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Abstract—Decentralized generalized approximate message-
passing (GAMP) is proposed for compressed sensing from dis-
tributed generalized linear measurements in a tree-structured
network. Consensus propagation is used to realize average
consensus required in GAMP via local communications between
adjacent nodes. Decentralized GAMP is applicable to all tree-
structured networks that do not necessarily have central nodes
connected to all other nodes. State evolution is used to analyze
the asymptotic dynamics of decentralized GAMP for zero-
mean independent and identically distributed Gaussian sensing
matrices. The state evolution recursion for decentralized GAMP
is proved to have the same fixed points as that for centralized
GAMP when homogeneous measurements with an identical
dimension in all nodes are considered. Furthermore, existing
long-memory proof strategy is used to prove that the state
evolution recursion for decentralized GAMP with the Bayes-
optimal denoisers converges to a fixed point. These results imply
that the state evolution recursion for decentralized GAMP with
the Bayes-optimal denoisers converges to the Bayes-optimal fixed
point for the homogeneous measurements when the fixed point is
unique. Numerical results for decentralized GAMP are presented
in the cases of linear measurements and clipping. As examples
of tree-structured networks, a one-dimensional chain and a tree
with no central nodes are considered.

Index Terms—Compressed sensing, generalized approximate
message-passing, decentralized algorithms, consensus propaga-
tion, tree-structured networks, state evolution.

I. INTRODUCTION
A. Background

PPROXIMATE message-passing (AMP) [1] is a pow-

erful iterative algorithm for signal recovery from linear
measurements [2], [3]. In particular, AMP using the Bayes-
optimal denoiser—called Bayes-optimal AMP—is regarded
as an asymptotically exact approximation of loopy belief
propagation [4]]. Applications of AMP contain compressive
imaging [5], [6]], radar [7]], sparse superposition codes [8]], [9],
and low-rank matrix estimation [10]], [11].

State evolution [12]]-[14], motivated by [15]], allows us to
analyze the asymptotic dynamics of AMP rigorously when
the sensing matrix has independent and identically distributed
(i.i.d.) zero-mean sub-Gaussian elements. The asymptotic dy-
namics of AMP is characterized with a discrete-time dynam-
ical system—called state evolution recursion. When the state
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evolution recursion has a unique fixed point, Bayes-optimal
AMP was proved in [12], [13] to achieve the Bayes-optimal
performance [[16], [17] asymptotically.

Generalized AMP (GAMP) [18] is a generalization of AMP
to the case of generalized linear measurements, which allow
us to treat general noise beyond the additive noise in the linear
measurements. GAMP expands applications of AMP to one-
bit compressed sensing [19], [20], phase retrieval [21], [22],
and peak-to-average power ratio (PAPR) reduction [23]], [24]].
Like AMP, the asymptotic dynamics of GAMP was analyzed
via state evolution [25]. When the state evolution recursion of
GAMP has a unique fixed point, Bayes-optimal GAMP was
proved in [26] to achieve the theoretically optimal performance
in terms of the minimum mean-square error (MMSE).

Distributed algorithms are more desirable than centralized
algorithms that run on a single node exploiting the full
information about the sensing matrix and all measurements.
Distributed algorithms are separated into two types of algo-
rithms.

A first type contains distributed algorithms that run on a cen-
tral node and multiple remote nodes. Each remote node only
uses local measurements to compute a local estimate, which is
aggregated in the central node. The central node combines the
local estimates to obtain a global estimate, which is fed back to
the remote nodes. The iteration between the central and remote
nodes is repeated until the algorithm reaches a final result.
Iterative thresholding algorithms for compressed sensing, such
as iterative shrinkage thresholding algorithm (ISTA) [27]], fast
iterative shrinkage thresholding algorithm (FISTA) [28]], and
iterative hard thresholding (IHT) [29], can be implemented
as this type of distributed algorithms. See [30] for distributed
[HT.

In the other type of distributed algorithms—called decentral-
ized algorithms in this paper, algorithms run on multiple nodes
in an ad hoc network with no central nodes. Decentralized
protocols for average consensus [31], [32] are utilized to reach
the same result as the corresponding centralized algorithm only
by sharing processing results with adjacent nodes locally. As
this type of distributed algorithms for compressed sensing,
distributed least absolute shrinkage and selection operator
(LASSO) [33]], distributed spectrum sensing [34], distributed
basis pursuit [35], and distributed alternating direction method
of multipliers (ADMM) [36], [37] were proposed.

AMP was extended to distributed AMP [38]]-[43] exploiting
a central node. More precisely, distributed AMP in [38]-[40]
utilizes feedback from the central node to refine messages in
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each remote node, like distributed IHT [30], while distributed
AMP in [41], [42] exploits no feedback from the central node.
Hayakawa et al. [43] proposed decentralized AMP (D-AMP)
for tree-structured networks with no central nodes via con-
sensus propagation [44]. However, D-AMP was shown in nu-
merical simulations [43] to have poor performance compared
to that of centralized AMP [1], unless approximately perfect
consensus is achieved before denoising in each AMP iteration.
This convergence property of D-AMP is different from that of
conventional decentralized algorithms [33]-[37] that realize
average consensus and signal estimation simultaneously.

B. Contributions

This paper proposes decentralized GAMP (D-GAMP) for
compressed sensing in tree-structured networks with no central
nodes. Each node only utilizes local measurements to compute
the GAMP iteration. Messages in each node are shared with
adjacent nodes at every fixed time interval via consensus
propagation [44]. D-GAMP repeats the local GAMP iteration
and consensus propagation until the algorithm converges.

D-GAMP realizes average consensus and signal estimation
simultaneously via consensus propagation between adjacent
nodes, like conventional decentralized algorithms [33[-[37].
As a result, D-GAMP can reduce the total number of iterations
for consensus propagation.

D-GAMP allows different nodes to use a different number
of inner GAMP iterations. This flexibility is useful to reduce
latency when different nodes have different processing capa-
bility. Waiting for processing in the other nodes can be a cause
of latency. To circumvent this waiting issue, D-GAMP shares
messages between adjacent nodes at every fixed time interval,
rather than after a common number of GAMP iterations in all
nodes.

The convergence property of Bayes-optimal D-GAMP is
analyzed with a long-memory proof strategy [45]—[47], which
is a general strategy for proving the convergence of state
evolution recursion. Rigorous state evolution requires evalu-
ation of the covariance matrix between estimation errors in
all previous iterations. In the proof strategy, the covariance
matrix is utilized to prove the convergence of state evolution
recursion with respect to the mean-square errors (MSEs), i.e.
its diagonal elements. When the Bayes-optimal denoisers are
used in terms of MMSE, the covariance matrix has a special
structure that implies the convergence for the sequence of its
diagonal elements. See [48]-[53] for the original purpose of
long-memory message-passing, i.e. complexity reduction.

The main contributions of this paper are as follows: A
first contribution (Theorems [Il 2 and [6) is rigorous state
evolution of D-GAMP. This paper proposes and analyzes a
general error model that contains the error model of D-GAMP
and is applicable to general ad hoc networks without tree
structure. While D-GAMP assumes tree-structured networks
in consensus propagation, as considered in [43], the state
evolution result can be utilized to design another sophisticated
protocols for average consensus in general ad hoc networks.

From a technical point of view, state evolution for
GAMP [18], [25] is generalized to D-GAMP. The proof

strategy in this paper is essentially different from in [18],
[25]: Rangan [18]] considered vector-valued AMP to analyze
the asymptotic dynamics of GAMP. GAMP for rectangular
sensing matrices was analyzed via state evolution of GAMP
for symmetric sensing matrices in [25]. This paper establishes
state evolution of D-GAMP for rectangular matrices directly
by defining the general error model appropriately. In this sense,
the definition of the general error model is a key contribution
in the state evolution analysis.

A second contribution (Theorems [3] and [3)) is the conver-
gence analysis of D-GAMP for tree-structured networks. This
paper proves that state evolution recursion for D-GAMP has
the same fixed point as that of the corresponding centralized
GAMP [18] when all nodes have homogeneous measurements
with an identical dimension. On the basis of the long-memory
proof strategy [46], the state evolution recursion for D-GAMP
is proved to converge toward a fixed point when the Bayes-
optimal inner and outer denoisers are used in terms of MMSE.
These results imply that the state evolution for Bayes-optimal
D-GAMP converges to the Bayes-optimal fixed point [26]] for
the homogeneous measurements when the Bayes-optimal fixed
point is unique.

The last contribution is numerical results for D-GAMP.
As examples of tree-structured networks, a one-dimensional
chain and a tree with no central nodes are considered. For
the linear measurements, D-GAMP is numerically shown to
reduce the total number of inner iterations for consensus prop-
agation compared to conventional D-AMP [43]. Furthermore,
D-GAMP is shown to converge toward the performance of the
corresponding centralized GAMP [18] for finite-sized mea-
surements with clipping when homogeneous measurements
with an identical dimension in all nodes are considered.

Part of these contributions were presented in [54].

C. Organization

The remainder of this paper is organized as follows: Af-
ter summarizing the notation used in this paper, Section
formulates signal reconstruction from generalized linear mea-
surements distributed in an ad hoc network without central
nodes. The network is modeled as a directed and connected
graph in graph theory. In particular, this paper focuses on a
tree-structured network, i.e. an undirected and connected graph
without cycles.

D-GAMP based on consensus propagation [44] is proposed
in Section [Tl 1t is regarded as a generalization of D-AMP [43]]
to the generalized linear measurements. The proposed D-
GAMP is more flexible in terms of the iteration schedule than
D-AMP [43].

Section presents the main results of this paper while
the proofs of theorems are summarized in Appendices. The
asymptotic dynamics of D-GAMP is analyzed via state evolu-
tion. When a tree-structured network is assumed to justify use
of consensus propagation, the long-memory proof strategy [46]]
is utilized to prove that state evolution recursion for Bayes-
optimal D-GAMP converges toward a fixed point. In particular,
the fixed point is equal to the Bayes-optimal fixed point [26]]
when the fixed point is unique.
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Section [V] presents numerical results for D-GAMP. A one-
dimensional chain and a tree with 8 nodes are considered as
examples of tree-structured networks. Section concludes
this paper.

D. Notation

Throughout this paper, the transpose and determinant of a
matrix M are denoted by M and det M, respectively. The
notation O represents an all-zero matrix. The Kronecker delta
is denoted by §; ;. For {a;}?_,, the notation diag{a1,...,a,}
represents the diagonal matrix having the ith diagonal element
a;. The norm || - || means the Euclidean norm. The notation
o(1) denotes a vector of which the Euclidean norm converges
almost surely toward zero.

For a vector vz with a set of indices Z, the nth element
[vz], of vz is written as v, 7. Similarly, the ¢th column of a
matrix M7 is represented as 1 7.

The notation A (p, ) represents the Gaussian distribution
with mean g and covariance 3. The almost sure convergence
and equivalence are denoted by 3 and = respectively.

For a scalar function f : R — R and a vector x € R",
the notation f(x) means the element-wise application of f to
x, ie. [f(x)]; = f(x;). The arithmetic mean of x € R"™ is
written as (z) = n~' Y. | z;. For a multi-variate function
f : R* — R, the notation 9; represents the partial derivative
of f with respect to the ith variable.

The notation MT = (MTM)'M7T represents the
pseudo-inverse of a full-rank matrix M € R™*™ satisfying
m > n. The matrix Pl = MM M) 'M" is the
projection onto the space spanned by the columns of M while
Pj‘{ =1T- Plllw is the projection onto the corresponding
orthogonal complement.

II. MEASUREMENT MODEL

This paper considers the reconstruction of an unknown sig-
nal vector & € R from measurements in an ad hoc network
with L nodes. While D-GAMP postulates tree-structured net-
works in consensus propagation [44], state evolution analysis
is performed for general ad hoc networks. Thus, this section
presents the definition of a general ad hoc network.

The ad hoc network is modeled as a directed and connected
graph & = (£, &) with the set of nodes £ = {1,..., L}, the
set of edges £ C L ® L, and no self-loops. When the pair
(I1,12) € & exists, there is an edge connected from node [y
to node lo. Since the graph has no self-loops, (I,1) ¢ £ holds
for all [ € L. The incoming neighborhood NI] = {I' € L :
(I',1) € £} C L of node [ represents the set of nodes that have
incoming edges to node ! while the outgoing neighborhood
N[l = {I' € L:(I,I') € £} is the set of nodes that have
outgoing edges from node /. Since the graph has no self-loops,
we have | ¢ Nl and | ¢ NI] for all | € L. A central
node [ € L is defined as a node that is connected to all other
nodes, i.e. N'[I] = N[I] = £\{l}. Throughout this paper, the
existence of central nodes is not assumed.

Node [ acquires an M[l]-dimensional measurement vector
y[l] € RMU, modeled as the generalized linear measurements

yll] = gll](z[1], w[l]), =[] = All]z. M

In (@, w[l] € RMU and A[l] € RMI*N denote an unknown
noise vector and a sensing matrix in node [, respectively. The
signal vector @ is measured via the linear mapping z[l]. The
measurement vector y[{] is an element-wise application of a
function g[l] : R?> — R to the two vectors z[l] and w]l].
In particular, g[!](z, w) = z + w corresponds to conventional
linear measurements.

The goal of this paper is to reconstruct the signal vector @
under the following assumptions:

« Node [ only has the information about the local measure-
ment vector y[l] and sensing matrix A[l], as well as the
measurement model (D).

« Node [ can send messages to the outgoing neighborhood
N [l] and receive them from the incoming neighborhood
NI

o The communication link between nodes is error-free and
latency-free.

The first two assumptions are practical assumptions for
decentralized algorithms in ad hoc networks. The last assump-
tion may be reasonable for reliable wired networks or future
wireless networks.

III. DISTRIBUTED GAMP
A. Overview

The proposed D-GAMP algorithm consists of two parts:
GAMP iteration [[18] in each node and consensus propaga-
tion [44] between nodes. GAMP in node [ € L is composed
of two modules, called outer and inner moduleﬂ The outer
module utilizes the measurement vector y[l] to compute an
estimator of z[!] in (I) while the inner module uses prior
information on the signal vector  to compute an estimator
of x.

For consensus propagation all nodes share messages with
their adjacent nodes. Each node utilizes the messages sent
from its adjacent nodes to update the current message. Mes-
sage transmission for consensus propagation is repeated J
times. While consensus propagation requires tree-structured
networks, D-GAMP will be applicable to general ad hoc
networks when consensus propagation is replaced with an-
other sophisticated protocol for average consensus. However,
research in this direction is beyond the scope of this paper.

