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This manuscript aims to compare the so-called iterated perturbation theory (IPT) and auxiliary master equation approach (AMEA)

impurity solvers for a Mott insulating system driven out of equilibrium by a static electric field. Electronic heat bath and optical
2 phonons are employed as dissipation mechanism of the current-induced Joule heat that the excited electrons of the lattice experience

as the result of the field’s driving. Despite its simplicity, the IPT approach yields results which qualitatively are in good agreement
L) with those obtained within the AMEA impurity solver, although fails to reproduce some correlation effects.

Q\

-1 Introduction

D

1

= The last decade has witnessed an increasing interest in the physics of Mott insulating systems as they
Vi can undergo phase transitions when driven out of equilibrium by both statically and periodically electric

fields. " Due to this property, they could be used to model the so-called insulator-to-metal transition,
E which has been investigated theoretically in the seminal works® and then observed experimentally.”

L Due to their strongly interacting nature, Mott insulating systems require a nonperturbative method to
C be dealt with. Nowadays, the most well-established approach is given by the dynamical mean-field the-
8 ory (DMFT)""~'" which holds under both equilibrium and non-equilibrium conditions. The DMFT relies

—on impurity solvers to address the non-equilibrium steady-state of the system, which often are the bot-

tleneck of the approach as they can be computationally costly. Purpose of this manuscript is to bench-
= mark the results of the iterated perturbation theory (IPT) impurity solver, which is known to work well
™~ in both the very weak and very strong interacting regime, ' against those obtained within the so-called
O auxiliary master equation approach (AMEA) impurity solver."” " The IPT solver yields results which
O are in quite good agreement with those obtained by employing AMEA for the very same setup investi-

. gated in a previous work from the authors.”” The rest of the manuscript is organized as follows: In Sec-

tion 2 we introduced the model at hand while Section 3 will be devoted to a short recap of the Green’s
o) function formalism and the IPT impurity solver. Results are discussed in Section 4 while Section 5 is
C_\! left for conclusions and further considerations. The details of the physical setup under investigation and
— the derivation of all the relevant observables of interest can be found in the previous work from the au-
'>2 thors.

S

2 Model Hamiltonian

We study the single-band Hubbard model in the presence of a constant electric field in the temporal gauge,
the Hamiltonian of which is given by

H(t) = ‘HU(t) + Hbath + He—ph + ]:Iph- (1)

The units employed in this manuscript are such that the lattice spacing a, Planck constant & and the
electron charge ¢ are chosen as a = h = —q = 1, hence the Hubbard Hamiltonian H,(t) in Equation (1)

is given by
H,(t) = e, Z Al — Z ch o= i(rj=ri)-A(t) fiTUij + U Z ﬁszﬁ{w (2)
io (i.5) i

WV
g

= ti; (1)
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where f ( fis) is the creation (annihilation) operator of an electron of spin o = {1, ]} at the i-th lattice
site and 7 n f fw the corresponding density operator Sums over nearest neighbor sites are denoted

by (i, 7). The electrons’ onsite energy is chosen as e, = —U/2 for the system to be fulfil particle-hole
symmetry and t. is the bare hopping amplitude. The homogeneous vector potential A(t) = —F' t is cho-
sen such that the static electric field is constant and oriented along the body diagonal of a hypercubic
lattice g = (1,1,...,1) and is given by F = —0,A(t).

We take the infinite-dimension limit,”»”* i.e. d — oo, with the usual rescaling of the hopping t. = t*/(2v/d),
which allows to perform summations over the electron crystal momentum using the joint density of states™
ple,€) = 1/(xt*?) exp[— (2 + &) /t*?}] with € = —2t. 3% | cosk; and € = —2t. 30 sin k.

An optical phonon branch is attached to each lattice site by means of the Hamiltonian

]f[e—ph =4 Z ﬁzfgii (3)

with #; = (bl + b;)/+/2, where b! (b;) creates (annihilates) an optical phonon with energy wg at the
lattice site 2. The optical phonon Hamiltonian consists of an Einstein phonon ]:Iph;E = wg y_,n? with
ne = IA)I@ the phonon density, coupled to a noninteracting, ohmic bath ﬁphyohm with spectral density
given in Equation (13).

To stabilize the DMFT loop we include electronic heat baths, consisting of a collection of noninteracting
fermionic degrees of freedom, coupled locally to each lattice site which are described by the Hamiltonian

Hiaon, the details of which will be specified in Section 3.1.1, see Equation (9).

