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Abstract
Global registration is a fundamental task that estimates the relative pose between two viewpoints of 3D point clouds.
However, there are two issues that degrade the performance of global registration in LiDAR SLAM: one is the sparsity
issue and the other is degeneracy. The sparsity issue is caused by the sparse characteristics of the 3D point cloud
measurements in a mechanically spinning LiDAR sensor. The degeneracy issue sometimes occurs because the outlier-
rejection methods reject too many correspondences, leaving less than three inliers. These two issues have become
more severe as the pose discrepancy between the two viewpoints of 3D point clouds becomes greater. To tackle these
problems, we propose a robust global registration framework, called Quatro++. Extending our previous work that solely
focused on the global registration itself, we address the robust global registration in terms of the loop closing in LiDAR
SLAM. To this end, ground segmentation is exploited to achieve robust global registration. Through the experiments,
we demonstrate that our proposed method shows a higher success rate than the state-of-the-art global registration
methods, overcoming the sparsity and degeneracy issues. In addition, we show that ground segmentation significantly
helps to increase the success rate for the ground vehicles. Finally, we apply our proposed method to the loop closing
module in LiDAR SLAM and confirm that the quality of the loop constraints is improved, showing more precise mapping
results. Therefore, the experimental evidence corroborated the suitability of our method as an initial alignment in the
loop closing. Our code is available at https://quatro-plusplus.github.io.
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1. Introduction
3D point cloud registration is a fundamental task that
estimates relative pose between two viewpoints of 3D
point clouds, namely source and target, in robotics and
computer vision fields. Using the characteristic of being
able to estimate the relative pose between two point
clouds, 3D point cloud registration is widely exploited
in various applications such as relocalization (Du et al.
2020), ego-motion estimation (Koide et al. 2021), object
recognition (Chua and Jarvis 1996; Ashbrook et al. 1998;
Belongie et al. 2002; Cho and Gai 2014).

Furthermore, these point cloud registration
methods are key components in light detection and
ranging (LiDAR) sensor-based simultaneous localization
and mapping (SLAM), which is the integral part of building
a map while localizing a robot or an autonomous vehicle
itself. In particular, point cloud registration is not only used
in odometry, but also exploited in the loop closing procedure
to obtain constraints for pose graph optimization (PGO) in
graph-based SLAM.

In general, the graph-based SLAM mainly consists of
three parts (Thrun and Montemerlo 2006; Grisetti et al.
2010; Qin et al. 2018; Shan et al. 2020): a) odometry, which
estimates relative pose between the consecutive frames,
b) loop detection, which achieves data association between
two non-consecutive frames, and c) loop closing, which
estimates relative pose between the non-consecutive frames
searched by the loop detection module. The results through

these three parts are represented in a graph structure, i.e.
nodes and vertices. Then, the results are taken as inputs
of PGO. The graph-based SLAM reduces global trajectory
errors through this procedure, building a precise and globally
consistent map.

In recent years, as the demand for LiDAR-based SLAM
has increased, novel and accurate LiDAR-based SLAM
frameworks have been proposed. However, these novel
methods usually focus on improving the odometry or loop
detection modules. Once the performance of loop detection
is improved, the quality of constraints from the loop closing
is also increased because the relation between loop detection
and loop closing is not completely independent (Chen et al.
2022). However, the methods for increasing the quality of
loop constraints in the loop closing step is still less actively
studied.

Furthermore, many LiDAR-based SLAM methods only
utilize iterative closest point (ICP) or its variants, which are
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referred to as local registration, on the loop closing step.
However, the local registration searches the point pairs by
using nearest neighbor search, so the local registration-based
pose estimation is only valid if two point clouds are mostly
overlapped and the pose discrepancy between the two point
clouds is small (empirically, within 2 m and 10◦ (Kim et al.
2019; Lim et al. 2020)). Otherwise, the estimates of the
local registration are highly likely get stuck in the local
minima. For this reason, even though loop detection finds the
correct loop candidate, the loop candidate with a large pose
discrepancy can be rejected owing to the narrow convergence
region. Consequently, these false negative loops potentially
hinder more accurate PGO results.

To tackle this problem, global registration methods,
whose performance is less affected by the initial pose
difference between the two point clouds, can be utilized
as a coarse alignment. That is, the initial guess using the
global registration reduces the pose difference in a coarse
manner. This reduction of the pose discrepancy helps local
registration methods converge into a global optimum. As a
result, the loop candidates with large pose discrepancies can
also be exploited as precise loop constraints.

However, there are still two issues that degrade the
performance of the global registration in 3D LiDAR SLAM:
one is the sparsity issue (Lim et al. 2021b) and the other is
degeneracy (Lim et al. 2022). First, the sparsity issue occurs
in 3D point cloud measurements when using a mechanically
spinning LiDAR sensor: the farther the range from the origin
goes, the dramatically more sparse the density of the 3D
point cloud becomes. This decreasing density degrades the
expressibility of the feature descriptors. That is, even if
the same place is observed, the descriptor has a different
value due to the density difference between the two point
clouds. Consequently, the sparsity issue induces lots of false
matching, increasing the ratio of the outliers within the
estimated correspondences.

Second, degeneracy sometimes occurs owing to the
effect of outlier rejection algorithms. Here, degeneracy
refers to the case when fewer inliers remain than the
degree of freedom (DoF). The degeneracy is occasionally
observed when the well-known outlier rejection methods,
such as maximum clique inlier selection (MCIS) (Shi et al.
2021b; Sun 2021b) or weight update in graduated non-
convexity (GNC) (Zhou et al. 2016; Yang et al. 2020b),
are employed. These methods unintentionally prune too
many estimated correspondences because these methods
usually aim to achieve high recall of outlier rejection; thus,
sometimes less than three inliers are left after the pruning
step. As a result, the degeneracy triggers tilted or flipped
results (see Section 7.3). These two issues become more
severe as the pose difference between the two viewpoints of
3D point clouds becomes greater.

In our earlier work, i.e. Quatro (Lim et al. 2022), we
demonstrated that Quatro overcomes the aforementioned
problems by leveraging the decoupling-based method that
reduces the minimum number of required correspondences
for the estimation from three to one. However, Quatro was
still not exploited as a loop closing module in SLAM; thus,
the influence of robust global registration on the performance
of graph-based SLAM was still not closely examined.

Therefore, we propose a robust global registration
framework, called Quatro++, and analyze the effect of the
global registration from the loop closing-centric perspective.
As shown in Fig. 1, Quatro++ is a superset of Quatro that
exploits ground segmentation to be more robust against
outlier pairs and degeneracy issues. In Quatro++, we
introduce ground segmentation to allow global registration
to be more robust against distant cases by filtering ground
points, which are most likely to be featureless, before the
pose estimation. Even though many researchers empirically
use ground segmentation as a preprocessing step (Kim
and Kim 2018; Yue et al. 2019; Komorowski 2021), the
effect of ground segmentation on the performance of global
registration has seldom been quantitatively analyzed. Thus,
we validate that ground segmentation substantially increases
the success rate of global registration even in degenerate
environments, such as corridor-like scenes, or distant cases.
Finally, as an extension of our previous work (Lim et al.
2022), we additionally compare our approach with state-
of-the-art learning-based approaches (Shi et al. 2021a;
Cattaneo et al. 2022) and show that our approach achieves
substantially higher performance than other approaches in
loop closing level.

In summary, our ultimate goal is to achieve robust global
registration when spurious correspondences caused by the
degradation of feature extraction and matching are given.
Unlike other studies that focus more on improving the
expressibility of feature descriptors to increase the quality
of correspondences (Ao et al. 2021; Shi et al. 2021a; Chen
et al. 2022; Cattaneo et al. 2022; Yin et al. 2023), what
we aim for is robustly estimating the relative pose even
though undesirable imprecise correspondences are given.
The contribution of this paper is fourfold:

• We propose a novel global registration framework,
Quatro++, that robustly achieves an initial alignment,
overcoming the effect of the gross outliers and
degeneracy issue as well.

• We demonstrate that employing ground segmentation
makes global registration more robust and reduces the
computational cost, allowing more accurate and fast
loop closing for LiDAR SLAM.

• Our proposed method was analyzed from various per-
spectives, showing a superior performance compared
with state-of-the-art methods, including deep learning-
based approaches. By doing so, we demonstrate the
ease of exploiting our Quatro++ because our method
is a learning-free approach.

• By integrating our approach with various LiDAR
SLAM frameworks, we showed that our Quatro++
successfully improves the performance of SLAM by
providing more precise loop constraints as an initial
alignment.

2. Related Works

2.1. Local Registration
As mentioned earlier, point cloud registration is mainly
classified into two categories depending on how to find
correspondences between the two point clouds: one is the
local registration (Besl and McKay 1992; Rusinkiewicz and
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Fig. 1. Overview of our global registration method, called Quatro++. As an extension of our previous work (Lim et al. 2022), Quatro++ consists of five
parts. The red, green, and blue lines of the raw and pruned correspondences (shown inside dotted boxes), i.e.Araw andA, respectively, denote the outliers,
true inliers, and quasi-inliers (see Section 4.7), respectively. (a) The preprocessing step using ground segmentation (gray points denote the estimated ground
points). (b) Correspondence estimation by using descriptor extraction and matching, which can be interchangeable with other methods. (c) Graph-based
outlier pruning to initially reject outlier correspondences. (d) Quasi-SO(3) estimation based on graduated non-convexity (GNC). (e) Component-wise
translation estimation. (best viewed in color).

Levoy 2001; Chetverikov et al. 2002; Segal et al. 2009;
Pomerleau et al. 2013; Koide et al. 2021; Dellenbach et al.
2022) and the other is the global registration (Fischler and
Bolles 1981; Dong et al. 2017; Yang et al. 2015; Zhou et al.
2016; Yang et al. 2020b; Bernreiter et al. 2021).

First, the local registration methods heavily rely on the
nearest neighbor search (Greenspan and Godin 2001), which
assumes that a target point correlates with the source point
closest to the target point. ICP (Besl and McKay 1992)
and its subsequent studies are renowned local registration
methods. Unfortunately, the assumption above is invalid
once two point clouds are far apart and slightly overlapped.
For this reason, ICP variants in loop closing situations often
fail to estimate relative pose when the pose discrepancy
between the two point clouds is large.

2.2. Global Registration
Unlike these local registration methods, global registration is
more likely to be appropriate to estimate the relative pose in
the case where the pose discrepancy is large. Accordingly,
the output of the global registration can be used as an
initial guess, allowing the estimate of the local registration
to successfully converge into the global minimum. Note
that the two types of global registration methods exist:
a) correspondence-based (Fischler and Bolles 1981; Yang
et al. 2015; Zhou et al. 2016; Dong et al. 2017; Tzoumas
et al. 2019; Yang et al. 2020b; Lin et al. 2022) and
b) correspondence-free methods (Rouhani and Sappa 2011;
Brown et al. 2019; Bernreiter et al. 2021). In this study, we
place more emphasis on the correspondence-based methods.

2.3. Correspondence-Based Global
Registration

The correspondence-based methods utilize feature extraction
and matching to obtain correspondences between the

two point clouds. However, the outliers inevitably occur
within the putative correspondences. To tolerate the effect
of outliers on pose estimation, numerous researchers
have studied outlier-robust global registration methods.
Typical examples are random sample consensus (RANSAC)
proposed by Fischler and Bolles (1981), and its variants
(Papazov et al. 2012; Chum et al. 2003; Choi et al.
1997; Schnabel et al. 2007). However, the RANSAC-based
methods are likely to be brittle with high outlier rates.
Empirically, these methods often fail if the ratio of outliers is
over 50 % (Tzoumas et al. 2019).

The other examples are branch-and-bound (BnB)-based
methods (Lawler and Wood 1966; Olsson et al. 2008; Hartley
and Kahl 2009; Pan et al. 2019). These methods have
an advantage in that they guarantee theoretical optimality.
Unfortunately, these BnB-based methods are too slow to be
exploited in real-world applications, e.g. it takes over 50 sec
for a single registration (Lei et al. 2017).