The outer module, consensus propagation, and the inner
module are executed in this order. After that, node [ repeats
T[] — 1 iterations between the outer and inner modules in a
fixed time interval, without performing consensus propagation.
Different T'[I] is used for different ! since the nodes might
not have identical processing capability. In other words, T[]
corresponds to the number of iterations which node [ can
repeat in the fixed time interval. After the fixed time interval,
the outer module, consensus propagation, and the inner module
are executed again. Then, each node repeats T'[l] — 1 GAMP

'In GAMP [18]], the M [{]-dimensional measurement space was referred to
an output space while the N-dimensional signal space was called an input
space. In this paper, they are referred to as outer and inner spaces, respectively.
The terminology “inner module” does not mean that the inner module is
physically located inside the outer module.
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iterations to refine the estimation of the signal vector. Such
iteration rounds are repeated until the consensus is achieved.

Let T = maxjer T[] denote the maximum number of
GAMP iterations among all nodes. For notational convenience,
we define a message a:[l] in iteration ¢ after every T[]
GAMP iterations for node [ as that in the corresponding 7'[!]th
iteration, i.e. a;[l] = app_1[l] for t € {T]],..., T — 1}.
This notation allows us to use the common number of GAMP
iterations 7' in all nodes. When the total number of GAMP
iterations ¢ is counted, consensus propagation is performed in
iteration ¢ = ¢7" for all non-negative integers i.

To represent messages in the iteration where consensus
propagation is performed, the following underline notation is
used throughout this paper:

Definition 1: For integers t,T € N, and variables {a, € R},
the notation a, is defined as a, = a;r with ¢ = [¢/T]. For
vectors {v.} the notation v, = v, is defined in the same
manner while the notation M, = [my, ..., m,_ 4] is used for
a matrix M = [mo, ..., mi_1].

B. Outer Module

For iteration ¢ € {0,1,...}, suppose that the outer module
has an estimator %,[I] € RMU of z[I], an estimator v;[I] > 0 of
M~HI)||2¢[l] — 2[1]]|%, and an estimator &[] € RN of z sent
from the inner module, as well as the measurement vector y/[l].
As initial conditions, Zo[l] = 0, vo[l] = (LM[I])"'E[||lz|*].
and xo[l] = 0 are used for all [ € L.

The outer module computes an estimator 2,[l] € RM[H of
z[l] and a message x:[l] € RY as follows:

2e[l] = four[](Z:[1], y[U]; ve[1]), 2
1. 1 N
wll] = pall] = AT, 3)
with
gout,t[l] = <alf0ut[l](2t[l]a y[”’ Ut[l]» (4)

Here, the scalar function fou[l](-,;v¢[l]) : R? — R is an
outer denoiser. The notation 0; denotes the partial derivative
of fout[l] with respect to the first variable. The parameter
&out,t[l] € R has been designed so as to realize asymptotic
Gaussianity of estimation errors before inner denoising. The
outer module sends the messages x:[l], Z:[l], and &out,c[l] to
the inner module.

The update rules in the outer module are similar to those
in centralized GAMP [18]. Intuitively, the Onsager correction
in (@) eliminates intractable memory terms in each iteration.
Since clean messages after the Onsager correction are shared
with adjacent nodes, consensus propagation does not affect
the update rules in the outer module. The correctness of this
intuition is proved via state evolution.

When the remainder of ¢ divided by 7T is larger than or
equal to the actual number of iterations T'[I], all messages
are fixed to 215[[] = ‘%iTJrT[l]fl[l]’ iBt[l] = iBiTJrT[l],l[l], and
Sout,t[I] = Eout,ir+r—1[l] for i = [t/T]. Thus, we define
the set of iteration indices T;[l] as To[l] = () and

Tl = UG, omin{t, T + T -1 (5)

for t > 0, by eliminating from {0,...,¢ — 1} the indices
for which the messages are fixed. For iteration ¢, the set T¢[!]
contains all iterations in which the messages in node [ are
updated.

C. Consensus Propagation

The centralized GAMP [18] uses the messages x; =
Siec®illl e =L,and 0f = L7137, &5 4 [1] in the inner
module. However, computation of these messages requires a
central node that receives the messages {x[l] : [ € L} and
{&ut,t[l] : I € L} from all nodes. For a tree-structured network
with no central nodes, consensus propagation [44] can be used
to compute the messages &y, 1¢, and af in a decentralized
manner.

Consensus propagation with J inner iterations is performed
in every 7T iterations. More precisely, node [ shares messages
with the adjacent nodes N [] for consensus propagation if ¢ is
divisible by T'.

Focus on inner iteration j € {1,...,J} and suppose that
node | has messages {z, ; ,[I’ = 1] € RN : I’ € NI} and
{o?, 1! = 1] € R:1" € NI]} sent from the adjacent nodes
in the preceding inner iteration of consensus propagation and
messages {ﬂt,j—l[l/ — 1] € R : 1" € N[l]} computed in
node [, as well as the messages x,[l] and éout’t[l] computed
in the outer module. Node [ computes the following messages
x; ;[l — I and o7 ;[l — '], which are sent to node I’ € NI,
as well as 7, [l —1].

Ly g [l - l/] = Qt[l] + Z zt,j—l[i/ — l], (6)
UeNN{"}
=1 =1+ > m,, =1, (7)
eNTN{l'}
1 -
ol =)= e S a1 ®
Zoubttt PeNp\I}
with z, o[I' = ] = z,_ 7' = 1. n[I" = 1] =
ﬂt,T”][ll - l]’ and Q%,O[ll - l] = gng,J[l/ — l],

which are the messages sent from the adjacent nodes in
the preceding round of consensus propagation. As initial
conditions, z, 1 ;[I' — I] = 0, ﬂth.,J[l/ — Il] =0, and
o? ;[ = 1] =0 are used for all t < T.

After .J inner iterations for consensus propagation, node [
receives the messages {z; ;[I' — ] € RN : I’ € N[I]} and
{a? ;' = 1] > 0:1" € Nl]} from the adjacent nodes. Then,
the following messages ,[I], ,[I], and g?[I] are computed
and sent to the inner module:

z = > =z, =1, ©)
I'eNTY

1] = n, =1, (10)
IeNTY

PHIE a; =1 (11)
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The message «, I is used in the inner module as an extrinsic
estimate of & while o?[(] is an estimator of the corresponding
extrinsic MSE. After the aggregation of all messages, the

messages z,[1], n,[I], and o7 [I] converge to 3=, a,[l'], L—1,
and > §;ult) ,[U'] for tree-structured networks, respectively.

D. Inner Module

In iteration ¢, suppose that the inner module has the mes-
sages @[l], 2,[l], and &ouy ¢ [I] sent from the outer module and
the messages z,[l], n,[l], and o7[l] computed in consensus
propagation. The inner module first computes the following
messages:

& [l] = (1] + 4[], (12)
nell] = 1+ n,[1], (13)
o _ 1 1 —5T
Ut [l] - L (gout_’t[l] + gt [l]> 9 (14)
which should converge to &; = Zl,€L x¢[l'], L, and

LY er fofultyt[l’ | for tree-structured networks after the ag-
gregation of all messages, respectively, when ¢ is divisible by
T. Then, an estimator Z1[l] € RV of the signal vector z is
computed as

T [l] = fulll (@1 me[1], o7 [1]), (15)

where fin[I[](-;m[l], 02[l]) : R — R denotes an inner de-
noiser. The parameter 7,[l] denotes the number of messages
aggregated in consensus propagation. The parameter o2[l]
corresponds to an estimator of the MSE for the message &.[l].
See Section for its precise meaning revealed via state
evolution.

The estimator &;41[!] depends on the node index ! while the
original signal vector « is independent of [. When there are
no central nodes for aggregating {&:[l] : I € L}, the estimator
&141[l] can be used when an estimator of x is needed in node {.

To refine the estimator of @, the inner module computes the
following messages:

Ngin,t[l]

ze1[l] = All)@e1 1] + m‘%t[l]v (16)
v ll) = MLU]L [gffl“]’tm, (17)

with
in[l] = <51fin[l](it[l]§Ut[l]aaf[l]»- (18)

The message 2:[l] is an estimator of z[l]. The message
&n,[l] € R has been designed so as to realize asymptotic
Gaussianity of estimation errors before outer denoising. The
message v:[l] corresponds to an estimator of the MSE for
z¢[l]. See Section [[VIfor its precise meaning revealed via state
evolution.

For t — [t/T|T > TV[l], all messages are fixed to &;1[l] =
Zir e[l Zea1lll = Ziryrplll, and vep[l] = vie e[l
as fixed in the outer module. The inner module feeds the
messages &¢11[l], Z¢+1[l], and vy41[l] back to the outer module
to refine the estimator of .

To understand D-GAMP, assume that the summation con-

sensus @, [l] = >0y z[l'), Z,[I'] = &,[I], and §Out7t[l/] =
€ out. ,[I] have been achieved for all ,I’ € £ when t is suffi-
ciently large. Then, reduces to Ty[l] = @ [I]+> 2, z,[U'].
Using the definition @) of x;[l] yields

1

gout,iT [l]

;T [l] = ;T [l] + Z AT [ll]ﬁiiT [ll]

el

19)

for t = iT € N. The update rules (I6) and (I9) for Z[l] and
&;7[l] are equivalent to those in centralized GAMP [18§].

Conventional D-AMP [43] was designed under the implicit
assumption of perfect consensus in each iteration. As a re-
sult, multiple inner iterations .J for consensus propagation
were considered to realize the summation consensus x,[l] =
Y ver[l'] for all I € L approximately. However, such
a protocol requires heavy communications between adjacent
nodes.

D-GAMP with T = 1 is equivalent to D-AMP [43]
when the linear measurement model g[l](z,w) = z + w is
considered. Interestingly, state evolution in this paper reveals
the correctness of the Onsager correction in D-GAMP. As a
result, D-AMP [43]] also has the correct Onsager correction
while perfect consensus was implicitly assumed in designing
D-AMP. Nonetheless, numerical simulations in [43]] showed
poor performance of D-AMP with a few inner iterations
of consensus propagation. This conflict between theoretical
and numerical results may be because small M[l] = 6 was
simulated in [43]. If much larger systems were simulated, good
performance might be observed.

IV. MAIN RESULTS
A. Definitions and Assumptions

The dynamics of D-GAMP is analyzed via state evolution
in the large system limit for fixed L, where the dimensions
{M]l]} and N tend to infinity while the ratio §[I] = M[I]/N
is kept constant for all [ € L. To present a rigorous result, we
first define an empirical convergence in terms of separable,
pseudo-Lipschitz, and proper functions [12], [55].

Definition 2 (Separability): A vector-valued function f =
(fi,..., fn)T with £, : RV — R is said to be separable if
the nth function f, (x) depends only on the nth element of
z = (z1,...,25)T € RN for all n, ie. fo(x) = fu(zn).

Definition 3 (Pseudo-Lipschitz): A function f : Rt — R
is said to be pseudo-Lipschitz of order k if there is some
Lipschitz constant C' > 0 such that the following inequality
holds:

[f(@) = f(y)] < Cllz—yll(1+ ()" +|f(»)*) 20)

for all =,y € R

By definition, any pseudo-Lipschitz function of order &k = 1
is Lipschitz-continuous. A separable vector-valued function
f is said to be pseudo-Lipschitz of order k if all element
functions of f are pseudo-Lipschitz of order k. In this pa-
per, piecewise pseudo-Lipschitz functions are considered to
include practical denoisers in the proposed framework of state
evolution.
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Definition 4 (Proper): A separable, pseudo-Lipschitz, and
vector-valued function f = (f,..., fx)T is said to be proper

if the Lipschitz constant C,, > 0 of the nth function f,, : R —
R satisfies
lim —ch<oo for all k € N. Q1)

N—oco N
=1

Definition M is used to analyze separable, pseudo-Lipschitz,
and vector-valued functions f in the same manner as in the
common function case [S5]: f, = f for a pseudo-Lipschitz
function f.

Definition 5: Random vectors (vi,...,v:) € RV*! are
said to converge jointly toward random variables (V1, ..., V})
in the sense of kth-order pseudo-Lipschitz if the limit
Hmy oo NV SN E[f0(Vi,. .., V4)] exists and the follow-
ing almost sure convergence holds:

J&Enooﬁz{fnvm,---, ONELY

(22)
for all separable and piecewise proper pseudo-Lipschitz func-
tions f = [fi,...,fn]T of order k. This convergence in
the sense of kth-order pseudo-Lipschitz is called the PL(k)

convergence and denoted by (v1,...,v:) L) V.., Vo).

The goal of state evolution is to prove asymptotic Gaus-
sianity for the messages Z;[!] and &.[l] just before outer and
inner denoising, respectively: The PL(2) convergence results
200 "5 200 and &[] - L5z T2 H,[l] hold in
the large system limit for some Gaussian random variables
Zy|l], H¢[l], and deterministic variable 7;[!] defined shortly.
We summarize assumptions to justify the PL(2) convergence.

Assumption 1: For some € > 0, the PL(2 + €) convergence
PL(2+¢€)
_)

_E[fn(vl,

Un,t)

holds for the signal vector x, i.e. x X for some
random variable X.

When « has iid. elements with a bounded (2 + €)th
moment, the PL(2 + €) convergence holds for X that follows
the distribution for the elements of x.

Assumption 2: For some € > 0, the PL(2 + €) convergence

holds for the noise vectors {wll] : I € L} i.e. {w]l]} Pr&Fe)
{W[l]} for some random variables {W[l] : | € L}.

Independent Gaussian noise wl[l] ~ N(0, 02 [I]T ;) with
some variance o2[l] satisfies Assumption 2] for independent
Gaussian random variables W [l] ~ N (0, o2[l]).

Assumption 3: The sensing matrices {A[l] : | € L} are
independent. Each matrix A[l] € RMUXN has independent
zero-mean Gaussian elements with variance (LM [(])~!

Assumption [Bis an important assumption to analyze the
dynamics of D-GAMP via state evolution. The independent
assumption cannot be relaxed for AMP [14]]. More precisely,
the empirical eigenvalue distribution of AT [I]A[l] needs to
converge in probability to that for zero-mean i.i.d. Gaussian
sensing matrices.

Assumption 4: The composition fout[l](8, g[l](z, w);v4[l])
of the measurement function g[l] in () and outer denoiser
Sout[l] in is piecewise Lipschitz-continuous with respect
to (H,Z,w) € R3. The inner denoiser fiy[l](u;n:[l],02[l]) in
(13) is piecewise Lipschitz-continuous with respect to u € R.