3 Methods

3.1 Green’s function formalism

This section contains a short recap of the Green’s function (GF) approach, a versatile tool for the solu-
tion of many-body problems in- and out-of-equilibrium~"~"" which has been successfully applied to sev-
eral systems in condensed matter over the last decade.” 7"~

3.1.1 Electron Dyson equation
The interacting electron GF obeys the Dyson equation
G (w68 =Gy (W, 6,8) — By (W) — Z(w) = () (4)

e

with G, denoting the GF corresponding to the noninteracting part of the Hamiltonian in Equation (2).
By Xy, 2 and X, we denote the fermionic heat bath, electron and electron-phonon (e-ph) self-energy
(SE), respectively. By means of the DMFT and Migdal """ approximations both ¥ and X, in Equa-
tion (4) are local.

Every quantity X with an underline denotes the so-called Keldysh structure, namely

x=(% %) 5)

with X®4K being the retarded, advanced and Keldysh components where XX = X~ + X< and X< be-
ing the greater and lesser components. Each of the Keldysh components in Equation (5) is then a matrix
in the Floquet indices.” """’ However, given the time-translation invariant character of the problem
at hand,” """ only the diagonal components and especially the time-averaged element X, are non-
vanishing !. For this reason we will omit the Floquet indices in the rest of the manuscript.

Details concerning the computation of the e-ph SE X, within the Migdal approximation can be found
in our previous work.”

1We recall that due to the fundamental property of Floquet-represented matrices, i.e. Xon(w) =X,
the diagonal entries X can be obtained by the X, alone.

w+nkF), F being the applied field,

m—n,O(

mmn
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3.1 Green’s function formalism

We recall the definition of the electron spectral function (SF)

A(w) = —21m [GR (w)] (6)

T

where the local electron GF is given by

GR (W) = / de / de p(e,a{[al(w,e,z)ﬁ}_l, (7)

{[G’_l(w, e,E)]R} being the inverse time-averaged retarded component of the GF in Equation (4).

In terms of the contour-times z, z', and in the Migdal approximation,”” """ the e-ph SE reads
Yepn(2,2) =16°Groc(z, 2 ) Dpn(2, ') (8)

and corresponds to the lowest-order expansion in the phonon GF Dy, the form of which will be dis-
cussed below. Giee(z,2’) is the contour-times local GF, the retarded component of which obeys Equa-
tion (7). The retarded and Keldysh components of Equation (8) can be found in previous work from the
authors. R

In this manuscript we will use the wide-band limit approximation™’ for the heat bath described by Hypain

according to which ¥E | reads
e

SRanl) = =i, )

where T, is the so-called electronic dephasing rate.”” The Keldysh component XX ., is obtained by the
fluctuation-dissipation theorem for fermions, i.e. L (w) = [Eh (w) — Siyn (w)] tanh [B(w — 1) /2] with
[ the inverse temperature and p the chemical potential of the bath. Other important observables are the
current J flowing in the direction of the applied field and the kinetic energy FEy;, of the electrons of the
lattice: the derivation of both these quantities can be found in previous works from the authors.

3.1.2 Phonon Dyson equation

The optical phonon branch consists of Einstein phonons coupled to an ohmic bath,”"" the Dyson equa-
tion of which reads
Dy (@) = [Dppp(w) = My (@) = M ()] (10)

with the non-interacting retarded component of the Einstein phonon GF given by
Dy g(w) = 2wp/ (w* — wg) - (11)

The Einstein phonon is coupled to an ohmic bath ﬁph,ohmy the real retarded GF of which is obtained from
the Kramers-Kronig relations,”” while the Keldysh component is given by the fluctuation-dissipation the-

orem for bosons, i.e.
ITE . (W) = =271 Apan (w) coth(Bw/2). (12)

We choose the following form for the ohmic bath density of states (DOS) in (12)

v? 1 1
Abath(w) = —=

2 2 )
We 1 + (w;wc> 1_|_ (w:}rwc>

where —7 Apan(w) = Im[II},, (w)]. In Equation (13) w, denotes the ohmic bath cutoff frequency and v,
the hybridization strength to the ohmic bath: we only stress that the DOS in Equation (13) is linear for
W € [—we, We)-

(13)
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3.2 IPT impurity solver and DMF'T loop

According to the DMFT approximation, the polarization diagram Il ,, only depends on the local elec-
tron GF. Within the Migdal approximation, the contour times polarization diagram”” " in Equation (10)
reads

Hepn(z,2') = =21 G*Groc(2,2)Groe (7, 2), (14)

where the factor 2 accounts for spin degeneracy. We denote the scheme in which Il ;4 (2, 2’) is set to

zero as non-self-consistent (NSC) while within the self-consistent (SC) treatment the phonon SE in Equa-
tion (14) is non-vanishing. The real time components of Equation (14) have been derived in previous
work from the authors.