2.4. Fast and Outlier-Robust Global
Registration

Unlike the RANSAC-variants or BnB-based methods, GNC
has been introduced to achieve outlier-robust and fast
registrations. The GNC-based methods estimate pose while
rejecting the outlier measurements simultaneously (Black
and Rangarajan 1996; Zhou et al. 2016), overcoming up to
70-80% of outliers and providing faster speed compared with
the previous works. Consequently, GNC has been widely
used to robustly estimate the relative pose against the gross
outliers (Tzoumas et al. 2019; Yang et al. 2020a,b; Sun
2021a; Song et al. 2022).

In addition, the certifiable methods that guarantee their
optimality in polynomial-time have been proposed, such as
semidefinite programming and sums of squares relaxation-
based methods (Vandenberghe and Boyd 1996; Briales and
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Gonzalez-Jimenez 2017; Maron et al. 2016; Carlone et al.
2016).

2.5. Geometry-Aware Traditional Outlier
Rejection Modules

Further, some researchers have studied novel traditional
outlier rejection modules. To check the geometric con-
sistency and thus prune spurious correspondences effec-
tively, these outlier rejection methods leverage spectral tech-
niques (Leordeanu and Hebert 2005), maximum clique (Shi
et al. 2021b; Sun 2021b), voting schemes (Glent Buch et al.
2014; Yang et al. 2019), or game theory (Rodolà et al. 2013).

2.6. Deep Learning-Based Registration
As deep learning era has come, deep learning-based
methods have shown remarkable achievements. The research
directions can be categorized into three groups: a) improving
the quality of feature extraction and matching (Zeng et al.
2017; Yew and Lee 2018; Deng et al. 2018; Gojcic et al.
2019), b) end-to-end registration (Wang and Solomon 2019;
Gojcic et al. 2020), c) learning-based outlier rejection
techniques within the deep learning architecture (Choy et al.
2020; Pais et al. 2020; Bai et al. 2021). Among them, the
last group shares our philosophy that outliers are always
inevitable.

However, these data-driven methods are too fitted into the
situations included in the training dataset; thus, the learning-
based methods can result in catastrophic failure if they
encounter untrained situations or the data captured by other
sensor configuration are taken as inputs. As we pursue a
versatile method that is applicable in any environment, the
learning-based methods are thus beyond our scope.

3. Preliminaries
In this section, we present the notation of variables and the
problem definition of global registration. In addition, the
challenges of global registration using sparse point clouds
captured by a 3D LiDAR sensor are explained. In particular,
we focus more on the mechanically spinning 3D LiDAR
sensor because its uniform beam forming triggers a severe
sparsity issue (Lim et al. 2021b), potentially causing more
outlier correspondences.

3.1. Notation
First of all, source and target clouds are denoted as P and
Q, respectively, and let us define their coordinate frames
as P and Q, respectively. These point clouds consist of a
number of cloud points, which can be expressed as P =
{p1,p2, . . . ,pN} and Q = {q1,q2, . . . ,qM}. Each point is
expressed in the Cartesian coordinates, so the elements of
pi (1 ≤ i ≤ N) and qj (1 ≤ j ≤M) are comprised of x, y,
and z values, respectively.

Next, we aim for correspondence-based global regis-
tration, so the correspondences set, A, is given by fea-
ture extraction and matching; A consists of the indices
pairs, (i, j), which indicate that the i-th point in P and the
j-th point in Q are matched to each other. In general, it is
natural that A inevitably includes inherent outlier pairs due
to the false matching (Rusu et al. 2009; Yew and Lee 2018;

Tzoumas et al. 2019). Accordingly, A can be classified into
the outlier set, O, and inlier set, I, such that O ∪ I = A.
Note that these two sets are disjoint, i.e. O ∩ I = ∅.

Then, the relative rotation matrix and translation vector
between P and Q are denoted as R ∈ SO(3) and t ∈ R3,
respectively. Finally, the relationship between the i-th point
in P and the j-th point in Q is defined as follows:

qj = Rpi + t+ ϵij (1)

where ϵij ∈ R3 denotes the unknown measurement noise.
That is, ϵij depends on whether the pair (i, j) is a true inlier
or not; ϵij is Gaussian noise if (i, j) ∈ I and is irregular
error, otherwise.

3.2. Problem Definition
Based on the notations above, the objective function of
correspondence-based global registration can be defined as
follows:

R̂, t̂ = argmin
R∈SO(3),t∈R3

∑
(i,j)∈A

ρ
(
r(qj −Rpi − t)

)
(2)

where ρ(·) denotes a robust loss function, such as Cauchy
or Huber norm (Tzoumas et al. 2019), intended to suppress
undesirable large errors caused by false correspondences;
r(·) denotes the squared residual function, i.e. |·|2 for the
scalar and ∥·∥2 for the vector.

3.3. Challenge of 3D Point Cloud Registration
in Distant and Partially Overlapped Cases

Unlike object-level point cloud data whose points are evenly
distributed, such as bunny dataset (Curless and Levoy 1996),
a 3D point cloud captured by a spinning LiDAR sensor has
somewhat different characteristics. That is, as the distance
from the origin of a point cloud becomes longer, the density
dramatically decreases, which is referred to as sparsity
issue (Lim et al. 2021b). The sparsity issue directly has a
negative impact on the quality of feature descriptors and thus
induces false matching results.

To be more concrete, most feature descriptor methods,
including deep learning-based methods, utilize the geomet-
rical inter-relations between each point and its neighbor-
ing points to generate descriptors. However, as the density
becomes sparse, these neighboring points are insufficient to
describe the actual geometrical inter-relations because the
distance between the two points becomes large. As a result,
the expressibility of descriptors becomes worse. Finally, if
these degraded descriptors are taken as the inputs of descrip-
tor matching, it will deteriorate the matching performance,
reducing the number of actual inliers while increasing the
ratio of outliers, as shown in Fig. 2.

Based on these observations, (2) is redefined to achieve
robust global registration as follows:

R̂, t̂ = argmin
R∈SO(3),t∈R3

∑
(i,j)∈A\Ô

ρ
(
r(qj −Rpi − t)

)
(3)

where Ô denotes the estimated outlier pairs. In short, our
ultimate goal is to robustly estimate relative pose although
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Relative pose

2.53m and 3.13° apart 4.21m and 6.15° apart 10.75m and 31.83° apart

63 inliers, 808 outliers 17 inliers, 647 outliers 3 inliers, 312 outliers
(Ratio: 92.77%) (Ratio: 97.44%) (Ratio: 99.05%) 

Fig. 2. (L-R): Feature matching results between frames 939 as a source cloud (cyan), and 4,206, 4,204 and 4,195 as target clouds (yellow), respectively, for
Seq. 02 in the KITTI dataset. The farther the pose discrepancy is, the worse quality of the estimated correspondences is, showing an increase in the ratio of
outliers (red lines) and a decrease in the number of actual inliers (green lines).

imprecise correspondences that contain the outliers are
given.

4. Quatro++: Quasi-SE(3) Estimation
Leveraging Ground Segmentation

4.1. System Overview
Our proposed method is based on two premises: a) most
terrestrial mobile robots and autonomous driving vehicles
inevitably come into contact with the ground and thus b) the
yaw rotation is dominant in relative rotation motion, which
are also presumed in Scaramuzza (2011) and Kim et al.
(2019).

Based on these assumptions, our Quatro++ mainly
consists of five parts, as shown in Fig. 1. First, our
proposed method begins with ground segmentation (Lim
et al. 2021b) to filter ground points within the source
and target clouds, respectively, because these points are
usually geometrically featureless compared with the non-
ground points (Shan and Englot 2018). Empirically, it was
found that ground removal improves the quality of feature
matching and thus dramatically increases the success rate
of global registration (see Sections 7.1 and 7.2). Second,
feature extraction and matching are performed to estimate
correspondences.

However, as mentioned in Section 3.3, the potential
outliers are unavoidable; thus, the outliers are initially
filtered out by using MCIS as the third step. Next, the relative
rotation and translation are estimated by the decoupling
estimation method. Accordingly, in the fourth step, quasi-
SO(3) estimation is performed by utilizing the concept
of GNC to estimate the relative rotation in an alternating
optimization manner, while rejecting the potential outliers.
Fifth, component-wise translation estimation (COTE) is
exploited to estimate the relative x, y, and z, respectively,
based on the concept of consensus set (Li 2009).

The methodologies and rationale for each module in
Quatro++ are explained in the following subsections.

4.2. Fast and Robust Ground Segmentation as
a Preprocessing Step

First, ground segmentation is performed by using Patch-
work (Lim et al. 2021b) to extract non-ground points from
the source and target cloud, respectively, as illustrated in
Fig. 3(a). Patchwork is a region-wise ground segmentation
method that firstly divides all the cloud points into multiple

Segmented groundA 3D Point cloud For each bin

C
Z

M

R
-G

P
F

C
Z

M
-1

G
L

E

(a)

(b) Ground segmentation module
in LeGO-LOAM

(c) Patchwork

Fig. 3. (a) Illustration of Patchwork (Lim et al. 2021b). CZM, R-GPF, and
GLE are abbreviations of concentric zone model, region-wise ground plane
fitting, and ground likelihood estimation, respectively. (b)-(c) Visualization
of the ground segmentation output in Seq. 00 in the KITTI dataset for
comparison. The green and red colors denote the estimated ground and non-
ground points, respectively (best viewed in color). (b) Estimated ground
points by using ground segmentation in LeGO-LOAM (Shan and Englot
2018) and (c) by using Patchwork (Lim et al. 2021b). Empirically, it was
shown that Patchwork shows more robust segmentation with fewer false
positives and false negatives (best viewed in color).

subsets based on the concentric zone model (CZM). Next,
region-wise ground plane fitting (R-GPF) is used to output
the central point, normal vector, and flatness for each sub-
region. The flatness indicates the variance of points in the
subset along the normal vector. Finally, ground likelihood
estimation (GLE) is used to check whether the estimated
ground plane is likely to be actual ground or not. Note that
the Patchwork is utilized because it shows consistent and
precise ground segmentation performance compared with
other well-known ground segmentation methods (Seo et al.
2022), as presented in Figs. 3(b) and 3(c).

In summary, ground segmentation has two major advan-
tages. First, it increases the matching accuracy. In fact,
the ground points usually produce lots of false matching
because ground points have more ambiguous geometrical
characteristics than non-ground points. Therefore, by reject-
ing these geometrically indistinguishable points beforehand,
it is shown that ground segmentation significantly increases
the success rate of the global registration methods in the
distant cases (see Sections 7.1 and 7.2).
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(a) Quasi-SO(3) Estimation

COTE

(b) MCIS-heuristic

...

(e) (d) (c) 

(h)

(i)

(f)

(g)

Fig. 4. Visual description of the procedure of Quatro when the frames 2,328 and 3,268 for Seq. 00 in the KITTI dataset are given as source (cyan) and
target (yellow), respectively, which is a distant and partially overlapped case. (a) Estimated correspondences,Araw, which include potential outliers owing to
false matching. The left-top text represents the pose discrepancy. (b) Filtered correspondences by using MCIS-heuristic, which is a graph-based outlier
pruning method. (c)-(e) Procedure of Quasi-SO(3) estimation based on graduated non-convexity (GNC). (c) On the initialization step, A is transformed
into translation invariant measurements (TIMs) all of whose weights are set to one (brown color). (d) Next, GNC-based optimization is performed to
estimate relative rotation while rejecting outliers by reweighting the weights. (e) The problem is that less than three pairs are occasionally left, which is
highlighted by red circles, by assigning near-zero values to the weights of correspondences. Despite this degeneracy, our quasi-SO(3) estimation robustly
outputs the relative rotation because its minimum required DoF is one. (f)-(i) Examples of component-wise translation estimation (COTE) to estimate
the relative x value. (f) Boundary interval set 1E , where the brackets [ and ] denote the lower and upper bounds, respectively. (g) Cardinality of the g-th
consensus set,

∣∣1Ig∣∣. (h) Each value of the optimal solutions, i.e. 1t̂g , which is associated with each 1Ig . Note that 1t̂14 is not assigned because 1I14 = ∅.
(i) Residual of the objective function for all correspondences when 1tg is given. The residual becomes lowest when g = 8, thus 1t̂8 is selected as the final
solution for the 1st element, i.e. 1t̂← 1t̂8 (best viewed in color).

