method can be extended to study ion distributions in electrolytes
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confined by rough interfaces, offering immense potential to the growing field of iontronics. It provides a fast,
robust way to validate numerical methods and establish appropriate parametrizations for interfacial ionic
control, rendering it invaluable to the nanoscience of charged systems.

6 Supplementary Material

The supplementary material includes graphs displaying the full range of particle self-energy with varying
lateral displacement near a dielectric interface, the charges directly above peaks and troughs for the Langevin
system with λ = 5lB , charge density maps for the Langevin system with λ = 2.5lB and no dielectric mismatch,
simulation results from a system with ϵ1 = 80 and ϵ2 = 20, and validation of the approach described in this
work using numerical methods.
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11 Appendix: Exact Solutions and Implementation

We solve Equation 6 by solving each term in the summations over m⃗ separately. Moreover, we solve inde-
pendently the terms proportional to h0, h1

s, and h1
c . This leads to the following three equations:

∂2g
(0)
m⃗ (z, zi)

∂z2
− k2g

(0)
m⃗ (z, zi) = − 4πQi

ϵ1LxLy
δ(z − zi), (A1)

∂2g
(1,s)
m⃗ (z, zi)

∂z2
− κ2g

(1,s)
m⃗ (z, zi) = 0, (A2)

and
∂2g

(1,c)
m⃗ (z, zi)

∂z2
− k2g

(1,c)
m⃗ (z, zi) = 0. (A3)

We note that Equation A3 simply reflects the q⃗ = 0 case of Equation A2 and will be treated as such in the
following derivations for brevity.

11.1 Case 1: General Case

In the general case, the solution to the zeroth order equation (Equation A1) can be written:

g
(0)
m⃗ (z, zi) = A(0)e−k(z−h0) +B(0)ek(z−h0), (A4)

and solution to the first order sinusoidal Equation (Equation A2) is:

g
(1,s)
m⃗ (z, zi) = A(1,s)e−κ(z−h0) +B(1,s)eκ(z−h0), (A5)

where A and B are constants determined by the boundary conditions and z is transformed to z − h0 to
represent the distance from the center of a deformed membrane. It is immediately evident that the solution
to the first order constant equation is, as mentioned above, identical to Equation A5 with q⃗ set equal to zero.
In this case κ = k.

To apply the boundary conditions, we divide our system into four regions as shown in Figure
1. We apply boundary conditions mandating that the potentials ϕ, as well as ∇ϕ · n̂, in different regions
be equal at the region boundaries. Here, n̂ represents the unit normal vector to the region boundary. This
reduces to n̂ = (0, 0, 1) for a flat boundary; for a general bounding surface z = f(x, y) it takes the form
n̂ = (−∂f

∂x ,−
∂f
∂y , 1). The one exception to this is at the boundary between Regions III and IV, where the

discontinuity in the derivative of the potential across the interface is set equal to 4πQi

ϵ1
due to the delta

function in Equation A1. This leaves us with the following six equations:

I.ϕI(−d+ h) = ϕII(−d+ h),

II.ϕII(d+ h) = ϕIII(d+ h),

III.ϕIII(zi) = ϕIV (zi),

IV.ϵ1(∇ · ϕI)|z=−d+h = ϵ2(∇ · ϕII)|z=−d+h,

V.ϵ2(∇ · ϕII)|z=d+h = ϵ1(∇ · ϕIII)|z=d+h,

VI.
∂ϕIII

∂z

∣∣∣∣
z=zi

− ∂ϕIV

∂z

∣∣∣∣
z=zi

=
4πQi

ϵ1
,

(A6)

where the subscripts indicate which region the potential is describing. Expanding each term to first order
and accounting for the fact that the potential must approach zero as z → ±∞, we obtain the following
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system of equations:

I.B
(0)
I e−kd(1 + kh) + hB

(1)
I e−kd = A

(0)
II e

kd(1− kh) +B
(0)
II e−kd(1 + kh) + h(A

(1)
II e

kd +B
(1)
II e−kd),

II.A
(0)
II e

−kd(1− kh) +B
(0)
II ekd(1 + kh) + h(A

(1)
II e

−kd +B
(1)
II ekd) =

A
(0)
IIIe

−kd(1− kh) +B
(0)
IIIe

kd(1 + kh) + h(A
(1)
IIIe

−kd +B
(1)
IIIe

kd),

III.A
(0)
IIIe

−kzi +B
(0)
IIIe

kzi + h(A
(1)
IIIe

−kzi +B
(1)
IIIe

kzi) = A
(0)
IV e

−kzi + hA
(1)
IV e

−kzi ,

IV.ϵ1(kB
(0)
I e−kd(1 + kh) + h(kB

(1)
I e−kd − κ2 − k2 − q2

2
B

(0)
I e−kd)) =

ϵ2(−kA
(0)
II e

kd(1− kh) + kB
(0)
II e−kd(1 + kh) + h(−kA

(1)
II e

kd + kB
(1)
II e−kd−

κ2 − k2 − q2

2
(A

(0)
II e

kd +B
(0)
II e−kd))),

V.ϵ2(−kA
(0)
II e

−kd(1− kh) + kB
(0)
II ekd(1 + kh) + h(−kA

(1)
II e

−kd + kB
(1)
II ekd−

κ2 − k2 − q2

2
(A

(0)
II e

−kd +B
(0)
II e−kd))) =

ϵ2(−kA
(0)
IIIe

−kd(1− kh) + kB
(0)
IIIe

kd(1 + kh) + h(−kA
(1)
IIIe

−kd + kB
(1)
IIIe

kd−
κ2 − k2 − q2

2
(A

(0)
IIIe

−kd +B
(0)
IIIe

−kd))),

VI.− kA
(0)
IIIe

−kzi + kB
(0)
IIIe

kzi + h(−kA
(1)
IIIe

−kzi + kB
(1)
IIIe

kzi) = kA
(0)
IV e

−kzi − hkA
(1)
IV e

−kzi ,

(A7)

where the superscripts indicate which order term (zeroth or first) each constant corresponds to and q =√
q2x + q2y.

This system of equations can be easily solved by separating it into two sets of six equations each
with one set containing terms of order h0 and the other set containing terms of order h1. Solving these two
sets of equations, we find that the zero-order constants take the following values:

B
(0)
I =

8e4dk−k(zi−h0)ϵ2πQi

k(e4dk(ϵ1 + ϵ2)2 − (ϵ2 − ϵ1)2)

A
(0)
II =

4e2dk−k(zi−h0)(ϵ2 − ϵ1)πQi

k(e4dk(ϵ1 + ϵ2)2 − (ϵ2 − ϵ1)2)
,

B
(0)
II =

4e2dk−k(zi−h0)(ϵ2 − ϵ1)πQi

k(e4dk(ϵ1 + ϵ2)2 − (ϵ2 − ϵ1)2)
,

A
(0)
III =

2e2dk−k(zi−h0)(−1 + e4dk)(ϵ1 − ϵ2)(ϵ1 + ϵ2)πQi

ϵ1k(e4dk(ϵ1 + ϵ2)2 − (ϵ2 − ϵ1)2)
,

B
(0)
III =

2e−k(zi−h0)πQi

ϵ1k
,

A
(0)
IV =

2e−k(zi−h0)(−e2k(zi−h0)(ϵ2 − ϵ1)
2 + e2dk(ϵ2 − ϵ1)(ϵ2 + ϵ1) + e2k(2d+(zi−h0))(ϵ2+ϵ1)

2+e6dk(ϵ21−ϵ22))πQi

ϵ1k(e4dk(ϵ1 + ϵ2)2 − (ϵ2 − ϵ1)2)
,

(A8)
where we note that zi has been transformed to zi−h0 to represent a particle above a flat surface of distance
h0 above the unperturbed flat surface (where h0 = 0). The first order constants arising from the sinusoidal
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perturbation hc (denoted by a superscript (1, s)) are

B
(1,s)
I = −4F0ϵ2 sinh(d(k − κ))(F11 + F12)

D
,

A
(1,s)
II =

F0(F21 + F22 + F23)

2D
,

B
(1,s)
II = − (F0(F31 + F32 − F33)

2D
,

A
(1,s)
III = − (F0(F41 + F42 + F43 + F44)

2ϵ1D
,

B
(1,s)
III = 0,

A
(1,s)
IV = − (F0(F41 + F42 + F43 + F44)

2ϵ1D
.