3.2 IPT impurity solver and DMFT loop

The IPT impurity solver is based on the perturbative expansion of the electron SE in terms of the Weiss
field,"" namely

Gyt t) =g M (8 1) — At 1), (15)
9, being the non-interacting GF' of the isolated site, the retarded component of which (in frequency do-

main) reads g (w) = (w —&.)”". The quantity A in Equation (15) is the hybridization function of the
system, encoding the effects of all the other lattice sites in a mean-field fashion." '~ The real-time com-
ponents of the electron SE can then be written as

SE(t, ) = UG5 (4,195 (H, )9 (t,1). (16)
The retarded and Keldysh components of the electron SE can be obtained from Equation (16) as

SR E) = 0(t — 1) (57 (1, 1) — 2<(1, 1)) (17)
YK ) = 27 (4, V) + S5(¢, ).

At the steady-state all quantities in Equation (17) are dependent on the difference ¢ — ¢ alone, hence
their Fourier transform in frequency domain is straightforward. The retarded and Keldysh components of
the Weiss field then read

1
gOR W) = 1 ;
“ oo -
K() = — 1R () [ 55(w) — _Cloel@)
gqO (CU) - |g0 (W)l 2 (w> |Gf{ (w)|2 :

We stress that at half-filling the Hartree term U/2 must be explicitly added to ©®(w) before computing
the quantities in Equation (18). The main steps of DMFT employing the IPT as impurity solver are:

i. Guess X(w), X, p(w) and I, (w)

ii. Compute G),.(w) and D (w) as in Equation (7) and (10)

iii. Extract 47 (w) = [45(w) F (YR (w) — 9 (w))]/2 from Equation (18)

iv. Fourier-transform ¥ (w) to get ¥5(¢, ') as in (16)

v. Fourier-transform G,.(w) and D, (w), compute »i/ “(t,t) and Y S,

e-ph e-ph
vi. Update X(w), X

Yo pn(w) and L, (w) via back Fourier-transform.

==e-ph

The steps ii. to vi. are then repeated until convergence.
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U e p 1/ we Ve g Wwg
8 -4 0 005 0.6 0.055 0.4 0.6

Table 1: Default values of the main parameters used in this manuscript. All values are in units of the hopping t*.

4 Results

In this section we benchmark the results yielded by the IPT approach against those obtained within the
AMEA impurity solver for the system at hand.

4.1 SC and NSC phonons

We set off by analyzing the steady-state current and kinetic energy in both the SC and NSC schemes ob-
tained within the IPT impurity solver. We then compare these results with those obtained within the
AMEA only at a later time.

4.1.1 Steady-state current and kinetic energy

The current J and and kinetic energy Fii, as functions of the applied field F' for both the SC and NSC
schemes obtained employing the IPT impurity solver are shown in Figure 1. We observe that the SC

x1072

T o] T T
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T./t* SC NSC | Fu

0.20 —— ——

I./t* SC
0.16

0.00

Eyin /1

S

-0.07

-0.14
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Figure 1: Current J as function of the applied field F for (a) I'c = 0.20t* (b) T'e = 0.16¢t* and (c) T'e = 0.12¢* for both
SC and NSC schemes. (d), (e) and (f) show the kinetic energy FEyi, as function of F for the same coupling strengths, re-
spectively. Default parameters are specified in Table 1. Results have been obtained using the IPT impurity solver. (Here

U =8t*.)

treatment has no effect for field strengths F' < U/2 as the SC and NSC curves for both J and Ey, lie
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4.1 SC and NSC phonons

on top of each other. On the other hand, the SC scheme does contribute corrections, albeit tiny, once F'
gets past field strengths of the order of the resonance U/2, for both J and Ey,. In particular we observe
a suppression of the peak values of the current J in the SC approach at F' =~ U with respect to the NSC
treatment. This is accompanied by an overall smearing of the J-F' curves around the maximum for all
the values of I, employed in this manuscript, see Figure 1(a), 1(b) and 1(c). The kinetic energy is also
affected by the SC treatment as its maximum value is suppressed, while its minimum is raised with re-
spect to the NSC scheme regardless of the value of I'e, see Figure 1(d), 1(e) and 1(f).

