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An efficient tangent based topologically distinctive
path finding for grid maps

Zhuo Yao, Wei Wang∗

Abstract—Conventional local planners frequently become
trapped in a locally optimal trajectory, primarily due to their
inability to traverse obstacles. Having a larger number of topo-
logically distinctive paths increases the likelihood of finding the
optimal trajectory. It is crucial to generate a substantial number
of topologically distinctive paths in real-time. Accordingly, we
propose an efficient path planning approach based on tangent
graphs to yield multiple topologically distinctive paths. Diverging
from existing algorithms, our method eliminates the necessity of
distinguishing whether two paths belong to the same topology;
instead, it generates multiple topologically distinctive paths based
on the locally shortest property of tangents. Additionally, we
introduce a priority constraint for the queue during graph search,
thereby averting the exponential expansion of queue size. To
illustrate the advantages of our method, we conducted a com-
parative analysis with various typical algorithms using a widely
recognized public dataset1. The results indicate that, on average,
our method generates 320 topologically distinctive paths within
a mere 100 milliseconds. This outcome underscores a significant
enhancement in efficiency when compared to existing methods.
To foster further research within the community, we have made
the source code of our proposed algorithm publicly accessible2.
We anticipate that this framework will significantly contribute to
the development of more efficient topologically distinctive path
planning, along with related trajectory optimization and motion
planning endeavors.

Index Terms—distinctive topology path, tangent graph, trajec-
tory optimization, path planning.

I. INTRODUCTION

As trajectory optimization and some motion planning al-
gorithms take an initial path as input, and once a reference
path is generated, it cannot be updated to belong to a dif-
ferent topology through gradient-based optimization. And the
optimal trajectory under different constraints and requirements
may belong to topologically distinctive paths, it is crucial
to consider multiple topologically distinctive paths simulta-
neously.

Rosmann et al. [13] proposed an integrated approach for
efficient online trajectory planning of topologically distinctive
mobile robot trajectories. Ranganeni et al. [11] integrated user-
defined homotopy constraints and footstep planning for hu-
manoid robots, resulting in a significant speedup in planning,
particularly in more complex scenarios. Palmieri et al. [10]
introduced a Voronoi graph-based topology-distinctive path
planning method to find multiple socially-aware paths, from
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1https://movingai.com/benchmarks/grids.html
2https://joeyao-bit.github.io/posts/2023/09/07/

A: 50 paths, in 3.7ms B: 100 paths, in 8.2ms

C: 200 paths, in 16.2ms D: 400 paths, in 38.1ms

Fig. 1. These figures display multiple paths, with some of them partially
overlapping, between the same start and target points, all determined by our
method. The map employed is a 256x256 grid map (”Berlin 1 256” from
the mentioned public map dataset). The start and target points are highlighted
in pink and yellow, respectively, with coordinates (59, 72) and (109, 214).
These experiments were conducted on a standard laptop running the Ubuntu
operating system, equipped with a 3.2GHz CPU and 16GB of memory. Further
details can be found in the Results section.

which the robot can choose the best one based on a social cost
function. Kim et al. [4] developed a perception-aware planner
that selects the path with the highest perception quality from
a set of multiple topologically distinctive paths for MAVs.

However, several difficulties are encountered by existing
works. Firstly, some of them require the use of H-signature
or similar indicators to determine whether two paths belong
to the same topology. This results in an increase in time
complexity as the number of paths to be considered grows,
as it requires more calculations to determine if a new path
and a previous path share the same topology. Secondly, for
existing methods that rely on H-signature, the average time
required to determine a path is directly related to the number
of obstacles in the maps. Consequently, these methods become
increasingly time-consuming when operating in environments
with dense obstacles.

To address the limitations of H-signature and similar indi-
cators, Voronoi-based approaches have been introduced. The
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distinctive property of Voronoi is that different sequences of
Voronoi nodes inherently define topologically distinctive paths.
Some of these methods have shown significant improvements
in efficiency compared to algorithms that use H-signature.
However, these methods still require a sequential search for
topology-distinctive paths, one at a time.