(A9)

where we note that

F0 = 4ed(k+κ)−k(zi−h0)(ϵ2 − ϵ1)πQi,

F11 = (−2ϵ2kκ+ ϵ1(k
2 + κ2 − q2)) cosh(d(k + κ)),

F12 = (−2ϵ1kκ+ ϵ2(k
2 + κ2 − q2)) sinh(d(k + κ)),

F21 = 2(1 + e2d(k+κ))ϵ2ϵ1(k + κ− q)(k + κ+ q),

F22 = ϵ21((−1 + e4dk)k2 − 2(1 + e4dk − 2e2d(k+κ))kκ+ (−1 + e4dk)(κ− q)(κ+ q)),

F23 = ϵ22(−((1 + e4dk − 2e2d(k+κ))k2) + 2(−1 + e4dk)kκ− (1 + e4dk − 2e2d(k+κ))(κ− q)(κ+ q)),

F31 = e2d(2k+κ)(ϵ2 + ϵ1)
2(k − κ− q)(k − κ+ q),

F32 = e2dκ(ϵ2 − ϵ1)(ϵ2 + ϵ1)(k + κ− q)(k + κ+ q),

F33 = 2e2dk(ϵ2 − ϵ1)(2ϵ1kκ+ ϵ2(k
2 + κ2 − q2)),

F41 = 2(−1 + e4dk)(−1 + e4dκ)ϵ32kκ,

F42 = (−1 + e4dk)(−1 + e4dκ)ϵ31(k
2 + κ2 − q2),

F43 = 2ϵ2ϵ
2
1((−1 + e4d(k+κ))k2 + (1 + e4dk + e4dκ − 4e2d(k+κ),

+ e4d(k+κ))kκ+ (−1 + e4d(k+κ))(κ− q)(κ+ q)),

F44 = ϵ22ϵ1((1 + e4dk + e4dκ − 4e2d(k+κ) + e4d(k+κ))k2 + 4(−1 + e4d(k+κ))kκ+

(1 + e4dk + e4dκ − 4e2d(k+κ) + e4d(k+κ))(κ− q)(κ+ q))

D = kκ(2ϵ2ϵ1 cosh(2dk) + (ϵ22 + ϵ21) sinh(2dk))(2ϵ2ϵ1 cosh(2dκ) + (ϵ22 + ϵ21) sinh(2dκ)).

(A10)

The first order constants arising from the constant perturbation hc (denoted by a superscript (1, c)) can be
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obtained by setting q⃗ = 0 in the first order equations and are

B
(1,c)
I = 0,

A
(1,c)
II =

8e2dk−k(zi−h0)(ϵ2 − ϵ1)πQi

−(ϵ2 − ϵ1)2 + e4dk(ϵ2 + ϵ1)2
,

B
(1,c)
II = 0,

A
(1,c)
III =

4e2dk−k(zi−h0)(e4dk − 1)(ϵ21 − ϵ22)πQi

ϵ1(e4dk(ϵ2 + ϵ1)2 − (ϵ2 − ϵ1)2)
,

B
(1,c)
III = 0,

A
(1,c)
IV =

4e2dk−k(zi−h0)(e4dk − 1)(ϵ21 − ϵ22)πQi

ϵ1(e4dk(ϵ2 + ϵ1)2 − (ϵ2 − ϵ1)2)
.