The everywhere Lipschitz-continuity was assumed in con-
ventional state evolution analysis [12], [S5)]. Nonetheless,
this paper postulates the piecewise Lipschitz-continuity to
include practical outer denoisers in the proposed framework
of state evolution. This slight generalization does not cause
any gaps in state evolution analysis since any piecewise
Lipschitz-continuous function has all properties required in
state evolution, such as almost everywhere differentiability
and the boundedness of derivatives—satisfied for all Lipschitz-
continuous functions. Intuitively, there are no technically sig-
nificant differences between the singularities at the origin of
the two functions e.g. fi(z) = |z| and fo(z) = —x for all
x <0 and fo(z) = x + 1 for all z > 0 unless z = 0 occurs
with a finite probability.

Assumption 5: The graph & = (L£,€) is a tree, i.e. an
undirected and connected graph with no cycles.

Assumption [3] is used in justifying consensus propagation
while it is not required in proving the asymptotic Gaussianity.
Note that the incoming neighborhood NI] is equal to the
outgoing neighborhood A/[I] under Assumption

B. State Evolution

State evolution recursion for D-GAMP is given via four
kinds of scalar zero-mean Gaussian random variables { Z[l]},
{Z,[1]}, {H,[l]}, and {H,[l]}, associated with z[l], Z,[1], @, ][l],
and &;[l] in (@), @a), @), and (I2), respectively. The random
variables {Z[l] : | € L} are independent of {W{I]} in
Assumption 2] and independent zero-mean Gaussian random
variables with variance

E[Z*[l]) = 7= E[X?), (23)

- L5[]

with X defined in Assumption[Il To define statistical proper-
t_ies of the oth_er random variables, we first define two variables
Eout,t[l] and (¢[!] in the outer module as

gout,t[l] =E [81 fout [l](Zt [l]7 Y[l]7 ’Dt[l])] ’ (24)
Gl = B | 2 foll(Z 1] o1}z, W) 2l ] ,
z=Zl]
(25)
with Y[I] = g[l](Z[l], W[l]), in which Z;[I] and ©,[l] are de-

fined shortly. The variable &y [I] is the asymptotic alternative
of &out,¢[l] in @) while (;[I] is used in the inner module.

We define random variables { H,[l]} and {H,[l]}. The ran-
dom variables { H;[l]} are independent of X in Assumption [I]
and zero-mean Gaussian random variables with covariance

L[, = VB [fone 121, Y 15, 10)
Fout 1(Z[1), Y 1) 24[1)]

t}. Furthermore, H,[l] is defined recur-

(26)

for all 7 € {0,...,
sively as follows:

Hy[l] = N @7
goutt V;[l]
with
H,l
ﬂt,j[l%l’]Zi[[]]Jr S H L =1 @28
2out,t

FeNTN{I'}
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for j € {1,...,J}. As an initial condition, H, ,[I' — I] =
H, 7' = 1] is used, as well as H, ,,[I' = 1] = 0
for all t < T. The random variables {H;[I]} are zero-mean
Gaussian random variables since they are a linear combination
of {H,[I]}.

We next define four variables 7;[1], 72[I], &n.¢[(], and 41 [1]
in the inner module. The variable nt[l] corresponds to the
effective amplitude of X, given by

mell] = 5 [ N >om, (29)
out,t VeNT]
with
_ 12 ;t[l] _ 77
m,,l1 == et >oon, =1 30
2out,t i’EN[l]\{l’}
As an initial condition, n, M =l=0,_ T S — 1] is used,

as well as 7, TJ[Z’ — l] =0 for all ¢ < T. Similarly, 57]l]
represents the asymptotic alternative of o2[{] in (T4),

1 1
== ——+ g2, =1, @D
M=z oom l/e;m_t,][ J

with

1 -
gl ===+ > gl =1 (6

_out,t[ ] i’EN[l]\{l,}

As an initial condition aiolll = 1) = a7 p [ = 1] is used,
as well as a7, ;[I' = l] = 0 for all ¢ < T. The variable
{m ¢[l] is the asymptotic alternative of &, ([!] in (I8), given
by

Emill] =E [alfmm <ntT[l]X + H[l); 7e]l), 52 [l])] . (33)

The variable ©441[!] is the asymptotic alternative of v;1[{] in
(T2, given by vg[l] = (LJ[l])~'E[X?] and

6152 [l]gin,t[l]
S{ne 1]
for ¢ > 0, where n[l] is defined in (3).

Finally, we define Zy[l] = 0 and the random variables
{Z41[l]}, which are independent of {W{l]} and correlated
with {Z]l]}. More precisely, {Z;+1][l]} are zero-mean Gaus-
sian random variables with covariance

Veall] = (34)

E[Z[1') Z1[1]]

= L%]E {X finll] (ﬁtTmX + ﬁt[l];nt[l],c}f[l]ﬂ ., (35)
E[Zr 1[I Zeg (1]
— e | fult (250 + 1, e 0. o200 )
finll] (#X + Hy[l);n[l], 07 [l])} (36)

for all 7 € {0,...,t}.

The definitions 23)-(36) provide state evolution recursion
for D-GAMP. The significance of these definitions is presented
in the following theorem:

Theorem 1: Suppose that Assumptions [1} P Bl and ] hold.
Then, for all iterations t = 0, 1, ... D-GAMP satisfies

(z[l], {z:[1}iec, {wlll}iec)
PAQ ZI A Z:ee, AWl hec)s

(. (@[l - L lahee) =5 (X, {H, [ }ec)

in the large system limit, where the zero-mean Gaussian
random variables Z;, Z,[l] and H,[l] are given via @3)~B6)
to represent state evolution recursion.
Proof: See Appendix [Al [ |
Theorem [Tl implies the asymptotic Gaussianity for the input
messages to the outer and inner denoisers. In particular, the
error covariance for D-GAMP converges almost surely to

(37

(38)

(@ral) — )" (#1411 — @)

E Hfin[l] (”TU]X + H,[l]; 0. ]1], ﬁ[z]) - X}
Aol ("x 4 A, o2n) - x})

18z

= covri1e1ll], (39
1 5. !
- Nm (Z441[l] — @)
8 |x2 - gl (2 + Al 20 )|
= covo,e+1[l], (40)
1 a.s.
NiItTiB = E[XQ] = covo,o[!] 41)

in the large system limit.
It is possible to derive a closed form with respect to the
covariance E[H,, [I[]H,[l] when the network is a tree.
Theorem 2: Suppose that Assumption [3 holds and let

M[l] = fout[l](Z[l], Y[l];0¢[l]). Then, the covariance
Y1) = E[H[I]H,[l]] is given by
3 E[M[1] M 1]} ST
Yol = = = + Lol =1 42
;t[] Lgout,r[l]gout,t[l] lle;[l] 7iﬁ,][ — ] ( )
for all 7 € {0,...,t}, with
E[M, [ M, [1]
S, o) = 2
" Lgout,r [l]éout,t [l]
D D N [ | )
UeNINI}

As an initial condition, X, o[l' = 1] =X, 5, 7 s[I' =] is
used, as well as 5, ¢ ][l —1]]=0forall t <T.
Proof: See Appendix (Bl [ |
In evaluating the variance %, ,[l] in @2) for 7 = ¢, the
covariance E[Z,[l]Z,[l]] for 7 # t is not needed. In other
words, the variance variables E[Z2[l]], E[Z[l]Z:[l]], E[Z2[l]]
and ¥, ,[I] satisfy closed-form state evolution recursion with
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respect to these variables. Nonetheless, we have evaluated the
covariance between messages in all preceding iterations to
follow the long-memory proof strategy [46].

We next investigate fixed points of the state evolution
recursion for D-GAMP in tree-structured networks when ho-
mogeneous measurements are considered.

Theorem 3: Let 0[] = 6 and W[l] ~ W iid. in As-
sumption [2] for all [ € £, with some random variable W.
Furthermore, consider g[l] = ¢, fout[l] = fout> and fin[l] = fin
with identical functions g, fout and fi, for all nodes [ € L.
If Assumption [3 holds, then the state evolution recursion with
respect to the variance variables for D-GAMP has the same
fixed points as those for centralized GAMP [18].

Proof: See Appendix [ |

Theorem [3] implies that the consensus is achieved for tree-
structured networks if D-GAMP converges. To realize the
consensus for general ad hoc networks, one may replace
consensus propagation with a distributed protocol in [32], as
used in [33]-[37],

Til] =il +7 Y (efl] — 1))

UeNl

(44)

for T = 1, with v > 0. However, this naive protocol cannot
achieve the same performance as that for centralized GAMP.
Theorem 4: Let T' = 1 and replace the update rule of
#[l] in (I2) with the distributed protocol @4). Suppose that
Assumptions Bl and [ hold. Then, the fixed points of
state evolution recursion for D-GAMP with the distributed
protocol (@4) are different from those for centralized GAMP.
Proof: See Appendix [D} [ |
The intuition of Theorem |4 is as follows: To achieve the
performance of centralized GAMP, the effective signal-to-
noise ratio (SNR) L~272[l]/%;,[(] in the inner denoiser has to
converge toward the same fixed point as that for centralized
GAMP. This convergence is realizable for consensus prop-
agation since both signal power L~27?[l] and noise power
¥, 4[l] are updated via consensus propagation, as shown in
and (42). However, the distributed protocol results
in different protocols for the signal and noise power. As a
result, the consensus for the signal and noise power is not
achievable simultaneously.

C. Bayes-Optimal Denoisers

We consider the Bayes-optimal denoisers in terms of
MMSE. D-GAMP using the Bayes-optimal inner and outer
denoisers—called Bayes-optimal D-GAMP—has three advan-
tages: A first advantage is the optimality in terms of the MSE
performance. A second advantage is that the state evolution
recursion is simplified. This simplification is due to the fact
that the update rules in D-GAMP are matched to the state
evolution recursion. The last advantage is the convergence
guarantee for the state evolution recursion. The convergence
is systematically proved via the long-memory strategy [46].

We first focus on the Bayes-optimal inner denoiser. The
inner denoiser is designed so as to minimize the MSE
with 7 = {. We know that the MSE is minimized if the inner

denoiser is the posterior mean estimator of X given a scalar
measurement Uy[l],
ol .
Ul] = ntTHX+Ht[l],
where H[l] ~ N(0,%;,[l]) is independent of X. Thus, the
Bayes-optimal inner denoiser is defined as the posterior mean
of X given U,[l],

Sl (s e [1], B [1]) = BIX|U[I] = ).

We present an existing result [46, Lemma 2] for the Bayes-
optimal inner denoiser (#6)), which is a key lemma to evaluate
the covariance (36) in the long-memory proof strategy [46].

Lemma 1 ( [46]]): Consider the Bayes-optimal inner de-
noiser [@6). For given t > 0, assume %, ,[l] = 5;,[]] in
@2 for all 7 € {0,...,t} and S,/ [l] > 5, .[l] for all
' <7 <t If 62[l] in BI) is equal to ;[l], then we have
covri1 t+1[l] = covig e41[l] in for all 7 € {0,...,t}.

The assumptions in Lemmal[Il can be understood as follows:
They imply the cascaded representation of U, [l] and U.[!]:
Uil] = %X + H.|l],
where H:[l] ~ N(0,%:[1]) and AH, 4[I] ~ N(0,%,.[I] —
¥;.4[l]) are independent of all random variables. Since U.[l]
is a noisy measurement of U[l], the measurement U, []
provides no additional information on X when U.[l] is ob-
served. Thus, we have E[X|U.[l], U:[l]] = E[X|U:[l]] =
Finll)(U[1); 5[], £¢.4]1]), which is used to prove Lemma [Il

We next design the outer denoiser so as to maximize the
signal-to-noise ratio (SNR) L~272[l]/%;[l] in the measure-
ment model for the inner denoiser. Using the definitions
of m[l] and ¥, ,[l] in and (@2), we find that the SNR
L=2p2[1]/$;.4]l] after consensus propagation is maximized
when the individual SNR L(?[l]/E[M?[l]] before consensus
propagation is maximized for all [ € L.

To solve this SNR maximization problem, we consider a
scalar measurement model for the outer denoiser,

Y[l = gll)(Z11, W), (48)
Zolll =0, Z:l] = ZU+Bll), Zll) = Z1)+B.ll) (49)

for t > 7 > 0, where B[] and B,[l] are independent of W{I]
and zero-mean Gaussian random variables with covariance

E[Z[)B.[l]] = E[Z[])Z.[1]] — E[Z*[1]], (50)
E[B-[[]B:[l]] = E[(Z-[l] - Z[I)(Z:[]] = 2[])], (51

defined with 23), (33), and (@6) for ¢ > 0. While the outer
denoiser in iteration ¢t is defined with only Z[l], the two
random variables Z.[l] and Z,[l] are considered to evaluate
the covariance E[M, [[|M¢[l]] in (@2), which is needed in the
long-memory proof strategy [46].

We evaluate the covariance in (30) and (3I). Using the

definitions (33), (36), (39D, and yields
—E[Z[l] B.[l]] =

(45)

(46)

U-[l] = Ull] + AH1[1], (47)

covo¢[l] = Do (1], (52)

1
La[l]

(53)
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with g o[l] = (LS[l])"tcovgo[l]. The following lemma
presents the optimal solution to the SNR maximization prob-
lem:

Lemma 2: Let Z;[1](0, y; 0;.4[l]) denote the posterior mean
estimator of Z[l] given Z:[l] = 6 and Y[I] = y,

_ (=92
. B 2Pyiizi(ylz)e 2P0t dz
240100,y 1) = L2PV0210 e
I Pyiz(ylz)e >0 dz

where Py ;251 (y|2) represents the conditional distribution of
Y'[!] given Z [l] induced from the randomness of W] through
Y] = gll(Z[l), W[l]). If Do.[l] = ¢.[l] holds, then for
the individual SNR (2, ,[I]/E[M?[] we have the following
inequality:

Egut,t[l] Zt [l] -
DATE {

AUCAUR UIE0) }

(55)
where the equality holds if and only if the outer denoiser is
given by

fonll63i il = © (e - Zt[z;w,y;vt,m])) 56)

’Ut_’t[l]

for any constant C € R.
Proof: See Appendix [E-Al [

Use of the Bayes-optimal inner denoiser (#6) justifies the
assumption 7o [l] = 7;[l] for the Bayes-optimal inner de-
noiser (46), as shown shortly. This paper uses the Bayes-
optimal outer denoiser (38) with C = 1 while [18] and [26]
used C'=—1land C = —6%_42[1], respectively. Of course, these
choices of the arbitrary constant C' do not provide any impacts
on the performance of D-GAMP.

It is open whether any Bayes-optimal denoiser is piece-
wise Lipschitz-continuous. Thus, we postulate the following
assumption instead of Assumption 4k

Assumption 6: The composition fout[l](0, g[l](z, w); Ts ¢[1])
of the measurement function g[l] in (I) and Bayes-optimal
outer denoiser fout[l] in (36) is piecewise Lipschitz-continuous
with respect to (0,z,w) € R3. The Bayes-optimal inner
denoiser fin[l](u; n:[l], £i.4[l]) in @) is piecewise Lipschitz-
continuous with respect to v € R.