To address the aforementioned issues, we propose a novel
topologically distinctive path planning algorithm based on tan-
gent graphs. This approach leverages the property that tangents
form locally shortest paths, as discussed in previous works [7,
8, 16]. Consequently, any two locally shortest paths inherently
belong to different topologies. Our algorithm eliminates the
need for indicators to determine path topology similarity and
avoids the repetition of searches to obtain multiple paths. In-
stead, it retrieves all relevant paths in a single search, resulting
in a significant improvement in efficiency when compared
to existing methods. Additionally, we introduce a priority
limitation mechanism to prevent the exponential growth of
the queue size during graph search. The results demonstrate a
remarkable enhancement in efficiency during the path planning
process.A brief demonstration of our algorithm is presented in
Fig. 1.

The following sections of this article are organized as
follows: section II offers an introduction to relevant studies on
distinctive topology path planning; section III provides a de-
tailed description of the key processes involved in our method;
in section IV, we delve into the details of the construction
of the tangent graph on the specified maps. Additionally, we
present a comprehensive comparison between our method and
several typical methods in terms of time cost. This section
also includes information about the mean time required to
determine a path and how our method performs as the number
of paths increases; finally, in Section V, we discuss the results
obtained and potential drawbacks of the proposed method.

This letter contributes the following:
1) A topology-distinctive path planning method based on

the locally shortest property of tangents.
2) The introduction of a priority limitation mechanism to

mitigate the exponential growth of queue size in path
planning that utilizes breadth-first search.

II. RELATED WORKS

Two trajectories τ1 and τ2, connecting the same start and
end coordinates, are considered homotopic if one can be
continuously deformed into the other without intersecting any
obstacles. Otherwise, they are considered topologically distinc-
tive. Based on whether they introduce an explicit indicator,
existing topology-distinctive path planning methods can be
categorized into two types.

The first type introduces an explicit indicator to determine
whether two paths belong to the same topology, typically in
relation to obstacles.

H-signature, proposed by Subhrajit Bhattacharya for 2-
dimensional maps, is an indicator computed using the Cauchy
integral theorem and the Residue theorem from complex
analysis. It is defined as the integration of an “obstacle marker
function” along a path, where the obstacle marker function in-
volves the representative point of each obstacle. Bhattacharya’s

work, as seen in references [1, 5, 3], extends H-signature to
2D maps and later to 3D maps [2]. Two paths share the same
H-signature if and only if they belong to the same topology;
otherwise, they do not. Combining the H-signature constraint
with standard graph search algorithms like A*, these methods
find multiple topology-distinctive paths by repeating graph
searches multiple times. However, H-signature’s efficiency is
affected by several factors: 1, the more obstacles there are, the
more calculations are needed to compute the H-signature of
a path; 2, as the number of paths increases, the average time
required to compute a single path increases linearly, as each
path needs to be compared with the H-signature of existing
paths, and the number of existing paths grows.

Markus Kuderer [6] introduced the concept of the wind-
ing angle of a trajectory, which is defined as the sum of
infinitesimal angle differences to the representative points of
obstacles along the trajectory. Similar to H-signature, paths
belonging to the same topology have the same winding angle,
while those with distinctive topologies do not. To address
the issue of multiple paths to the goal within the same
homotopy class when using H-signature with A*, Kuderer
and colleagues incorporated Voronoi graphs to ensure that
each path corresponds to a unique homotopy class. In their
results, as presented in [6], their approach showed a significant
improvement in efficiency compared to using H-signature
combined with A*.