Second, rejecting these ground points in advance reduces
the computational cost of the subsequent extraction and
matching procedure because almost 40∼60 % of points in a
point cloud are from the ground once the point clouds are
captured by the ground vehicles (Lim et al. 2021b). As a
result, ground segmentation usually reduces the number of
cloud points.

4.3. Feature Extraction and Matching

Next, feature extraction and matching are employed to
estimate correspondences. In this study, fast point feature
histogram (FPFH) is exploited to generate descriptors (Rusu
et al. 2009). Of course, any relevant feature extraction and
matching method can be used, yet we chose FPFH-based
matching to guarantee the generality without any training
procedure and to emphasize that global registration must
be robust even though imprecise correspondences are given.
For these reasons, improving feature extraction and matching
itself is beyond our scope.

The procedure to estimate correspondences is summarized
as follows. Given the estimated non-ground points of source
and target, voxel sampling is firstly employed with voxel
size ν. Then, FPFH is used by taking a voxel sampled cloud
as an input to generate the feature descriptor of each point
with the radius for normal estimation, rnormal, and that for
FPFH descriptor, rFPFH. Finally, the reciprocal test (Zhou
et al. 2016) is performed to obtain Araw, as represented in
Fig. 4(a). More details about the parameters are presented in
Section 6.3.

4.4. Graph-Based Outlier Rejection
Next, MCIS (Rossi et al. 2015) is applied to reject outlier
correspondences in advance. Given Araw as an input, MCIS
outputs the filtered correspondences, A (see Fig. 4(b))
However, finding the exact maximal clique is NP-complete
and its complexity increases in exponential time, so it
is likely to be a bottleneck in the pipeline and thus
occasionally takes lots of time. For this reason, we modify
it to heuristically find a maximal clique, named MCIS-
heuristic to reduce computational burden. That is, we
estimate the maximal clique found within a threshold time as
the optimal result. More details about MCIS can be found in
Yang et al. (2020b) and Yin et al. (2023).

4.5. Overview of Decoupling Rotation and
Translation Estimation

After initially pruning outlier correspondences, the relative
rotation and translation are estimated, respectively. Sharing
the philosophy of Horn (1987) and Arun et al. (1987) that R̂
and t̂ can be estimated in a decoupled manner, the relative
rotation is firstly estimated in the translation-invariant space,
followed by translation estimation. Note that this decoupling
estimation strongly assumes that the relative rotation is
successfully estimated (Yang et al. 2020b).

Here, a brief explanation of the decoupling method is
presented (Lim et al. 2022). Let us assume that A is a tuple
that has an order. Then, to cancel out the effect of relative
translation, two consecutive pairs (i, j) corresponding to the
n-th element of A and (i′, j′) corresponding to the (n+ 1)-
th element of A are subtracted in a chain form, which
are expressed as αk = pi′ − pi and βk = qj′ − qj ,
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respectively. By doing so, the number of correspondences is
preserved, preventing an increase in the computational cost.
Note that the last element is made by the subtraction between
the last and first pair in A.
αk and βk are referred to as translation invariant

measurements (TIMs) that satisfy βk = Rαk + ϵk, whose
translation term is canceled out; ϵk denotes Gaussian noise
if both (i, j) and (i′, j′) pairs are true inliers and ϵk has a
large irregular error, otherwise.

Then, the rotation is estimated in translation invariant
space as follows:

R̂ = argmin
R∈SO(3)

K∑
k=1

min
(
wkr(βk −Rαk), c̄

2
)

(4)

where K denotes the cardinality of A, i.e. |A|; wk is the
weight to control the influence of each TIM pair; c̄ is a
truncation parameter. Thus, (4) means that if either αk or
βk is outlier, r(βk −Rαk) has large residual. Then, wk

is exploited to suppress the effect of the potential outlier.
However, if the first summand, i.e. wkr(βk −Rαk), is still
large, this residual term is substituted with the predefined
constant c̄2 to cut off the influence of the outliers on the
estimation. Consequently, the undesirable effect of these
potential outliers can be safely suppressed. The details of
how to estimate wk are presented in Section 4.7.

Then, the rotation estimation is followed by COTE (Yang
et al. 2020b). As the term COTE itself indicates, 3D
relative translation is estimated in an element-wise manner
as follows:

lt̂ = argmin
lt∈R

∑
(i,j)∈A

min

(
r(lt− lvij)

σ2
ij

, c̄2
)

(5)

where vij = qj − R̂pi denotes the translation discrepancy,
σij is the noise bound, and l(·) denotes the l-th element of a
3D vector. That is, l = 1, 2, 3 and each value corresponds to
x, y, and z translation in the ascending order, respectively.

In summary, (3) is decomposed into (4) and (5). More
details are explained in Sections 4.7 and 4.8.

4.6. Quasi-SO(3) in Urban Environments
Next, the concept of quasi-SO(3) is proposed based on
the premise in Section 4.1. To be more robust against
degeneracy, Quasi-SO(3) aims to reduce the DoF of rotation
estimation from three to one, which is built upon a key
observation that a pure yaw rotation is relatively dominant
than roll and pitch rotations in a loop closing situation of
urban environments. As shown in Fig. 5(a), once a revisit
occurs, the roll and pitch differences between the source and
target clouds are not large. Accordingly, two viewpoints of
the source and target clouds are likely to be located in the
coplanar space.

The experimental evidence also supports our rationale that
the rotation affected by roll and pitch motions is negligible in
loop closing situations. To be more concrete, the probability
distribution function empirically shows that the effect of roll
and pitch rotations is usually smaller than 8◦ (Fig. 5(b)). In
general, the error of small angle assumption does not exceed
1.0 % if the angle is lower than 8◦ (Youn et al. 2021). In that

(a)

(b) (c)

Fig. 5. (a) Visual description to show the geometrical characteristics of
loop closing situations in urban canyons. (a) Revisit usually occurs in
either forward, reverse, or perpendicular direction. Accordingly, the roll
and pitch differences between the two viewpoints of source and target
clouds are sufficiently small. (b) Qualitative analysis of the actual geodesic
magnitude of relative roll (∠Rx), pitch (∠Ry), and the combined rotations
(∠(Ry ·Rx)) except yaw rotation, where ∠R = cos−1 Tr(R)−1

2
. The

loop pairs whose distances are between 0.5 to 10 m apart in the KITTI
dataset were used. (c) Surrogate function ρµ(·) when c̄ = 0.15. As the
parameter µ gradually grows, the kernel has more non-linearity. It becomes
truncated least squares once µ reaches∞ (best viewed in color).

respect, it was demonstrated that these angles are sufficiently
insignificant.

Therefore, let us express the relative rotation as R = Rz ·
Ry ·Rx, where Rz , Ry , and Rx denote the yaw, pitch, and
roll rotations, respectively. Then, R can be approximated as
R ≈ Rz based on our assumption that the magnitudes of roll
and pitch angles are insignificant in urban canyons (Chen
et al. 2022), so the effect of Ry and Rx can be negligible
as Ry ·Rx ≈ I3, where In denotes the n× n identity
matrix. Consequently, the DoF of the relative rotation is
reduced from three to one through this assumption. For
brevity, the approximated R is denoted by R+.

One might argue that our assumption occasionally does
not hold once the pose discrepancy is somewhat large and
the loop closing is performed in non-flat areas. However, this
problem can be easily resolved by utilizing the estimated
roll and pitch angles from an inertial navigation system
(INS). We propose to tackle this problem using the INS in
Section 5.5.

4.7. Quasi-SO(3) Estimation using Graduated
Non-Convexity to Avoid Degeneracy

Based on the assumption above, GNC-based truncated
least square (Tzoumas et al. 2019) is explained to
estimate R+. To this end, (4) can be modified as
argminR+

∑K
k=1 ρµ (r (βk −R+αk)) by using a surrogate

function, ρµ(·), that controls the non-linearity of loss
function governed by parameter µ (Fig. 5(c)).

Next, this equation is redefined based on Black-
Rangarajan duality as follows (Zhou et al. 2016; Yang et al.
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2020b):

R̂+ = argmin
R+∈SO(3);
wk∈[0,1]

K∑
k=1

[
wkr (βk −R+αk) + Φρµ (wk)

]
(6)

where Φρµ (wk) =
µ(1−wk)
µ+wk

c̄2 is a penalty term (Yang et al.
2020a; Lim et al. 2022). However, minimizing the residuals
while simultaneously assigning the corresponding weights
does not guarantee optimality (Zhou et al. 2016).

To tackle this problem, the alternating optimization is
exploited to solve (6). That is, the optimal rotation is
estimated with the fixed weights updated in the previous
iteration and then the weights are updated with the fixed
optimized rotation. To be more concrete, the alternating
optimization is expressed as follows:

R̂
(t)
+ = argmin

R+∈SO(3)

K∑
k=1

ŵ
(t−1)
k r (βk −R+αk) , (7)

Ŵ(t) = argmin
wk∈[0,1]

K∑
k=1

[
wkr

(
βk − R̂

(t)
+ αk

)
+Φρµ (wk)

]
(8)

where the superscript (t) denotes the t-th iteration
and Ŵ is a matrix form of the weights, i.e. Ŵ =
diag (ŵ1, ŵ2, . . . , ŵK). Each ŵk can be obtained by solving
the following equation:

∂

∂wk

(
wkr

(
βk − R̂

(t)
+ αk

)
+Φρµ

(wk)
)
= 0. (9)

Once we expand (9) in terms of ŵk, ŵk is expressed in a
truncated manner as follows:

ŵ
(t)
k =


0 if r̃k ∈

[
µ+1
µ c̄2,+∞

)
c̄
√

µ(µ+1)
r̃k

− µ if r̃k ∈
[

µ
µ+1 c̄

2, µ+1
µ c̄2

)
1 otherwise

(10)

where r̃k ≥ 0 is the simplified notation of r(βk −R
(t)
+ αk).

Note that the value of µ grows for every iteration to
gradually increase the non-linearity of the loss function. That
is, µ is assigned as µ(t) ← κ · µ(t−1), where κ > 1 is a
constant parameter. By doing so, the kernel becomes more
non-linear, as presented in Fig. 5(c). For initialization, µ(0)

is set to be c̄2/(max(r(βk −αk))− c̄2). The optimization
ends if either the differential of the loss function is
sufficiently small or the iteration reaches the maximum
number, Niter.

In summary, the estimation of R+ has two major
advantages over that of R. First, estimation of the R+

helps to avoid the degeneracy situations in itself by reducing
the DoF of rotation from three to one. Sometimes, the
number of remaining inliers is less than three, because
GNC does not guarantee to leave more than three inliers.
Even though the degeneracy occurs, our proposed rotation
estimation enables to tolerate the case where only one or two

Fig. 6. Changes of weights by GNC in quasi-SO(3) estimation in a
degeneracy case: under the situation where the points having weights below
0.5 (dotted line) are filtered out as outliers, quasi-inliers help to estimate
quasi-SO(3) by acting as inliers, thus our proposed method enables to
tolerate the degeneracy.

correspondences remain because a single correspondence is
enough to estimate R+.

It may be thought that this phenomenon does not occur
often; however, as shown in Figs. 4(d), 4(e), and 6,
the degeneracy occurs once the distance between the two
viewpoints becomes more than 9 meters away in outdoor
scenes, empirically. Therefore, being robust against the
degeneracy can be interpreted as being able to help the
convergence of local registration better when performing
loop closing in the distant cases (see Sections 5.4 and 7.6).