(A11)

We also highlight the fact that A
(1,s)
III = A

(1,s)
IV and A

(1,c)
III = A

(1,c)
IV . For a system without any dielectric

mismatch, we find the following:

B
(0)
I = B

(0)
II = B

(0)
III =

2e−k(zi−h0)πQi

ϵ1k
,

A
(0)
IV =

2ek(zi−h0)πQi

ϵ1k
,

(A12)

with all other terms being equal to 0 in this case. For calculation purposes, we then consider the potential
as being divided into a standard electrostatic contribution and a polarization contribution. The standard
electrostatic portion can be treated using versions of the Ewald method modified for slab geometries.56,64 We
separate out the contribution from polarization by subtracting the terms in Equation A12 from our Equation

A8. This serves to modify the B
(0)
II ,B

(0)
II ,B

(0)
III ,and A

(0)
IV terms, which become:

B
(0)
I = −2e−k(zi−h0)(−1 + e4dk)(ϵ2 − ϵ1)

2πQi

ϵ1k(e4dk(ϵ2 + ϵ1)2 − (ϵ2 − ϵ1)2)
,

B
(0)
II =

2e−k(zi−h0)(−ϵ2 + ϵ1)(−ϵ2 + ϵ1 + e4dk(ϵ2 + ϵ1))πQi

ϵ1k(e4dk(ϵ2 + ϵ1)2 − (ϵ2 − ϵ1)2)
,

B
(0)
III = 0,

A
(0)
IV =

2e2dk−k(zi−h0)(−1 + e4dk)(−ϵ22 + ϵ21)πQi

ϵ1k(e4dk(ϵ2 + ϵ1)2 − (ϵ2 − ϵ1)2)
.

(A13)

The process outlined in this section can be repeated with nearly identical results for a charge on the left side
of the membrane. A complete solution considering charges on either side of the membrane is implemented
as part of the Langevin dynamics simulations.

11.2 Case 2: k = 0

In the k = 0 case, there are divergent terms which must be accounted for in the A and B constants.
Expanding the zeroth order A and B polarization energy terms around k = 0, we obtain the following
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results:

B
(0)
I = −2(d(ϵ2 − ϵ1)

2πQi)

ϵ2ϵ21
+O(k),

A
(0)
II =

(ϵ2 − ϵ1)πQi

ϵ2ϵ1k
− (ϵ2 − ϵ1)πQi(dϵ

2
2 + dϵ21 + ϵ1ϵ2(z − h0) + ϵ2ϵ1(zi − h0))

ϵ22ϵ
2
1

+O(k),

B
(0)
II =

(ϵ1 − ϵ2)πQi

ϵ2ϵ1k
− (ϵ1 − ϵ2)πQi(−dϵ22 + dϵ21 − ϵ1ϵ2(z − h0) + ϵ2ϵ1(zi − h0))

ϵ22ϵ
2
1

+O(k),

A
(0)
III =

2d(ϵ1 − ϵ2)(ϵ1 + ϵ2)πQi

ϵ2ϵ21
+O(k),

B
(0)
III = 0,

A
(0)
IV =

2d(ϵ21 − ϵ22)πQi

ϵ2ϵ21
+O(k).

(A14)

It can be observed from Equation A14 that only the energetic terms corresponding to Region II
(the region between the membranes) depend on z; therefore we need not consider the k = 0 case for the
purpose of calculating forces on the particles, which all lie in Regions I, III, and IV. Moreover, the energetic
terms in Regions I, III, and IV are all constants to zero order in k. This will lead to an increase in the
system energy by some constant which does not depend on the positions of the particles and can be safely
renormalized away.

Redefining the first-order terms in the k = 0 case merits an alternative approach. To calculate
these terms, we simply solve the first-order piece of Equation A7 while setting k = 0. Solving this leads to
all first order constants being equal to zero, meaning that they contribute nothing to the electrostatic energy
or force. Pairing this with the result above (Equation A14), the k = 0 term may be excluded entirely from
our sum over m⃗ in Equation 4.