TARRT* (Topology-Aware RRT*), as proposed by Yi et
al. in [18], introduces a method for determining the homo-
topic equivalence of two arbitrary paths based on properties
of strings recognized by a Deterministic Finite Automaton
(DFA). These strings also involve the representative point of
each obstacle, with the condition that no point is allowed
to lie on any line connecting any two other representative
points. Specifically, non-obstacle regions are divided into a
set of subregions by lines that intersect representative points,
and the connections between these subregions are referred
to as reference frames. TARRT* assigns a unique label to
each reference frame and appends the label of the reference
frames to the string whenever the path crosses them. This
string-based approach appears to be more efficient than H-
signature because its calculation doesn’t involve all obstacle
representative points. However, TARRT* shares a limitation
with normal RRT (Rapidly Exploring Random Trees) in that
they are both probabilistically complete methods for finding
existing solutions. For instance, they may fail when the path
must pass through a narrow, long opening in an obstacle.

The second type of methods does not rely on an explicit
topology indicator.

As previously noted, path segments in the Voronoi graph
are inherently unique between two obstacles, ensuring that
different paths found in the Voronoi graph guarantee distinctive
topology. Consequently, the Voronoi graph is widely employed
in distinctive topological path planning.

Luigi Palmieri [10] introduced the Randomized Homotopy
Classes Finder (RHCF), a fast randomized method that iden-
tifies a set of K paths lying in distinct homotopy classes using
the Voronoi graph. The approach involves repeatedly searching
for random paths in the Voronoi graph and saving them if
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they differ from all previous paths. The process stops when
K different paths have been found. In their results, RHCF
outperformed Yen’s K shortest path finding method [17] in
terms of speed.

In contrast to mobile robots, which require determining the
optimal joint path in the task space, J.J. Rice [12] proposed a
bifurcation branch algorithm to characterize the solution space
with the bifurcation branch roadmap. This approach generates
initial joint paths that identify all homotopy classes and locally
optimal paths in all relevant homotopy classes with the lowest
cost, which is very likely the globally optimal path. While this
method is more capable than traditional approaches in finding
the global optimal path, it faces challenges as the number of
homotopy classes grows exponentially with the complexity of
the solution space. This presents significant difficulties when
extending it to topology-distinctive path planning for mobile
robots.

III. METHODOLOGY

In this section, we introduce the fundamental concepts
utilized in our algorithm, which encompass the construction
of the tangent graph and the utilization of graph search to
identify multiple topology-distinctive paths. Additionally, we
present a technique known as “priority limitation,” which is
designed to prevent the exponential growth of the queue size
during graph search.

A. Definitions
This section outlines the fundamental definitions utilized in

our algorithms, covering key definitions related to tangents and
constraints in path search.

1) Grid space: Let CN denote a finite N -dimensional
integer Euclidean space, where the size of the space is
defined as D = d1, d2, ..., di, ..., dN and di ∈ N. The
coordinate of an element g in this space is defined as a vector
(x1, x2, ..., xi, ..., xN ), where xi ∈ ([0, di) ∩ N).

In the following, we manily focus on C2.
2) Grid states: There are only two possible states for a

grid/element in CN : passable or unpassable. The set of all
passable grids in CN is denoted as F → CN , while the set
of all unpassable grids is denoted as O → CN . Therefore,
(F → CN ) ∪ (O → CN ) = CN .

For convenience, we denote all grids outside of CN as
unpassable.

3) Surface grid: For a given grid g ∈ CN , the on-obstacle-
surface condition, also known as the surface grid, is defined
as follows:

∃g′ ∈ δf (g), g′ ∈ F → CN and ∃g′′ ∈ δf (g), g′′ ∈ O → CN
All surface grids of a grid space CN is denoted as S →
CN . When build tangent graph, we take all surface grids as
candidate of tangent nodes.

4) Line-of-sight check: Denote the line connecting two
grids g1 and g2 as g1 → g2. We define the set of all grids
that g1 → g2 crosses as τ(g1 → g2). g1 → g2 is said to
be collided if ∃g ∈ τ(g1 → g2), g ∈ O → CN . If g1 → g2
collides, it is denoted as (g1 → g2) ∈ O; otherwise, it is
denoted as (g1 → g2) ∈ F .

5) Distance metrics: The distance between two grids g1
and g2 is denoted as Ω(g1 → g2), which is defined as the
Euclidean distance between the two grids.