This behavior is qualitatively in agreement with the results obtained within the AMEA impurity solver
presented in a recent work from the authors.”” As a matter of fact, using AMEA the drop in the cur-
rent J at the resonance F' =~ U observed in the SC scheme is way more pronounced than in the IPT case
as one can see by comparing Figure 1 and 2 for corresponding values of the dephasing rate I'c. On the
other hand, the differences between the impurity solvers are less pronounced when it comes to the ki-
netic energy Fy;,, as it can be observed by comparing the corresponding curves in Figure 1 and 2 for the
same I'.’s.

We want to mention that the orders of magnitude of both J and Ey;, in the IPT scheme quantitatively
agrees with those obtained within the AMEA impurity solver. However, using the IPT approach the two
main resonances at F' &~ U/2 and F' ~ U are shifted towards smaller field strengths and the differences
between the SC and NSC schemes are not as pronounced as in the AMEA scheme [see again Figure 2].
In addition, the two impurity solvers differ in that the IPT cannot capture correlation effects like the
tiny resonance in the current J at F' ~ U/3 ~ 2.6 ?, which instead can be distinguished using the AMEA
solver as soon as I, is small enough, see Figure 2(a), 2(d) and in particular 2(g).

4.1.2 The effect of the Hubbard U

This section is devoted to the analysis of the role of the Hubbard U on the insulating phase: once again
we focus on the current J and kinetic energy Ey;, in the SC and NSC approaches to then compare them
to the corresponding quantities obtained within the AMEA impurity solver.

In Figure 3 is displayed the behavior of J and Ey;, as function of the applied field for selected values of
U, see panels (a) and (b) for the NSC scheme and (c) and (d) for SC treatment. We observe that in the
SC case both the J-F and Eyi,-F curves are broadened, see panels (b) and (d).

In particular we observe an increase in the current J at F' ~ U/2 as U is decreased for both NSC and
SC schemes. Also, while the values of the two peaks at U/2 and U stay approximately the same in height
in the NSC and SC schemes, we find that the latter treatment enhances J for field strengths that lie in
between the two main resonances, compare Figure 3(a) and 3(c).

When it comes to the kinetic energy, on the other hand, let alone an overall smearing of the curves the
SC treatment does not affect Fy, significantly, compare Figure 3(b) and 3(d). As already discussed in
Reference' both the J-F and Ey;,-F curves collapse on one another when they are plotted as function of
the difference F' — U (not shown), signalling that the breakdown of the insulating phase depends on the
value of the Hubbard U alone.

Once again we stress the qualitative agreement between the results of Figure 3 and those presented in
the previous work™ obtained within AMEA that we reproduce in Figure 4. However, the two solvers do
differ in that, as it can be shown with the help of Figure 1(c) and 2(g), the IPT approach fails to cap-
ture the resonance in J at F' ~ U/3 °.

We see that such resonance is missing within the IPT solver in both the SC and NSC schemes regardless
of the value of U, see Figure 3(a) and 3(c). On the other hand, when using the AMEA one can appreci-
ate it, even though it tends to be smeared out by the SC treatment, especially for small values of U, see
Figure 4(a) and 4(d).

Furthermore, the enhancement of the current J in between the two main resonances F' = U/2 and U
occurring in the SC treatment within the IPT approach [see again Figure 3(a) and 3(c)] is even more

2For further details about the resonances in the J-F curves we refer to the previous work."
3We stress that this resonance can be distinguished only when the electron dephasing rate I'e is small. For further details about the role of I'e
in dissipative Mott insulating systems we refer to our recent work.”:
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4.2 The threshold field w c

pronounced when the AMEA impurity solver is used, especially for small values of U, as one can see by
comparing the curves for the current J in Figure 4(a) and 4(d).

The main difference in the kinetic energy between the ITP and AMEA impurity solvers lies in the over-
all sharper Ey,-F curves in the latter approach, as one can see by comparing the results shown in Fig-
ure 3 and 4. It is worth mentioning that the SC treatment smears out the F\;,-F curves more when the
AMEA solver is employed especially for field strengths F' ~ U/2.