Second, R+ allows measurements that are originally
outliers to be treated as inliers. To explain this reason,
we introduce the concept of quasi-inliers each of whose
error only exists along the perpendicular direction of the
ground plane. That is, let us decompose the noise term in
the translation invariant space into two components: a) a
perpendicular term and b) a parallel term to the ground plane.
Then, the quasi-inlier represents the measurement whose
former error term has a value greater than zero, yet the latter
one has a near-zero value.

Note that these quasi-inliers often occur owing to the
ambiguity of the descriptors in urban environments. That
is, the majority of urban structures are generally orthogonal
to the ground, so the local geometrical properties along
the perpendicular direction are highly likely to be similar,
resulting in false matching.

The point is that the quasi-inliers behave like the
actual inliers during the estimation of R+. That is, the
perpendicular error terms rarely affect the estimation of
R+ because R+ primarily considers the effect of yaw
rotation. In other words, the estimation of R+ is equivalent
to the estimation of yaw rotation with the measurements
projected into the xy-plane, so the effect of error along the
perpendicular direction can be negligible.

In short, as these quasi-inliers play a role as the actual
inliers, the quasi-inliers help to increase the number of inliers
and prevent degeneracy, as shown in Fig. 6.

4.8. Component-Wise Translation Estimation
Finally, COTE is exploited to estimate the component-wise
relative translation by the following four steps. For each l-
th element, boundary interval set, which is a 2|A|-tuples
and denoted as lE , is firstly set which comprises the lower
bound, lvij − σij c̄, and the upper bound, lvij + σij c̄ ([ and
] in Fig. 4(f), respectively). Note that it is assumed that all
the elements of lE are sorted in ascending order. That is, let
the g-th element in lE be lE(g), whose value could be the
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lower or upper bound, then it satisfies lE(g) < lE(g + 1) for
g = 1, 2, . . . , 2|A| − 1.

Second, the g-th consensus set is assigned as follows:

lIg = {(i, j)| (
lϕg − lvij)

2

σ2
ij

≤ c̄2} (11)

where lϕg ∈ R denotes an arbitrary value which satisfies
lE(g) < lϕg < lE(g + 1).

Third, the optimal solution for each non-empty lIg , which
is denoted as lt̂g , is estimated as follows:

lt̂g =
( ∑

(i,j)∈lIg

1

σ2
ij

)−1 ∑
(i,j)∈Ig

1

σ2
ij

lvij . (12)

Finally, among the optimal solution candidates estimated
by (12), the one that minimizes the truncated objective
function, i.e. (5), is chosen as the global optimum (the red
dashed rectangle in Fig. 4(i)) as follows:

lt̂ = argmin
ltg∈H

∑
(i,j)∈A

min

(
r(ltg − lvij)

σ2
ij

, c̄2
)

(13)

where H is a set of the optimal solution candidates whose
size is up to 2|A| − 1. Note that COTE presumes that R̂+ is
sufficiently precise.

5. Quatro++ in Back-End of LiDAR SLAM
In this section, the details of how Quatro++ is integrated
into the LiDAR SLAM frameworks. Originally, our proposed
method is a front-end agnostic method, so it can be easily
exploited in any LiDAR SLAM frameworks. In doing so,
Quatro++ is utilized as an initial alignment method to help
the estimate of local registration successfully converge into
the global optimum.

5.1. Generic Pose Graph Optimization in
LiDAR SLAM

As mentioned in Section 1, PGO is used to minimize global
trajectory errors, which are caused by local drift of odometry.
That is, these errors are accumulated as time goes by,
resulting in a large pose discrepancy between the estimated
poses and the actual poses.

To tackle this problem, loop detection and loop closing
are utilized, which mainly consists of three steps. First, loop
detection is performed to identify inter-related nodes (Kim
and Kim 2018; Chen et al. 2022; Cattaneo et al. 2022).
Second, a registration algorithm is exploited to estimate
the actual pose difference. Finally, global pose errors
are minimized via PGO by utilizing the pose differences
estimated by the registration between the two non-
consecutive nodes.

In summary, the objective function of PGO is expressed as
follows:

X̂ = argmin
X∈X

∑
i

∥∥X−1
i Xi+1 ⊟ zodom

i

∥∥2
Σodom

i

+
∑

(j,k)∈L

∥∥∥ρjk (X−1
j Xk ⊟ zreg

jk

)∥∥∥2
Σloop

jk

(14)

where the first summand denotes the summation of
Mahalanobis distances estimated by the odometry and
the last summand denotes that by the loop closing. The
definitions of the variables are as follows: X and X̂ are
sets of 3D poses and the optimized poses, respectively; i,
j, and k are the indices of the node in a graph structure
where the j-th and k-th nodes are not the successive nodes;
L denotes an indices set of loops and Xi ∈ SE(3) is the i-th
pose that corresponds to the i-th node; ⊟ denotes box-minus
operation (He et al. 2021) which is an equivalent operator
of subtraction between two manifolds, i.e. in a 3D space,
⊟ : SE(3)× SE(3)→ R6; zodom

i denotes the measurement
from the odometry and zreg

jk from the registration; Σodom
i and

Σreg
jk denote the covariances that correspond to zodom

i and zreg
jk ,

respectively.

5.2. Mean Squared Error-Based False Loop
Rejection

In general, the loops, i.e. L, can be redefined asD\ÔL where
D is all the loop candidates searched by a loop detection
method and ÔL denotes the rejected loop candidates by
considering them as false loops.

Most LiDAR SLAM methods (Shan and Englot 2018;
Shan et al. 2020; Li et al. 2021; Ramezani et al. 2022)
heavily rely on mean squared error (MSE) of local
registration methods to determine whether the loop candidate
is considered as a false loop or not, i.e. the output of
getFitnessScore() in point cloud library (Rusu and
Cousins 2011; Aldoma et al. 2012). The MSE is the average
of squared Euclidean distances from the transformed source
cloud points by the estimated relative rotation and translation
to the corresponding target cloud points (Rusu and Cousins
2011). Accordingly, the MSE indicates how the source cloud
is tightly matched to the target cloud.

Once the estimate successfully converges into the actual
global minimum (Fig. 7(a)), the MSE usually shows a small
value because each distance between the target point and
the warped source point is near zero. In contrast, the MSE
shows a larger value in the divergence cases if the estimate
goes to the local minimum and thus two point clouds are not
aligned (Fig. 7(b)). Based on these observations, the loop is
rejected if the MSE is somewhat large because a number of
distances between the transformed source and target are not
zero.

Thus, this MSE-based rejection effectively filters out most
false loops, leaving some actual loops among the loop
candidates.

5.3. Potential Limitations of the Mean Squared
Error-Based False Loop Rejection

However, there are two problems in terms of a) false negative
and b) false positive loops. First, the narrow convergence
region of the local registration methods triggers too many
rejections even though these loops are the actual loops. As
mentioned earlier, the local registration methods estimate
correspondences based on the strong assumption that the
nearest points between the source and target clouds are
valid. However, once the pose difference becomes large and
only a small portion of two point clouds is overlapped,
this assumption does not hold, so the estimate generally
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(a) (b) (c)

Fig. 7. Registration results once (a)-(b) local registration is only applied and
(c) a coarse-to-fine alignment is applied by utilizing our proposed method.
The texts in the upper left corner represent the initial pose differences.
The green and red boxes indicate whether the registration succeeds or not,
respectively. The cyan and yellow colors denote the transformed source
cloud and the target cloud, respectively (best viewed in color).

diverges. For this reason, many loop candidates whose pose
discrepancies are large are highly likely to be rejected,
causing lots of false negative loops.

Second, there are some failure cases having low MSEs,
causing false positive loops. This phenomenon usually
occurs in corridor-like scenes where the surroundings have
few geometrical characteristics and high ambiguity. For
this reason, it is hard to discern whether the registration
succeeded or not solely based on the MSE. As a result,
these false positive loops deteriorate the quality of loop
constraints. That means, zreg

jk in (14) becomes more
imprecise.

5.4. Why Quatro++?: For More Loops and
Accurate Measurements

To tackle these two problems, our proposed method can
be utilized as a coarse alignment to provide an initial
guess, helping the local registration methods to successfully
estimate the relative pose, as presented in Fig. 7. As the
performance of Quatro++ is less affected by the initial pose
difference, our global registration can initially transform
the source cloud to the region where the estimate of local
registration can converge into the global minimum.

In summary, the coarse-to-fine alignment-based loop
closing has two main advantages over solely using a local
registration method. First, the loop closing with our proposed
method significantly lessens wrong rejection of the loop
candidates, i.e. false negatives, owing to the lowered MSEs.
Second, our proposed coarse-to-fine-based loop closing in
itself increases the accuracy of measurements. In particular,
it was shown that our proposed method is robust against the
corridor-like environments, so that the local minima cases
can be reduced as well (see Section 7.1). Consequently,
the coarse-to-fine loop closing increases the quality of
zreg
jk in (14).
Therefore, these two merits result in more accurate and

precise PGO results (see Section 7.6).

5.5. Quatro++ With Roll-Pitch Compensation
Using INS

As mentioned earlier, our proposed method sacrifices the
estimation of relative roll and pitch angles to improve
robustness. However, this limitation can be easily resolved
by leveraging the INS system. That is, the relative roll and
pitch angles between the two point clouds are easily obtained
by the INS system. These angles are highly relevant to

gravity direction, which can be fully observable in the INS
system. In other words, the roll and pitch angles can be
estimated with respect to the world frame, which indicates
that these estimated angles are drift-free.

Based on these observations, the source point cloud is
first transformed into the roll-pitch-compensated frame by
using the estimated rotation, R̂INS = R̂y · R̂x, where R̂y

and R̂x denote the elements of relative rotation affected
by pitch and roll angles, respectively. The combination of
using our proposed method with R̂INS is very simple, yet this
compensation significantly reduces the relative pose errors
while preserving the robustness of our proposed method (see
Sections 7.1 and 7.5).

6. Experiments

6.1. Dataset
We conducted experiments with various datasets to evaluate
the performance of Quatro++ (and Quatro). Accordingly,
the following datasets were used: KITTI dataset (Geiger
et al. 2012, 2013) to evaluate the success rate and robustness
of global registration, NAVER LABS localization dataset
(Lee et al. 2021) to check the applicability to more sparse
LiDAR scans, MulRan dataset (Kim et al. 2020) to integrate
our proposed method as a loop closing module, and Hilti-
Oxford dataset (Zhang et al. 2022) to show feasibility of our
Quatro++ on hand-held sensor configurations. These datasets
were captured by Velodyne HDL-64E, Velodyne VLP-16,
Ouster OS1-64, and HESAI XT32, respectively. That is, our
experiments were conducted by using various mechanically-
spinning-type LiDAR sensors to check the generality and
versatility.

We look closely at three points: a) performance
comparison with other state-of-the-art (SOTA) global
registration methods, b) the effect of ground segmentation
on global registration, and c) application of our proposed
method to LiDAR SLAM frameworks. In particular, we
place more emphasis on the distant cases where the
viewpoints of two point clouds are far apart. Accordingly, the
experiments are further categorized into three parts: a) loop
closing test, b) odometry test, and c) augmented rotation test.

That is, first, let us define all the loop pairs as SAll as
follows:

SAll =
{
(s, t)|rmin ≤ ∥ts − tt∥2 ≤ rmax,

|s− t| ≥ m,∀s, t ∈ Ntraj

}
,

(15)

where s and t are the indices of source and target point
clouds, respectively; ts and tt are the translation vectors of
ground truth poses that correspond to the source and target
point clouds, respectively; rmin and rmax are the minimum
and maximum distances between the source and target point
clouds, respectively; m is the minimum number of frames
between the source and target point clouds to prevent the
loop pairs from being too close to each other; and Ntraj is
the set of all the indices of the point cloud and ground truth
pose pairs.