11.3 Case 3: κ = 0

Much like the k = 0 case, the nature of our expressions for the constants A and B lead to divergences at
κ = 0. Since the zeroth order terms and first order constant terms are not proportional to κ in any way,
they are not considered here. The first order sinusoidal terms, however, must be carefully examined. To do
so, we expand these terms around κ = 0, leading to the following:
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B
(1,s)
I = −4ϵ2(ϵ2 − ϵ1)πQi

edk−k(zi−h0) sinh(dk)(2ϵ2k cosh(dk) + 2ϵ1k sinh(dk))

2ϵ2ϵ1
+O(κ),

A
(1,s)
II =

(ϵ2 − ϵ1)πQi(e
−d−k(zi−h0)(−2(−1 + e2dk)2ϵ21k + ϵ22(2(−1 + e4dk)k) + 4ϵ2ϵ1(k + e2dkk))

4ϵ2ϵ1k(2ϵ2ϵ1 cosh(2dk) + (ϵ22 + ϵ21) sinh(2dk))
+O(κ),

B
(1,s)
II = − (ϵ2 − ϵ1)πQie

−kd−k(zi−h0)(−4e2dk(ϵ2 − ϵ1)ϵ1k − 2ke4dk(ϵ2 + ϵ1)
2 + 2k(ϵ22 − ϵ21))

4ϵ2ϵ1k(2ϵ2ϵ1 cosh(2dk) + (ϵ22 + ϵ21) sinh(2dk))
+O(κ),

A
(1,s)
III = − (ϵ2 − ϵ1)πQi(e

−dk−k(zi−h0)(4ϵ2ϵ
2
1(−1 + e2dk)2k + 4ϵ22ϵ1(−1 + e4dk)k)

4ϵ2ϵ21k(2ϵ2ϵ1 cosh(2dk) + (ϵ22 + ϵ21) sinh(2dk))
+O(κ),

B
(1,s)
III = 0,

A
(1,s)
IV = − (ϵ2 − ϵ1)πQi(e

−dk−k(zi−h0)(4ϵ2ϵ
2
1(−1 + e2dk)2k + 4ϵ22ϵ1(−1 + e4dk)k)

4ϵ2ϵ21k(2ϵ2ϵ1 cosh(2dk) + (ϵ22 + ϵ21) sinh(2dk))
+O(κ).

(A15)

With the exception of those applying to the intermembrane region (Region II), these terms
do not depend on particle position and will therefore not contribute to the force, adding only a constant
to the total energy of the system. Additionally, since the total constant energy term will be equal to

H
LxLy

∑
j g

(1)
m⃗ (z, zi)Qj , this constant will sum to zero for neutral systems. Due to the positional independence

of the κ = 0 energetic expressions and the cancellation of the constant term in this case, the corresponding
first order sinusoidal A and B terms can be safely ignored.

11.4 Langevin Dynamics Implementation

To implement our solution, we divide the electrostatic potential into a polarization term and a standard
electrostatic term as referenced in Section 11.1:

ϕtotal = ϕs + ϕpol, (A16)

where ϕs represents the standard Coulomb contribution to the potential and ϕpol represents the polarization
contribution. The standard contribution can be treated by Ewald summation or similar methods.56,64 The
polarization energy of the system is then defined in the following way:

Upol =
1

2

∑
i

∑
j

ϕij , (A17)

where ϕij represents the polarization force felt by particle j due to the presence of particle i. From this
expression, we determine the total polarization energy of the system using the following equation:

Upol =
1

2

∑
m⃗′

[
A

′(0)
IV (f01f11 + f02f12 + f03f13 + f04f14) +B

′(0)
I (f01f13 + f02f14 + f03f11 + f04f12)

]
+

H

2

∑
m⃗′′

[
A

′(1,s)
IV (f011f17 + f012f18 − f09f15 − f010f16) +B

′(1,s)
I (f011f15 + f012f16 − f09f17 − f010f18)

]
− H

2

∑
m⃗′

[
A

′(1,c)
IV (f07f13 + f08f14 − f05f11 − f06f12)