6) Angle bewteen three grids: Assuming there are three
grids g1, g2, and g3, the angle between g2 → g1 and g2 → g3
is denoted as θ(g1, g2, g3).

θ(g1, g2, g3) = arccos
(

(g1−g2)·(g3−g2)
∥g1−g2∥·∥g3−g2∥

)
7) Neighborhood and frontier of grid: Denote δf (g) as the

frontier of grid g, which consists of the closest 3N grids near
g. Toy examples of neighborhood and frontier in C2 and C3
are shown in Fig. 2.

(A) δ(g) in C2 (B) δ(g) in C3 (C) δf (g) in C2 (D) δf (g) in C3

Fig. 2. Toy examples of neighborhood and frontier in C2 and C3 are shown
in this figure, where g is shown in deep blue, δ(g) and δf (g) are shown in
light blue.

8) Path: Path p is defined as a sequence of waypoints. For
a path, its first waypoint is the start, and if it is finished,
its last waypoint is the target. All intermediate waypoints are
nodes of the roadmap graph. A set of paths is defined as P .
A finished path or a set of finished paths is defined as pf and
Pf , respectively.

9) Constraint of path search: Path constraint pertains to
the situation when a waypoint is added to an unfinished path,
and determines what can be legally added to the path during
path search. Path constraints can be categorized into three
types, namely: point transfer constraints (PTC), edge transfer
constraints (ETC), and iteration constraints (IC), as mentioned
in Introduction.

Point transfer constraints (PTCs) dictate whether it is legal
to establish a connection between two waypoints or from the
start/target node to a waypoint. A commonly used example of
a PTC is the line-of-sight check. Essentially, PTCs determine
whether there exists an edge in the graph that connects two
nodes. For convenience, we represent a single PTC as ϕ and
a set of PTCs as Φ.

Edge transfer constraints (ETCs) are used to determine
the legality of forming a path through three waypoints. An
example of an ETC is the taut constraint in ENL-SVG. For
convenience, we denote a single ETC as ψ and a set of ETCs
as Ψ.

Iteration constraints (ICs) are constraints that determine the
legality of more than three or all waypoints in a path. These
constraints are only checked during the search process for
forming a path in a roadmap graph. For example, the no-loop
constraint is an IC used in distinctive topology path planning,
while the global shortest constraint is used in shortest path
planning. ICs are only determined during the path search
process. For convenience, we denote a single IC as υ and
a set of ICs as Υ.

A potential question that may arise is why we note all
constraints that involve more than three waypoints as ICs and
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do not include them in the precomputation stage. There are
several reasons for this. Firstly, some constraints, such as the
no loop constraint, can only be checked online during the path
search process. Secondly, considering the time and storage
cost, having more waypoints would require more time to check
during the precomputation stage and would also require more
storage space to save the result. Finally, we have not yet
identified any crucial constraints that involve four or more
waypoints and can be precomputed.

B. Construct tangent graph

In this section, we present the methods for ensuring that the
path is locally shortest and for constructing the tangent graph
from surface grids in C2.

1) Locally collide constraint: To ensure the shortest path,
it is essential for each segment of the path to be locally
shortest. For nodes located on the surface, it is required that
there exist both a free connection and an occupied connection
from their neighboring grids to another node. Furthermore, a
collision connection should be longer than a free connection,
as illustrated in Algorithm 1. This condition is referred to
as the “local collide condition”. Two nodes’ connection is
not locally shortest if they do not satisfy the “local collide
condition”. Examples under S2 can be seen in Fig. 3. The
locally collide constraint is a PTC that involves only two
nodes. Therefore, it can be determined during the construction
of the tangent graph, as described in Algorithm 2.