Then, loop pairs for the loop closing test, SL, is sampled
from SAll, i.e. SL ⊂ SAll, where |SL| = Nsample. In this
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(a)

(b)

Fig. 8. (a)-(b) Examples of loop pairs of Seq. 00 and Seq. 08 in the KITTI
dataset, each of whose distances is between 10 and 12 m, i.e. rmin = 10

and rmax = 12m. The rainbow color indicates the poses over time and the
trajectory is airborne for better understanding. The cyan-colored lines are
the sampled loop pairs, SL, whose size is 1,000, between two poses in loop
closing situations (best viewed in color).

paper, we set Nsample = 1, 000 and the symbol “A ∼ B”
denotes that rmin = A and rmax = B. SL is presented in
Fig. 8 for better understanding. In this paper, the maximum
distance we aim to achieve is set to 12 m, i.e. B= 12,
which is double the criteria used in previous researches (Kim
and Kim 2018; Cattaneo et al. 2022) when setting true
loop pairs. Thus, our experiments present the robustness
of registration against large pose discrepancy. In addition,
when the pose difference exceeds 12 m, two point clouds
overlap so partially that the output of local registration as
fine alignment may not reach the global minimum, in turn
leading to inaccurate loops.

In case of the odometry test, the set of pairs, SO, is defined
as follows:

SO =
{
(∆n+ 1,∆(n+ 1) + 1)|n ∈ Z,

0 ≤ n <
Ntraj − 1

∆
− 1

}
,

(16)

where ∆ > 0 denotes the interval between two frames.
Finally, the pairs for augmented rotation test, SA, is similar
to SO, but we additionally rotate the target cloud along the
yaw direction to check the robustness against large angle
discrepancy.

6.2. Error Metrics
To evaluate algorithms quantitatively, both average pose
errors (average translation error, tavg, and average rotation
error, ravg) and the relative pose errors (relative translation
error, trel, and relative rotation error, rrel) were exploited; tavg
and ravg are defined as follows:

• tavg =
∑N

n=1(tn,GT − t̂n)
2/N ,

• ravg = 180
π ·

∑N
n=1 cos

−1(
Tr(R̂⊺

nRn,GT)−1

2 )/N

where tn,GT and Rn,GT are the n-th ground truth translation
and rotation, respectively; N denotes the number of total
samples; trel and rrel are used for the odometry test, which are

calculated by RPG evaluation tools (Zhang and Scaramuzza
2018).

Furthermore, we evaluate global registration methods in
terms of success rate, which is a more important metric to
directly evaluate the robustness of the global registration
needed in loop closing situations of LiDAR SLAM. The
criteria of the success rate is based on Kim et al. (2019): a
pose error that is sufficiently within the narrow convergence
region where the estimate of local registration successfully
converges into the global optimum. Thus, the registration is
counted as a success if both translation and rotation errors
are lower than 2 m and 10◦, respectively.

6.3. Parameters of Quatro++
Parameter settings of our proposed method in our
experiments are presented in Table 1. It should be noted that
parameters of FPFH are set to satisfy the following relations:
ν < rnormal < rFPFH. Further implementation details can be
found in our open-source code.

7. Experimental Results

In our experiments, other well-known global registration
methods are employed as follows: RANSAC (Fischler and
Bolles 1981) whose maximum iteration is set to 10,000,
FGR (Zhou et al. 2016), and TEASER++ (Yang et al.
2020b). Here, the main differences between our proposed
method and the baseline methods are explained. First,
RANSAC and FGR have no outlier rejection modules like
MCIS. FGR and TEASER++ are also GNC-based methods,
so alternating optimization is performed to reject the
outlier pairs. The biggest difference between our proposed
method and each baseline method is as follows: FGR uses
linearization in SE(3) manifold and the pose difference is
estimated by gradient-based optimization; Similar to our
proposed method, TEASER++ also utilizes the decoupling
method. However, TEASER++ estimates SO(3) estimation,
unlike our quasi-SO(3) estimation, and does not exploit
ground segmentation. To avoid confusion, we stress that the
meanings of “++” in Quatro++ and TEASER++ are different:
TEASER++ is a speeded up version of TEASER at an
optimization level and Quatro++ denotes the combination of
Quatro with ground segmentation.

Furthermore, we compare our Quatro++ with deep
learning-based methods: MDGAT-Matcher (Shi et al. 2021a)

Table 1. Parameters of each module in our global registration pipeline.
Note that the parameters of FPFH should be set differently depending on
the sensor configuration or the number of laser scans. The values before,
in the middle of, and after the slash are the parameters for Velodyne
VLP-16, HDL-64E, and Ouster OS1-64 sensors, respectively, to consider
different sparsity characteristices, i.e. differences of vertical resolution
between two adjacent rays.

Param. Description Value

Q
ua

tr
o+

+

FP
FH

ν Voxel sampling size 0.1 / 0.3 / 0.6 m
rnormal Radius for normal estimation 0.3 / 0.5 / 1.5 m
rFPFH Radius of FPFH descriptor 0.45 / 0.65 / 2.25 m

Q
ua

tr
o c̄ Noise bound 0.3

Niter Maximum iteration of quasi-SO(3) estimation 50
κ A factor to control the increase of GNC 1.4
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11.99m / 0.08º  

  

(a) Source and target (b) Quatro (Ours) (c) Quatro++ (Ours)

Fig. 9. (a) Source (red) and target clouds (green), where the left-bottom texts represent the pose discrepancy in each scene. (b)-(c) Registration results
of our Quatro and Quatro++ between 1,939 to 4,531 frames in Seq. 00 and between 165 to 999 frames in Seq. 08 in the KITTI dataset, where the blue
points denote the warped source cloud by the estimated pose. Quatro++ successfully registers the source and target clouds even though both cloud points
are measured in distant and unobstructed cases, where few artificial structures are located. Black dashed boxes highlight the non-ground objects that have
to be tightly aligned. The solid red and green boxes indicate the algorithms failed and succeeded, respectively (best viewed in color)

Table 2. Comparison of success rates on the KITTI dataset. The bold and the gray-highlight denote the best and the second-best performance,
respectively (unit: %).

Sequence 00 02 05

Diff. of viewpoint 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 m ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m

C
on

v.

RANSAC 20.3 8.5 3.3 32.3 12.0 5.8 30.3 9.3 7.7
FGR 99.2 79.3 45.5 71.2 41.8 21.2 99.5 83.7 48.1
TEASER++ 100.0 94.7 84.6 95.8 78.7 71.8 99.9 99.1 93.9
Quatro (Ours) 99.9 94.5 84.7 96.1 79.5 71.9 100.0 99.3 94.5
Quatro++ (Ours) 99.9 94.8 87.1 98.7 97.1 90.8 99.9 99.7 98.5

D
ee

p MDGAT-Matcher 94.0 87.3 69.9 12.0 0.0 0.0 94.5 89.9 81.4
LCDNet (fast) 78.5 12.8 0.8 70.5 15.8 2.9 87.7 21.2 0.9
LCDNet 100.0 90.3 62.1 91.4 66.4 41.3 100.0 98.8 78.8

Sequence 06 07 08

Diff. of viewpoint 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 m ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m

C
on

v.

RANSAC 19.1 8.7 3.3 17.0 5.6 5.3 18.6 6.4 2.7
FGR 99.4 92.6 59.2 99.7 81.8 41.2 36.2 24.0 15.9
TEASER++ 99.9 99.5 96.0 99.9 99.7 95.8 100.0 99.7 96.6
Quatro (Ours) 100.0 99.7 97.7 100.0 99.7 95.8 100.0 99.8 98.0
Quatro++ (Ours) 100.0 100.0 100.0 100.0 99.9 98.0 99.9 99.8 98.9

D
ee

p MDGAT-Matcher 99.1 99.9 91.7 92.1 94.1 68.3 17.9 55.6 7.7
LCDNet (fast) 47.4 4.5 3.1 70.4 11.3 0.0 56.5 5.7 0.2
LCDNet 100.0 99.8 85.2 100.0 98.6 80.3 100.0 95.9 75.7

and LCDNet (Cattaneo et al. 2022). We evaluate two ver-
sions of LCDNet: one using an unbalanced optimal transport
algorithm, which estimates the transformation matrix in a
learning-based manner, denoted as LCDNet (fast), and the
other one uses RANSAC with 50,000 iterations, denoted as
LCDNet.

In particular, we compare the generalization capabilities
of our approach and the deep learning-based methods, so
the networks trained on the KITTI dataset are tested on the
MulRan dataset. Note that both datasets were acquired by 64-
channel LiDAR sensors, but the KITTI dataset was acquired
by the Velodyne HDL-64E sensor, while the MulRan dataset
was acquired by the OS1-64 sensor. Therefore, we can check
the generalization capabilities in terms of both environmental
changes and different sensor configuration.

When evaluating the coarse-to-fine alignment perfor-
mance, we use the term Quatro++-c2f, which is comprised
of the proposed Quatro++ as a coarse alignment and G-
ICP (Segal et al. 2009) as a fine alignment.

7.1. Performance Comparison Between Quatro
and Quatro++

First, the performance of Quatro and Quatro++ was
analyzed. Note that the difference between Quatro++ and
Quatro is with and without the ground segmentation module
before the feature extraction and matching steps. As shown in
Fig. 9, Quatro occasionally fails to perform registration once
the pose discrepancy between the source and target clouds is
large, so the correspondences from the central ground points
are dominant (Fig. 9(b)). In contrast, Quatro++ showed
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Table 3. Comparison of success rates on the MulRan dataset. The bold and the gray-highlight denote the best and the second-best performance,
respectively (unit: %).

Sequence DCC01 DCC02 DCC03

Diff. of viewpoint 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 m ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m
C

on
v.

RANSAC 74.2 46.8 32.2 78.0 48.0 34.6 76.2 50.3 30.0
FGR 63.5 43.9 41.0 63.3 50.9 44.1 65.4 45.7 35.7
TEASER++ 95.2 92.1 86.4 99.0 93.8 88.4 99.4 97.8 91.8
Quatro (Ours) 95.3 92.6 86.5 98.8 93.7 90.5 99.3 97.9 91.3
Quatro++ (Ours) 95.4 92.6 86.9 99.0 95.0 90.5 99.0 97.7 91.8

D
ee

p LCDNet (fast) 16.6 0.4 0.1 28.3 0.0 0.0 19.2 0.0 0.0
LCDNet 93.8 76.1 48.0 98.6 85.2 50.0 98.6 87.0 61.7

Sequence Riverside01 Riverside02 Riverside03

Diff. of viewpoint 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 m ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m

C
on

v.

RANSAC 60.2 40.7 29.1 65.2 42.6 36.0 46.7 18.9 25.0
FGR 85.9 77.3 62.6 96.9 91.0 76.9 80.9 45.5 49.5
TEASER++ 85.5 78.1 73.4 92.3 83.9 73.5 80.2 48.2 65.4
Quatro (Ours) 85.7 79.9 78.9 93.1 86.3 76.2 80.2 49.0 68.3
Quatro++ (Ours) 91.2 87.0 84.1 98.2 93.1 85.8 91.1 70.7 75.8

D
ee

p LCDNet (fast) 27.5 0.1 0.0 65.8 10.3 0.1 20.4 2.5 0.1
LCDNet 86.0 67.4 38.0 93.2 76.1 51.4 79.8 48.1 56.8

Sequence KAIST02 KAIST03

Diff. of viewpoint 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 m ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m

C
on

v.

RANSAC 74.8 60.8 37.8 87.3 69.9 44.3
FGR 73.8 72.3 68.8 99.9 98.8 92.2
TEASER++ 94.7 93.0 88.5 99.9 98.9 93.3
Quatro (Ours) 94.0 92.5 87.8 99.9 98.9 94.3
Quatro++ (Ours) 93.5 91.3 88.5 100.0 99.6 98.0

D
ee

p LCDNet (fast) 16.3 0.7 0.4 20.1 2.2 0.0
LCDNet 94.4 86.2 71.9 99.9 93.6 73.7

more robust performance under these situations, successfully
warping the source cloud into the target cloud (Fig. 9(c)).