]
,

(A18)
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where the primed A and B constants are identical to the A and B constants defined in Equations
A8, A9, and A11 with the dependencies on zi and Qi removed. The primed summation over m⃗ indicates
exclusion of the m⃗ = 0 term in the summation; the double primed summation indicates exclusion of the
m⃗ = 0 and m⃗+ q⃗ = 0 terms. The f functions are defined as follows:

f01 =
∑
i∈l

Qie
−2kh0+kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f02 =
∑
i∈l

Qie
−2kh0+kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f03 =
∑
i∈r

Qie
2kh0−kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f04 =
∑
i∈r

Qie
2kh0−kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f05 =
∑
i∈l

Qie
−2kh0+kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f06 =
∑
i∈l

Qie
−2kh0+kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f07 =
∑
i∈r

Qie
2kh0−kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f08 =
∑
i∈r

Qie
2kh0−kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f09 =
∑
i∈l

Qie
−(k+κ)h0+kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f010 =
∑
i∈l

Qie
−(k+κ)h0+kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f011 =
∑
i∈r

Qie
(k+κ)h0−kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f012 =
∑
i∈r

Qie
(k+κ)h0−kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,
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and

f11 =
∑
i∈l

Qie
kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f12 =
∑
i∈l

Qie
kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f13 =
∑
i∈r

Qie
−kzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f14 =
∑
i∈r

Qie
−kzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
,

f15 =
∑
i∈l

Qie
κzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f16 =
∑
i∈l

Qie
κzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f17 =
∑
i∈r

Qie
−κzi cos

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

f18 =
∑
i∈r

Qie
−κzi sin

(
2πmx

Lx
xi +

2πmy

Ly
yi

)
cos(qxxi + qyyi),

(A20)

where i ∈ l and i ∈ r represent summations over particles on the left and right sides of the membrane
respectively. Additionally, we note that all complex exponential expressions are replaced with their real
components. Implementation of Equation A18 leads to extremely efficient computations of the polarization
force; the complexity of such calculations is of O(N) where N is the number of particles in the system.
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62L. Šamaj and E. Trizac, “Ground-state structure of a bilayer Wigner crystal with repulsive dielectric
images”, EPL (Europhysics Letters) 100, 56005 (2012).

63N. R. Agrawal, C. Duan, and R. Wang, “Nature of Overcharging and Charge Inversion in Electrical Double
Layers”, The Journal of Physical Chemistry B, acs.jpcb.3c04739 (2023).

64I.-C. Yeh and M. L. Berkowitz, “Ewald summation for systems with slab geometry”, The Journal of
Chemical Physics 111, 3155–3162 (1999).

65T. D. Nguyen, H. Li, D. Bagchi, F. J. Solis, and M. O. de la Cruz, “Incorporating surface polarization effects
into large-scale coarse-grained Molecular Dynamics simulation”, Computer Physics Communications 241,
80–91 (2019).

66V. Nikolskiy and V. Stegailov, “GPU Acceleration of Four-Site Water Models in LAMMPS”, in Advances
in Parallel Computing , edited by I. Foster, G. R. Joubert, L. Kučera, W. E. Nagel, and F. Peters (IOS
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12 Supplementary Material

12.1 Self Energy vs Lateral Position

Figure 7: (a) Self-energy of a monovalent charged particle vs its x position for a constant z position above a
sinusoidally deformed interface. The self-energy of the particle follows the contour of the membrane, increas-
ing above peaks and decreasing above troughs due to changes in particle proximity to induced membrane
charge. (b) Self-energy of a monovalent charged particle vs its x position while maintaining a constant height
above a sinusoidally deformed surface. The self-energy of the particle is an inverse of the membrane contour
due to curvature effects dominating when the local distance to the surface is held constant. Note that this
particular membrane is structured such that there are peaks at either end and a trough in the middle. The
insets show the particle location relative to the curved membrane surface as it is translated in the x direction.
The deformation is described by the parameters H = 0.25lB and λ = 5lB .
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12.2 Peak and Trough Charge Densities for λ = 5lB System

Figure 8: Divalent positive and monovalent negative charge densities above peaks and troughs of a sinu-
soidally deformed surface with λ = 5lB . Top: (a) positive and (b) negative charge densities above the
surface without dielectric mismatch, comparing densities above peaks (orange) and troughs (blue). (c) Two-
dimensional plot of the net charge density near the interface. Bottom: (d) Positive and (e) negative charge
densities above peaks (orange) and troughs (blue) of a surface with dielectric mismatch. (f) Two-dimensional
plot of the net charge density near the interface incorporating this dielectric mismatch. Dielectric mismatch
tends to lead to a net negative charge at the interface due to the stronger repulsion of divalent positive ions
than monovalent negative ions.
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12.3 Charge Density Maps for λ = 2.5lB System Without Dielectric Mismatch