The following lemma is a key result to evaluate the co-
variance 3, ,[l] given by ([@2) in the long-memory proof
strategy [46].

Lemma 3: Suppose that Assumption [6] holds and consider
the Bayes-optimal outer denoiser (36) with C' = 1. For given
t > 0, assume v, 4[] = vy .[l] in G3) for all 7 € {0,...,t}
and v, o [l] > v .[l] for all 7 < 7 < ¢. If ,[l] in (34) is
equal to T, .[l], then we have

E[M 1 M[1] = Eout,-[1] 57)
for all 7 € {0,...,t}.
Proof: See Appendix [E-Bl [ |

2The conditional probability density function should be used if Y[l] is a
continuous random variable.

The state evolution recursion for D-GAMP is simplified
when the Bayes-optimal inner denoiser (46) and outer de-
noiser (36) are used. We first present the simplified state
evolution recursion. For the outer module, we have

E[MZ[l]) = E[fout[l](zt[l] Y [1]; 0p,[1])], (58)
Sl = + Sl =1 (69
I'eNTl]
for all 7 € {0,...,t}, with
3 / 1 3 77
Xl == LEDL(] + Z Xyl =]
= IeNTN{}

(60)

As initial conditions, ©o,0[l] = (LS[I]) 'E[X?] and &, , ;[I' —
=%, 7, 7' = 1] are used, as well as &, 7, TJ[Z’

[] =0 for all ¢t < T. Here, the expectation in (@) is over
Y] = gll](Z]l], W[l]) and Z[l] defined in @3), 33, and
(&)

For the inner module, we have

mse¢4q [l]

E [{fmm (2 + A, £l - X}] ,
(61)

Uri41[l] = —=mse;+1[l] (62)

1
Lé]l]
for all 7 € {0,...,¢t + 1}, with n,[l] given in (I3), where
Hi[l] ~ N(0,%4[1]) is independent of X.

The following theorem shows that the update rules in Bayes-
optimal D-GAMP are matched to the state evolution recur-
sion. As a result, the state evolution recursion is simplified.
Furthermore, the state evolution recursion for Bayes-optimal
D-GAMP is guaranteed to converge toward a fixed point.

Theorem 5: Suppose that Assumptions [1 21 Bl B and [6] hold
and consider the Bayes-optimal inner denoiser (46) and outer
denoiser (36) with C = 1. Then, we have the following results:

« Bayes-optimal D-GAMP is consistent: 7,[l] = 7;[l],
Mell] = ne[l], and 52[1] = X, 4[l] hold for all ¢.

o The error covariance N~ !(&,[l] — x[l])T (&[] — z[l])
for Bayes-optimal D-GAMP converges almost surely to
mse,[!] in the large system limit for all 7 € {0,...,¢}, in
which mse;[l] is given via the simplified state evolution
recursion (38)—(62).

« The state evolution recursion (38)—(62) for Bayes-optimal
D-GAMP converges to a fixed point as £ — oc.

Proof: See Appendix [Bl [ |
To the best of author’s knowledge, Theorem [3l is the first
result for the convergence guarantee of the state evolution
recursion in general settings even for Bayes-optimal central-
ized GAMP [18]. Since we know the optimality of Bayes-
optimal centralized GAMP [26]], from Theorems [3] and [3] we
can conclude that the state evolution recursion for Bayes-
optimal D-GAMP converges to the Bayes-optimal fixed point
for the homogeneous measurements in Theorem [3| when the
fixed point is unique.
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Fig. 1. Tree-structured networks with no central nodes.

V. NUMERICAL RESULTS
A. Numerical Conditions

In all numerical results, the i.i.d. Bernoulli-Gaussian signals
with signal density p € (0, 1] are considered: x,, is indepen-
dently sampled from the Gaussian distribution N'(0, p~1) with
probability p. Otherwise, z,, is set to zero. This signal has the
unit power E[2?2] = 1. The noise vector w|l] ~ N'(0, %1 y)
in the measurement model (I) has independent zero-mean
Gaussian elements with variance o > 0. The sensing matrix
A[l] € RMIUXN in node [ has independent zero-mean Gaus-
sian elements with variance (LM [I])~!. As examples of tree-
structured networks, a one-dimensional chain and a tree with
no central nodes in Fig. [I] are considered. These assumptions
satisfy Assumptions [1l 2 Bl and &l

This paper considers two measurement functions g[l](z, w):
One is the linear measurement g[l](z, w) = z + w to test D-
AMP. The other is clipping with threshold A > 0,

A for z+w > A
z4+w for|z+w| <A
—-A forz+w< —A,

which is used to evaluate D-GAMP.

Bayes-optimal D-GAMP is used. When the linear measure-
ment g[l](z,w) = z + w is considered, the posterior mean
estimator in the outer denoiser (36) reduces to

vt [Ztgl—] o2 (y=0).

Thus, the Bayes-optimal outer denoiser (36) with C = 1 is
given by

9ll](z,w) = (63)

Zu(1)(0, y; vell]) = 0+ (64)

-y
ve[l] + 02
In this case, D-GAMP is essentiallyﬁ equivalent to D-
AMP [43].

For the clipping case (63), we have the following Bayes-
optimal outer denoiser (36) with C' = 1:

fout [l](ea Y; Ut[l]) =

Jout[l](0, g3 vel]) = (65)

0—y
vell] + o2
pa(A —0,vl] + 0?)

Q (A= 0)(vell] +02)71/2)

3D-AMP [43] replaced the quantity f;ult’t[l} given in @ with the well-
known estimator M ~1[1]||2:[I] — y[{]||? in (I&). However, numerical simu-
lations showed that this estimator or its robust alternative had large errors for
finite-sized systems with a non-negligible probability. Thus, this paper uses
the original definition (@) in D-AMP.

for [y| < A,  (66)

fout [l](@, Y, ’Ut[l]) = —

(67)

10

for y > A, and

pa(A+ 0,0l + 0?)
Q ((A+0)(ve[l] + 02)=1/2)

for y < —A. In these expressions, pg(-;v) and Q(x) denote
the zero-mean Gaussian probability density function with vari-
ance v and complementary cumulative distribution function
of the standard Gaussian distribution, respectively. It is an
exercise to confirm the piecewise Lipschitz-continuity of the
composition fout[1](6, gli](z,w); v¢[l]) in Assumption [6 by
using the well-known inequalities z(1 + 22) " !pg(z;1) <
Q(z) < 27 'pg(x;1) for all z > 0.

Damping [56]-[58]] is a heuristic technique to improve the
convergence property of message-passing algorithms for finite-
sized systems. In this paper, damping was used just after inner
denoising in each node: The update rules (I3) and were
replaced with

Joutll](0, y; ve[l]) = (68)

@1 (1] = XSl @1 me[l), 07 (1) + (1= X) &[], (69)
0'2 in.t
weaall] = g Elm - ul, o)

with damping factor x € (0,1]. While it is possible to
design t-dependent (or [-dependent) damping factors via deep
learning [59], for simplicity, this paper considers the constant
damping factor y for all ¢ and [, which was optimized via
exhaustive search.

As a baseline, this paper considers centralized AMP [1]]
or GAMP [18] using » ;. M[l] measurements. The purpose
of D-GAMP is to achieve the same MSE performance as the
corresponding centralized GAMP. In all numerical results, 10*
independent trials were simulated.

B. Chain Network

The one-dimensional chain network in Fig. [Ilis considered.
The linear measurement is first assumed to compare D-GAMP
with conventional D-AMP [43]. D-GAMP with T[l] = 1 is
essentially equivalent to D-AMP [43] for the linear measure-
ment.

Figure 2] shows numerical comparisons between D-GAMP
and D-AMP [43]] in terms of the total number of inner itera-
tions for consensus propagation. As proved in Theorem[3] the
state evolution recursion for D-GAMP converges to the fixed
point of the state evolution recursion for the corresponding
centralized AMP. Furthermore, D-GAMP for T'[l] = 2 and
J =1 converges more quickly than D-AMP [43] with J =1
or J = 2 while J > 4 was used in [43]]. These observations
imply that D-GAMP can reduce network traffic for consensus
propagation compared to D-AMP [43].

We next consider the clipping case in Fig. Bl The basic
observations are similar to those in Fig.[2l As a heterogeneous
case, D-GAMP with T'[l] = 2 for odd [ and T'[I] = 1 for even [
is shown. This case corresponds to a heterogeneous situation in
which the odd-numbered nodes have twice higher processing
speed than the even-numbered nodes, so that they can repeat
two GAMP iterations while the even-numbered nodes compute
a single GAMP iteration. The performance of D-GAMP in the
heterogeneous case is between that in the two homogeneous
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10 D-GAMP sim (T11]=2, J=1) +
D-AMP [43] sim (T1/]=1,J=1) *
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Fig. 2. Largest MSE versus the total number of inner iterations for consensus
propagation in the linear measurements. One-dimensional chain network with
L = 4 nodes, measurement dimension M [l] = 480, signal dimension N =
6400, signal density p = 0.1, SNR 1/¢2 = 30 dB, and damping factor x =
1. The solid curves show state evolution results while numerical simulations
are plotted with markers.

0
10 D-GAMP sim (T1/]=2, J=1) *
D-GAMP sim (heterogeneous)  °
D-GAMP sim (T/]=1, J=1) *
100 F D-GAMP sim (T[/]=1, J=2) ,

D-GAMP (T[/]=2, J=1) ——
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3

107 ¢ ]

10 ‘ ‘ ; :

0 4 8 12 16 20

Total number of inner iterations for consensus propagation

Fig. 3. Largest MSE versus the total number of inner iterations for consensus
propagation in the clipping case. One-dimensional chain network with L = 4
nodes, measurement dimension M [I] = 800, signal dimension N = 4000,
signal density p = 0.1, threshold A = 2, SNR 1/02 = 30 dB, and damping
factor x = 1. The solid curves show state evolution results while numerical
simulations are plotted with markers. As a heterogeneous case, T'[l] = 2 for
odd I, T[l] = 1 for even [, and J = 1 were considered.

cases for J = 1: For T'[[] = 1 and T'[l] = 2 the odd-numbered
nodes wait for the completion of one and two GAMP iterations
in the even-numbered nodes, respectively.

C. Tree Network

The tree network with L = 8 nodes in Fig. [[lis considered.
D-GAMP with T'[l] = 1 and J = 1 is compared to centralized
GAMP [18] in terms of the number of iterations ¢. Figure [
shows that D-GAMP converges to almost the same MSE
performance as that of the corresponding centralized GAMP
in the three cases N = 500, N = 1000, and N = 2000. As
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¢ Centralized GAMP [18] N=1000 =
N N=500
AN State evolution ]
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10—4 L . . . .
0 10 20 30 40 50 60
Number of iterations in the inner module
Fig. 4. Largest MSE versus the number of iterations in the inner module

for the clipping case. Tree network with L = 8 nodes, compression
ratio M[l]/N = 0.05, signal density p = 0.1, threshold A = 2,
SNR 1/0% = 30 dB, T[l] = 1, and J = 1. For N = 500, 1000, 2000,
D-GAMP used damping factors x = 0.9, 1, 1, respectively, while centralized
GAMP used x = 0.9,0.95,0.95.

0
10 D-GAMP sim (homogeneous)  +
D-GAMP sim (heterogeneous) — *
Centralized GAMP sim [18]
100 F * D-GAMP (homogeneous) ,

X D-GAMP (heterogeneous)
X Centralized GAMP [18]

Largest MSE
3
[y}

0 5 10 15 20 25 30
Number of iterations in the inner module

Fig. 5. Largest MSE versus the number of iterations in the inner module for
the clipping case. Tree network with . = 8 nodes, signal dimension N =
600, signal density p = 0.1, threshold A = 2, SNR 1/0? = 30dB, T[l] = 1,
and J = 1. M[l] = 90 and x = 0.95 were considered in a homogeneous
case while M [I] = 150 for odd I, M[l] = 30 for even [, and x = 0.95 were
considered in a heterogeneous case. Centralized GAMP used damping factor
x = 1.

predicted from state evolution, D-GAMP needs more iterations
than the corresponding centralized GAMP, because of itera-
tions for consensus propagation. Interestingly, the optimized
damping factors for D-GAMP are slightly larger than those
for the corresponding centralized GAMP. This observation is
because consensus propagation plays a role as kind of damping
to slow down the convergence of GAMP. Thus, consensus
propagation does not degrade the convergence property of
GAMP for finite-sized systems.

We next consider heterogeneous measurements in Fig.
The odd-numbered nodes have M[l[] = 150 measurements
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while the even-numbered nodes have M[l] = 30 measure-
ments. D-GAMP for the heterogeneous case cannot approach
the same MSE performance as that of the corresponding
centralized GAMP while D-GAMP for the homogeneous case
M]l] = 90 can achieve the same performance. This is because
the Onsager-correction in (@) and (16) depends on the node
index [. To achieve the performance of centralized GAMP,
an additional protocol is needed to realize the convergence
of the Onsager-correction in D-GAMP toward that in the
corresponding centralized GAMP.

VI. CONCLUSIONS

This paper has proposed D-GAMP for signal reconstruction
from distributed generalized linear measurements. D-GAMP is
applicable to all tree-structured networks that do not necessar-
ily have central nodes. State evolution has been used to analyze
the asymptotic dynamics of D-GAMP for zero-mean i.i.d.
Gaussian sensing matrices. The state evolution recursion for
Bayes-optimal D-GAMP has been proved to converge toward
the Bayes-optimal fixed point—achieved by the corresponding
centralized GAMP—for homogeneous measurements with an
identical dimension in all nodes when the fixed point is unique.

D-GAMP has two limitations: One limitation is that zero-
mean i.i.d. sensing matrices are required. As long as GAMP
is used, this assumption cannot be weaken. To solve this
issue, GAMP needs to be replaced with another sophisticated
message-passing algorithm.

The other limitation is in the assumption of tree-structured
networks. To weaken this assumption, we need to replace
consensus propagation with another sophisticated protocol for
average consensus. As proved in Theorem ] the conventional
protocol for average consensus cannot be used for this
purpose.

APPENDIX A
PROOF OF THEOREMII]

A. Preliminaries

We present a few technical lemmas required in proving
Theorem ] via state evolution. We first formulate a general
error model that describes the dynamics of estimation errors
for D-GAMP.