Consequently, as shown in Tables 2 and 3, Quatro++
presented a higher success rate, which is the most
important evaluation metric to check the suitability of global
registration methods as an initial alignment. In particular, we
demonstrate that Quatro++ becomes more robust in distant
cases, whose difference in viewpoints between the source
and target clouds ranges between 10 to 12 m. Furthermore,
Quatro++ showed a remarkable improvement when our
proposed method is used in Seq. 02, which is a rural
environment that contains few non-ground objects and the
ground points are more dominant.

7.2. Effect of Ground Segmentation on Global
Registration

In addition, we conducted three in-depth analyses of the
effect of the ground segmentation on the global registration
as follows: impact of ground segmentation a) when two
point clouds with large discrepancy of viewpoints are given
and b) when more spurious correspondences are given, and
c) influence of the performance of ground segmentation on
global registration.

First, as shown in Fig. 10 and Table 4, ground
segmentation substantially increases the performance of all
global registration methods when the viewpoint discrepancy
between source and target is large. The main reason for
the poor performance without the ground segmentation is
because of the too many correspondences from the central
ground points of the source to those of the target. That is,
both ground points of the source and target close to the
origin are sufficiently dense regardless of the large pose

discrepancy. Accordingly, even though these central points
are not measured from the same viewpoint, the high density
makes descriptors from the central ground points similar,
leading to gross outlier correspondences. Consequently,
these false correspondences finally lead to wrong pose
estimation (empirically, global registration methods estimate
the relative translation as a near-zero vector in this case
as shown in Fig. 9(b)). In summary, the high density
of the central points is misunderstood as a geometrical
characteristic itself.

While the ground segmentation module occasionally
decreases the performance slightly, Quatro with ground seg-
mentation showed better performance when the viewpoint
discrepancy between source and target is large (note that the
combination of Quatro and ground segmentation is equal to
Quatro++). Because Quatro estimates the relative rotation by
using the quasi-SO(3) estimation, its reduced DoF allows us
to perform robust global registration even though few cor-
respondences are given. That means Quatro is more robust
to the reduced number of correspondences due to the rejec-
tion of many ground points than TEASER++. In contrast,
TEASER++, whose DoF for estimation of rotation is three,
sometimes showed worse performance because rejection of
ground points substantially reduces the number of corre-
spondences, resulting in degeneracy. Finally, the degeneracy
potentially leads to large rotation errors of TEASER++.
Therefore, these results demonstrate the potential of synergy
between our Quatro and ground segmentation.

Second, we validate that ground segmentation especially
improves the performance of global registration even when
more spurious correspondences are given, as shown in
Table 4. We deliberately set the parameters of FPFH
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as ν = 0.3m, rnormal = 0.5m, and rFPFH = 0.65m in the
MulRan dataset (note that the appropriate parameters for
MulRan dataset are ν = 0.6m, rnormal = 1.5m, and rFPFH =
2.25m, as presented in Table 1). Once more spurious
correspondences are given, the success rates of global
registration methods without ground segmentation are more
dramatically decreased, as shown in Table 4. However, after
the application of ground segmentation, global registration
approaches showed better success rates, which supports
that ground segmentation helps to increase the coverage
of the global registration methods. In particular, ground
segmentation brought much greater performance increase
when the spurious correspondences were given than when
accurate ones were given, which also corroborates that
ground segmentation effectively prevents the catastrophic
failure caused by imprecise feature matching.

Finally, we analyzed the results of the global registration
according to the performance of the ground segmentation.
To this end, we employed GPF (Zermas et al. 2017),
LineFit (Himmelsbach et al. 2010), CascadedSeg (Narksri
et al. 2018), R-GPF (Lim et al. 2021a), and Patchwork (Lim
et al. 2021b). As reported in Lim et al. (2021b) and Seo
et al. (2022), while GPF, LineFit, and CascadedSeg showed
high precision with low recall, R-GPF showed high recall
with low precision. In contrast, Patchwork showed both
high precision and recall with little perturbation of ground
segmentation performance, showing ths highest F1-score.

As shown in Fig. 11, the performance of ground
segmentation and global registration exhibits a logarithmic
relationship. This is because higher F1-score implies that
ground points are precisely and repeatably rejected. By
successfully rejecting the ground points from point clouds
observed at other viewpoints, ground segmentation with high
F1-score allows global registration to take filtered points
whose most parts are consistently overlapped as input. In
contrast, if we employ ground segmentation with low F1-
score, ground points are inconsistently rejected. By doing so,
even though the ground points are rejected from the source
or target cloud, the ground may not be clearly rejected from
the other point cloud. This phenomenon rather increases the
number of outliers. For this reason, our approach with other
ground segmentation approaches showed lower performance
than one with Patchwork.

Therefore, we conclude that exploiting ground segmen-
tation enables global registration to robustly estimate the
relative pose between the two point clouds whose pose
discrepancy is large. In particular, the experimental evidence
supports that ground segmentation with high F1-score effec-
tively prevents failure cases by rejecting the gross outliers
from the ground points in advance.

7.3. Performance Comparison With
State-of-the-Art Methods

In Loop Closing Situations Next, the performance of
global registration methods is compared in loop closing
situations. As shown in Tables 2 and 3, all the baseline
methods showed high success rates once the relative pose
between two viewpoints of source and target was sufficiently
close (2 ∼ 6 m case). However, as the relative pose between
two viewpoints of source and target became distant, our

(a) RANSAC

(b) FGR

(c) TEASER++

Fig. 10. Average success rate changes of other global registration
methods depending on the absence (w/o) and presence (w/) of ground
segmentation (GS) module in the loop closing situations of the KITTI
dataset where the position discrepancy is between 10∼12 m.

Quatro++ showed higher success rate than other global
registration methods (10∼ 12 m case). Again, we place more
emphasis on the success rate that can directly check whether
the global registration methods can successfully estimate the
relative pose as an initial alignment even though distant loop
pairs are given. Thus, the higher the success rate is, the more
suitable method is for performing loop closing.

In addition, it is also noticeable that our preliminary
version, Quatro, was on par with TEASER++ (Tables 2
and 3) or showed higher success rate when more imprecise
correspondences are given (Table 4). This is because quasi-
SO(3) estimation, which reduces the minimum of DoF from
three to one, enables to be robust against degeneracy. By
doing so, our proposed method prevents catastrophic failure
when estimating rotation, unlike TEASER++. For these
reasons, Quatro showed higher success rate and smaller
errors in the distant cases (8∼ 10 m case, Table 5).

Furthermore, some cases where our Quatro++ only
succeeded are presented in Fig. 12, demonstrating the
robustness of our proposed method against corridor-like
environments (the 1st∼3rd rows, Fig. 12), three forked
roads (the 4th∼5th rows, Fig. 12), and intersection or
opposing viewpoint scenarios that have large angular
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Table 4. Comparison of success rate changes before and after the application of ground segmentation (Lim et al. 2021b) on MulRan dataset when
more spurious correspondences are given by setting the parameters of FPFH as ν = 0.3m, rnormal = 0.5m, and rFPFH = 0.65m (unit: %).

Method
Ground

seg.
DCC Riverside KAIST

2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 m ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m 2 ∼ 6 m 6 ∼ 10 m 10 ∼ 12 m

Pa
ra

m
s:
0
.3
/
0
.5
/
0
.6
5

m
(m

or
e

im
pr

ec
is

e
co

rr
es

po
nd

en
ce

s
ar

e
gi

ve
n) RANSAC

22.3 10.2 7.6 15.6 4.8 4.0 25.9 10.9 7.7
✓ 44.5 (22.2 ↑) 27.8 (17.6 ↑) 24.9 (17.3 ↑) 39.3 (23.7 ↑) 24.0 (19.2 ↑) 17.2 (13.2 ↑) 53.7 (27.8 ↑) 36.9 (26.0 ↑) 23.2 (15.5 ↑)

FGR
50.8 16.4 4.7 56.9 9.1 1.6 67.1 33.0 12.6

✓ 56.5 (5.7 ↑) 37.5 (21.1 ↑) 24.9 (20.2 ↑) 88.6 (31.7 ↑) 56.7 (47.6 ↑) 28.7 (27.1 ↑) 81.2 (14.1 ↑) 76.6 (43.6 ↑) 57.1 (44.5 ↑)

TEASER++
95.6 72.8 44.0 82.5 46.5 22.4 89.8 63.4 39.4

✓ 95.4 (0.2 ↓) 78.0 (5.2 ↑) 52.9 (8.9 ↑) 89.8 (7.3 ↑) 66.4 (19.9 ↑) 41.3 (18.9 ↑) 96.8 (7.0 ↑) 86.8 (23.4 ↑) 63.0 (23.6 ↑)

Quatro (Ours)
95.9 75.0 48.0 82.9 48.1 24.2 90.1 64.4 41.7

✓ 96.4 (0.5 ↑) 83.2 (8.2 ↑) 61.1 (13.1 ↑) 91.6 (8.7 ↑) 74.5 (26.4 ↑) 49.8 (25.6 ↑) 97.0 (6.9 ↑) 90.8 (26.4 ↑) 71.3 (29.6 ↑)

Pa
ra

m
s:
0
.6
/
1
.5
/
2
.2
5

m
(l

es
s

im
pr

ec
is

e
co

rr
es

po
nd

en
ce

s
ar

e
gi

ve
n) RANSAC

76.1 48.4 32.3 67.2 44.5 31.7 81.1 65.4 41.1
✓ 83.6 (7.5 ↑) 55.4 (7.0 ↑) 35.3 (3.0 ↑) 81.8 (14.6 ↑) 61.9 (17.4 ↑) 45.1 (13.4 ↑) 89.7 (8.6 ↑) 74.5 (9.1 ↑) 56.0 (14.9 ↑)

FGR
64.1 46.8 40.3 87.9 71.3 63.0 86.9 85.6 80.5

✓ 68.8 (4.7 ↑) 51.1 (4.3 ↑) 44.9 (4.6 ↑) 94.4 (6.5 ↑) 84.2 (12.9 ↑) 81.0 (18.0 ↑) 87.8 (0.9 ↑) 86.0 (0.4 ↑) 85.7 (5.2 ↑)

TEASER++
97.9 94.6 88.3 92.4 86.6 79.6 97.3 96.0 90.9

✓ 97.7 (0.2 ↓) 94.4 (0.2 ↓) 86.4 (1.9 ↓) 95.1 (2.7 ↑) 87.1 (0.5 ↑) 80.2 (0.6 ↑) 97.2 (0.1 ↓) 94.2 (1.8 ↓) 91.0 (0.1 ↑)

Quatro (Ours)
97.8 94.7 89.4 92.7 88.0 82.1 97.0 95.7 91.1

✓ 97.8 (0.0−) 95.1 (0.4 ↑) 89.7 (0.3 ↑) 96.1 (3.4 ↑) 92.6 (4.6 ↑) 87.2 (5.1 ↑) 96.8 (0.2 ↓) 95.5 (0.3 ↓) 93.3 (2.2 ↑)

Fig. 11. Influence of the performance of ground segmentation on the
success rate of our Quatro. Note that Quatro with Patchwork is equal to
Quatro++ (best viewed in color).

Table 5. Comparison of average translation and rotation errors, i.e. tavg

and ravg, with the state-of-the-art methods in loop closing situations of
Seq. 06 in the KITTI dataset. The ranges in the first row represent
position discrepancy boundaries of loop pairs. The bold and the gray-
highlight denote the best and the second-best performance, respectively
(units for tavg: m, ravg: deg).