4.1.3 Equilibrium spectral features

In this section we briefly compare the electronic spectral features at equilibrium, i.e. F' = 0.

Figure 5 shows the electron SF at I = 0 within the (a) NSC and (b) SC schemes for both the IPT
and AMEA impurity solvers. The IPT-resolved SF shows a much more pronounced quasi-particle peak
(QPP) at around w = 0" as U is reduced, together with an underestimation of the width of the Hub-
bard bands within both the NSC and SC schemes, as compared to the results obtained with the AMEA
impurity solver. On the other hand, at U = 8t* the height of the QPP in the IPT and AMEA approaches
is in quite good agreement, even though the Hubbard bands are still narrower in the IPT scheme in both
the NSC and SC approaches.

The larger amount of in-gap states due to the QPP at w =~ 0 in the IPT with respect to AMEA is com-
mon to all electric field strengths used in this manuscript (not shown) and reveals the systematic under-
estimation of the band gap committed by the IPT solver. This underestimation, in turn, explains the
shifting of the main resonances (at F' = U/2 and U) in the current J toward smaller values of the elec-
tric field discussed in Section 4.1.1.

4.2 The threshold field

In models of Mott insulating systems one expects the J-F curve to display the threshold behavior®
J x Fexp(—Fw/F), (19)

due to the opening of a gap that prevents the free motion of electrons from the lower to the upper band.
Equation (19) shows that only when the applied field F' gets past the threshold Fy;, can electrons cross
the band gap and thus give rise to a steady-state current. By determining the threshold Fi;, one can then
infer the magnitude of the effective * band gap of the model. However, as it has been shown in previous
works investigating Mott insulators with a large ® band gap,””" correlation effects are responsible for res-
onances in the current J at F' &~ U/n, see also Section 4.1 [Figure 1 and 2|, so we may expect the exis-
tence of at least two threshold fields.

It is worth recalling that these resonances are determined by emergence of the Wannier-Stark™ " states
in the local electron SF' which effectively allow electron tunnelling to the upper band by bridging the
band gap and are sometimes referred to as Landau-Zener excitations in other models.

However, in this manuscript, F}, identifies the field strength necessary for the current J to reach non-
negligible values for the first time, so Equation (19) should hold for F' < U/2 at least for the IPT solver
as it cannot capture the whole of electronic correlation ©, i.e. there is no other resonance before field
strengths of the order of half of the band gap.

This section is then devoted to the analysis of these aspects limited to the comparison of the IPT and
AMEA solvers. In fact, given the simple model at hand the study of the dependence of the effective band
gap on the threshold Fi;, goes beyond the purpose of this manuscript: for a detailed study can be found
in the previous work.”?

We benchmark the results for the J-F' curve obtained within the IPT and AMEA impurity solvers for
selected values of U against a linear regression fit according to Equation (19). Figure 6(a) shows the

4Here effective is opposed to nominal gap, i.e. the value of the Hubbard interaction U.
5The gap must exceed the characteristic energy scale provided by the hopping t* by several times at least.
6This is due to the fact that the electron SE is constructed from a noninteracting GF, the Weiss field in Equation (16).
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ratio J/F as function of 1/F in both SC and NSC schemes obtained using the IPT: the values of the in-
verse field used for the fit can be deduced by the extent of the black line. As one can see by direct in-
spection the curves for all values of U exhibit a linear behavior for a wide range of values of inverse field
strengths up to F'~1 ~ 0.25¢t*7, which correspond to the resonance at F' = U/2.

The results obtained with the AMEA impurity solver, instead, are shown in Figure 6(b), see correspond-
ing inset for a close-up of the region around F~! ~ 0.4t*7!, corresponding to F' ~ U/3. The most evi-
dent feature is the small kink occurring at F=! ~ 0.4¢*7!, clearly visible especially for U > 5t*, which
is absent in the IPT approach as it can be seen by comparing Figure 6(a) and 6(b). Due to this addi-
tional resonance, the linear regression fit within the AMEA impurity solver can be performed over a far
smaller range of values of F'~! and indeed there are two regions where linearity holds: the first occurs for
F~! < 0.4¢t*~! and the second for inverse field smaller than 0.25¢t*7!, see again Figure 6(b).