Algorithm 1: Locally collide check
Input: g1, g2, CN
Output: True or False (whether g1 → g2 is locally

collide)
1 for i = 1, 2 do
2 DO = 0; DF =∞; j = (i+ 1)%2; // another grid
3 if ∃g′ ∈ δf (gj), g′ ∈ O → CN then
4 for g′ ∈ (δf (gj) ∩ (S → CN )) do
5 if (gi → g′) ∈ O then
6 if DO < Ω(gi, g

′) then
7 DO = Ω(gi, g

′);

8 else
9 if DF > Ω(gi, g

′) then
10 DF = Ω(gi, g

′);

11 if DO > DF then
12 return True;

13 return False;

2) Construct tangent graph: When construct the tangent
graph, we check whether every pairs of visible surface grids
meet locally collide constraint, if meet, add the two grids as
nodes of tangent graph and the connection as edge of tangent
graph. The pseudocode for constructing the roadmap graph
from the grid space is shown in Algorithm 2. V (g) means the
grid that visible to grid g and G(V, E) → CN means tangent
graph of grid space CN . For a map with sparse obstacles,

(A) (B)

Fig. 3. The following figures depict two examples of node connections under
C2, where (A) satisfies the local collide condition, while (B) does not. In these
figures, four-pointed stars and pentagrams represent nodes, and the shadowed
areas indicate obstacles.

we check the visibility of g to all nodes in V to obtain V (g).
However, for maps with dense obstacles, we employ the Line-
of-Sight Scan [9] to get V (g), which is more efficient than
performing vertex-to-vertex LOS checks.

Furthermore, to prevent the need for repeating these calcu-
lations every time the map is loaded, it is advisable to save the
results to a file and load them during the framework loading
process, thus saving time. To maximize the utility of memory
space, we save the graph in binary file.

Algorithm 2: Construct tangent graph
Input: CN
Output: G(V, E)→ CN

1 V = S → CN ;
2 for g ∈ V do
3 for g′ ∈ V (g) do
4 if g → g′ meet locally collide constraint then
5 V ← g;
6 E ← (g → g′);

7 return G(V, E);

C. Path search

1) No loop constraint: As mentioned in the related litera-
ture, path planning with distinctive topology does not involve
loops. In this context, loops can take two forms: either a
waypoint is visited repeatedly within a single path, or the
path intersects with itself. It is crucial to account for these
scenarios when attempting to find multiple paths. It’s worth
noting that as the number of waypoints in a path increases, the
time required for loop detection also increases. Experimental
results indicate that the ratio of “no loop constraint check” in
the total time cost increases as the required number of paths
increases.

2) Geting closer to obstacle: To ensure a locally shortest
edge transfer, there exists a grid g′ ∈ (δf (g2) ∩ O → SN )
in the cone formed by g1 → g2 → g3, including the
obstacle grids near the frontier of g. Otherwise, it is feasible to
construct a shorter locally path. The algorithm for this process
is shown in Algorithm 3. gc means a point located at the center
of the cone formed by rotating g1 → g2 → g3.

Examples of paths that get closer to an obstacle under
constraint C2 are depicted in Fig. 5.

3) Graph search: Since the start and target points are
typically not nodes of G, it is necessary to establish connec-
tions from the start (gs) and target point (gt) to the tangent
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Fig. 4. These figures illustrate how the queue size changes during BFS expansion before (Figure A) and after (Figure B) utilizing priority limitation in the
same case (Fig. 1) where 200 paths are being sought. As seen in Figures A and B, the queue size grows exponentially before the implementation of priority
limitation but stops growing when it reaches 200 after the utilization of priority limitation. Consequently, before the introduction of priority limitation, it takes
48.5ms to obtain 200 paths, while it only takes 16.8ms after the implementation of priority limitation.

Algorithm 3: Geting closer to obstacle
Input: g1, g2, g3, CN
Output: True or False

1 θc = θ(g1, g2, g3)/2;
2 gc = g2 +

g1−g2
||g1−g2|| +

g3−g2
||g3−g2|| ;

3 for g′ ∈ (δf (g2) ∩ O → SN ) do
4 if θ(g1, gc, g′) < θc then
5 return True;

6 return False;

Fig. 5. This figure displays two cases of edge transitions where the path
approaches an obstacle (represented by the hollow pentagrams) and two
cases where the edges do not approach obstacles (represented by the filled
pentagrams). The initial edge g1 → g2 is depicted as a triangle, and the
endpoint g2 is represented by a cross star. The four cases for the next edge
g2 → g3 are illustrated using pentagrams.

graph. This process consists of two sections: 1, establishing a
connection between the start/target points and V of G(V, E) to
obtain initial edges Ei that meet the requirements of the PTC
(locally collide constraint); 2, adding the new edges that satisfy
the edge transfer constraint (”Getting closer to obstacle”) to
G(V, E); 3, creating initial paths that contain the first edge.
This process results in the set of first edges for the incomplete
paths, i.e., the initial paths.