Definition 6 (General Error Model): For some 7[l]] € R
and Cy;[[][l'] € R, the general error model is defined with
five random vectors {by (1], (1], hy[l], A (1], @py (1)1,

gl ) mya]l] Crolllll] = 1m
MW—LW]{&MIM+§M&Ny41M}
+ Alllq,[l] (1)
G z v
0 ﬁmqu(m[y+&m¢u wLym,tm), a2
rlt] = 2ol g 1) — AT, 3)

L
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all] = gﬁ[f]m *

[t/T]

+ Z th,i[l][l/]

i=0 I/l

clll = fulll (" + Rl o200 -

Crolllll] -1
éout,t [l]

hy_ir[l']

)
—out,t—iT[ /]

_ €t+1 [l] T
gout,t-i-l [l]
(75)

where gout t[] gm t[] gout t[ ]’ and <t[] are given in @
({18), @24, and 23, respectlvely As initial conditions, we use
aoll] = &1 olllSoll]z, m_1[l] = m 4[] = 0. In particular,
we have by [l] gout 0[ ]CO[ ] [ ]

The vector hy [I] represents the dynamics of protocols for
average consensus. The other vectors describe the dynamics
of GAMP iterations. By selecting {C};[I][I']} appropriately,
we obtain the error model of D-GAMP under Assumption

Lemma 4: Suppose that Assumption 3 holds, let C, o[l][/] =
1, and define

hy[l]

(74)

I .
bi[l] = 24[I] gout,t[l]Z[lL my[l] = 24[l],
Rell] = Eour ] (wtm Lgi[j]t[z] w) ,
hall] = @l = e, gl = o)~ 2ime, (76

with Eou e[l ] &mt ¢[1], G[1], me[l], and n, [l = U] givenin @),
@C4d, @3), 29), and @0), respectively. 'i'hen there are some
{Ce 1} such that these vectors satisty the dynamics (71))—
(Z3) in the general error model.

Proof: The expression with Cy o[!][l] = 1 is obtained
by using z[l] = All]z and the definition of 2;[l] in (T6).
The expression follows from the definition of 2.[l] in
@). Using the definition of =[] in @) yields (Z3). The
expression (73) follows from the definition of ;1 [l] in (I3).

We confirm (74). Let

7, [l—=1]
Bt =z i) - 2 2

&[], and 7:[I] in @), (I2), and

(77)

Using the definitions of x,[l],

29) yields
h(l] = i+ > h

§out t l’EN

(78)

Furthermore, we use the definitions of z, ;[I — I'] and
n, j[l — '] in (@) and (B0) to obtain

h,[l y
h, ;1= V]= % + Y k=1, (79
eN\{I"}

2out,t

with b, o[l" — 1] = h; ¢ ;[I' — []. As an initial condition,
h, 7 ;[I' = 0 are used for all + < T. The tree assumption
in Assumption l implies that h, ;[I" — [] does not contain
the messages h._ []/5out [[] for any 7 < ¢ computed in

node [. Comparing the expression of h[l] with (74), we have
Cio[l][l] = 1 and find that there are some {C} ;[l][I']} such
that h.[l] reduce to ([74). Thus, Lemma [ holds. [ |
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The vector b:[l] corresponds to the estimation errors of
&out 211G [1]z[1] before outer denoising, while hy[l] represents
the estimation errors of L~1j;[l]x before inner denoising.

In Bolthausen’s conditioning technique [[15], the dynamics
of the vectors in the current iteration is evaluated via the
conditional distribution of {A[l]} given those in all previous
iterations, the signal vector @, and the noise vector {wll]}.
For notational convenience, we use the following notation in
representing conditioned vectors:

Definition 7: For variables {a.[l] € R} associated with
node [, the column vector a,[l] contains the variables for the
iterations 7¢[l] in (3) where node [ updates messages,

all] = (@¥1),...,al" )T, (80)

with a;[l] = (air[l],. .., @minge,iv+703—1[1]). For column
vectors {v.[l]}, the matrix V,[I] = {v.[l] : 7 € T[]} has
|7¢[1]| column vectors aligned in the same manner.

We define the conditional distribution of { A[l]}. Let B[] €
RMIUXIT:I denote the matrix defined from {b,[l] : 7 € T;[I]}
in Definition[7 Similarly, we define M [l], H,[l], H,[l], and
Q,[!]. Furthermore, let

€0 ={{boll] : 1 € L}, {mo[l] : I € L}}, (1)

Cuy={{Bu[l]:le L} {Mu[l]:le L}, {H,]:leL}
(HQ) L€ £1,1Quall s 1€ £}) (82)

for ' > 0 and ¢ > 0, where the columns in the five matrices
satisty (ZID—(73) in the general error model. The set &; ; con-
tains the messages that are computed just before updating b [(]
in (7I) while &, 41, includes them just before updating h|[!]
in (73). The signal and noise vectors © = {z, {w(l] : | € L}}
are always fixed. Thus, the conditional distribution of {A[l]}
given &, , and © is considered in evaluating the distribution of
b:[!] while the conditional distribution of { A[l]} given ;41
and © is considered in evaluating the distribution of h:[l].

The conditional distributions of A[l] are evaluated via the
following existing lemma:

Lemma 5 ( [12]): Suppose that Assumption 3] holds. For
some integers ¢[I] < M([l] and t'[[] < N, let X [I] € RMU>#
Ull] € RV*!W, y[I] € RNVl and V[I] € RMUIx[H
satisfy the following constraints:

X[ =AQul, Y[ =A[l"V]. (83)
o If U[l] has full rank, then the conditional distribution of

All] given X|[I] and U[l] is represented as

All] ~ X[U'[I] + A[l] Py, (84)
where A[l] is independent of {X[/],U[l]} and has in-
dependent zero-mean Gaussian elements with variance
(LM[i])~".

o If Both U[!] and V'[{] have full rank, then the conditional
distribution of A[l] given €[l] = {X[I],U[I],Y[l], V[]|}
is represented as

A[l] ~ Avias[l] + Py All] Py, (85)
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with
Apias[l] = XU + (VI TY T[] Py

= (Vi)Y + Py XU, (86)
where A[l] is independent of €[l] and has independent
zero-mean Gaussian elements with variance (LM [l])~!.

Lemma [3 and Assumption @] imply that {A[l]};c. are
conditionally independent given {€[{]}c..

The following lemma is used to design the Onsager correc-
tion in D-GAMP.

Lemma 6 (Stein’s Lemma [49)], [60]): Suppose that
{Z.}t_, are zero-mean Gaussian random variables. Then, for
any piecewise Lipschitz-continuous function f : R — R we
have

t
Z)) =Y E[ZuZ, B0, f (21, ...

T=1

E(Z f(Z1,... , Z1)],

(87)
where 0, denotes the partial derivative with respect to the 7th
variable.

Proof: Confirm that it is possible to replace the Lipschitz-
continuity in the proof of [49, Lemma 2] with the piecewise
Lipschitz-continuity, without any changes in the proof. [ ]

Note that any piecewise Lipschitz-continuous function f
is almost everywhere differentiable. Furthermore, the defini-
tion of the piecewise Lipschitz-continuity implies the bounds
|f(Z)| < A|Z| 4+ B and |f'(Z)| < C for some constants A,
B, and C. Thus, both sides in (87) exist for any piecewise
Lipschitz-continuous function f.

B. State Evolution

We define five kinds of random variables {B[l], M:[l],
Hy[l], H[l], Qi11[l]} to represent the asymptotic dynamics
of the general error model. Consider the initial condition
Qoll] = —f_;ultyo[l]go [[]X, with X defined in Assumption
The random variables {B,[l], My[l], H[l], H;[l], Qu41 1]} are
defined recursively.

Let {B:[l]} denote the sequence of zero-mean Gaussian
random variables with covariance

E(B,[l]B. 1] = L E(Q. [1Q-[I].

Lo[]] (88)

The random variable M,[l] represents the asymptotic output
of the outer module in iteration ¢, given by

Myl] = fouell(Z:[1], Y{IT; ve 1)), (89)
with Z[l] = —&out.0[]¢y 1] Boll] and
_ Gell]

Zill] = Bell] + ) VAR (90)

where Eout ¢[1], (:[I], and 94 [1] are given by 24), @23), and (34),
respectively.

Similarly, let {H;[l] € R} denote zero-mean Gaussian
random variables with covariance

o

E[HT/[Z/]HT[I]] L
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We define the random variable H,[l] recursively as

= o Hyl] Cioll]ll] =1
o R Tl
s el
+ Z Z tl 5 [ ©2)
i=0 I'#l 2out,t—iT

Then, the random variable Q:1[l] describes the asymptotic
output of the inner module, given by

G [l X,
gout t+1 [l]
(93)

with Eouee[l], Ce[l], Me[l] and 72[l] defined in @24), @3,
(29) and (BI). State evolution recursion is obtained via these
random variables.

We are ready for presenting state evolution results for the
general error model. Note that Assumption 3] is not required
in state evolution analysis. Thus, the following theorem is
applicable to general ad hoc networks.

Theorem 6: Postulate Assumptions [Il 2l Bl and @ Then,
the outer module satisfies the following properties for all 7 €
{0,1,...} in the large system limit:

(Oa) Let B.[I] = Q![l]g,[l] and g+[I] =
forall [ € £ and 7 > 0 we have

b.[1] ~ B [l]B, ] + M [lJo(1) + Alllg; [I]

Qualtl = fult] (2 + Eflsnnfl, o201 ) -

Péf[” q.[!]. Then,

(94)

conditioned on &, and ©, where { A[l]} are independent
random matrices and independent of {&, ., ©}. Each
All] has independent zero-mean Gaussian elements with
variance (LM[l])~!

(Ob) For all I',l € £, and 7" € T41][l],

o

Ml NL[I

(Oc) For B-y1[l] = {B~[l] € R : 7 € Tr11]l]}, suppose

that {B;41[l]}ic, are independent with respect to [ and

independent of {W{l]};c.. For each I, B[] are zero-
mean Gaussian random variables with covariance

by [']b 1] - ar g, 1= 0. (99

B(B- Bl = Z7EQ/ 1001 09
for all 7/ € T71[l]. Then, we have
({brll): 7 € Toa W hice, {wlllhee)
" (Bl e, AW D hiec), o7
Eout,r (1] =5 Eous,r[1]- (98)
(Od) For all I € £ and 7' € T;41[l], we have
o =5 222 Ueg g o)

(Oe) For ¢ > 0 used in Assumptions [1 and Bl the vector
m.[l] has bounded (2 + ¢)th moments in the large
system limit. Furthermore, the minimum eigenvalue of

[Z]MI_H[Z]MTH[Z] is strictly positive in the large
system limit.
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On the other hand, the inner module satisfies the following
properties for all 7 € {0,1,...} in the large system limit:
(la) Let a.[l] = MI[l]m,[l] and m1[l] = Py, [l

Then, for all [ € £ we have

holl] ~ A" [ljmo[l] + o(1)qo[l] (100)
conditioned on &; ¢ and ©. For 7 > 0,
hell] ~ H o [+ Q4 lo(1) + A [[lm[1) (101)

conditioned on &, , and ©. Here, { A[]} are indepen-
dent random matrices and independent of {&,41 ,,0}.
Each A[l] has independent zero-mean Gaussian elements
with variance (LM[])~*

(Ib) Forall I’,1l € £, and 7" € T, 41][l],

OR%
LRIk, - 2
LR - T
(Ic) For H,y1[l] = {H[]] €e R : 7 +1[1]}, suppose
that {#+1[l]}1c, are independent with respect to [ and
independent of X. For each I, H,4+1[l] are zero-mean
Gaussian random variables with covariance

mL[lJm,[1] %3 0.

(102)

B (H 1] = TEM- M) (103

Then, for all [ € £ we have

({horll] s 7 € Temalhiers @) =8 ((Healll e, X),

o (104)
Ein,r (1] =3 En 1] (105)
(Id) For all I € £ and 7’ € T;4+1[l], we have
1 a.s. 7in.7'l
AL lg, ) = Sl
“E | Ml] | = + —= M_[I
[ ] <§out,~r[l] §out,T[l] - [ ]>]
(106)

(Te) For € > 0 used in Assumption [Il the vector q,_ (]
has bounded (2 + €)th moments in the large sys-
tem limit. Furthermore, the minimum eigenvalue of
N*1Q3+2[Z]QT+2[Z] is strictly positive in the large sys-
tem limit.

Proof: The proof by induction consists of four steps.

A first step is the proof of Properties forr =0

presented in Appendix [A-C| while a second step is the proof

of Properties for 7 = 0 presented in Appendix

For some ¢t € N, suppose that Properties and
Properties are correct for all 7 < ¢. We need to
prove Properties for 7 = ¢ as a third step. See
Appendix [A-E] for the details.

The last step is the proof of Properties forr =t
under the induction hypotheses and for all
T < t, as well as Properties for 7 = t proved in
the third step. See Appendix [A-H for the details. From these
four steps we arrive at Theorem [ ]

Theorem [6] implies that the general error model ([ZI)-
(@A) satisfies the asymptotic Gaussianity in each node, i.e.
Properties and Since no additional assumptions on
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the network are postulated, Theorem[f]is available as a frame-
work to design distributed protocols for average consensus in
general networks, instead of consensus propagation for tree-
structured networks.

We use Theorem [6] to prove Theorem

Proof of Theorem[ll From Lemma [ and Theorem [6] it

is sufficient to prove that (88)—(93) to represent state evolution
recursion for the general error model reduces to that in
Theorem [1] for D-GAMP. The expression (26) follows from
Property [(Ic)] in Theorem [6l Using (78) and in Lemma [4]
we find the equivalence between H,[l] in and H,[l] in
(92).

We derive the covariance for {Z[l]} and {Z[!]}. Usmg the

definition of Z;[l] in @0) and Z[I] = —&out.0[l]¢y 1] Boll]
yields

w20 = oo | (3ol - Sl )

gout,‘r [l] 60 [l]

(- ¢ ) *
- I%’f] (0= z2 o) (@ 22
= E [ fin,r—1[0] fin,e—1[1]] » (107)

Lé[]
with fin-[l] = finll)(L7'7-[1X + H,[I]; n,[I],52[I]). Here,

the second equahty follows from Property [( m ) in Theorem [6]
and Qo[l] = §0ut oll1¢o[] X . The last equality is obtained
from the definition of Q:[1] in ©@3).