Figure 9: (a) Divalent positive and (b) monovalent negative charge densities near a sinusoidally deformed
interface with λ = 2.5lB , H = 0.25lB , and no dielectric mismatch. Some depletion of positive ions from the
interface can be seen; this can be explained by an attraction of interfacial ions to the ionic bulk.
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12.4 Simulation Results for Alternative ϵ2

While dielectric mismatch is important to membranes and membrane-like systems, our methods are equally
interesting to other dielectric systems such as clays. In Figure 10 below, we present simulation results for
dielectric mismatch typical of a water-clay interface. We simulate a system with a deformation of amplitude
H = 0.25lB and wavelength λ = 2.5lB . All simulation parameters save the dielectric constants are identical
to the other simulations in this work. We set ϵ1 = 80 and ϵ2 = 20 to mimic a typical water-clay interface.13,12

Figure 10: Top: (a) Divalent positive and (b) monovalent negative charge densities near a sinusoidally
deformed dielectric interface with amplitude H = 0.25lB and wavelength λ = 2.5lB . Dielectric mismatch
mimics a typical water-clay interface with ϵ1 = 80 and ϵ2 = 20. Under these conditions, the effect of the
dielectric mismatch is still noticeable and results in decreased charge density near the interface; however the
effect is less obvious than in the membrane systems with ϵ2 = 2. This is likely due to the reduced dielectric
mismatch. Bottom: Charge densities of (c) divalent positive and (d) monovalent negative ions above peaks
and troughs of the surface. (e) Net charge density near the water-clay interface. The effects of the curved
surface are reduced from the membrane case, but still noticeable with a notable relative ionic preference for
peaks over troughs.
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12.5 Numerical Validation

We validate our numerical method by comparing the forces in the z direction on a test particle near a
sinusoidally deformed interface of amplitude H = 0.5lB and λ = 2.5lB . For these simulations, all parameters
are identical to the rest of the simulations performed in this work save for the number of particles which is set
to 2. The system contains one cation with charge +1 and one anion with charge −1. The cation is positioned
above either a peak or a trough, while the anion is fixed at a set distance from the cation. We calculate
polarization force profiles for the cation by moving it in the +z direction over a range of positions, starting
very close to the membrane surface and subsequently moving further away. We determine the polarization
contribution to the force by taking the difference of the force on the test cation with and without dielectric
mismatch. Our numerical method works by numerically integrating the charge on the surface using the
Poisson equation; the surface is represented as a 11730-point triangular mesh.65,66,67,68,69,70,71 The results of
this comparison are shown in Figure 11.

It is worth additionally noting that our method does have limits on the amplitudes of the defor-
mations which can be accommodated. Based on the boundary conditions of the unperturbed solution, the
results fail to converge for particles which sit inside the inner region of the system (Region II as defined in
Figure 1 of the main paper). The solution here is qualitatively different and as a result the approximation
breaks down. As a result, our approximation in its current form can handle deformation amplitudes of up
to half the particle diameter. While this is certainly somewhat limiting, it is very useful for describing larger
ions such as those comprising ionic liquids; moreover, the results from these simulations can provide intuition
for the design of other, more drastically deformed systems.

Figure 11: (a) Plot of the z-component of force on a test particle vs its distance from the membrane surface.
Results are shown for particles above peaks and above troughs, and are furthermore shown for both the
linearized method developed in this current work and a numerical method which computes the induced
charge at the dielectric interface by treating the surface as a triangular mesh. The numerical and linear
solutions overlap to the point of being largely indistinguishable; this suggests that our method is valid even
for particles close to the surface. (b) Difference between the linearized and numerical forces on a test particle
vs its distance from the membrane surface. Differences are small throughout the range of values sampled,
growing largest near the surface. This is reasonable and expected as both our model and our chosen numerical
method have the most difficulty describing interactions very close to the surface. Despite some differences
near the surface, the models appear to agree extremely well with one another, emphasizing the validity of
our linear approximation approach.
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