The pseudo-code for creating initial paths is presented in
Algorithm 4. In the algorithm, V (gs) ∩ V and V (gt) ∩ V
represent nodes in the tangent graph that are visible from the
start and target points, respectively. In lines 4 to 8, connections
are established from the start to G(V, E), while in lines 9 to
12, connections are established from the target to G(V, E).

After establishing connections from the start/target to the
tangent graph, we employ Breadth-First Search (BFS) to
determine multiple distinctive topology paths during a single
search. During the path search, we consider ETCs and ICs,
while PTCs are not considered, as we have already addressed
them during the creation of initial paths and the construction

Algorithm 4: Create initial paths
Input: gs, gt,Φ, CN ,G(V, E)
Output: Ei

1 Ei = ∅;
2 V ← gs;
3 V ← gt;
4 for g′ ∈ (V (gs) ∩ V) do
5 if (gs → g′) not meet all Φ then
6 continue;

7 E ← (gs → g′);
8 Ei ← (gs → g1);

9 for g′ ∈ (V (gt) ∩ V) do
10 if (g′ → gt) not meet all Φ then
11 continue;

12 E ← (g′ → gt);

13 return Ei;

of the tangent graph.
As mentioned earlier, we incorporate the no loop constraint

(IC) and the “getting closer to obstacle” constraint (ETC) to
obtain all locally shortest paths, which are also distinctive
topology paths. Therefore, BFS is capable of finding multiple
distinctive topology paths because each path found in the
tangent graph is locally shortest and has distinctive topology
when compared to others.

However, finding all distinctive topology paths can be time-
consuming, especially in the case of large-scale maps. To
address this, we have updated BFS to stop searching when
the count of finished paths reaches a required number (K).
Additionally, our BFS will exit when all paths reach the target,
as the total number of distinctive topology paths may be less
than the required value in some cases. An early version of
finding distinctive topology paths via locally shortest paths
was described in our PrePrint article [15].

4) Priority limitation during graph search: One drawback
of the adapted BFS is the exponential growth in the size
of unfinished paths (Pu in Algorithm 5) as the number of
expansions increases. To mitigate this issue, we introduce a
priority queue to limit the size of unfinished paths during each
iteration to K. More specifically, we select the top K paths
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Algorithm 5: Adapted breadth first search with priority
Input: gt, Ei,G(V, E),Ψ,Υ,K
Output: Pf

1 Pu = ∅; // final paths
2 for e = (gs → g1) ∈ Ei do
3 pu = {e};
4 Pu ← p;

5 P ′
u = ∅;

6 Pf = ∅;
7 Psecondary = ∅;
8 while Pu ̸= ∅ & not all (or have K) paths in Pu

reach target do
9 for pc ∈ Pu do

10 el = last edge of pc;
11 subsequent edges = edges of E that meet all Ψ

if it transfer to el;
12 for e ∈ subsequent edges do
13 if el → e not meet all Ψ then
14 continue;

15 if (pc, e) not meet all Υ then
16 continue;

17 if e connect to gt then
18 Pf = pu ← e;

19 p′u = pu ← e;
20 P ′

u ← p′u;

21 Pu = pop top K paths in P ′
u;

22 if Pu have K paths then
23 Psecondary ← P ′

u;
24 sort Psecondary in order of increasing

heuristic value;
25 else
26 Pu ← pop paths in Psecondary till

Psecondary = ∅ or Pu have K paths;

27 return Pf ;

with the minimal heuristic value (calculated in the same way
as A*) as candidates for expansion. The remaining unfinished
paths are cached in a secondary queue, sorted by their heuristic
values.