Similarly, we obtain the other covariance,
o

E[Z[I')Z]l] = La[l]E[Xﬂ, (108)
E[Z[I'] Zy41]1]]
_ O ﬁt_[l] T 72
- e [t (24 Al o) oo
Thus, we arrive at Theorem [ |

C. Outer Module for T =0

Proof of Property [[Ob)} From Assumption 3] and the
definition by[l] = A[l]q,[!] in (1), the vectors {bo[l] : | € L}
conditioned on {g,[l] : I € L} are independent. Furthermore,
bo[l] conditioned on {g,[l] : I € £} has independent zero-
mean Gaussian elements with variance (LM[I])~| q,[1]|>.
Assumption.implies that the variance (LM [I])~||q,[l]||* =
(LM~ (fouco[KOH) |z||* converges almost surely to
(LS[1))~(€4.0[Co[1]) *E[X ?] in the large system limit. Thus,
the strong law of large numbers implies Property [(Ob)] for
T=0. ]

Proof of Property [(Oc)y We first prove the former
convergence in Property [(Oc)] with [55, Lemma 1]. In proving
[55, Lemma 1], pseudo-Lipschitz functions were considered.
We only present the main idea for generalizing them to
piecewise pseudo-Lipschitz functions.

As an example, consider the expectation E[f(z)] of a
piecewise pseudo-Lipschitz function f(z) for an absolutely
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continuous random variable z € R. We separate the domain
of f into two sets: the set of all discontinuous points D
and the remainder R\D. By definition, z is in R\D with
probability 1. We evaluate the expectation as E[f(z)] =
E[f(z)|z € D|P(z € D)+ E[f(z)|z ¢ D]P(z ¢ D). The
former term does not contribute to the expectation, because
of P(z € D) = 0. The latter term can be bounded in the
same manner as in [55, Lemma 1] since conditioning z ¢ D
does not affect the distribution of absolutely continuous z.
According to this argument, we can generalize [55, Lemma 1]
to a lemma for piecewise pseudo-Lipschitz functions. Thus,
we regard [55, Lemma 1] as a result for piecewise pseudo-
Lipschitz functions.

From Assumption [3] and the definition bo[l] = All]g,[!]
n [, using [55, Lemma 1] and Property for 7 =0

yields {bo[l]} L) {Byll]}. Since the noise vectors {wll]}
are independent of {by[l]}, we use Assumption 2] to arrive at
the former convergence in Property for 7 = 0.

We next prove the latter convergence in Property In
proving [12, Lemma 5], two properties of Lipschitz-continuous
functions were used: almost everywhere differentiability and
the boundedness of derivatives, which are satisfied for any
piecewise Lipschitz-continuous function. Thus, [[12| Lemma 5]
is available for all piecewise Lipschitz-continuous functions.
Since  fout[!](0, g[l](z,w);vo[l]) is a piecewise Lipschitz-
continuous function of (z,w) with vg[l] = y[l], we use [12}
Lemma 5] and the former convergence in Property for
7 = 0 to find that oy ,0[l] in converges almost surely to
fout,O[l] in ~ n

Proof of Property [( m Under Assumption A we can

use Property [OS) or mofl] = fou 1)(0, g1 =[], w[]); vl

with vo[l] = v0[l] and 2[l] = —Eouro[l ]CO [1]bo[l] to obtain

M—[l]boT[l]mo[l] =3 E[Boll] fouell] (0, 1) (Z[1), W [1]) 5 w0]1])]

o gout., [l] - _ gout., [l] 2

= =5 EBoll Boll] (=Golt) = T3 El(@Qolt)’]
(110)

for Z[l] = —&ou0[l¢y '[1]Bo[l], where the first and second

equalities in (I1Q) follow from Lemma [6] the definition of
Co[l] in @3) and from Property for 7 = 0, respectively.
Thus, Property holds for 7 = 0. [

Proof of Property[(Oe)} See [55] Proof of Property (A4)
for 7 = 0 in Theorem 4]. According to the argument in the
proof of the former property in Property for 7 = 0, we
can generalize pseudo-Lipschitz functions in [55]] to piecewise
pseudo-Lipschitz functions. [ ]

D. Inner Module for 7 =0

Proof of Property [(Ia); We evaluate the distribution of
ho[l] in conditioned on &; o and ©. We use Lemma [3]

under the constraints by [l] = A[l]q,[!] for all | € £ to obtain
bolllgo[l]
Afl] ~ 2090 U Ay (111)
=T ~ AP

conditioned on €; o and ©, in which {A[l]} are indepen-
dent matrices and independent of {&;,, ©O}. Each AJl]
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has independent zero-mean Gaussian elements with variance
(LM]II))~L. Applying this expression to ho[l] in (Z3), we have

Sontolll gy -

T
%qo[l] + PL iy A o[l
O (112)

conditioned on &; ¢ and ©. From the definition P‘JI_()[” =1I-
llaoll]ll~2qo[1ql 1], we use [12, Lemma 3(c)] to have

holl] ~

T ~

oA [moll] 2 A" lmoll) + o(gll.  (113)

To prove Property[(Ta)| for 7 = 0, it is sufficient to prove that
by [1Jmoll]/|lqo[l]]|? converges almost surely to L~ &qus.o/]
in the large system limit. Using Property [(Od)| for 7 = 0
yields N~1b [[fmo[l] 3 L™ €ous.0[lJE[Q2[!]]. Furthermore,
Assumption [ implies N~!(|go[l][|> %3 E[(Qo[l])?]. From
these observations we find that by [I]mo[l]/||qo[l]||> converges
almost surely to L', o[l] in the large system limit, which is
almost surely equal to L™ '¢,u4.0[l], because of Property
for 7 = 0. Thus, Property holds for 7 = 0. [ |

Proof of Property [[Ib); Property for 7 = 0 implies
the conditional independence of {hg[l] : | € L} given & ¢
and O in the large system limit. Thus, we use Property
for 7 = 0 and [49, Lemma 3] to obtain

1 Trqs a.s. 5l,l’ 2
S hall] ™ ol 4 o(1). 114)
Thus, Property holds for 7 = 0. [ ]

Proof of Property [(Ic} We find the almost sure con-
vergence o?[l] “3 &2[l] for (I4) and (BI), because of Prop-
erty for 7 = 0. We only prove the former convergence
because the latter convergence &y o[l] 5 & oll] follows
from the former convergence in Property for 7 = 0,
o2[1] %3 &2[l], and [12, Lemma 5]. Using Properties and
for 7 = 0, Assumption [Il and [53, Lemma 1], we ob-
tain the convergence ({ho[l]}icc, @) FLE) ({Ho[ll}ier, X),
in which {Hy[l]} are independent of X and zero-mean
Gaussian random variables with covariance E[Hy[l]Hy[l']] =
L=18, pE[ME[l]]. Thus, Property holds for 7 = 0. [ ]

Proof of Property [(Id)} Using the definition of g,[l] in

(3 yields
el = Sl (e + At of10)
Gl 1
gout,l[l] Nho [ ]

S5 [Holtfull (B + Aol o)

Gl
gout 1[]

E[Ho[l]X], (115)

where the last follows from the definition of hol[l] in (74)
and Property for 7 = 0. Since we have E[Hy[l]X] =

16

E[Ho[l]JE[X] = 0 in the second term, we use the definition
of Hyll] in (@2) and Lemma [@] to evaluate the first term as

E [ Holl] fnlt) (L™ 701X + Ho[t)s molt), 5311)]

_ Swolll o, gz
§out 0[ ]
- Cooll][l!
+ Enall] 3 L]
I’#1 2out,0
= Coolttl 220 giasg), (16
Lgout 0[ ]
where the last equality follows from Property for 7 = 0.
Thus, we arrive at Property for T = 0. [
Proof of Property [(Ie) See [55] Proof of Property (B4)
for 7 = 0 in Theorem 4]. |

E. Outer Module for T > 0

For some ¢t € N, suppose that Properties [(Oa)H(Oe)| and
Properties [(Ia)H(Ie)| are correct for all 7 < t. We prove Prop-
erties [(Oa)H(Oe)| for 7 = ¢ under these induction hypotheses.

Proof of Property [[Oa}; Let

Ain t]l] :diag{% : Teml]}, (117)

A [l = (Crolllll] - 1)diag{#7m[l] 7€ Tl
2out,T (118)
Aoutt[l] :diag{go%ﬁm ‘e 7;[1]}. (119)

From the definitions of b:[l] and h.[l] in (ZI) and @@3), A[l]
conditioned on &, ; and © satisfies the following constraints
just before updating b,[l] for all [ € L:

By[l] = [0, My 1[l|Ain s 1 [1] + M, [1]A,, 1]
= A[llQ,[1], (120)

QU A all] — HL[l) = AT[)M, [
forall [ € L.

We let U[l] = Q,[l] and V'[I] = M[l] in Lemma[3 Since
the induction hypotheses and for 7 = t — 1 imply
that M[l] and Q,[!] have full rank, we can use Lemma [3] to
obtain

H,[l] 121

All] ~ = [0, My [[JAin 1 [l] = M, [1Ay,, 4 (1] Q111
+Bi[Q][1) - (M) HY [[|Pg,

+ PLthA[Z]PCgtM (122)

conditioned on &; ; and ©, where we have used Q; [l]Pé‘Ml] =
O. Here, {A[l]} are independent matrices and independent
of {&,, ©}. Each A[l] has independent zero-mean Gaussian
elements with variance (LM [l])~!



IEEE TRANSACTIONS ON INFORMATION THEORY

Let 3,[]] = Q][l]q,[l] and g}[I] = Pé_) q:[!]. Further-
more, we write the 7th element of 3,[I] as 5 . [l]. Substituting
the expression of A[l] into the definition of b;[l] in (ZI) yields

Bg - Y Derllnrall

]
TETHN{0}

[
Lé[l]gout,‘r—l [l] M=
Z ﬁt ‘r[ ]

gin,‘r—l [l]
TET:] \{O}

Lol 0!
— (M HE a1 + ar i Alg 1]

Cto[][]

outt 1

by[l] ~ 1[7]

— (Ceoll]ll] - 1)

Eini—1ll] | mya]l]
i {s ot

conditioned on &, ; and O.

We simplify the expression of b;[l]. Using g;-[l] = q,[l] —
Q.[1]3;]l] and the induction hypothesis forr =t—1
yields

(M THT 1)g11]
ws. [l {_mum ﬂso“””‘llmt_l[u}

1
i mtl[l]} (123)

Lol | Sout.e— ] -
ﬂ T[l]glnf l[l]
+Mflo(l)~ Y TEERTm
reT[I\{0} LollEout. - 1]
Bt ‘r[l]gln T*l[l]
—(Collll =1) Y —EEE—mme [l] (124)
TET N0} Lolle, .11 1

Substituting this expression into the representation of b:[l] in

(123) and using the induction hypotheses and [(Ic)| for all
T < t, we arrive at

bel] ~ Be[l]B,[1] + M[l]o(1) + Py, Alllg; [1]

conditioned on €&, and O, which is equivalent to Prop-
erty for 7 = t, because Pi/ltm;&[l]qtl (1] = Alllg-[1] +
M [l]o(1) holds due to [12] Lemma 3(c)]. [ |

Proof of Property [(Ob)} For all 7/ < t, using Prop-
erty [(Oa)| for 7 = ¢ yields

(125)

I a._S. 1 /
M—mbff[l]bt[l] = M—[l]b;f,[z 1B, 18,11 + o(1)
= N(Sll;g[ ]QE [1Q.[1]B:[1] + o(1)
N Nifs[] gl +o(1),  (126)

where the second and last equalities follow from the induction

hypothesis[(OB)| for 7 < ¢ and 3,[l] = Q] [l]q,[l]. respectively.
For 7 = t we use Property [(Oa)] for 7 = ¢ and [49

Lemma 3] to obtain

b/ [I')b[l] as.

g BB
+ spemllat 0 + o)
s N(Z;Hu VIR + gt W1P) + o(1)
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with q”[ PH , where the second equality follows
from the induction glypothesmfor 7 < t and the definition
B,]l] = Q] [lq,[l]. Thus, Property [[Ob) holds for 7 =¢. M

Proof of Property [[Oc]; The former convergence in
Property for 7 = t follows from Property for
7 = t, [55, Lemma 1], and Assumption We find the
convergence v;[l] %3 o;[1] for (I7) and (34) from the induction
hypotheses [(Oc)| and [(Ic)] for all 7 < ¢. The latter convergence
Eout,t]!] g goutyt[l] follows from the former convergence in
Property [[Oc)| for 7 = ¢, v[{] 2% ,]1], and [12, Lemma 5]. m

Proof of Property[(Od); Using the definition of m,.[l] in
(Z2) and Property for 7 =t yields

1
Sl

a.s. Et[l] -

4 g [Brlmfout 0 (Btm + 7 210, v tm)]

= &mt,f [JE[B.[1]B:[l]]
Gll] # - ,
! <som,tm Gow 1]~ G0 ) ELB 121

_ gout,t[l]
Lé[l)

with (;[l] given in (23), where the first and second equalities
follow from Lemma [@ and Y] = g[I](Z]I], W][!]) and from

Property [(Oc) for 7 = t, respectively. Thus, Property [(Od)|

E[Q- [1Q:[1]], (128)

holds for 7 = t. [ |
Proof of Property[(Oe)} See [55] Proof of Property (A4)
for 7 = ¢ in Theorem 4]. |

F. Inner Module for 7 > 0
Suppose that Properties|(Oa)H(Oe)|and|(Ia)H(Ie)|for all T < ¢

are correct. To complete the proof of Theorem [6] by induction,
we prove Properties for 7 = ¢ under these induction
hypotheses, as well as Properties for T =t.

Proof of Property [(Ia)} From the definitions of b;[l]
and h.[l] in (ZI) and [Z3), A[l] conditioned on &;,;; and ©
satisfies the following constraints just before updating h.[l]:

Byy1[l] = [0, M [1]Asn 1 [1] + M, 1A, [1]] = A[Z]Qtﬂ[zl]gv
(129)
Q[ Acus,e[1] — Hy[l] = AT[1] M [I] (130)

for all [ € L. Since the induction hypotheses[(Oe)| and [(Te)] for
7 =t — 1 imply that M,[l] and Q,,[!] have full rank, we
use Lemma [3] to obtain

A[l] ~ (MIIN™(Q, [ Acws 1 [l] — H[I])"
+ Py, B [1Q) 1 [1] — Py []A[Z]Péjm[z]

conditioned on &, ;, and ©. Here, {A[l]} are indepen-
dent matrices and independent of {&,;;, ©}. Each A[l]
has independent zero-mean Gaussian elements with variance
(LM~

Let aufl] = M][llm[l] and mi[l] = Py pmull].
Substituting the expression of A[l] into the definition of h;[l]
in (73), we have

(131)

hell] ~ Hylllou[l] + hY™[1) + P&,y A’ [Imi[l] (132)
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conditioned on &, and ©, with

Q. [l Avu ¢ [l] e [l]
— QI )" B [ [l] + (Q L, 1) BE 1 1M [ e, [1],

hbias [l] _ gouzt[ ] [ ]

(133)
where we have used m-[l] = my[l] — M[l]a[l]. In partic-
ular, we use [[12, Lemma 3(c)] to obtain

~T as. 3T
Pém[l]A [Imi[]) 2 A [Jmi[I] + Q,y1[lJo(1). (134)

Thus, it is sufficient to prove hy™**[1] = Q,,,[l]o(1).
We evaluate h?'**[1]. Using Property for 7 =t yields
(QL 1 1) BY [l

as. gout t[ ] (QH-I[ ])TQ;F+1[l]qt[l] + Qt+1[l]0(1)

- &’%’f”qtm +Quislllo(1).