Method
0 ∼ 2 m 4 ∼ 6 m 8 ∼ 10 m

tavg ravg tavg ravg tavg ravg

RANSAC 2.369 14.22 5.010 27.35 8.341 33.34
FGR 0.057 0.222 0.103 0.301 1.821 1.828
TEASER++ 0.070 0.285 0.131 0.481 0.498 1.469
Quatro (Ours) 0.067 0.324 0.120 0.465 0.471 0.724
Quatro++ (Ours) 0.078 0.338 0.110 0.452 0.163 0.561

Quatro w/ INS (Ours) 0.059 0.207 0.101 0.230 0.429 0.346
Quatro++ w/ INS (Ours) 0.067 0.208 0.089 0.222 0.117 0.243

discrepancies between the viewpoints of source and target
clouds (the 6th∼8th rows, Fig. 12).

The reasons why other state-of-the-art methods failed
are presumed as follows. As mentioned earlier, as the
pose discrepancy between two viewpoints becomes farther,

the number of true inliers decreases and the ratio of
outliers increases simultaneously. Under this circumstance,
RANSAC is highly likely to fail to estimate correct relative
pose because RANSAC is relatively weak to the outliers. In
fact, it was reported that RANSAC often fails once the ratio
of outliers is over 60% (Tzoumas et al. 2019).

FGR showed better performance compared with
RANSAC because FGR was based on GNC. Unfortunately,
FGR linearizes SE(3) during the optimization, yet this
linearization is sometimes not valid once the pose
discrepancy becomes larger, resulting in performance
degradation (8∼ 10 m case, Table 5). In addition, FGR has
no graph-based pruning module, i.e. MCIS, so that FGR
cannot tolerate gross outliers.

On the other hand, TEASER++ showed a promising
performance even in distant cases because TEASER++ also
utilizes the graph-based outlier pruning method. However,
the point is that MCIS also occasionally rejects too many
correspondences by considering them as outliers, potentially
leading to degeneracy in the GNC-based SO(3) rotation
estimation step. As a result, the rotation estimation output
flipped (the 3rd, 5th, and 8th rows, Fig. 12) or tilted
results (the other rows, Fig. 12) owing to the degeneracy.
Note that TEASER++ is based on the decoupling of
rotation and translation, so the failure of rotation estimation
inevitably brings failure of translation.

Deep learning-based methods showed a substantial and
inconsistent degradation in performance as the viewpoint
distance between the source and target increased. This is
because these learning-based approaches were only trained
to predict the relative pose in cases where the viewpoint
difference between the source and target is sufficiently small
and rarely trained in distant loop cases. Furthermore, as
presented in Table 3, the performance of deep learning-based
methods was more significantly degraded than our approach
when the surroundings or sensor configuration was different
from the training data. These results support our claim that
our approach is more suitable for loop closing and applicable
to various environments because our approach does not need
any training procedure.
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(a) Source and target (b) RANSAC (c) FGR (d) TEASER++ (e) Quatro++ (Ours)

Fig. 12. Qualitative comparison in distant cases, where only our approach succeeded in performing registration of two partially-overlapped point clouds in
the KITTI dataset. Even though distant source (red) and target (green) clouds are given, our proposed method showed tightly aligned results, overcoming
the sparsity and degeneracy issues. The closer the warped source cloud (blue) and target cloud are, the better. The solid black boxes are zoomed views that
highlight the misalignment of other state-of-the-art methods. The left-top texts represent the initial pose discrepancy in each scene. Note that the RANSAC
returns the identity matrix, i.e. I4, in the failure cases, so the estimates of RASNAC are identical to the source clouds (best viewed in color).

In Odometry Test Next, the registration methods were
tested in the odometry test. Our proposed method is also
compared with the conventional odometry methods and
deep learning-based methods. Note that global registration
basically does not aim to be used as an odometry, but we

can check which method shows consistent performance by
analyzing trajectory errors. In other words, better global
registration shows better odometry performance once the
frame interval ∆ is larger than one, i.e. ∆ = 3 and ∆ = 5
in Table 6.
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Table 6. Comparison of odometry test with the state-of-the-art methods
on Seq. 00 of the KITTI dataset. ∆ denotes the frame interval; for
instance, ∆ = δ means that the (i+ δ)-th and i-th point clouds are
taken as the source and target clouds, respectively. The suffix c2f
means that the global registration is employed as an initial alignment
followed by the local registration as a fine alignment. The results of deep
learning-based methods are from Li and Wang (2020) and Fischer et al.
(2021) (units for trel: %, rrel: deg/100m).

Method
∆ = 1 ∆ = 3 ∆ = 5

trel rrel trel rrel trel rrel

L
oc

al ICP 6.88 2.99 21.92 8.70 21.14 8.51
G-ICP 1.26 0.45 5.50 1.45 14.20 3.32
VGICP 1.03 0.30 11.83 1.65 19.11 6.32

G
lo

ba
l FGR 2.73 0.69 7.17 1.58 14.66 4.12

TEASER++ 2.11 0.91 2.64 1.11 3.19 0.91
Quatro (Ours) 1.45 0.41 1.38 0.24 1.94 0.46
Quatro++ (Ours) 1.90 0.53 1.45 0.32 0.99 0.28

D
ee

p

LO-Net 1.47 0.72 N/A N/A N/A N/A
LO-Net+M 0.78 0.42 N/A N/A N/A N/A
DMLO† 0.83 0.44 N/A N/A N/A N/A
DMLO+M† 0.73 0.44 N/A N/A N/A N/A
A-LOAM + StickyPillars† 0.65 0.26 0.79 0.31 1.29 0.48

C
on

v.

SuMa 0.68 0.23 1.69 0.61 2.36 0.51
A-LOAM 0.70 0.27 0.97 0.38 31.16 12.10
Quatro-c2f (Ours) 0.65 0.21 0.67 0.21 0.67 0.21
Quatro++-c2f (Ours) 0.68 0.23 0.61 0.21 0.50 0.20

†: Seq. 00 is used for training of the network

As baseline methods, we employ three local registration
methods: ICP (Besl and McKay 1992), G-ICP (Segal
et al. 2009), and VGICP (Koide et al. 2021). Furthermore,
we compare our approach with learning-based odometry
methods: LO-Net (Li et al. 2019), DMLO (Li and Wang
2020), and A-LOAM with StickyPillars (Fischer et al.
2021). Note that the codes of deep learning-based odometry
approaches are not available, so we employ the results from
the original papers. We also employ conventional LiDAR
odometry methods: SuMa (Behley and Stachniss 2018) and
A-LOAM (Zhang and Singh 2014).

As shown in Table 6, local registration methods showed
promising performance only if the frame interval is not
large, i.e. ∆ = 1. These results make sense because the
pose discrepancy of two viewpoints is sufficiently within
the coverage of the local registration, so their estimate can
successfully converge into the global optimum. However, as
the interval of frames gets larger, the performance of local
registration is dramatically degraded because their strong
assumption that the nearest point pairs between the source
and target clouds are correlated, does not hold. As a result,
VGICP (Koide et al. 2021), which is one of the state-of-the-
art local registration methods, showed catastrophic failure of
odometry estimation, as shown in Fig. 13(b).

In terms of global registration, we stress two experimental
observations. First, our Quatro and Quatro++ especially
showed less decreased performance than the other global
registration methods, which supports that forgoing the
estimation of roll and pitch angles makes the algorithms
more robust and consistent. That is, the trajectories of other
global registration methods were likely to be twisted owing
to undesirable pitch and roll errors, whereas our proposed
method showed more consistent trajectories, as seen from
the xz-viewpoint in Fig. 13. Put differently, the trajectories
from the other global registration methods showed the large

discrepancy along the z-axis, whereas the result from our
Quatro++ was closer to the ground truth.

Second, using ground segmentation as a preprocessing
step helps the global registration avoid local minima because
Quatro++ showed a promising performance in the case
where ∆ = 5 in Table 6. Interestingly, when the intervals
were small, Quatro showed lower errors than Quatro++. It
can be interpreted that once the pose discrepancy between
two viewpoints is not large, ground points rather help to
estimate the relative pose because the ground points of
source and target are mostly overlapped, leading to more true
inliers.

However, these errors do not directly affect the
performance of fine alignment and thus are negligible for
the local registration in ∆ = 1 and ∆ = 3 cases. That
is, there is an insignificant performance difference when
Quatro or Quatro++ is utilized as an initial alignment
when ∆ = 1 and ∆ = 3, showing similar level of errors
in Table 6. Moreover, Quatro++ still robustly outputs the
estimate to transform the viewpoint of the source cloud
into the boundary within the narrow convergence region
of the local registration. Consequently, Quatro++-c2f
showed a promising performance when ∆ = 5. Furthermore,
Quatro++-c2f showed better performance compared with
the state-of-the-art methods, even including conventional
and deep learning-based approaches. It was remarkable that
though some deep learning-based methods were trained
using whole KITTI sequences including Seq. 00, our
proposed method showed a competing performance without
any prior knowledge.

Therefore, the suitability of our Quatro++ was demon-
strated from the perspective of the coarse-to-fine alignment,
which is our ultimate goal to achieve successful loop closing,
helping local registration algorithms perform the fine align-
ment.
In Augmented Rotation Situations Next, the performance
was tested in augmented rotation situations in NAVER LABS
localization dataset. The augmented rotation situations mean
that the source cloud is additionally rotated along the yaw
direction. By doing so, the feasibility of the algorithms on the
opposing viewpoint or intersection cases could be checked.

As shown in Fig. 14, our proposed method showed
lower errors and maintained the level of errors even though
the augmented angle reached 180◦. FGR showed better
performance if the augmented angle was not large; however,
as the augmented angle became larger, the performance of
FGR was degraded because the linearization assumption did
not hold.

TEASER++ showed successful and robust registration
results, yet it yielded undesirable rotation errors, showing
the offset between our proposed method and TEASER++ in
Fig. 14. In other words, the estimate by TEASER++ includes
unintended roll and pitch errors. In contrast, our Quatro++
showed rather precise performance because our assumption
that ∠(Ry ·Rx) can be approximated as the identity matrix
is met in most indoor environments. In doing so, our quasi-
SO(3) estimation prevents these roll and pitch errors, as
shown in Fig. 15.

Therefore, it was proven that our proposed method is also
advantageous in indoor situations where the ground is mostly
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(a) ∆ = 1

(b) ∆ = 5

Fig. 13. (L-R): Qualitative comparison of trajectories by the state-of-the-art registration methods in Seq. 00 and Seq. 05 of the KITTI
dataset. ∆ denotes the frame interval; for instance, ∆ = δ means that the (i+ δ)-th and i-th point clouds are taken as the source and target
clouds, respectively. Our proposed methods showed more consistent results although the distant and partially overlapped two point clouds
are given. In contrast, the trajectories of other global registration methods were likely to be twisted owing to the undesirable pitch and roll
errors and some failure situations.
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Fig. 14. Performance changes with respect to the augmented yaw rotation
when the frame interval is set to 5 (i.e. ∆ = 5) in HD B1 of the NAVER
LABS localization dataset (best viewed in color).

(a) Source and target (b) FGR

(c) TEASER++ (d) Quatro++ (Ours)

Fig. 15. Example of registration when large rotation discrepancy exists in
HD B1 of the NAVER LABS localization dataset. (c) TEASER++ showed
successful and robust registration, yet it yielded the undesirable angular
error, highlighted as the red double arrow in the side view. The solid red
and green boxes indicate the algorithms failed and succeeded, respectively
(best viewed in color).

flat and the non-ground objects are mostly orthogonal to the
ground.

7.4. Computational Cost of Modules in
Quatro++

Here, the computational costs with respect to the feature
extraction/matching and optimization of our global registra-
tion were analyzed. As shown in Fig. 16, the application of
ground segmentation effectively reduced the time taken to
set correspondences. In addition, as shown in Fig. 17, the
optimization part in our proposed method showed fastest
speed compared with other methods.