If there are not enough unfinished paths in the priority
queue, we pop unfinished paths from the secondary queue and
insert them into the priority queue until there are K elements
in the priority queue, as shown in Algorithm 5. We have
highlighted the code related to the priority queue.

Essentially, this approach prioritizes the expansion order of
unfinished paths, with paths that are closer to the target being
expanded earlier than others. This ensures that there is no
loss of completeness. An example illustrating the difference
between introducing the priority queue and not introducing
it is shown in Fig. 4. The map used for this comparison is
Berlin 1 256.map from the public grid map dataset mentioned
earlier, with the start and target points set at (59, 72) and (109,
214), respectively.

A: Berlin 1 256
256*256

B: Denver 2 512
512*512

C: Boston 2 256
256*256

D: Milan 2 256
256*256

E: Moscow 2 256
256*256

F: London 0 512
512*512

G: Sydney 1 256
256*256

H: Paris 0 512
512*512

Fig. 6. These figures display eight grid maps used in the comparison with
other algorithms. The scale of each map is listed below its name.

TABLE I
DETAILS OF CONSTRUCTE TANGENT GRAPH OF GRID MAPS

Index MapName Time Cost(ms) Nodes File Size(KB)
1 Berlin 1 256 505.555 1631 67.1
2 Denver 2 512 516.89 448 17.0
3 Boston 2 256 505.588 1190 103.5
4 Milan 2 256 506.5 2054 106.7
5 Moscow 2 256 506.99 2332 115.0
6 London 2 512 3040.1 7919 828.1
7 Sydney 1 256 504.66 673 28.4
8 Paris 0 512 517.76 1885 142.7

IV. RESULTS

In this section, we provide more detailed insights into
the performance of our algorithm and compare it with other
distinctive topology path planning methods. In the first subsec-
tion, we elaborate on the construction of the tangent graph. To
ensure a fair comparison, we use the implementations provided
by the respective authors. We compare our method with HA*,
HTheta*, and RHCF in terms of the total time cost, average
time cost for each path, and path length as the required number
of paths increases. HA* and HTheta* are H-signature-based
algorithms3, while RHCF is a Voronoi graph-based algorithm4.

Our experiments are conducted using a well-known grid
map dataset[14]5. To obtain more distinctive topology paths,
we select city maps from the dataset, as illustrated in Fig.
6. For each map, we randomly sample 100 start and target
combinations as inputs for path planning. The experiments
were carried out on a laptop running Ubuntu 20.04, equipped
with a Ryzen 7 5800h (3.2GHz) CPU and 16GB of memory.

A. Construction of tangent graph

In this section, we provide details on the construction of
the tangent graph for the eight maps mentioned. This includes
information on the time cost, the number of nodes, and the
size of the file used to save the graph, as shown in Table I.

The construction of the tangent graph for almost all maps is
completed in approximately 0.5 seconds, which is nearly real-
time updating. However, London 2 512 takes 3 seconds due

3https://github.com/subh83/DOSL
4https://github.com/srl-freiburg/srl rhcf planner
5https://movingai.com/benchmarks/grids.html
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Fig. 7. The figure the mean time cost of the four methods search multiple
paths under mentioned the eight maps. Due to the difference in the order of
magnitude of the total time cost of various methods, the vertical axis of the
chart is logarithmic.

to its significantly higher number of tangent nodes compared
to other maps, roughly three times more. The file size required
to save the tangent graph for these maps ranges from 60KB
to 830KB, which is manageable for an ordinary platform.

B. Comparison with other methods

In this section, we focus on comparing our method’s effi-
ciency with other methods in terms of time cost. Specifically,
we analyze how the time cost changes as the number of
required paths increases. This analysis includes the total cost
and the average time cost for one path under the eight maps
mentioned in the previous section. It’s worth noting that we
have set an upper time bound of 10 seconds for all methods, as
some algorithms may exceed this threshold when attempting
to find hundreds of topology distinctive paths.