Similarly, we obtain
(QL 1[I BE (1M [l [1]
= > QL [1)" By [(Jm-[1]

TET]

w3

TET

(135)

gout ‘r[l]

a2 1)+ @ llo(1),  (136)

with «a ,[l] denoting the 7th element of a[l]. Substituting
these expressions into the definition of hY™*[I] in (I33) and
using Property for all 7 < t, we arrive at hP'*[]] %=
Q,.1[l]o(1). Thus, Property holds for 7 = ¢. [ |
Proof of Property [(ID)} Property for 7 = t implies
the conditional independence of {h[l] : | € L} given €1,
and ©. We first consider the case of 7/ < t. Using Property [(Ta)]
for 7 =t and the induction hypothesis for 7 < t yields

Fho el ™= £ il LM 1o 1] + o(1)
O
=7 M[l]mfl[l]mt[l] +o(1) (137)

for all 7 < t, where the last equality follows from the
definition ay[I] = M| [I]m]l].

We next consider the case of 7/ = ¢. Using Property
for 7 =t and the induction hypothesis for T < t yields

AL e O oM )
' L‘j(j[l] i 1P + o(1)
pis (I gm0+ o 0) + 1)
L‘};[ e+ o(1). (138)
Thus, Property [IB) holds for 7 = ¢. n

Proof of Property [Tc)} The former convergence in Prop-
erty for 7 = t follows from Assumption [Il Properties
and - for 7 = ¢, and [S5 Lemma 1]. We find the conver-

gence o7[l] 3 &7[I] for (I4) and @I from Property [(Oc)] for
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7 = t. The latter convergence &y ¢[!] 5 &n.e[l] is obtained
from the former convergence in Property for 7 = t,
o?[1] % 52[1], and [12, Lemma 5]. ]

Proof of Property[(Id); Using the definition of g, [l] in
(Z3) and Property for 7 =t yields

T
P08 o 11,y iy (2 + il o210
= gin,t[l]E[HT [Z]Ht[l]] (1)

= Gl | H ) { gfﬂ] - Ll 1&[11}1

2out,t
[t/T]

Ct’L
+€1nt ZZ []

i=0 l'#l —outt T

E[H[IJH,_ir[l']] + o(1),
(139)

where the first and second equalities follow from Lemma
and the definition of H,[l] in (92), respectively. We use
Property for 7 < ¢ to arrive at Property forr=¢ m

Proof of Property [(Ie}; See [55 Proof of Property (B4)
for 7 = ¢ in Theorem 4]. |

APPENDIX B
PROOF OF THEOREM [2]

The tree assumption in Assumption[§]is used in the proof of
Theorem [21 Focus a root node Iy € £ and consider message-
passing that aggregate messages from leaf nodes toward the
root node /. We analyze properties of message-passing with
respect to a path that passes through the root node /.

Let (1,7, v, l~) denote four different nodes [, I/, I/, and [ that
are located in this order on a path. We first prove the following
lemma for the path length longer than or equal to 3:

Lemma 7: For four different nodes (1,1, v, l~) on a path,

E[H, 1 = VH,, ;I > T]] =0
with all 7/ € {0,...,7}.

Proof: The proof is by induction with respect to the total
number of inner iterations for consensus propagation. For the
first inner iteration 7 = 0 and j = 1, the definition of H, ; [l —

I'] in 28) implies Ho 1[l — '] = 50 olJHol[l]. Thus, we use
Property [Ic)] in Theorem [6] to obtam (140) for 7 = 0 and
j =1 due to [ # I. For some integers t > T and i < J + 1,
suppose that (I40) is correct for 7 =t and j =i— 1. 1f i < J
holds, we need to prove (I40) for 7 = ¢ and j = . Otherwise,
we need to prove (I40) for r =t +1 and j = 1.

We only consider the case of 7 =t and j = 7 since (140)
fort=t+4 1 and j = 1 can be proved in the same manner.
Since we have a path that connect the nodes [, I/, I, and [, the
tree assumption in Assumption [3 implies that H H, ;4" =1
does not contain the message H | /5 ,[] computed in

node [ for any " € NI]\{I'} and that HT o[l = 1] does
not include the message H_ [] /50 o 1] computed in node [

(140)
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for any I € N[I]\{I'}. Using the definition of H,,[l - 1in
(28) and Property in Theorem [@] yields

E[H, .l > VH, [ - 1]

- Z Z E{H“ 1[1”—”] 41705 1[ZH—>Z~] .

VT ENTINY I eN (NI}
(141)

NNl] = 0 for the nodes
(€0, v, l~), we have [ # [ for the indices of the summation.
For four nodes (1,1, v, l~) = (",1, l, i”) on a path, we use the
induction hypothesis (I4Q) for 7 = ¢ and j = 7 — 1 to obtain
(I40) for 7 = t and j = 4. Thus, (I40) is correct for all 7

Since Assumption [3] implies A/[l]

and j. [ |
We use Lemma [7] to prove the following lemma for a path
of length 2.

Lemma 8: For three different nodes [, !’, and [ that are
located in this order on a path of length 2, we have

s [l - ll]ﬁ‘r

E [ﬂm

for all 7 € {0,...,t}.

Proof: Since Assumption [3] implies that H, ; N
does not contain H []/5 tt[] for any I’ € N[I]\{l'} and
that H, ;_ 1[I = 1] does not include Ht[l]/g at, ] for I e

N\{I'}, we use the definition of H, [l = 1] in @28) and
Property in Theorem [@] to obtain

Si=1=0 (142)

E [ﬁt,j = VH, - l/]}
= Z Z E {ﬂt,j—l[l” — l]ﬂr)j_l[i// — lﬂ )

VENTIN{IY e NN}
(143)

Assumption [3] implies AV[I] N N[I] = {I'}, so that we have
1" # 1" for the indices of the summation. For four nodes
(l,l’,l~’,l~) = (l”,l,l: l~”) on a path, we use Lemma [7] to arrive
at (142). [ ]

We prove Theorem Since Assumption [5] implies that
H, ;[I' — 1] does not contain the message H¢[l]/Eout,:[l]
computed in node [, we use the definition of H,[l] in @7)
and Lemma [§] yields

] 7 T l t l
E[A, [ H,]] = %
+ D> E[H I = 0H, 1~ 1] (144)
I"eNTl]
Similarly, for H, ;[l — I'] in (28) we obtain
E[M,[1])M,[i
E[ﬂT,j [l — l/]ﬂtyj[l — ll]] = %
+ S EH, > H,, 1) (145)
FENTINIY

Thus, Theorem 2] holds.
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APPENDIX C
PROOF OF THEOREM [3]

To represent a fixed point of the state evolution recursion
with respect to the variance variables, we replace the iteration
index ¢ with an asterisk for all variables. We first focus on the
inner module. Since a unique fixed point of (unnormalized)
consensus propagation [44] is summation consensus under
Assumption 3l from (29), (3I), and Theorem 2] we have

1_ 1 G[l'] _

—[l] = = _ = Ty, (146)
L L el gout,*[l/]

a2 ! LI 52 (147)

MW= Y =
Ll,;gout,*[l]

E[M2[]

= ¥, 148
ngut,* [ll] ( )

=)

el

for all [ € L. Thus, all variables fed back from the inner
module are identical for all [, i.e. for (33), 34), 33), and 36

Eine[l] = E[O1 fin s (e X + H; L,62)) = &ney,  (149)
_2F
U] = ”*f‘(;"* =, (150)
E|ZZ.
EIZ0Z.0) = 2B [Xfu (3.X + 1:1,62)] = 2221,
65151)
~ 2
BIZ20) - = [ (X + i n0?)) = BEL s

with Z ~ N(0, (L6)~'E[X?]) independent of W and H, ~
N(0,%,) independent of X . In the derivation of these expres-
sions, we have used 7).[l] = L obtained from the definition of
Mt [l] in m

We next focus on the outer module. Let Z and Z, denote
zero-mean Gaussian random variable with covariance E[Z2],
E[ZZ.], and E[Z?2], independent of W. Using @24) and (23)
yields
(153)

gout,*[l] =E [81fout(Z*; Y, 1_)*)] = gout,*v

E*[l] = - %fout(z*ug('z?W);’D*)

} =(,, (154)
z=Z

with Y = ¢g(Z, W). Substituting these expressmns into (146),
([47), and (148), we have 7j. = C/Eout.»» 02 = & and
= 1

E* —
gout,*

E[fou(Z.,Y50,)] . (155)

From these observations, we find that the fixed point of the
state evolution recursion for D-GAMP is equivalent to that for
centralized GAMP [[18]].
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APPENDIX D
PROOF OF THEOREM []

We first derive the error model of D-GAMP with the
distributed protocol (@4). Replace 7j;[l] in Lemma [ with

G Gl Gl
= gt 2 (gout,t[z'] Eocall

Applying Z,[l] in @3) to the definition of h,[l] in Lemma &
forT =1 yields
h[l]

h[l] = +v >
gout t[ ] l’GN[l] <§0ut t[ ] gout,t[l]

with hy[l] defined in Lemma [l Thus, the error model of D-
GAMP with the distributed protocol (@4) is equal to the error
model (ZI)—(73) with C;o[l][]] = 1, in which h.[l] in @4) is
replaced with (137).

Define ¥; 4[] = N~!||h¢[l]||2. Tt is sufficient to confirm that
the effective SNR L™272[l] /% +[l] for the inner denoiser is
different from that of centralized GAMP. Suppose that g’om,t [1]
and (;[I] converge to £t [(] and (. [1] as t — oo, respectively.
When v > 0 is set appropriately [32], the definition of 7[(]
in (I36) implies that the following consensus is achieved:

mll] 1 G V'] _

Am =7 =1 (158)

) . (156)

> , (157)

el gout,* [ll]

for all I € £, with 7, given in (146).
We next evaluate Xy ¢[l] = N ' | h[l]||>. Applying Proper-
ties and in Theorem [@] to h.[l] in (I37) yields

E[ME) 22
FY|N[ ]) Lgout t[ ] l/E;[l] Lgout t[l/]

(159)
which cannot converge to ¥.[l] in (I48), because is dif-
ferent from the distributed protocol for average consensus [32].
These observations imply that the fixed point of the effective
SNR L~272[l]/%:+[l] is different from that for centralized
GAMP. Thus, Theorem @ holds.

Y[l 2 (1

APPENDIX E
PROPERTIES FOR THE BAYES-OPTIMAL DENOISERS
A. Proof of Lemma
We first confirm the following proposition:
Proposition 1:
e 00.t[l] = vy 4[l] implies E[Z[l] Z,[l]] = E[Z2]1]].
] 6017[1] = 67-77-[1], 1_)0715[1] = ﬁtﬁt[l], and 1_)7-1,5[[] = ﬁt,t[l]
imply E[Z, [[)Z:[1)] = E[Z2[1]).
Proof: We first prove the former property. Applying
the assumption @o[l] = ¥¢¢[l] to the definitions of (32)
and (33) yields E[(Z[l] + B:[l])B:[l]] = 0, which implies
E[Z:[]B[l]] = 0. Thus, we have E[Z2[l]] = E[Z,[l) Z[l]].
We next prove the latter property. Using the definitions of

(32) and (R3) yields
E[Z2[I]] - E[Z, ) Z:[l]] = E[(Z[]] + B-[))(B-[I] -
= =00, (1] + Vo,¢[l] + Vr - [I] = Vr[l] =0,

By[i])]
(160)
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where the last equality follows from the assumptions. [ ]

We prove Lemma From Proposition [I] under the as-
sumption T .[l] = T, [l], it is straightforward to find the
representation Z[l] ~ Zi[l] + N¢[l] for all ¢ > 0, with
N¢[l] ~ N(0, 0 ¢[l]) independent of Z;[l]. This representation
justifies the expression of the posterior mean estimator Zt[l]
in (34).

Let fouri[l] = Ffoull](Z[1, g[l)(Z[1), WI]); Te[l]) with
U4[l] = 0¢.¢[l]. We use the representation Z[l] ~ Z.[l] + N[],
Lemma[@ and the definition of ¢[/] in (Z3) to obtain

B[N [I] four e [1]] = —vr,e[1]C 1] (161)
Thus, we have the following identity:
Zl] — Z|l
o= & [ 2L el
g | 22wl ae
’Ut_’t[l]
with the posterior mean estimator Z,[I] = E[Z[]| Z.[1], Y[I]].

Using the Cauchy—Schwarz inequality for (?[l], we arrive at

<E (M

Al 2 m>2 163)

E[ME (1] Ur,t[l]
where the equality holds if and only if there is some constant
C € R such that fout [l] = C(Ze[l] — Ze[l]) /0 e[1] is satisfied.
Thus, Lemma 2] holds.

B. Proof of Lemma

We first prove basic properties of the Bayes-optimal denois-
ers.

Lemma 9 ( [18|]): Consider estimation of X based on the
Gaussian measurement Y = aX + Z with Z ~ N(0,0?)
independent of X. Let the posterior mean estimator f(y) =
E[X|Y = y]. Then, we have

E[Xf(Y)] = E[f*(Y)], (164)
a — 2ly =
P = EUEIOF =i
Proof: The former identity is trivial: E[X f(Y)] =

E[E[X f(Y)|Y]] = E[f%(Y)]. The latter identity is obtained
from direct computation,

, d fx(f(y;:;)2 dP(x)
f'ly)=—
W [ (x)
__(=)y ;2a<x ) 4 )Y —UZ<3:> G >O_—2<:r> |
(166)
with
_ (y— az)
(') = f‘r c dp(x>. (167)
dP(z)

Thus, the latter identity holds. [ ]
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We follow [18] to represent the Bayes-optimal outer de-
noiser (36) with C' = 1 as the (negative) score function

0
Joutll] (8, y; 004 [1]) = ~ 30 log P[l](y|0; ve[l]),  (168)
with
1 2—0)2
Pll](yl6;v) Z/PY[z]|Z[z](y|Z)\/%€_( 5 dz,  (169)

where Py z;;(y|2) denotes the conditional distribution of
Y[l] given Z[l]. Note that the distribution P[l](y|0;v) is
normalized with respect to y. It is straightforward to confirm
the equivalence between the two representations.