Therefore, the total time of Quatro++, which is
the summation of the time taken for preprocessing,
correspondence estimation, and Quatro, takes less than one
second, so we confirm that our proposed method can be used
in the loop closing module of SLAM frameworks, which
requires over 1 Hz.

Ground segmentation Voxelization FPFH Matching

Fig. 16. (L-R): The average time for each module in the preprocessing and
correspondence estimation on Intel(R) Core(TM) i7-7700K and Intel(R)
Core(TM) i9-13900. Note that the application of ground segmentation
effectively reduces the time taken to set correspondences.

Fig. 17. Average optimization time in the KITTI dataset and the NAVER
LABS localization dataset on Intel(R) Core(TM) i9-9900KF (Avg. of our
Quatro: 5.0 and 6.4 ms, respectively).

Fig. 18. Registration results in a hand-held system in Oxford-Hilti dataset.
Once the yaw and pitch angles are compensated by an INS system, our
proposed method is also effective on a hand-held system. The blue and green
points denote the warped source and target clouds, respectively (best viewed
in color).

7.5. Application I: Leveraging an INS in
Non-Flat Regions

Our Quatro++ (or Quatro) sacrifices roll and pitch angles
estimation to be more robust. However, Quatro++ and Quatro
can achieve more precise initial alignment results by utilizing
the INS measurements to compensate roll and pitch angles.
This compensation means that the approximated Ry ·Rx

is replaced by the rotation from the roll and pitch angles
measured by INS, which is explained in Section 5.5. As
presented in Table 5, even though the raw measurements by
the INS system were used, the pitch and roll compensation
using these measurements significantly reduced the rotation
errors, which is followed by the improvement of translation
estimation. This is because our proposed method is based on
the decoupling method, which estimates the relative rotation
followed by translation estimation; thus, the quality of
rotation estimation directly affects the quality of translation
estimation.

Not only for the improvement in performance, but we also
stress that our proposed method can easily utilize these INS
measurements without any additional fusion technologies,
such as weighted average; thus, our proposed method is
more INS-friendly than other methods. One may argue that
other methods can also improve performance by using INS
measurements. However, other methods require an additional
manner to appropriately average the estimated rotation and
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0 0.1km

(a)

0 0.1km

(b)

Fig. 19. (a)-(b) Mapping results of LeGO-LOAM without and with the application of our proposed method as a loop closing in Seq. 05 of the KITTI
dataset. Note that all the parameters of LeGO-LOAM are set to be the same.

the rotation measured by the INS. Even though the weighted
average is performed, this sensor fusion technique does
not let the failed estimates successfully go into the narrow
convergence region, still showing large pose errors. In
contrast, as mentioned in Section 5.5, the INS measurements
can be easily exploitable for our proposed method by
substituting the approximated roll and pitch rotations with
those from INS measurements. By doing so, our proposed
method showed lower errors while preserving higher success
rates.

In addition, we conducted a feasibility study on a dataset
made by a hand-held system. As shown in Fig. 18, even
though the axes were rotated, estimation of R̂INS, which was
explained in Section 5.5, followed by our proposed method
showed successful registration results. Therefore, it was
demonstrated that our proposed method is also effective on a
hand-held system once roll and pitch angles are compensated
as an initial guess of our global registration.

Therefore, these results demonstrated the feasibility of our
proposed method in INS systems where the attitude of xy-
plane of the sensor frame is not likely fixed*.

7.6. Application II: Quatro++ in LiDAR SLAM
Frameworks

So far, we investigated performance of a single registration
given a pair of point clouds. Here, the impact of Quatro++ to
the LiDAR SLAM was analyzed. Note that our Quatro++ can
be employed in keyframe-based pose-graph SLAM systems.

First, we compared the performance before and after
the application of our global registration into LeGO-
LOAM (Shan and Englot 2018). LeGO-LOAM utilizes the
radius search to find loop candidates by using the current
position as a query, which is followed by ICP. However, as
mentioned in Section 5.3, ICP usually fails to estimate the
correct relative pose in distant cases, rejecting many loop
candidates. That is, even though the radius search finds the
actual loop, the loop candidate whose pose discrepancy is
large is rejected owing to the narrow convergence region
of the local registration methods, resulting in a high MSE.

Consequently, these loops are not included in the graph
structure, leaving trajectory errors (Fig. 19(a)).

In contrast, LeGO-LOAM with our proposed method
showed a more precise mapping result (Fig. 19(b)). It was
observed that the number of false positive rejections can be
significantly reduced and the quality of loop constraints is
improved when our Quatro++ provides an initial alignment
to the local registration. As a result, even if a large drift
is accumulated through the large loop, the global trajectory
errors can be successfully minimized by leveraging more
accurate and abundant loop constraints.

The positive impact on the quality of mapping becomes
more distinguishable and significant in large-scale environ-
ments. In this experiment, three types of LeGO-LOAM
were compared: the original LeGO-LOAM, SC-LeGO-
LOAM that exploits ScanContext (Kim and Kim 2018)
as a loop detection, TSC-LeGO-LOAM that employs both
TEASER++ and ScanContext, and QSC-LeGO-LOAM that
utilizes both our proposed method (Quatro++) and ScanCon-
text.

As shown in Fig. 20, LeGO-LOAM without any loop
detection and closing approaches showed imprecise mapping
results. In large-scale environments, the radius search could
not find potential loop candidates owing to the large pose
drift. For this reason, loop closing was performed only
locally, so its global trajectory errors were not reduced by
PGO (Fig. 20(a)).

The application of the loop detection module, i.e. SC-
LeGO-LOAM, showed a more precise map by finding
additional loop candidates that could not be searched solely
by the radius search. However, some trajectory errors still
remained due to the undesirable false positive loops. This
is because the loop detection sometimes wrongly estimates
two geometrically similar scenes as a loop candidate.
For instance, the scenes where the buildings are densely

∗Consequently, we achieved the 4th and 1st place by utilizing our proposed
method as a loop closing module in the 2022 and 2023 Hilti SLAM
challenges, respectively. Please refer to the following site:
https://hilti-challenge.com/leader-board-2023.html
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(b) SC-LeGO-LOAM

0 0.2km

(d) QSC-LeGO-LOAM (Ours)

0 0.2km

(a) LeGO-LOAM

0 0.2km

(c) TSC-LeGO-LOAM

0 0.2km

Fig. 20. (T-B): Point cloud mapping results and the corresponding loop constraints in DCC01 of the MulRan dataset. (a) The original LeGO-LOAM.
(b) LeGO-LOAM with ScanContext as a loop detection. (c) LeGO-LOAM with both TEASER++ and ScanContext, named as TSC-LeGO-LOAM.
(d) LeGO-LOAM with both Quatro++ and ScanContext, named as QSC-LeGO-LOAM, showing a tightly aligned mapping result and fewer false loops.
The green lines denote the true positive loop constraints and red lines denote the false positive loop constraints (best viewed in color).

(a) LeGO-LOAM (b) SC-LeGO-LOAM

0 0.2km 0 0.2km

(c) TSC-LeGO-LOAM (d) QSC-LeGO-LOAM (Ours)

0 0.2km 0 0.2km

Fig. 21. Visualized loop constraints of (a) The original LeGO-LOAM, (b) LeGO-LOAM with ScanContext as a loop detection and (c) TSC-LeGO-LOAM,
and (d) QSC-LeGO-LOAM in Riverside01 of the MulRan dataset. Note that QSC-LeGO-LOAM reduced false positive loops while increasing true
positive loops simultaneously. The green lines denote the true positive loop constraints and red lines denote the false positive loop constraints (best viewed
in color).

located on the lateral side of the robot have ambiguous geometrical characteristics. Accordingly, sometimes distant
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Fig. 22. Box plot of absolute pose errors after the application
of ScanContext (SC) as a loop detection, both TEASER++ and
ScanContext (TSC), and both our Quatro++ and ScanContext (QSC). The
∗∗∗∗ annotations indicate measurements with p-value < 10−4 after a
paired t-Test.

Table 7. Absolute pose errors of SLAM results in the MulRan dataset.
For all the metrics, the lower, the better.

Algorithm Mean Median RMSE Stdev.

D
C

C
01

LeGO-LOAM 28.89 29.21 32.37 14.60
SC-LeGO-LOAM 6.13 5.59 6.46 1.89
TSC-LeGO-LOAM 6.10 5.49 5.56 2.58
QSC-LeGO-LOAM (Ours) 5.65 5.33 5.97 1.92

K
A

IS
T

02

LeGO-LOAM 24.21 18.48 30.25 18.14
SC-LeGO-LOAM 4.28 3.72 5.33 3.17
TSC-LeGO-LOAM 4.27 3.85 5.12 2.82
QSC-LeGO-LOAM (Ours) 3.88 2.71 4.86 2.93

R
iv

er
si

de
01 LeGO-LOAM 96.60 62.57 124.94 79.27

SC-LeGO-LOAM 26.87 28.99 30.59 26.87
TSC-LeGO-LOAM 21.23 21.23 32.89 19.50
QSC-LeGO-LOAM (Ours) 20.19 19.57 23.01 19.57

two point clouds measured in the corridor-like environments
or opposing viewpoint cases are considered as the same
place. The problem is that the MSEs of these scenes are
likely to have small values, so some false loops are not
rejected via the MSE-based thresholding. Therefore, these
wrong loops are formed on the graph structure, resulting in
the misaligned map (Fig. 20(b)).

In contrast, the application of our proposed method in the
loop closing showed a tightly aligned mapping result and
fewer false loops, as shown in Figs. 20(d) and 21(d). As
explained earlier, our proposed method showed more robust
performance against these ambiguous scenes and reverse
cases by leveraging ground segmentation. Accordingly, even
though distant or reversed loop pairs are given by the loop
detection module, our proposed method can successfully
estimate the relative pose in a coarse manner. Consequently,
the local registration method, which follows the global
registration, can estimate the correct relative pose as a fine
alignment. In particular, we also highlight that our proposed
method increases the number of true positive loops in widely
opened environments, showing more dense green lines in
Fig. 21(d) compared with Fig. 21(b).

Certainly, TSC-LeGO-LOAM also increases the number
of loop pairs (Fig. 21(c)), yet TEASER++ triggers some false
positive loops. This is because TEASER++ showed the lower
success rates in the riverside scenes, as presented in Table 3,

so TEASER++ occasionally let the fine alignment by local
registration converge to the local minimum by providing a
wrong initial guess as a coarse alignment. Compared with
TSC-LeGO-LOAM, our QSC-LeGO-LOAM only led to few
false positive loop pairs due to the robustness of Quatro++
against the outliers and sparsity issues, showing better
SLAM performance (Fig. 22 and Table 7). In addition, by
leveraging its robustness, Quatro++ can perform registration
as a loop closing even when moving objects, which may lead
to erroneous feature matching, are included (Fig. 23).

Through these experiments, we demonstrate that our
proposed method has positive effect on the LiDAR SLAM:
our proposed method increases the quality of loop constraints
by reducing both false positive and false negative loops,
reducing the pose errors, as presented in Fig. 22 and Table 7.

8. Conclusion
In this study, a robust global registration method, Quatro++,
has been proposed. Our proposed method was proven to be
more robust against the sparsity and degeneracy issues than
the state-of-the-art global registration methods by utilizing
ground segmentation. Furthermore, we applied our proposed
method to the loop closing module in LiDAR SLAM and
confirmed that the quality of the loop constraints was
improved, showing more precise mapping results.

Although we demonstrated that our proposed method
outperformed the state-of-the-art methods in terms of global
registration and loop closing in LiDAR SLAM, there
are some limitations. That is, we placed more emphasis
on the back-end part of the correspondence-based global
registration, so the improvement of feature extraction and
matching was beyond our scope. In future works, we plan
to improve the front-end of the correspondence-based global
registration. Accordingly, the way to increase the quality of
the estimated correspondences should be addressed to tackle
the sparsity and degeneracy issues in terms of the front-end
part as well.
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