Specifically, we configured our method and RHCF to find
10, 20, 30, 40, 80, 160, and 320 paths, as they require relatively
low time costs. Additionally, we set HA* and HTheta* to find
10, 20, 30, 40, 60, and 80 paths, as searching for more paths
would exceed the 10-second time limit. The mean time costs
under various maps are presented in Fig. 7, and the success
rate (finding the required paths within 10 seconds) of each
method is shown in Fig. 8.

As shown in Fig. 7, our method exhibits the lowest time
cost, averaging 84ms to find 320 paths, which is smaller in
magnitude compared to other methods. Consequently, in terms
of success rate, our method achieves a 100% success rate in
finding the required paths, while the success rates of other
methods noticeably decrease as the number of paths increases.

Next, we investigated how the time cost to determine a
single path changes for our method as the number of paths
increases under the eight maps, as depicted in Fig. 9. The
mean cost of our method to obtain one path initially decreases
and then stabilizes as the total number of paths increases.
This trend is more pronounced in more complex maps. This
effect occurs because our method limits the number of nodes

Fig. 8. The figure shows the mean time cost of the four methods when
searching for multiple paths under the eight maps mentioned. Due to the
difference in the order of magnitude of the total time cost for various methods,
the vertical axis of the chart is logarithmic.

Fig. 9. The figure demonstrates how the mean time cost of our method to
search for a single path changes as the total number of paths and the map
used vary.

to be expanded during each iteration to no more than the total
number of paths.

V. DISCUSSION AND CONCLUSION

In this article, we introduce a tangent graph-based topo-
logically distinctive path planning algorithm. It leverages the
property that tangents form locally shortest paths, ensuring that
any two locally shortest paths belong to different topologies.
Compared to existing algorithms, our approach requires no
indicator to determine whether two paths belong to the same
topology. Furthermore, it eliminates the need to repeat the
search for multiple paths, as all distinctive paths can be found
in a single search.

To address the challenge of the exponential growth in
queue size during breadth-first search, we propose a priority
limitation technique. This approach significantly reduces the
time cost of searching for multiple paths while preserving
computational complexity.
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Our method consists of two main steps: the construction
of the tangent graph and the search for multiple paths. In
the construction of the tangent graph step, we employ the
locally collide constraint on edges to ensure that each segment
is locally the shortest. Additionally, to avoid repeating these
calculations every time the map is loaded, we save the results
to a binary file, which is then loaded during the framework
loading process, saving valuable time.

During the search for multiple paths, we introduce a “no-
loop” constraint to prevent the repetition of waypoints in
the path and avoid intersections with itself. Additionally, we
apply the “get closer to obstacle” ETC to ensure locally the
shortest path. It’s important to note that as the number of
waypoints in the path increases, the time cost of loop detection
also increases. Experimental results show that the ratio of
no-loop constraint checks in the total cost increases as the
required number of paths increases. This occurs because the
requirement for more paths often results in paths with a larger
number of waypoints.

In comparison with other methods, our approach demon-
strates significant efficiency when compared to RHCF, HA*,
and HTheta*. Specifically, our method takes approximately
100ms to determine 320 paths from the mentioned public map
dataset, while RHCF takes more than 1 second, and HA* and
HTheta* take more than 10 seconds. However, it’s important
to note that our method has a limitation in that it cannot search
for multiple paths with the same topology, unlike methods that
use indicators like H-signature, which are capable of searching
for multiple paths with the same topology.

In the future, we plan to implement our method using
multiple threads, as currently, it operates in a single thread.
Since there is no dependence between different unfinish paths
during the search process, there will be no loss of complexity
when utilizing multiple threads. Additionally, we intend to
apply our method to trajectory optimizations. Given that our
method can provide hundreds of topology-distinctive paths in
real time, it is crucial to study how to speed up trajectory
optimizations to enable them to efficiently handle hundreds of
paths as input.
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