We reproduce an existing lemma [[18].

Lemma 10 ( [18)]): Suppose that Assumption [6] holds and
consider the Bayes-optimal outer denoiser (I68) with C = 1.
Furthermore, suppose that o;[l] in (34) is equal to T[] in
@3). If vo+[l] is equal to Ty [l], then we have

C_t (] = gout,t[l]-
Proof: We first consider the case of ¢ > 0. Utilizing the
well-known identity for the score function
0
Ztog PUY0:20,10)| 211 = ] =

and the representation of the Bayes-optimal outer denoiser in
(@68) with v[l] = vy ¢[l] yields
E[Z:[l] fous [ (Z:[1], Y [1); 01,4 [1])] = 0.

We use Lemma [6] and the definitions of g‘oum[l] and ([l] in

(4) and @23) to obtain

(170)

(171)

(172)

0 = E[Z:[l] fous 1] (Z:[1], g[11(Z]1], W_f[l]);@t,t[l])]
= E(Z} [I)one[l) ~ ELZNZ )G
= E[Z2{1)] (Soure [l] — G[1)), (173)

where the last equality follows from Proposition [ under the
assumption g ¢[l] = U;+[l]. Since E[Z?] > 0 holds for ¢ > 0,
we arrive at Lemma [I1Q] for ¢ > 0.

We next consider the case of ¢ = 0, in which we have
Zp|l] = 0. To extract information about the partial deriva-
tive of fous[!](0, Y[!]; Do0[!]), we inject an independent weak

Gaussian noise Z\™ [[] ~ N(0,n~1) to @ for sufficiently large
n €N,
Somoll] = E |00 foul(Z 0. Y W] (74)
=(n 0 n ~
8l = ~E | 5 fou [1(25" 1) gl1) (= WI)): 20l1) ] :
z=Z[l]
175)

associated with Eout0[l] and (o [l] in 24) and (23), respectively.
;;eatmg the proof of Lemma for t > 0, we obtain

fouc olll = )[l] for any n € N.
To prove §out oll] = Qo[ ], we show lim,, oo é{gﬁz)o[l] =
EOHMO[ ] and lim, o Co [ ] = Co[ ] Assumption implies

that fou0[/] is differentiable almost everywhere and has
bounded partial derivatives. Thus, we use the dominated
convergence theorem to arrive at these limits. ]
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We prove Lemma[3] From the assumption o/ ./ [l] > 0, ,[l]
and Proposition [ under the assumption v, 4[l] = 0, ¢[l] for all

7€ {0,...,t}, we have the following cascaded representation
of Z.[l] and Z;l]:
Z[l] = ZJl] + Nell],  Ze[l] = Z-[1] + AN [l] - (176)

for 7 > 0, where N[l] ~ N(0,0:,[]) and AN, [l] ~
N(0, 9, +[l] — 04¢[l]) are independent of all random variables.
It is straightforward to confirm E[Z,[I)Z,[l]] = E[Z2[l]] and
E[(Z.[l] — Z[1])?] = ¥+ [l]. Since Z.[l] depends on Z[l] only
through Z,[l] for all 7 > 0, as well as Z[l] = 0, we have
E[Z]Z:[1), Z- (1), Y 1)) = E[Z]Z,[1], Y[I]] (177)
For My[l] = fout[[](Z[1], Y[I]; Dt 4[1]), we use the definition
of the Bayes-optimal outer denoiser in (36) with C = 1 to
evaluate E[M, [I]M.[l]] as

O [1JE[M ]I =E | M. [l)(Z [l])}
=E[M; []( [] E[Z[)|Z-[1], Z [] Y[
= E[E[MI)(Z:[l] = Z[1]) |Z-[1], Z:[1), Y[1]]]
= E[M[I[(Z:[1] - Z[1))], (178)

where the second and third equalities follow from the iden-
tity (I77) and from the fact that M.[l] is a deterministic
function of Z,[l] and Y[l]. Using Lemma [@] yields

Ut ¢ [E[ M- (1] My [1]]

= E[(Z)
= gout T[Z]E[(Zt [l]
= gout,‘r[l]vr,t[l] (179)
with &ut - [1] and (. [I] given in 24) and 23), where the second
and last equalities follow from Lemma and the definition
of v, ,[l] in (B3), respectively. Using the assumption v, 4[l] =
U4[l] for all 7 € {0,...,t}, we arrive at Lemma 3

ZI) Z-[Eoue. ) — E[(Z:[1] — Z[1) Z[1]1C-[1]
ZIN(Z (1] = Z[1)]

APPENDIX F
PROOF OF THEOREM [3]

A. Long-Memory Proof Strategy

In the long-memory proof strategy [46], the covariance
matrix of estimation errors for D-GAMP is utilized to prove
the convergence of the state evolution recursion with respect
to the variance of the estimation errors. When the covariance
matrix has a special structure, the positive definiteness of
the covariance matrix implies the convergence of its diagonal
elements from basic properties in linear algebra. Furthermore,
the Bayes-optimality of the denoisers produces the special
structure in the covariance matrix naturally. As a result, the
convergence of the state evolution recursion can be proved,
without utilizing concrete properties in the measurement
model.

As shown in Theorem [6 rigorous state evolution with
respect to the MSE has already required evaluation of the error
covariance matrix and a guarantee for its positive definiteness.
To prove the convergence in the long-memory strategy, thus,
the only additional tasks are evaluation of the error covariance
matrices for the Bayes-optimal denoisers, as presented in
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Lemmas [1] and B In this sense, we are ready for proving
Theorem
The following lemma is a technical result to guarantee the
monotonicity for the diagonal elements of a covariance matrix:
Lemma 11 ( [46)]): Suppose that a symmetric matrix M, €
RHD* (1) g strictly positive definite. Let m.,; denote the
(7,t) element of M. Then,

o My =m., forall 7€{0,...,t} and 7" € {0,...,7}

implies m,/ .+ > m, , forall 7/ <7 <t

e Mp; = my 0 for all 7 € {0,...,¢t} and 7/ €

{0,...,7} implies m,s ,» < m, . for all 7/ <7 <*¢.

Proof: We only prove the latter property since the former
property was proved in [46, Lemma 3]. The proof is by
induction. For ¢ = 1, we use det M} = mggm1,1 —m§  and
the positive definiteness of M to obtain mi,; > mg,9 > 0.
Suppose that the latter property is correct for some t. We need
to prove the latter property for M.

The positive definiteness of M, implies that of M.
Thus, we have 0 < mgpo < my,. Subtracting the first
row in M ++1 from the othe~r rows, we find det M, =
mo,0 det My, with s = [My]r/ - = mprq1 41—, for
7,7 €0,...,t}. The positive definiteness of M1 implies
the positive definiteness of Mt. Since 1M, » = 1M .+ holds
for 7/ < 7, we use the induction hypothesis for M + to obtain
Mrrg1741 < Mry1 741 for all 0 < 77 < 7 < t. Combining

these results, we arrive at the latter property for M;;. ®
As presented in Lemmas [Il and 3 the structure m,/ . =
My OF My = my o in Lemma [[1] appears when the

Bayes-optimal denoisers are used. To prove Theorem [3 we
need the following lemma:

Lemma 12: Suppose that Assumption [6] holds and consider
the Bayes-optimal inner denoiser (46) and outer denoiser (36)
with C' = 1. Then, for all ¢t = 0,1,... we have the following
properties for the outer module:

o Y, [l] satisfies (39). In particular, ./ ;[I] = %, ,[(] holds
forall 7 € {0,...,t}.
. ﬁt[l] = nt[l] and 5,52 [l] = Et)t[l] hold.

o Y>35, [l] holds for all 7/ < 7 <t
On the other hand, for the inner module we have

o cOVy/ t41[l] = covigq r41[l] holds for all 7 € {0,...,t+
1}.
o Upy1l] = Vey1e41[l] and Giya[l] = Eout,e41[l] hold.
o covyr [l] > covr ,[l] holds for all 7/ <7 <t+ 1.
Proof: The proof of Lemma is by induction with
respect to ¢t. The proof for ¢ = 0 is omitted because it is
the same as for the general case. For some 7, suppose that
Lemmal[IZlis correct for all ¢ < 7. We need to prove Lemma[2]
for t = 7. See Appendices [F=Bl and [F=C] for the proofs of the
properties in the outer and inner modules, respectively. ]
We prove Theorem [3l The first properties in Theorem [3] are
part of Lemma The second property follows from Theo-
rems I P] and Lemma 12l The last property is obtained from
the monotonicity in Lemmal[I2t {covy [l]} are a monotonically
decreasing sequence with respect to ¢. Since the MSE cov, ;[{]
is non-negative, we conclude that cov; .[l] converges to a non-
negative constant as ¢ — 00.
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B. Proof for the Outer Module

For some 7, suppose that Lemma[I2lis correct for all ¢ < 7.
We confirm the conditions in Lemmal[3] for all ¢ < 7. Applying
the induction hypotheses cov, ¢[l] = covy,[l] for all t < 7
and 7 € {0,...,t} and cov,r [l] > cov,[l] for all 7/ <
t < 7 to the relationship between o, ([l] and cov, [l] in
(Z3), respectively, we obtain v, 4[l] = v ¢]!] for all ¢ < 7 and
7 €{0,...,t} and U ,[l] > Dy 4[l] for all 7/ < ¢t < 7. From
these properties and the induction hypothesis @; [[] = @y .[!] for
all t < 7, as well as Assumption [6] we can use Lemma [3] for
all t < 7.

We first derive the representation of X,/ .[l] in (39) for
7" € {0,...,7}. Lemma [3 for ¢ = 7 implies that (@2) and
(@3) reduce to
1

ET’,T[Z] i —— + Z 27./_’7._’(][1/ — l], (180)
Lgout,‘r[l] l/E./\/[l]
with
_ 1 _ -
Z‘H,T,j[l - l/] = ﬂ + Z ZT/7T7j—1[l/ - l]7
2out,T PGN[Z]\{V}
(18D

which are equivalent to (39) and (60), because of the identity
€out,[l] = E[M?2[l]] obtained from Lemma [Bl The identity
Yool = 2,1 is trivial for 7/ € {0,...,7} from the
definitions of £,/ ,[I] and X, [l — I'].

We next prove 7, [l] = n,[l] and 52[]] = 3, .[]. We use
the induction hypothesis (. [[] = out,-[{] for the definitions of
7-[] and ﬁ”_[l — '] in 29) and (B0) to obtain 7.[I] = n.[]
given in (I3). The identity 52[I] = %, .[I] follows from the
definitions of 62[1], 32 ;[ = I'], ¥, -[l],and £ ;[l — '] in

=T,T,]

@G1), B2), B9, and (60), as well as Lemma 3]

Finally, we prove X,/ . > %, ,[]] for all 7/ < t < 7.
From the definition of ¥,/ . [I] in (39), it is sufficient to prove
E[MZ[l]] < E[MZ2]l]] for all 7" < t < 7. From Properties[(Oc)|
and [(Oe)| in Theorem [l we find the positive definiteness of
the covariance matrix that has E[M,/[[|M.[l]] as the (7/,¢)
element for all 7/,¢ € {0,...,7}. Using Lemma [l for this
covariance matrix with E[M,[I]M,[l]] = E[M?2][l]] for all
7' € {0,...,t}, obtained from Lemma [3] for all ¢ < 7, we
arrive at E[M2[l]] < E[MZ[l]] for all 7 < t < 7, which

implies >,/ ;» > 3, ,[]] forall 7/ < ¢ <.

C. Proof for the Inner Module

We prove the identity cov, r41[l] = covri1,r41[l] for all
7" €{0,...,7+1}. We first consider the case of 7" = 0. Let
Sinll] = finll) (L™ - [1)X + H[1]; 07 (1], £7 £ [1]). Using the
definition of covo ,11[l] in @Q) and 52[I] = %, ;[I] yields

covor+1[l] = E[(X — fin,r[l] + fin, - [[()(X = fin+[1])]
=E[(X ~ funr[1)?], (182)

where the last equality follows from the well-known property
E[fin,-[[}(X — finr[l])] = 0 for the Bayes-optimal inner
denoiser (@6). Thus, we use the definition of cov i1 r41[l]
in (39) to have covg r41[l] = covr41 r41[l].

We next consider the case of 7/ > 0. From %,/ . [l] =
S, for all 7 € {0,...,7}, S > N4y for all 77 <
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t < 7, and 62[l] = X,.[l], we use Lemma [I to obtain
covrry1,r4+1[l] = covrp 41[l] for all 77 € {0,...,7}. Com-
bining these results, we arrive at cov, - 41[l] = covri1 r41[l]
forall 7’ € {0,..., 7+ 1}.

Let us prove U,41[l] = Ur41,r+1[!]. From 7 [I] = n,[{] and
52[l] = ¥, +[l], we use Lemma[d for the Bayes-optimal inner

T

denoiser (6) and the definition of &, .[I] in (33) to obtain

z _ N [llcovry1,r41[l]
gm,r[l] - Liﬁ,-yﬁ,-[l] 5

(183)

with covyy1 7 41[l] given in (39). Applying this identity and
o2[l] = £;.+[l] to vr41[l] in (B4), we have

_ 1
UT-‘rl[l] = F[Z]COVT-"-l,T-‘rl[l]u (184)
which is equal to 0,41 7 1[] in (53). B
We prove the identity (r+1[l] = Eout,r+1[l]. Using

covor+1[l] = covri1,r41[l] and the definition (32) yields
To,r+1[l] = Urg1.r41[l]. From this identity, o,41[l] =
Ur4+1.r+1[l], and Assumption [6 we use Lemma [T0] to obtain
the identity ¢ 1[l] = Sout,r41[l]-

Finally, we prove cov,s [l] > covy[l] for all 7/ < ¢ <
74 1. Using . [l] = £, ,[1] and {ria[l] = Eoutrrall], we
represent the random variable Q. in (@3) as Qq[l] = —X and

Qualt) = ull (T 4 1,22 1) - X

(185)
for 7/ > 0, which imply E[Q, [l]Q¢[]] = cov,s+[l] from the
definitions of cov,/ [l] in (39), (@0), and @I). Properties
and in Theorem [6] imply the positive definiteness of the
covariance matrix that has cov, ;[l] as the (7/,¢) element for
all 7,t €{0,...,7 4 1}. From this positive definiteness and
covyr r41ll] = covrgq r41[l] for all 7/ € {0,...,7+ 1}, as
well as the induction hypothesis cov,s :[l] = covy[l] for all
t € {0,...,7} and 7 € {0,...,t}, we use Lemma [I1] to
obtain cov,s [l] > covy,[l] for all 7/ < t < 7+ 1. Thus,
Lemma [12] holds for ¢ = .
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