The threshold fields obtained with the linear regression fit are shown in Figure 6(c): the SC treatment
basically does not affect the results within the numerical accuracy, thus leaving the threshold fields unal-
tered in both the IPT and AMEA approaches. It should be noted that by performing the linear regres-
sion fit for F'~! < 0.4t*~! as in this case, the IPT- and AMEA-resolved curves are basically on top of
one another. The AMEA scheme, however, yields a slightly larger threshold Fi;, than the IPT one for

U = 8t*, see again Figure 6(c). As expected, a larger Fy, is required to compensate for a larger band gap
(and hence a larger U) and promote particles across it. However, due to the extension of the Hubbard
bands the effective gap, and thus the threshold field, is way smaller than the Hubbard U so that a naive
relation of the form Fij, ~ U does not hold (see Figure 6(c)), as already argued in previous work”.

5 Conclusion

In this manuscript a Mott insulating system has been characterized in terms of its conducting proper-
ties when subject to an external static electric. Optical phonons and electronic heat bath provide the re-
laxation pathways for the extra energy injected by the field, so that the electron of the lattice can relax
back to the valence band and a steady-state current be established.

The iterated perturbation theory (IPT) approach has been used as impurity solver to address the steady-
state of the system. The corresponding results have been benchmarked against those obtained within a
much more computationally costly impurity solver developed by the authors, the so-called auxiliary mas-
ter equation approach (AMEA). It has been shown that the results obtained employing the IPT quali-
tatively agree with those of the AMEA impurity solver even though the former approach does not cap-
ture the resonances in the current characteristics which are directly related to the correlated nature of
the electrons of the lattice. Being computationally cheaper, the IPT solver could be used to span the pa-
rameter space when investigating novel setups and gather information about the interesting regions to
be addressed by a more reliable and computationally costly impurity solver.
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Figure 2: (a) Current, (b) double occupation and (c) kinetic energy as function of the applied field F at T, = 0.20t*
for both SC and NSC schemes. (d), (e) and (f) show the same quantities for I'c = 0.16¢*, while (g), (h) and (i) refer to
T'e = 0.12t*. Default parameters are specified in Table 1. These results have been obtained using the AMEA impurity
solver and originally published by the authors in https://link.aps.org/doi/10.1103/PhysRevB.107.155103. (Here

U = 8t*.)
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Figure 3: Current J within the (a) NSC and (c) SC scheme for selected values of the Hubbard U as function of the applied
field F. (b) and (d) show the kinetic energy Fii, as function of F' in the NSC and SC scheme, respectively, for the same
values of the Hubbard U. Default parameters are specified in Table 1. Results have been obtained using the IPT impurity

solver. (Here I's = 0.12¢*.)
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Figure 4: Current J within (a) NSC and (d) SC scheme for selected values of the Hubbard U as function of the applied
field F. Black arrows in (a) highlight the progressive merge of the resonances at F ~ U/3 and F = U/2 as U is lowered
which is enhanced by the SC treatment. (b) and (e) show the double occupation d as function of F' for the NSC and SC
scheme, respectively, while the kinetic energy Ey;, is shown in (c¢) and (f) for the same values of U. Default parameters are
specified in Table 1. These results have been obtained using the AMEA impurity solver and originally published by the
authors in https://link.aps.org/doi/10.1103/PhysRevB.107.155103. (Here 'y = 0.12t*.)
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Figure 5: Electron SF A(w) at equilibrium (F = 0) for the (a) NSC and (b) SC scheme as function of selected values of the
Hubbard U obtained within the IPT and AMEA impurity solvers. Default parameters are specified in Table 1. (Here I’y =
0.12¢*.)
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Figure 6: (a) Ratio J/F' as function of the inverse field 1/F for selected values of the Hubbard U within the NSC and SC
schemes obtained with IPT impurity solver. (b) shows the same quantity obtained within the AMEA: it is worth noticing
the kink at =1 ~ 0.4¢*~! (see inset) corresponding to the resonance at F' ~ U/3 which is absent in the IPT scheme, see
panel (a). Black straight lines in both (a) and (b) extend over the range of values of 1/F used for the linear regression fit
yielding the threshold field Fy), as function of U shown in (¢) for the two impurity solvers. The SC treatment has no effect
on Fiy,, which is the reason why panel (¢) does not distinguish between the two cases. Default parameters are specified in
Table 1. (Here I's = 0.12t*.)
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Schematic representation of the current flowing within the lattice. When the field is applied electrons can tunnel through
the former gap of an adjacent site, creating the necessary states to populate the conduction band of a site which is twice
lattice spacings apart.
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